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 13 

Harnessing the properties of vortices in superconductors is crucial for fundamental science and 14 

technological applications; thus, it has been an ongoing goal to locally probe and control vortices. Here, we 15 

use a scanning probe technique that enables studies of vortex dynamics in superconducting systems by 16 

leveraging the resonant behavior of a raster-scanned, magnetic-tipped cantilever. This experimental setup 17 

allows us to image and control vortices, as well as extract key energy scales of the vortex interactions. 18 

Applying this technique to lattices of superconductor island arrays on a metal, we obtain a variety of striking 19 

spatial patterns that encode information about the energy landscape for vortices in the system. We interpret 20 

these patterns in terms of local vortex dynamics and extract the relative strengths of the characteristic energy 21 

scales in the system, such as the vortex-magnetic field and vortex-vortex interaction strengths, as well as 22 

the vortex chemical potential. We also demonstrate that the relative strengths of the interactions can be 23 

tuned and show how these interactions shift with an applied bias. The high degree of tunability and local 24 

nature of such vortex imaging and control not only enable new understanding of vortex interactions, but 25 

also have potential applications in more complex systems such as those relevant to quantum computing. 26 

 27 

I. INTRODUCTION 28 

Many electronic and magnetic properties of superconductors can be understood through study of the 29 

vortices present in the superconductor. Each vortex allows one flux quantum to penetrate the 30 

superconducting surface, allowing the bulk of the superconductor to remain in the superconducting state. 31 

When an electrical current is applied, vortices move transversely to the current, a dissipative process that 32 

removes the perfect electrical conductivity of the system. Forces that prevent motion of vortices, known as 33 

pinning forces, are desirable to prevent this dissipation, and to control the positions that vortices occupy. 34 
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Beyond enhancing superconductivity, it is desirable to control vortex positions to predict vortex paths, as 35 

well as the fields surrounding the superconductor. The demonstration of locally probed and manipulated 36 

vortices [1-14] is relevant to a variety of technological applications, including quantum computation [15, 37 

16].  38 

 In previous works, imaging techniques such as scanning SQUID microscopy [1-3,  17], Hall probe 39 

microscopy [18, 19], scanning tunneling microscopy [6, 20], NV center magnetometry [21, 22], and 40 

cantilever-based techniques [23-26] have played a central role in studies of vortex lattices and the internal 41 

structure of individual vortices. However, these studies focused on probing and manipulating individual 42 

vortices rather than capturing and controlling the dynamics of an entire vortex ensemble. This allowed 43 

determination of the pinning strength but not the other important energy scales such as vortex-vortex 44 

interaction strength. Yet determining vortex interactions is crucial for enabling predictive vortex 45 

manipulation and control for applications. In this article we use a technique that overcomes this 46 

obstacle: a method we term Φ0-Magnetic Force Microscopy (Φ0-MFM) [27, 28], which probes the dynamic 47 

motion of a small group of vortices (from 1 to ∼ 12) trapped in the magnetic field generated by the tip of a 48 

vertically-oriented cantilever. Here, we use this technique to determine the vortex number in a pinned vortex 49 

configuration, extract the relative vortex-vortex and vortex-field interactions strengths as well as the vortex 50 

chemical potential, and probe the response to an applied current bias. 51 

 52 

II. Φ0-MAGNETIC FORCE MICROSCOPY OF VORTEX DYNAMICS IN 53 

SUPERCONDUCTOR-NORMAL-SUPERCONDUCTOR ARRAYS 54 

 Φ0-MFM is demonstrated on triangular arrays of Nb islands deposited on Au films [Fig. 1(a)], 55 

which form a superconductor-normal metal-superconductor (SNS) array. A resistance vs. temperature 56 

measurement showing a superconducting transition for a representative array is shown in Fig. 1(c). In this 57 

figure, T1 represents the superconducting transition temperature of the Nb islands and T2 the temperature at 58 

which the Au film regions between the Nb islands – the interstitial regions – become superconducting [31] 59 

and strongly Type II in behavior. Vortices will preferentially stay close to the magnetic tip but avoid the 60 

Nb islands and thus reside in the interstitial regions, since these regions host a weaker superconducting 61 

condensate. As a result, the SNS array system of superconducting islands on top of normal metal films 62 

proves to be a controllable and tunable model for superconducting films having a periodic pinning potential 63 

for vortices [29–31].  64 

 Scanning measurements are performed below T2 using an ultra-soft micromachined Si cantilever, 65 

mounted in a pendulum configuration, with an SmCo5 magnetic tip shaped via focused ion beam [Fig. 1(b)]. 66 

All MFM scans are taken below T2 to allow us to neglect vortex nucleation due to thermal fluctuations and 67 

assume that all phase windings and density suppressions in the superconducting order parameter are due to 68 
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external or tip magnetic fields. An estimate of the tip field is obtained by imaging flux entry into 69 

superconducting Al rings (see Appendix A). A uniform magnetic field applied perpendicular to the SNS 70 

array, and anti-parallel to the field of the tip, tunes the number of vortices trapped underneath the cantilever tip. 71 

The magnetic tip creates a potential well underneath it for vortices with a particular circulation, and at the 72 

same time, it repels oppositely circulating vortices that are generated by the uniform field applied to the 73 

SNS array. Hence, underneath the tip several tip-induced vortices will be trapped. The tip field controls both 74 

the depth and width of the well while the external applied field affects only the depth of the potential. 75 

FIG. 1. SNS array and magnetic tip characterization. (a) Schematic of cantilever over a 

triangular array of Nb islands on top of an Au film. A SmCo5 magnetic tip (black shape) 

is attached to the end of the cantilever and used to trap vortices. The white arrow on the 

magnetic tip indicates the direction of the tip’s magnetization. Inset: Scanning electron 

microscope (SEM) image of an array with 500 nm center-to-center spacing. (b) False-

color SEM image of one of the SmCo5 magnetic tips used in this work. White scale bar 

is 500 nm. (c) Temperature dependence of the resistance near the superconducting 

transition. 
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Overall, the external field serves as an additional tuning parameter which globally defines the vortex array 76 

that is then modulated by the tip field. As parameters related to the vortex energies and interactions are 77 

changed (e.g., tip height, magnetic field magnitude, array spacing) the configuration of the trapped vortices 78 

changes to minimize the local energy. As the vortices move, frequency shifts of the cantilever are generated 79 

due to the interaction between the vortex and cantilever fields. 80 

To generate spatial frequency shift maps, the cantilever is raster scanned over the surface of the SNS 81 

array at a fixed tip scanning  height, with a small fixed oscillation amplitude (typically ∼ 15 nm), which 82 

perturbs the position of the potential well that traps vortices [Fig. 2(a)-(e)]. The cantilever is kept oscillating 83 

FIG. 2. Schematic showing formation of spatial frequency shift maps. (a)-(c) Several different vortex 

configurations are stabilized for different positions of the tip with respect to the island array. Here the 

vertices of triangles correspond to the positions of Nb islands and the shaded blue region marks the 

field on the surface of the sample with the center indicated by the dot. Vortices in the interstitial 

regions are shown by red circular arrows. Small colored regions mark the positions of the tip center 

for which the vortex configurations are stable. (d), (e) When the tip encounters a position where the 

vortex configuration changes (black line), it will drive the vortices between these configurations as it 

oscillates, leading to a force on the cantilever and the emergent resonant frequency shift. (f) 

Representative example of an experimental frequency shift. (g) Simulated locations of the transitions 

between vortex configurations overlaid with the experimental data. Shaded regions correspond to 

vortex configurations shown in (a)-(c).  
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at its resonant frequency [32] and is monitored by a phase-locked loop. When the cantilever moves across 84 

the array at a fixed applied field the energies of two distinct configurations of vortices can become 85 

degenerate at certain tip locations [Fig. 2(d), (e)]. While the cantilever is over these degeneracy locations, 86 

the oscillations of the cantilever, along with thermal excitations of the vortices, will drive the vortices 87 

between the two configurations in resonance with the cantilever, leading to a force on the cantilever and an 88 

associated frequency shift. This frequency shift, which we found to be Δ𝑓 ≈ 5-15 Hz for our cantilevers 89 

with resonant frequency of 𝑓0 ~ 4 kHz, vanishes quickly as the cantilever moves away, sharply marking the 90 

positions where the vortex configurations become degenerate. Raster scanning over the entire imaging 91 

window leads to a spatial map of frequency shifts. 92 

 In Fig. 2(f) we present an experimental frequency shift map for an island spacing of 500 nm, where 93 

dark lines indicate the boundaries between two stable vortex configurations and the lighter areas show tip 94 

positions where the vortex configuration is stable and thus there is no associated frequency shift of the tip. 95 

The figure shows an intricate pattern of approximately periodic frequency shifts. This pattern consist of a 96 

series of nearly circular features, which are centered on the superconducting islands, and a series of lines, 97 

some of which are horizontal, and others appear in zig-zag configuration. Once these spatial frequency shift 98 

maps are obtained experimentally, we can infer the corresponding vortex configuration from Monte Carlo 99 

simulations that minimize the energy of the system (see Section II.A). For example, our modelling indicates 100 

that the frequency map shown in Fig. 2(f) corresponds to a 5-vortex configuration. Figure 2(g) shows the 101 

comparison of the experimentally observed pattern with the calculated locations of transitions between 102 

configurations of 5 vortices. 103 

 104 

A. Numerical simulations of vortex configurations 105 

To understand the underlying mechanism that causes the formation of these patterns, we will now discuss how 106 

these images encode information about vortex dynamics in the SNS array. We performed numerical 107 

simulations of a simple phenomenological model of vortices. We model the system as an array of Josephson 108 

junctions, approximating the Josephson current as 𝐼 ≈ 𝐼𝑐𝛾𝑖𝑗, where 𝛾𝑖𝑗 is the gauge-invariant phase 109 

between islands 𝑖 and 𝑗. This approximation allows for several convenient simplifications to the effective 110 

vortex energy (see Appendix B). We assume that each vortex is point-like and sits in the center of a 111 

plaquette, and the subsequent model for the vortex energy is 112 

 

𝐸[𝑛] = 𝑝int ∑ V𝑝𝑞𝑛𝑝𝑛𝑞 + ∑ [(𝑈𝑓)
𝑝

+ 𝜇vort] 𝑛𝑝

𝑁plaq

𝑝=1

𝑁plaq

𝑝,𝑞=1

 

 

(1) 

where 𝑁𝑝𝑙𝑎𝑞 is the number of plaquettes, 𝑝𝑖𝑛𝑡 is a relative scale factor between the vortex-field ((𝑈𝑓)
𝑝

) 113 

energy and vortex-vortex (𝑉𝑝𝑞)interaction term, µvort represents the chemical potential of the vortices, 114 
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and np is the number of vortices in plaquette p. We use a classical Metropolis algorithm Monte Carlo 115 

simulation to determine the lowest energy vortex configuration for a fixed vortex number (Appendix B). We 116 

then compared the lowest energy vortex configurations for differing vortex numbers to determine the 117 

configuration with the lowest overall energy, hence identifying the vortex number and its configuration for 118 

a given tip location. By tuning the relative strengths of (Uf)p, Vpq, and µvort, to fit the data at the correct 119 

external field and tip heights, we can extract the relative energy scales of the system.  120 

As an example of these simulations, in Fig. 3(a) we show the patterns and associated vortex 121 

configurations produced by three vortices. As can be seen, there is very good agreement between the 122 

simulations obtained from the model we use (bottom) and the experimental measurement (top). By 123 

increasing the number of vortices by one and running the simulation again, the resulting pattern obtained 124 

changes and reproduces another of the experimental scans, as shown in Fig. 3(b). Using this technique, we 125 

can thus show that Figs. 3(a), (b), (c), and (d) demonstrate the energy landscapes and corresponding vortex 126 

configurations for 3, 4, 5, and 6 vortices, respectively. 127 

  128 

B. Effects of tip scanning height and applied magnetic field 129 

Figures 4 and 5 show additional real space maps of the frequency shifts associated with changes in 130 

FIG. 3. Images of some patterns seen in this experiment (top) and associated vortex configurations (bottom) as 

determined by simulated annealing. A slowly varying background was removed from all images to highlight the 

pertinent features. Configurations are shaded where they are the lowest energy state. The simulation data is darker 

in areas where the cantilever would experience a larger frequency shift due to the oscillating current. Some dashed 

vertical lines are added to the simulation to highlight stable regions for a given vortex configuration. One plaquette 

(red triangle) and associated islands (dashed circles) are drawn for clarity. Experimental and simulations taken for 

(a) 3 (124 Oe, 350 nm), (b) 4 (85 Oe, 425 nm), (c) 5 (80 Oe, 425 nm), and (d) 6 vortices (68 Oe, 425 nm). All 

images taken at 3.70 K, except (B), taken at  
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vortex configurations, where striking geometric patterns are produced as the applied field, tip height and 131 

array spacing are tuned. Changes in the number of vortices and their energy landscapes are manifested as a 132 

remarkable evolution between frequency shift patterns. We can controllably alter the number of vortices 133 

and thus vortex configurations by tuning three main parameters: the applied magnetic field, tip scanning 134 

height, and array spacing.  135 

Figure 4(a)-(e) show frequency shift maps for a 500 nm-spaced island array obtained by fixing the 136 

applied magnetic field to 50 Oe and tuning the tip height from 540 nm to 340 nm. Through Monte Carlo 137 

simulations, it was determined that Fig. 4(a)-(e) correspond to a 3, 4, 5, 6, 7-vortex configuration, 138 

respectively. As the tip scanning height is decreased at a fixed applied field, the depth of the potential well 139 

increases, leading to an increase in the number of vortices trapped underneath the tip. Correspondingly, the 140 

energy landscape evolves as the vortex number increases. 141 

 The tip heights at which a vortex configuration transition happens (for example a transition from a 142 

3-vortex to a 4-vortex configuration) also depends on the applied magnetic field. Fig. 4(f)-(j) show 143 

frequency shift maps obtained by fixing the applied field to a higher value of 80 Oe and tuning the tip height 144 

from 380 nm to 240 nm. Similar features are evident in Fig. 4(a)-(e) and Fig. 4(f)-(j); from simulation, it 145 

was determined that Fig. 4(f)-(j) also correspond to a 3, 4, 5, 6, 7-vortex configuration. However, for the 146 

larger applied field the depth of the potential well trapping the tip-generated vortices is smaller and thus 147 

there are fewer trapped vortices. For example, by fixing the tip height to 380 nm and tuning the magnetic 148 

FIG. 4. Vortex configuration changes with tip height and applied magnetic field. Tip height decreases from left to 

right and applied field increases from top to bottom. The applied field (in Oe) and the tip height (in nm) are indicated 

on the lower left corner of each panel. (a-e) Applied field is fixed at 50 Oe as the tip height is tuned from 540 to 340 

nm. As the tip height decreases, frequency shift maps were taken for (a) 3, (b) 4, (c) 5, (d) 6, and (e) 7 vortices. (f-

j) Applied field is increased and fixed at 80 Oe as the tip height is tuned from 380 to 240 nm. As the tip height 

decreases, frequency shift maps were again taken for (f) 3, (g) 4, (h) 5, (i) 6, and (j) 7 vortices. 
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field from 50 Oe to 80 Oe, as shown in Fig. 4(d) and Fig. 4(f), the number of trapped vortices decreases 149 

from 6 to 3. It is clear that as the applied field increases, lower tip heights are required to achieve the same 150 

vortex configuration.  151 

Although the frequency shift maps corresponding to the same vortex configurations are similar, 152 

they are not identical. For example, both Fig. 4(d) and Fig. 4(i) describe a 6-vortex configuration, however, 153 

they differ in that Fig. 4(i) has more well-defined features and also shows additional features not evident in 154 

Fig. 4(d). The differences in the patterns arise from a competition between vortex-tip and vortex-vortex 155 

interactions. With the tip closer to the surface of the array, vortex-tip interactions dominate, and the vortices 156 

are positioned in neighboring plaquettes. At higher tip heights, vortex-vortex interactions begin to 157 

dominate, and the vortices will begin to spread out underneath the tip and thus no longer reside in 158 

neighboring plaquettes (see Discussion for further details).   159 

Altogether, the tip height and applied field will determine the number and energy landscape of 160 

trapped vortices, while the tip position affects the location of the vortices within that configuration. This 161 

shows that by constructing an appropriate field profile from the tip, control over the vortex states and 162 

extraction of key energy scales can be achieved. Using the model described in Section IIA, we can indeed 163 

infer the interaction energy scales by mapping the experimentally obtained images with our simulations. 164 

 165 

C. Effects of array spacing 166 

 As the array spacing is tuned, control over the distribution of vortices can also be achieved. In 167 

addition to the 500 nm-spaced array discussed in Figs. 2 and 4, we measured arrays with a spacing of 168 

440 nm and 560 nm. Fig. 5(a)-(c) show frequency shift maps of a 6-vortex configuration for each array 169 

spacing at approximately the same tip scanning height. The frequency shift map for the closest-packed array 170 

with a 440 nm spacing [Fig. 5(a)] was taken at a tip height of 480 nm, an applied field of 35 Oe, and at a 171 

temperature of 7.7 K. The frequency shift map for the 500 nm array [Fig. 5(b)] was taken at a tip height of 172 

440 nm, an applied field of 40 Oe, and a temperature of 5.7 K. Lastly, the frequency shift for the 560 nm 173 

array [Fig. 5(c)] was taken at a tip height of 440 nm, an applied field of 65 Oe, and at a temperature of 174 

3.85 K. Measurements were made at different temperatures to ensure that all scans were taken at 175 

temperatures which are slightly below T2 [Fig. 1(c)]. The T2 value depends on the array spacing [31] where 176 

the smaller the array spacing, the larger the value of T2 up to the saturation value of bulk Nb Tc; thus the 177 

frequency shift maps were taken at the appropriate temperatures right below T2, with the 440 nm array 178 

having the largest temperature value and the 560 nm array having the smallest temperature value.  179 

 The magnitude of the applied field needed to create a vortex also depends on the array spacing 180 

through the magnetic frustration 𝑓 =  
𝐵𝐴

Φ0
, where B is the applied field, A is the plaquette area and Φ0 is the 181 

flux quantum. As the plaquette area (proportional to the array spacing) decreases, the field needed to create 182 
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a vortex in every plaquette (f = 1) increases. Since the applied field is anti-parallel to the tip-field, the 183 

relation between applied field and number of trapped vortices underneath the tip is reversed – the smallest 184 

array spacing requires a smaller applied field to produce the same 6-vortex configuration as the largest array 185 

spacing in Fig. 5.   186 

 It can be seen in Fig. 5(a)-(c) that there are similarities in the patterns, but they are not identical 187 

even though they all represent the energy landscape of 6 vortices. These differences again arise due to 188 

vortex-vortex interactions in the system. As the array spacing decreases, the tip field encompasses more 189 

plaquettes, enabling the vortex-vortex interaction to spread out the vortices. Overall, the array spacing 190 

serves as an additional tuning parameter; as we show in the Discussion, this allows for the extraction of the 191 

relative strength of vortex-vortex and vortex-field interactions, which depend on whether the islands are 192 

either loosely or closely-packed. 193 

 194 

D. Effects of applied DC driving current 195 

 We applied a DC current to the SNS arrays and again performed Φ0-MFM scans. The application of 196 

a DC current results in a spatial shift of the frequency maps perpendicular to the current direction. Fig. 6(a)-197 

(c) show frequency maps for a 6-vortex configuration at a tip height of 270 nm for an applied DC driving 198 

current of -35, 5 and 35 μA, respectively. We find that the pattern shown in 6(a)-(c) shifts to the left by 199 

about 55 nm as the applied current increases from -35 to +35 μA; the red circles are fixed guides added to 200 

emphasize the relative shift of the patterns.  We attribute this spatial shift to the Lorentz force acting on the 201 

vortices as the current is applied. Fig. 6(d) shows the relation between the applied current and measured 202 

spatial shift of the frequency maps for the 500 nm array when the vortex number and tip height is tuned. 203 

The shift is determined from the calculated cross-correlation between two images taken with DC currents 204 

of opposite directions (see Fig. 6(d) inset). 205 

FIG. 5. Vortex pattern changes as a function of array spacing. 6-vortex configuration patterns at a tip height 

of approximately 480 nm for an array spacing of (a) 440 nm, (b) 500 nm, and (c) 560 nm. 
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We find that for low applied currents (𝐼 < 20 μA) the pattern shift is approximately proportional to 206 

the current (Fig. 6(d)). Remarkably, the corresponding coefficient does not show noticeable dependence on 207 

the number of vortices or the height of the tip controlling the shape of the confining potential. This behavior 208 

suggests that the pinning force, which is a linear restoring force arising when each vortex is shifted from 209 

the center of its interstitial region [33], counteracts the Lorentz force due to the transport current.  Since the 210 

Lorentz force acting on each vortex is 𝑭 = 𝑱 × 𝒛 ⋅ Φ0 [29], where 𝑱 is current density, 𝒛  is a unit vector 211 

aligned with the vortex, and Φ0 is the superconducting flux quantum, we find that the effective spring 212 

constant in the linear regime is 𝑘 ≈ 1.6 × 10−8 N/m. It is worth pointing out that the spring constant 213 

depends on the relative strength of  𝐽 and intrinsic supercurrents flowing between the islands which are of 214 

the order of 𝐼𝑐. Therefore the measurement of 𝑘 opens a pathway towards extracting the absolute values of 215 

vortex energy scales. Such analysis, however, goes beyond the scope of this work and will require 216 

calculation of vortex energy with a more realistic model which takes into account the distribution of currents 217 

within plaquette and other factors. 218 

In a 4-vortex configuration with a tip height of 470 nm, the shift increases linearly up to the 219 

maximum applied current, however at tip height of 240 nm the linear behavior persists only up to about 220 

FIG. 6.  Frequency maps as a function of an applied DC current. 6-vortex configuration at a tip height of 270 nm with 

an applied DC current bias of  (a) -35 μA, (b) 5 μA, and (c) 35 μA. The red circles are fixed guides added to emphasize 

the relative shift of the patterns. (d) Spatial shift (in nm) of the frequency maps vs. the applied DC current for a 500 nm 

array spacing with a 4 and 6-vortex configuration at tip scanning heights of approximately 250 nm and 470 nm. Inset 

shows the cross-correlation curves used to determine the relative shifts between the images taken for 6-vortex 

configurations at 270 nm height.  
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25 μA [Fig. 6(d)]. At higher currents the shift is independent of the applied current signaling a crossover to 221 

a regime in which vortex-vortex and vortex-field interactions likely dominate over the pinning force. The 222 

effect of decreasing the tip height while keeping number of vortices constant means that the tip field lines 223 

are now confined to fewer plaquettes on the array. This confinement coupled with large driving currents 224 

leads to the increased vortex-vortex and vortex-field interactions.  225 

In a 6-vortex configuration at similar scanning heights of 270 nm and 480 nm [yellow and green 226 

traces in Fig. 6(d), respectively], the crossover to dominant vortex-vortex and vortex-field interactions 227 

happens at lower driving currents when compared to the 4-vortex configuration. More vortices confined 228 

over the same number of plaquettes on the array will be more susceptible to crossover to a vortex-vortex 229 

and/or vortex-field interaction regime at lower driving currents. 230 

At even higher applied currents, when the Lorentz force dominates over the pinning force, vortex-231 

vortex and vortex-field interactions lead to bulk depinning of the vortices. Once the vortices de-pin from 232 

their potential wells, the tip no longer detects frequency shifts and the image is smeared (see Appendix C).  233 

 234 

III. DISCUSSION 235 

 We fit patterns at different external fields and tip heights to extract valuable, and previously 236 

inaccessible, information about the energy scales that determine vortex dynamics in these systems. Using 237 

Eqn. (1), we find that, for a 500 nm center-to-center (inter-island) array, the chemical potential term is 238 

approximately µvort = (1.8 ± 0.1) Vpp, where Vpp is the energy of a lone vortex trapped in the array with no 239 

fields applied, as presented in the model described in Appendix B, and pint is approximately 1.0 − 1.2. We do 240 

not find any dependence of µvort on the number of vortices underneath the tip for the configurations examined. 241 

Separate arrays with spacings of 440 and 560 nm were also imaged, and µvort and pint were extracted. For the 242 

560 nm array, we found µvort = (0.9 ± 0.1) Vpp, with pint ∼ 0.7 − 0.9, i.e., showing vortex-vortex interactions 243 

are weaker relative to vortex-field interactions. We also find that pint depends on the external field and 244 

decreases for higher external magnetic field values. The 440 nm array has µvort = (2.4 ± 0.1) Vpp, with pint 245 

∼  1.2 − 1.4, indicating stronger vortex-vortex interactions relative to the vortex-field interaction. For this 246 

lattice spacing we find that pint increases for higher field values. 247 

In addition to the extraction of these characteristic energy scales, some in-situ control over the 248 

vortex configurations is achieved by varying the height of the tip as previously discussed. By simulating 249 

the effects of the tip height on a certain vortex configuration, we were able to further extract the location of 250 

each vortex within the array. Fig. 7 shows the evolution of configurations of 6 vortices and accompanying 251 

simulations as the tip height is increased and the applied field is tuned so to keep the number of vortices 252 

constant. At a tip height of 430 nm, it was demonstrated by the simulation that the vortices reside in 253 

neighboring plaquettes (Fig. 7). As the tip height is increased, the vortices begin to spread out and begin to 254 
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reside in next-nearest neighboring plaquettes. Some vortex configurations that are present with a deeper 255 

well will cover less area in the image or can even disappear as the well is made shallower. This again is due 256 

to the vortex-vortex interactions becoming relatively stronger, and hence more significant in determining 257 

the vortex configurations for these conditions.  258 

IV. CONCLUSIONS 259 

In conclusion, we have demonstrated a robust experimental platform for locally probing and 260 

controlling vortex dynamics. By trapping vortices underneath a magnetic tip, we can characterize transitions 261 

between stable vortex configurations and are able to extract the relative energy scales of various 262 

interactions. We tune the number and distribution of vortices trapped underneath the tip by modifying the 263 

scan height, external field, and array spacing. Using simulations of a simple model of vortices, we can 264 

reproduce the observed image patterns. The versatility of this experimental platform could prove a powerful 265 

tool to obtain a local understanding of, for example, the dominant effects that lead to various forms of vortex 266 

matter in superconductors such as vortex glasses and vortex liquids. We note that this technique is useful 267 

for mapping and manipulating vortex configurations even in systems without periodic pinning 268 

potentials. Furthermore, this technique has the potential of probing non-standard vortex interactions in 269 

 

FIG. 7. Simulated vortex pattern changes with height for 6 vortices underneath the tip. Tip height increases 

from left to right, as shown below each image. Images are overlaid with data from simulations (red) and 

the stable vortex configuration in each region. As the tip height is increased, the potential well flattens 

out, while the associated external field is changed to keep the number of vortices constant. Some stable 

vortex configurations cover a smaller area as the tip height is increased, with those regions disappearing 

in the furthest image. In the rightmost image, µvort was decreased to 1.4Vpp to achieve a better fit. The 

lower images show the field distribution on the surface for 430 nm (left) and 610 nm (right) tip separations 

with the tip over the central feature of the top images. 
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novel superconducting systems. In particular, these results open interesting opportunities for applications 270 

in quantum computing platforms that require the manipulation and braiding of vortices.  271 

 272 
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 279 

APPENDIX A: MATERIALS AND METHODS 280 

1. Device Fabrication 281 

Electron beam lithography and electron beam evaporation were used to define and deposit several 282 

layers of material. The first, an 18 nm Au layer, with an underlying 1 nm Ti adhesion layer was placed onto 283 

a Si substrate with 300 nm SiO2 as an insulator. The second layer consists of Al registration marks to aid in 284 

determining the location of the tip on the surface. A final round of processing was used to define and deposit 285 

the Nb islands. Prior to the Nb deposition, the surface of the Au was Ar+ ion milled to establish a clean 286 

interface, and the Nb was evaporated at a pressure of ∼ 10-9 Torr. For one sample, one 500 nm center-to-287 

center spaced array was made on an Au pad of 80 µm × 80 µm. For the second sample, two 500 nm spaced 288 

arrays were 50 µm × 50 µm, with one connected in a four-point configuration. The connected array was 289 

used to determine the transition temperatures [Fig. 1(c)] and the magnetoresistance of the 500 nm spaced 290 

arrays, while the other was used for imaging experiments. Further arrays on the same sample, with lattice 291 

spacings of 440, 500, and 560 nm were also imaged. These arrays had areas of 50 µm × 15 µm. 292 

The cantilevers used in this work were custom-fabricated Si cantilevers of length 110 µm, width 293 

4 µm, and thickness 100 nm. A SmCo5 magnetic particle was positioned on the end of each cantilever using 294 

a micromanipulator, aligned with the cantilever axis using an external magnet, then epoxied into position. 295 

The magnet was then shaped using a Ga focused ion beam with low (< 10 pA) current to preserve the 296 

magnetization of the SmCo5. Torque cantilever magnetometry was used to measure the magnetic moment 297 

of the tip and ensure that it is well aligned with the cantilever axis.  298 

 299 

2. Measurement 300 

Measurements were taken in a He-3 refrigerator with a base temperature of 300 mK. Cantilever 301 

oscillations were measured using a laser interferometer, and the cantilever was self-oscillated using a feedback 302 

loop at a small amplitude, typically 15 nm. Frequency was determined using a phase-locked loop running on 303 
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an FPGA. Images were taken at least 5 µm from the edge of the arrays to minimize edge effects. Images 304 

were raster-scanned using an ANSxyz100 (Attocube) piezoelectric scanner, with the fast axis in the y-305 

direction (vertical), at a rate of less than 300 nm/sec. 306 

3. Tip Field Estimate 307 

 To estimate the tip field, the magnetic tip was scanned over superconducting Al rings deposited via 308 

e-beam or thermal evaporation. The rings used had radii of 2-5 µm, with wall thicknesses of ∼ 200 nm. 309 

Sufficiently close to the superconducting transition, the fluxoid transitions in the ring become reversible and 310 

occur when the tip applies a half-integer number of magnetic flux quanta through the ring. The resulting 311 

strong interaction between the magnetic tip and the switching supercurrent shifts the resonant frequency of 312 

the cantilever [27, 28]. We mapped the locations of these frequency shifts as positions where the flux 313 

through the ring has changed by one flux quantum. 314 

 A model of the tip was then created consisting of  50 × 50 × 50 nm3 voxels with a magnetic dipole 315 

at the center. The tip magnetization was set to be the measured value, as determined by cantilever 316 

magnetometry. A scanning electron micrograph is used to determine where to position the dipoles, and their 317 

strength is adjusted to match the observed flux changes as the simulated tip is scanned across a ring. The 318 

dipoles are adjusted until the simulated flux changes and observed flux changes line up at multiple scan 319 

heights. Estimates of the tip field were then generated from the final dipole configuration. For a detailed 320 

description of this procedure for the tip field estimate refer to previous work in Ref. 27. 321 

 322 

APPENDIX B:  VORTEX MODEL IN MONTE CARLO SIMULATIONS 323 

 The simulated environment consisted of a roughly circular array of plaquettes 50 lattice  constants in 324 

diameter. Vortices were placed and could move in the central 85 plaquettes of this larger area. Vortices 325 

were initialized dependent on the flux in each plaquette from the magnetic tip and external field. Vortex-326 

antivortex pairs were randomly generated in the 85 plaquette area, and the new vortex configuration energy 327 

was compared to the previous state. The lowest energy state was selected using a simulated annealing 328 

procedure. The minimum energy states generated from this procedure for differing vortex numbers were then 329 

compared using the energy formula given in Eqn. (1), and the lowest energy state was selected for each tip 330 

position. 331 

1. Josephson junction array model 332 

We start with a phenomenological model based on Josephson junction arrays. This amounts to neglecting 333 

the SC condensate in the interstitial regions altogether and focuses only on the Nb islands and their inter-334 

island Josephson couplings. The interstitial regions, which host a weaker SC condensate, then act as 335 

Josephson weak links. Vortices that occupy the interstitial regions are essentially Josephson vortices in 336 

this picture. Thus we consider the following Josephson junction array quantum Hamiltonian [29, 31, 34] 337 
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�̂� =

1

2
∑ 𝑈𝑖𝑗�̂�𝑖�̂�𝑗

𝑖,𝑗

− ∑ 𝐽𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗 − 𝜑𝑖𝑗[𝑨])

𝑖≠𝑗

 
(A1) 

where the i, j indices label the individual Nb islands. The operators �̂�𝑖 and 𝜃𝑖 refer to the charge 2e Cooper 338 

pair number, and SC phase operators respectively. They are mutually conjugate and satisfy the 339 

commutation relation 340 

 [�̂�𝑖, 𝜃𝑗] = −𝑖𝛿𝑖𝑗 (A2) 

The first term in �̂� is the charging energy with Uij being proportional to the inverse of the capacitance 341 

matrix. The second term is the Josephson coupling term with coupling matrix Jij between sites i, j. The 342 

quantity 𝜑𝑖𝑗[𝑨] is an additional phase term that originates from the presence of a magnetic vector 343 

potential A(x) associated to a non-zero out of plane magnetic field Bz. It ensures that the phase difference 344 

 𝛾𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗 − 𝜑𝑖𝑗[𝑨] = −𝛾𝑗𝑖 (A3) 

on the link between i and j is gauge invariant. 345 

Next, we make three simplifying approximations: 346 

1. The charging term, which is typically small for mesoscopically large SC islands, is discounted. 347 

Effectively the Nb islands function as charge reservoirs (Cooper pair boxes) with large capacitances. 348 

This turns H into a classical energy functional on the set of island phases{𝜃𝑖}. 349 

2. The Josephson couplings are limited to only nearest neighbors (ij) of the triangular lattice island 350 

array. This is rationalized by the fact that Jij decays with increasing inter-island distance making 351 

Cooper pair tunneling between nearest neighbors the dominant interaction. We expect that the 352 

reincorporation of the neglected Josephson couplings will not qualitatively change main the results 353 

of our analysis. 354 

3. We assume that the value of the phase differences γij are small, hence legitimizing a Taylor expansion 355 

of the cosine. This is equivalent to assuming that the Josephson supercurrents Iij between islands i, 356 

j are small enough such that Iij = Icsin(γij) ≈ Icγij , where Ic is the critical supercurrent between nearest 357 

neighbors. 358 

With these simplifications, the model is re-interpreted as a static Josephson junction array on a triangular 359 

lattice with the Josephson supercurrents Iij defined on nearest neighbor links (ij), as the effective degrees 360 

of freedom. This has the following effective static energy function 361 

 362 

 
𝐸eff[𝐼] =

𝐸𝐽

2𝐼𝑐
2 ∑ (𝐼𝑖𝑗)2

<𝑖,𝑗>

 
(A4) 

where EJ is the Josephson energy between nearest neighbor SC islands and we have dropped an irrelevant 363 
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constant. It is convenient at this point to choose an orientation convention for the links (ij) in organizing 364 

the currents Iij, and to avoid over-counting. A simple choice is to take a counter-clockwise orientation in 365 

the up-pointing triangular plaquettes (∆) which leads to a clock- wise orientation on the down-pointing 366 

triangular plaquettes  (∇). 367 

Magnetic flux penetrates the system through the triangular plaquettes of the lattice by an amount 368 

Φext[𝑝] externally applied through plaquette p. In the absence of SC vortices, −Φext[𝑝] is proportional 369 

to the supercurrent density circulation ∮ 𝒋 ∙ 𝑑𝒍 enclosing plaquette p [29] within the Au film. This 370 

supercurrent density circulation is proportional to the sum of phase differences which gives 371 

 

−Φext[𝑝] = 𝛼 ∑ 𝐼𝑖𝑗

↺

𝑖,𝑗∈𝑝

≈
Φ0

2𝜋
∑ 𝛾𝑖𝑗

↺

𝑖,𝑗∈𝑝

 

 

where p is a label of the plaquette, Φ0 = ℎ/2𝑒 is the flux quanta, and α > 0 is a proportionality constant 372 

depending on geometry of the system, the magnetic permeability and the condensate density. The sums 373 

are taken in the anti-clockwise (↺) sense; for both ∆ and ∇ plaquettes. Note that the plaquettes themselves 374 

reside in a honeycomb lattice dual to the triangular lattice. 375 

Now, when a SC vortex is present in p, the sum of phase differences γij is of order 2π and is no longer 376 

expected to be small such that the linear approximation sin x ≈ x (assumption 3. above) holds. 377 

Nevertheless, we can perform a (large) gauge transformation which changes sum of phase differences by 378 

quantized multiples of 2π or fluxoids 379 

 

∑ 𝛾𝑖𝑗

↺

𝑖,𝑗∈𝑝

→ ∑ 𝛾𝑖𝑗

↺

𝑖,𝑗∈𝑝

(mod 2π) = ∑ 𝛾𝑖𝑗

↺

𝑖,𝑗∈𝑝

− 2𝜋𝑛𝑝 

 

such that the γij ’s and hence their sum is small once more. Incorporating this into the relation with 380 

Φext[𝑝] yields 381 

 

∑ 𝛾𝑖𝑗

↺

𝑖,𝑗∈𝑝

= 2𝜋𝑛𝑝 −
2𝜋Φext(𝑝)

Φ0
 

 

where np ∈ Z is an integer that is non-zero whenever a vortex (anti-vortex) is present in p. The external 382 

flux is more conveniently expressed as 383 

 Φext(𝑝) = Φ0𝑓𝑝 (A5) 

with fp being the local magnetic flux fraction or frustration at p. Thus we have the following constraint 384 

equation for each plaquette 385 

 1

𝐼0
∑ 𝐼𝑖𝑗 = 𝑛𝑝 − 𝑓𝑝

↺

𝑖,𝑗∈𝑝

 

(A6) 

where 𝐼0
−1 ≡ 𝛼/Φ0 is a proportionality constant with dimensions of [Current]-1. A second constraint on Iij 386 
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is current conservation, or Kirchoff’s first law, at each site i. We express this as 387 

 

∑ 𝐼𝑖𝑗 = 0

⊛(𝑖)

𝑗∈〈𝑖𝑗〉

 

(A7) 

where the symbol ⊛ (𝑖) denotes the fact that orientation convention of Iij is chosen to be pointing into 388 

the site i. These constraints must hold for all sites i. Implicit in these expressions is the neglect of the 389 

mutual and self-inductance terms due to the supercurrents themselves which are generally expected to 390 

be a small effect [30]. 391 

 392 

2. Counting Independent Currents 393 

Now a unit cell of a triangular lattice has 1 site, 2 plaquettes and 3 links. Hence on average per site, 394 

current conservation (Eqn. (A7)) removes 1 independent current/link degree of freedom such that the 395 

flux conditions (Eqn. (A6)) relate 2 independent currents Iij to 2 independent vortex numbers np given 396 

fixed frustrations fp. In the case of a finite lattice with open boundaries, after a proper accounting of the 397 

links at the boundary, and noting that there are only (Nnode − 1) current conservation constraints for Nnode 398 

sites, we find a 1-1 relation between independent currents and a specified configuration of np’s on each 399 

plaquette. This reduction of the current conservation constraints by one comes from the fact that the 400 

entire system must have a net zero current. 401 

This can also been seen by noting the Euler characteristic χ = 1 for a finite planar graph relates Nnode 402 

− Nlink + Nplaq = 1 where Nnode is the number of island sites, Nlink is the number of nearest neighbor links, 403 

and Nplaq the number of triangular plaquettes. By rearranging we have Nplaq = Nlink − (Nnode − 1) which 404 

says that Nplaq is the same as the number of independent current links. Hence, for fixed frustrations {fp}, 405 

specifying a configuration of vortex numbers np for all plaquettes is equivalent to specifying a current 406 

configuration Iij on all links that obey the required constraints. 407 

 408 

3. Transforming Currents to Vortex Occupations 409 

By combining the constraints in equations (A6) and (A7), we can relate a configuration of vortex 410 

numbers n = {np} ∈ 𝑍𝑁plaq  to a configuration of currents I = {Iij} ∈ 𝑅𝑁link . This relation is linear and 411 

can be succinctly expressed as 412 

 1

𝐼0
M𝐈 = (

𝐧 − 𝐟
𝟎𝑁node−1

) 
(A8) 

where f = {fp} ∈ 𝑅𝑁plaq are the externally applied flux fractions/frustrations and 𝟎𝑁node−1  is a (Nnode − 1) 413 

dimensional zero vector. The matrix M is Nlink × Nlink, dimensionless and invertible due to the counting 414 

arguments just mentioned. Taking the inverse yields 415 
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𝐈 = 𝐼𝑜M−1 (

𝐧 − 𝐟
𝟎𝑁node−1

) 
(A9) 

 416 

4. Effective Energy Function 417 

Next, inserting the expression (9) into the effective energy function (4) gives 418 

 
𝐸eff[𝐧, 𝐟] =

𝐸𝑗

2(𝐼𝑐/𝐼0)2
(𝐧 − 𝐟)𝑇𝐵𝑇𝐵(𝐧 − 𝐟) 

(A10) 

where B is a submatrix of M-1 in its first Nplaq columns. The prefactor on the RHS sets the overall 419 

energy scale, and the dimensionless constant Ic/I0 encodes geometric information about the lattice. We 420 

consider the configuration of local frustrations f to be a fixed external knob, and the vortex numbers 421 

n as variational parameters that are required to minimize Eeff. The frustrations f are determined by the 422 

total amount of flux through each plaquette, and are set by the Bz profile induced by the magnetic tip, 423 

and the additional uniform field that moderates the tip field. While calculating f we ignored the 424 

redistribution of the magnetic flux due to field screening by Nb islands and inter-island 425 

supercurrents. 426 

Then by scaling away the overall energy scale, expanding the brackets, and dropping an irrelevant 427 

constant we find the following model energy function dependent on n and f 428 

 𝐸[𝐧, 𝐟] = n𝑇Vn + Uf
𝑇n (A11) 

where 429 

 V = 𝐵𝑇𝐵 (A12) 

 Uf = −2𝐵𝑇𝐵𝐟 = −2V𝐟 (A13) 

Note that E[n, f] is determined entirely by the geometry of the lattice and the local flux and current 430 

constraints. The first term in E[n, f] represents vortex-vortex interactions while the second is the vortex-431 

field interaction. We note that the matrix V is symmetric and is dense in its off-diagonals. This results in 432 

long-range, pair-wise interactions between vortices and externally applied fields. For our simulations we 433 

calculate the entries of V for a roughly circular array of triangular plaquettes with a diameter of 50 lattice 434 

constants. 435 

The entries in n are integers, and due to the large number of possible combinations of vortex positions 436 

in n, the minimization of E[n, f] is done variationally using Metropolis Monte-Carlo. In practice np takes 437 

0, 1 values indicating the absence or presence of a single vortex. We simulate an area consisting of 85 438 

plaquettes in a roughly circular region at the center of the larger, 50 lattice constant array to determine 439 

the vortex configurations. Also the total vortex number np is varied during the search for the energy 440 

minimum, but remains fixed during a single Monte-Carlo run. Since the number of vortices is small 441 

(𝑛𝑝 < 10) we found that Metropolis Monte-Carlo is converging well to the ground state configuration 442 



19  
 

of vortices. 443 

 444 

5. Further Phenomenological Fitting 445 

As it stands, there are no fitting parameters in the model, which itself depends heavily on all the 446 

assumptions previously discussed. However, to fit to the observed data, we have found it necessary to 447 

modify the above form of E[n, f]. The modified model energy function that we optimize is 448 

 𝐸[𝐧, 𝐟] = 𝑝int𝐧𝑇V𝐧 + U𝐟
𝑇𝐧

+ 𝜇vort ∑ 𝑛𝑝 = 𝑝int ∑ V𝑝𝑞𝑛𝑝𝑛𝑞 + ∑ [(𝑈f)𝑝 + 𝜇vort]𝑛𝑝

𝑁plaq

𝑝=1

𝑁plaq

𝑝,𝑞=1𝑝

 

(A14) 

where pint and µvort are the two phenomenologically introduced parameters. The quantity pint modulates 449 

the relative strength between vortex-vortex to vortex-field interactions. While µvort is a chemical potential 450 

for the vortices that is added to fine-tune the favored number of vortices and adjusted so that vortex 451 

transitions occur at the observed field/heights in the experiment. These two fitting parameters can be 452 

thought of as modifications needed to compensate for the limitations of the assumptions and 453 

approximations made. For example, the fixed vortex number during a Monte-Carlo run excludes the 454 

possibility of fluctuating vortex numbers during a raster scan of the magnetic tip positions. In general, 𝜇 455 

and 𝑝𝑖𝑛𝑡   are not universal and depend on the parameters of the array that control the strength and 456 

geometry of supercurrents in system.  457 

From fitting the data, we find the chemical potential µvort of the 500 nm array, to be approximately 458 

(1.8 ± 0.1) × Vpp, where Vpp is the on-site vortex energy. For the 440 nm and 560 nm arrays, µvort is 459 

approximately (2.4 ± 0.1) × Vpp and (0.9 ± 0.1) × Vpp, respectively. In this case, pint is approximately 460 

(1.0-1.2) for the 500 nm array, with higher values (1.2-1.4) for the 440 nm array, and lower values (0.7-461 

0.9) for the 560 nm array. These values are dependent on field for the 440 nm and 560 nm arrays. Some 462 

uncertainty exists in these values, due to small changes not affecting the patterns generated significantly, 463 

as well as possible errors in tip field estimates.  464 

 465 

Appendix C: HIGH APPLIED DC CURRENTS 466 

As described on the main text, the application of a DC current leads to a shift (in nm) of the frequency 467 

maps. The shift is attributed to the Lorentz force on the vortices as the current is applied. The forces at 468 

play while the current is applied include the Lorentz force, the pinning force, vortex-vortex interaction 469 

and vortex-field interactions. At low currents, the pinning force counteracts the Lorentz force and the 470 

shift is linear. As the current increases, vortex-vortex and vortex-field interactions likely begin to 471 

dominate and the shift becomes independent of the applied current. At high applied currents, the Lorentz 472 

force is enough to start bulk de-pinning vortices and the frequency map becomes smeared. Fig. 8 shows 473 



20  
 

a set of frequency maps for an array with 500 nm spacing in a 4-vortex configuration at a tip scanning 474 

height of 560 nm. As can be seen from the figure, at a current of 120 μA the frequency map is completely 475 

smeared signaling that the vortices are now fully de-pinned from the array. 476 

 477 

 478 
 479 

 480 
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