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Motivated by the possibility of observing the co-existence between magnetism and unconven-
tional superconductivity in heavy-fermion Ce1−xSmxCoIn5 alloys, we studied how the samarium
substitution on the cerium site affects the magnetic field-tuned-quantum criticality of stoicheomet-
ric CeCoIn5 by performing specific heat and resistivity measurements. By applying an external
magnetic field, we have observed Fermi-liquid to non-Fermi-liquid crossovers in the temperature
dependence of the electronic specific heat normalized by temperature and of the resistivity. We
obtained the magnetic-field-induced quantum critical point (QCP) by extrapolating to zero temper-
ature the temperature - magnetic field dependence at which the crossovers take place. Furthermore,
a scaling analysis of the electronic specific heat is used to confirm the existence of the QCP. We
have found that the magnitude of the magnetic-field-induced QCP decreases with increasing samar-
ium concentration. Our analysis of heat capacity and resistivity data reveals a zero-field QCP for
xcr ≈ 0.15, which falls inside the region where Sm ions antiferromagnetism and superconductivity
co-exist.

PACS numbers: 71.10.Ay, 74.25.F-, 74.62.Bf, 75.20.Hr

I. INTRODUCTION

CeCoIn5 is an unconventional superconductor in the
family of the ‘115’ heavy fermion materials with a fairly
high transition critical temperature (Tc) at 2.3 K. A
consensus exists by now that the unconventional super-
conductivity in the ‘115’ system is likely governed by
its proximity to an antiferromagnetic critical point at
zero temperature [1, 2].Generally, these materials can
be tuned to a quantum phase transition at a quantum
critical point (QCP) by either chemical substitutions
[3, 4], pressure [5, 6], or by applying an external magnetic
field [7, 8].Consequently, interactions between conduction
electrons and critical fluctuations associated with the un-
derlying QCP lead to a manifestation of quite unusual
physical properties in both normal and superconducting
phases of the ‘115’ materials [9, 10]. The fact that a
QCP does exist in these materials is usually elucidated
by performing a scaling analysis of the thermodynamic
response functions, such as specific heat and magnetic
susceptibility.

A significant amount of experimental data, as well as
theoretical results, strongly suggest that the Cooper pair-
ing in CeCoIn5, albeit unconventional, is mediated by the
interaction between conduction electrons and localized
magnetic moments of partially filled f -shells of cerium
ions. A tendency towards an antiferromagnetic order-
ing itself is driven by the exchange interaction between
cerium magnetic moments. The exchange interaction - a
driver for an antiferromagnetic transition - is also thought
to produce soft long-range bosonic modes - a pairing glue
for the conduction electrons - to ultimately induce super-
conductivity with d-wave order parameter [11].

Naturally, the chemical substitution of magnetic (and
nonmagnetic) rare earth ions for magnetic Ce3+ not only

allows one to study the effect of inter-site interactions
on the QCP, but also separate the single-ion Kondo ef-
fect from effects associated with the magnetic exchange
interaction. Indeed, the underlying quantum phase tran-
sition may shift under the effect of an external magnetic
field or pressure. As a result, one may expect that it
would affect the superconducting transition temperature,
as well as the thermodynamic response functions in the
normal state. Thus, if we were to believe the hypoth-
esis that QCP is governing the unusual transport and
thermodynamic properties observed in superconducting
and normal states [2, 12, 13], systematic studies of the
‘115’-based alloyed compounds could offer an opportu-
nity to get a deeper insight as well as to unveil differences
and/or similarities pertaining to both normal and super-
conducting states. An additional important aspect of the
problem consists in the fact that chemical substitutions
inevitably bring disorder into a system, so that the pu-
tative QCP may or may not be smeared by the effects
associated with the induced spacial inhomogeneities.

Recently, there have been several reports on alloys of
Ce1−xM xCoIn5, whereM is a member of lanthanide fam-
ily with unfilled f -orbital shells. The general motivation
for studying such alloys lies in an attempt to stabilize
the phase of co-existence between superconductivity of
the host ’115’ system and magnetism governed by the
impurity magnetic moments. Indeed, one can envision
a scenario in which the suppression of superconductiv-
ity would be slow enough so that both Néel (TN ) and
superconducting (Tc) critical temperatures are finite in
some region of the phase diagram. In fact, similar effects
have been observed in iron-based superconductors [14],
although magnetism in those materials is itinerant and
the co-existence between s±-wave superconductivity and
spin-density-wave order is possible due to the Anderson
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theorem [15, 16].

Ce1−xYbxCoIn5 is one example of such an alloy: al-
though Yb is supposed to be in the magnetic Yb3+ va-
lence configuration, with an increase in ytterbium con-
centration, its valence configuration changes from mag-
netic to a non-magnetic Yb2+. Nevertheless, one of
the intriguing results is that the magnetic-field-induced
QCP (BQCP) of the stoichiometric compound is fully sup-
pressed in the alloy Ce1−xYbxCoIn5 for x > 0.1 without
substantially affecting the unconventional superconduc-
tivity and non-Fermi-liquid (NFL) behavior [17]. Specif-
ically, a zero-field QCP separating paramagnetic and an-
tiferromagnetic phases is observed in Ce0.91Yb0.09CoIn5

and its presence has been confirmed by the scaling analy-
sis of the specific heat data [18]. This is a surprising result
given the fact that the dependence of the superconduct-
ing critical temperature on ytterbium concentration does
not display any correlation with the suppression of the
BQCP.

Another example is provided by Ce1−xSmxCoIn5.
Samarium Sm3+ replaces Ce3+ in CeCoIn5 and, unlike
Yb, it remains in the same integer valence configuration
[19]. One needs to keep in mind that existing ‘electron-
hole symmetry’ between 4f1 (Ce3+) and 4f5(Sm3+) va-
lence configurations implies that larger magnetic mo-
ments are introduced into the system through this sub-
stitution without changing the carrier density. The phase
diagram in the temperature-doping (T −x) plane can be
generated based on the TN and Tc measured from resis-
tivity ρ(x) and specific heat C/T of Ce1−xSmxCoIn5 for
0 ≤ x ≤ 0.3 in zero magnetic field, Fig. 1. Therefore,
in contrast to Ce1−xYbxCoIn5, superconductivity in this
alloy is completely suppressed at x∗ ≈ 0.18 and long-
range antiferromagnetic (AFM) order emerges in the sub-
lattice of Sm moments in Ce1−xSmxCoIn5 for x ≈ 0.10.
While fairly fast (in comparison with Ce1−xYbxCoIn5 al-
loys), the suppression of superconductivity is not surpris-
ing given the sizable magnetic moment of samarium. The
fact that the AFM order emerges before superconductiv-
ity has been fully suppressed does provide long thought
playground to investigate possible co-existence between
unconventional superconductivity and magnetism. Fur-
thermore, at the critical concentration xSm

cr ≈ 0.10 where
the Néel temperature for the samarium sublattice van-
ishes, an antiferromagnetic QCP may be also present.

Samarium substitutions must also affect the magnitude
of BQCP separating the anti-ferromagnetic and param-
agnetic phases of cerium sub-lattice at zero temperature.
Specifically, as in the case of Yb substitutions [18], one
may expect that the value of BQCP will be suppressed
to zero for some critical concentration xcr of samarium
ions, BQCP(xcr) = 0. In the inset of Fig. 1 we see that
the magnetic field induced quantum phase transition of
the cerium lattice is clearly affected by the samarium
substitutions. In light of our discussion above, one may
then wonder whether xcr, satisfying xSm

cr ≤ xcr ≤ x∗

(with Tc(x
∗) = 0), falls into the region where antifer-

romagnetism induced by the ordering of Sm moments
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FIG. 1: (Color online) Temperature - Sm concentration T −x
phase diagram of Ce1−xSmxCoIn5. The Tc(x) and TN (x)
data shown here are in part take from Ref. [19] and from
present work. The solid lines are theoretical fits to the ex-
perimental data points. We fitted the superconducting criti-
cal temperature using Abrikosov-Gor’kov expression for Tc(x)
for superconductors with d-wave symmetry of the order pa-
rameter. The Néel temperature TN depends linearly on x
at small enough values of x as can be shown by Quantum
Monte Carlo simulations and can also be seen by employ-
ing a perturbation theory [20, 21]. Inset: Dependence of the
magnetic-field-induced quantum critical point BQCP , which
separates magnetic and non-magnetic states at zero tempera-
ture, is shown as a function of samarium concentration. When
x > 0.16 BQCP of stoicheometric CeCoIn5 becomes fully sup-
pressed implying the absence of the anti-ferromagnetic tran-
sition in the sub-lattice of Ce moments even at absolute zero
temperatures.

and superconductivity may co-exist or not. These con-
siderations have lead us to select the samples x = 0.10
and x = 0.15 to investigate the changes in the magni-
tude of BQCP through specific heat and resistivity mea-
surements done in the presence of an applied magnetic
field. In what follows, we present the results of specific
heat and resistivity measurements on Ce0.9Sm0.10CoIn5

and Ce0.85Sm0.15CoIn5 to elucidate the role played by
quantum critical fluctuations and their effect on uncon-
ventional superconductivity. Our investigation reveals
that quantum critical fluctuations strongly correlate with
unconventional superconductivity. The magnetic field
driven QCP is suppressed with increasing Sm concen-
tration. The observed pronounced crossovers from FL
to NFL behavior, as well as the scaling analysis of the
Ce/T on both alloys show that the normal state of
Ce0.85Sm0.15CoIn5 is quantum critical.
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II. EXPERIMENTAL DETAILS

Single crystals of Ce1−xSmxCoIn5 (x = 0.10 and 0.15)
were grown using the molten In flux method in alumina
crucibles, as described in Ref. [22]. The composition
and crystal structure were determined from X-ray powder
diffraction (XRD) and energy dispersive X-ray (EDX)
techniques. The crystals’ actual chemical composition is
the same as that of the nominal doping, as confirmed by
the EDX using FFI Quanta 600 scanning electron micro-
scope equipped with an INCA EDX detector from Oxford
Instruments [19].

The crystals were cut into a typical size of 2.0x0.5x0.17
mm3, with the c-axis along the shortest dimension of the
crystals. These single crystals were first polished with
sandpaper and then etched in a 5% HCl solution for three
hours to remove the indium left on the surface during the
growth process. Then they were washed thoroughly with
ethanol to remove any acid and impurities.

Heat capacity measurements were performed in an ex-
ternal magnetic field strength 0 ≤ B ≤ 14 T applied par-
allel to the c-axis and in the temperature range 0.42 K
≤ T ≤ 8 K for all of the measurements performed. The
data were obtained using a relaxation technique in the
He-3 option of the Quantum Design Physical Properties
Measurement System.

Four gold leads were attached to each crystal using
silver-based epoxy, with the current I ‖ a-axis of the
single crystal. We performed temperature (T ) depen-
dent electrical resistivity (ρ(T )) measurements between
0.5 K and 300 K in zero magnetic field to extract the
superconducting transition temperature and the Kondo
lattice coherence peaks. The resistivity in magnetic field
was measured by scanning temperature from 0.6 K to 10
K for selected magnetic field values from 6 T to 14 T.
Then transverse magnetoresistivity (∆ρ⊥a /ρa) was mea-
sured by scanning the magnetic field from -14 T to 14 T
for selected temperatures between 2 and 50 K.

III. RESULTS

A. Ce0.90Sm0.10CoIn5

a. Specific Heat. Figure 2 shows the temperature
dependence of the electronic specific heat normalized
by temperature Ce(T )/T of Ce0.90Sm0.10CoIn5 measured
over the magnetic field range 6 T ≤ B ≤ 14 T and tem-
perature range 0.42 K ≤ T ≤ 8 K. We have subtracted
the specific heat [19] of the non-magnetic reference com-
pound LaCoIn5 from the measured specific heat to get
the electronic and magnetic contributions to the specific
heat. Then, to obtain the electronic contribution to the
specific heat, we subtracted the high temperature tail of
the Schottky anomaly due to quadrupolar and magnetic
spin splitting of Co and In nuclei [12]. All the data shown
in Fig. 2 are normal state results since superconductiv-
ity is suppressed in this temperature range measured at
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FIG. 2: (Color online) Semi-Log plot of the electronic spe-
cific heat normalized by temperature T , Ce/T vs T of
Ce0.90Sm0.10CoIn5 measured in applied magnetic fields, as
listed in the figure, over the temperature range 0.42 K ≤ T ≤
10 K. TCFL represents the temperature at which the behavior
changes from Fermi-liquid to non-Fermi liquid.
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FIG. 3: (Color online) Low temperature T resistivity ρ plot-
ted as a function of T 2 in the magnetic field as listed in the
figure for Ce0.90Sm0.10CoIn5. The solid lines represent linear
fits of the data with ρ = ρ0 +AT 2.

magnetic fields above 4 T (see purple data taken at 4 T
in the inset to Fig. 6).

Applying an external magnetic field, we observed def-
inite crossovers from constant Ce/T vs T at low tem-
peratures, i.e. Fermi-liquid behavior, to logarithmic
temperature-dependent Ce/T with Ce/T ∝ ln T−0.4 at
high temperatures, i.e., non-Fermi liquid behavior. For
the measured temperature range, the clearly visible FL
regime (Ce/T = constant) at low temperatures is ob-
served for B ≥ 6 T. The data taken in all these applied
magnetic fields exhibit the FL to NFL crossovers at a
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temperature TC
FL that shifts towards higher temperatures

with increasing B, as shown by the vertical dashed lines
of Fig. 2. The TC

FL from each specific heat data measured
at different magnetic fields are extracted and plotted as
shown in the B − T phase diagram of Fig. 5.

b. Resistivity. Figure 3 shows the T 2 dependence
of resistivity of Ce0.90Sm0.10CoIn5 measured in different
B. The resistivity is linear in T 2 at low temperatures:
ρ = ρ0 + AT 2, where ρ0 is the residual resistivity, and
A is a constant that measures the strength of electron-
electron interactions. The linear in T 2 behavior of resis-
tivity at low T and high B reveals the recovery of the
FL behavior. Its deviation from linearity with increasing
temperature is the signature of the NFL behavior [23].
The crossovers from linear (FL) to non-linear (NFL) T 2

dependence of ρ at low temperatures represented by TR
FL,

shift towards higher temperatures with increasing mag-
netic field. The TR

FL from each resistivity data measured
at different magnetic fields are extracted and plotted as
shown in the B − T phase diagram of Fig. 5.

c. Magnetoresistivity. Figures 4(a) and 4(b) show
the transverse magnetoresistivity (MR) ∆ρ⊥a /ρa vs B of
Ce0.90Sm0.10CoIn5 measured over the temperature range
2 K ≤ T ≤ 50 K. These figures reveal pronounced
crossovers from positive to negative MR that become
flatter with increasing temperature. The peaks in MR
take place at temperatures smaller than the coherence
temperature Tcoh = 41 K.

We extracted the magnetic field strength Bmax at
which the magnetoresistivity is maximum [see main panel
of Fig. 4(a) and 4(b)] and plotted Bmax vs T in the in-
set to Fig. 4(a). This plot shows a non-monotonic de-
pendence of Bmax vs T , with a maximum at around 19
K. For T > 19 K, the value of Bmax decreases with
increasing temperature, revealing the coherent Kondo
lattice behavior in this T range. However, the posi-
tive MR that decreases with decreasing T in the low
temperature range (T < 19 K) indicates unconventional
Kondo lattice behavior and is attributed to field quench-
ing of the AFM spin fluctuations [24] responsible for the
NFL behavior, previously observed in CeCoIn5 [24] and
Ce1−xYbxCoIn5 [17]. Therefore, the positive MR mea-
sured for the x = 0.10 single crystals at T < 19 K is due
to the AFM spin fluctuations. The extrapolation of the
low T linear fit of Bmax vs T to zero temperature give
BQCP = 2.5 T for this Sm doping.

d. Magnetic-field-induced quantum critical point.
Based on features extracted from Ce/T , ρ, and ∆ρ⊥a /ρa
data, we generated the B − T phase diagram shown in
Fig. 5. Specifically, the FL to NFL crossover tempera-
tures for different B values are extracted from the Ce/T
vs T data of Fig. 2 as TC

FL (blue triangles) and ρ vs T 2

data of Fig. 3 as TR
FL (red circles). The linear fit of TC

FL
and TR

FL from both measurements extrapolates to zero
temperature at BQCP = 2.5 T. In addition, the linear
extrapolation of the peak BMR

max (black squares) vs T (ex-
tracted from ∆ρ⊥a /ρa of Fig. 4) to zero temperature gives
the same BQCP = 2.5 T.
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FIG. 4: (Color online) (a) transverse magnetoresistivity
∆ρ⊥a /ρa vs magnetic field strength B of Ce0.90Sm0.10CoIn5

measured over a temperature T range 2 K≤ T ≤ 19 K. Inset:
T dependence of the characteristic magnetic field strength
Bmax corresponding to the maximum of the transverse MR.
The solid line in the inset is the linear fit of the low T data.
(b) ∆ρ⊥a /ρa vs B measured over a T range 21 K≤ T ≤ 50 K

e. Quantum critical scaling of heat capacity. When
the system is tuned to a quantum critical point by a
magnetic field B = BQCP, the time-scale of the quantum
critical fluctuations is governed by temperature only, i.e.,
τ = ~/kBT . As a consequence, the relevant dynamical
response functions exhibit the ω/T scaling, where ω is the
characteristic frequency on which the system is probed
[25, 26]. When B serves as a tuning parameter, the effect
of quantum critical fluctuations in the thermodynamic or
transport quantities is manifested in their dependence on
the ratio of B −BQCP and T , as well as a typical energy
scale describing the source of quantum fluctuations.

In order to further confirm that the anomalous tem-
perature dependence of Ce/T is governed by quantum
critical fluctuations and that BQCP = 2.5 T for the
x = 0.10 samples, we show that γ(B, T ) ≡ Ce/T
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dependence of γ(2.5T) vs T at temperatures T ≤ 6 K. Inset:
Semi-log plot of γ ≡ Ce/T vs temperature T measured at
2.5 T and 4 T and their normal state fit with Ce/T = 0.65 -
0.4lnT .

is governed by the critical free energy density fcr =
a0r

ν(d+z)f0(T/rνz) = a0T
(d+z)/z f̃0(r/T 1/νz), where a0

is a constant, f0 and f̃0 are scaling functions, r ∝
(B − BQCP), d is the dimensionality of the system, z
is the dynamical critical exponent, and ν is the criti-
cal exponent describing the dynamical correlations be-
tween Ce moments. Therefore, based on the arguments of
Ref. [27] and the scaling analysis performed for CeCoIn5
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FIG. 7: (Color online) Semi-log plot of the electronic spe-
cific heat normalized by temperature Ce/T vs temperature T
of Ce0.85Sm0.15CoIn5 measured with applied magnetic field
B ‖ c-axis over the temperature range 0.42 K ≤ T ≤ 10
K. TCFL represents the temperature at which the behavior
changes from Fermi liquid to non-Fermi liquid.

[8], we performed the scaling analysis using the function
(γ(B) − γ(BQCP)) ∝ (B − BQCP)αf [(B − BQCP)/T β ],
where α ≡ ν(d + z) and β represents the scaling dimen-
sion of B. The best scaling we obtained (Fig. 6) confirms
that BQCP = 2.5 T for Ce0.90Sm0.10CoIn5 and gives α =
0.71, and β = 2.5. The scaling of γ(B, T ) spans both the
FL regime at low temperatures and the NFL regime at
high temperatures, with all five data sets for different B
values overlapping over the T range 0.42 K ≤ T ≤ 8 K.
A very similar scaling has been observed in the stocheo-
metric compound CeCoIn5 [8] and YbRh2Si2 [28]

It is instructive to compare these results for the values
of α and β of Ce0.90Sm0.10CoIn5 with those obtained for
Ce1−xYbxCoIn5 [18]. For the latter, we found αYb =
0.71 and βYb = 1.2, while for the former αSm = 0.71
and βSm = 2.5 ≈ 2βYb. On the other hand, both αSm

and βSm match the corresponding values found for the
stocheometric compound. Given the fact that magnetic
field, on one hand, serves as a tuning parameter to the
QCP, while, on the other hand, suppresses the magnetic
fluctuations by direct coupling to the magnetic moments
of Ce ions, the relatively high value of β signals that
the region of quantum critical fluctuations is broader for
Ce0.90Sm0.10CoIn5 compared to Ce1−xYbxCoIn5. This
is also consistent with the stronger suppression of super-
conductivity in the samarium alloys.

A major obstacle in performing the scaling analysis
was to determine the normal state γ(2.5 T, T ) at low
temperatures because the x = 0.10 sample exhibits su-
perconductivity below 1.1 K in the presence of a magnetic
field of 2.5 T. We were able to overcome this problem by
determining the T dependence of the γ(4 T, T ) down to
0.42 K and taking advantage of the fact that γ(T, 4 T)
and γ(2.5 T, T ) completely overlap in the normal state,
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FIG. 8: (Color online) Low temperature resistivity ρ vs tem-
perature T 2 of Ce0.85Sm0.15CoIn5 measured in several applied
magnetic fields. The solid lines are linear fits to the data with
ρ = ρ0 +AT 2.

i.e., for T > 1.2 K (see inset to Fig 6). We found that
the Ce(B, T )/T follows a logarithmic T -dependence with
Ce(B, T )/T = 0.64 + lnT−0.4. This result implies that
proximity to the underlying quantum critical point af-
fects the thermodynamic properties significantly.

B. Ce0.85Sm0.15CoIn5

a. Specific heat. In order to determine the effect
of doping on the value of BQCP and to search for a
critical Sm concentration for which BQCP = 0, we
performed similar specific heat and resistivity measure-
ments as a function of temperature and magnetic field
on single crystals with a slightly higher Sm concen-
tration, i.e. Ce0.85Sm0.15CoIn5. Figure 7 shows the
temperature dependence of Ce/T measured in several
magnetic fields and at low temperatures, i.e., 0.42 K
≤ T ≤ 8 K. The normal-state results shown in Fig. 7
reveal sharp crossovers from constant Ce(B, T )/T (FL
at low T ) to logarithmic T -dependent Ce(B, T )/T , with
Ce(B, T )/T = 1 + lnT−0.64 ( NFL at high T ). The
crossovers temperature TC

FL also shifts towards higher
temperatures with increasing B for B ≥ 6 T.

b. Resistivity. Figure 8 shows the T 2 dependence of
ρ of Ce0.85Sm0.15CoIn5 measured from 0.6 K to 5 K and
for 6 T ≤ B ≤ 14 T. As in the case of the single crystals
with x = 0.10, the resistivity for the x = 0.15 samples is
linear in T 2 at low temperature, signaling the presence
of the Fermi-liquid behavior.

To check that the samples with x = 0.15 are, indeed,
quantum critical, we plotted in Fig. 9 the B−T phase di-
agram for this Sm-doped single crystals. The FL to NFL
crossovers extracted from Ce(B, T )/T are represented by
TC

FL (solid blue triangles), and these crossovers extracted
from ρ are represented by TR

FL(solid red circles). The FL
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FIG. 9: (Color online) Magnetic field strength - temperature
(B−T ) phase diagram of Ce0.85Sm0.15CoIn5 with B ‖ c-axis.
The solid line is a linear fit of the data. The blue dash curve
is a guide to the eye for the magnetic field dependence of the
Neel temperature.
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FIG. 10: (Color online) Scaling of the Sommerfeld coefficient
γ according to γ(B)−γ(0 T) ∝ B0.8f(B)/T 2.5 with γ = Ce/T .
We obtained the best scaling shown on the main panel with
a logarithmic dependence of γ(0 T) vs T for temperatures
T ≤ 6 K. Inset: Semi-log plot of γ ≡ Ce/T vs temperature T
measured at 0 T and its normal state fit with Ce(0, T )/T =
1 - 0.65 lnT .

to NFL crossovers obtained from both measurements are
in excellent agreement. The linear extrapolation of the
fit of these crossovers to zero temperature reveals that
BQCP = 0, indicating that the sample Ce0.85Sm0.15CoIn5

is, indeed, at the critical doping.

c. Quantum critical scaling of heat capacity. We
further checked whether Ce0.85Sm0.15CoIn5 is quantum
critical by performing the scaling analysis as discussed
above. We obtained the best scaling, shown in Fig. 10,
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with BQCP = 0, α = 0.8 and β = 2.5. The scaling of
γ ≡ Ce/T spans both the FL at low temperatures and
the NFL regime at high temperatures, with all four data
sets measured at different B values overlapping over the
temperature range 0.42 K ≤ T ≤ 5 K. This scaling fur-
ther indicates that Ce0.85Sm0.15CoIn5 is quantum critical
and exhibits NFL behavior.

In order to determine γ(0 T) required for the scaling
of Fig. 10, we fitted the Ce(0, T )/T data for T > 1.91 K
of the x = 0.15 sample with a logarithmic T -dependence;
i.e., Ce(0, T )/T = 1 + lnT−0.64. The data for T < 1.5
K display a stronger than logarithmic increase with de-
creasing T , most likely due to the presence of long range
AFM fluctuations and superconductivity. This is consis-
tent with the phase diagram of Fig. 1, where TN = 0.8
K. Nevertheless, we used the logarithmic T dependence
of γ(0 T) obtained by fitting the data at T > 1.91 K over
the whole T range down to 0.42 K

Combining the experimental results shown above, we
have generated an BQCP vs Sm concentration phase dia-
gram of Ce1−xSmxCoIn5, for the doping x = 0.00, 0.10,
0.15, as shown in the inset to Fig. 1. This phase di-
agram shows that BQCP is suppressed with increasing
Sm3+ doping and becomes zero for x ≥ 0.15. There-
fore, at zero temperature in the region for x < 0.1 (main
panel of Fig. 1) superconductivity and long-range AFM
order of Ce moments coexist. For 0.10 ≤ x ≤ 0.15, su-
perconductivity, long-range AFM order of Ce moments,
and long-range AFM of Sm ions coexist at zero temper-
ature. In region 0.15 ≤ x ≤ 0.17 superconductivity co-
exists with long-range AFM order of Sm moments, while
there is only long range AFM order due to Sm ions when
x ≥ 0.17.

IV. DISCUSSION AND OUTLOOK

Anomalous thermodynamic and transport low-
temperature properties of complex materials have long
been associated with underlying QCPs. In this regard,
CeCoIn5 as well as the other members of the ’115’
family of compounds are not exception. The existence
of the BQCP in CeCoIn5 has been already established
independently by several groups. Our present study
further justifies the validity of using the conceptual
framework of quantum criticality to account for the
observed anomalies in Ce1−xSmxCoIn5.

We can also estimate the fluctuation correction to the
heat capacity in external B. The details of the calcula-
tion are given in the Appendix A, so here we only present
the results in Fig. 11. We found that due to presumably
strong coupling between itinerant carriers and localized
moments of Ce ions, the fluctuation correction to the heat
capacity in the close vicinity to QCP does have a power-
law temperature dependence δCsf ∝ Tα with α ≈ 0.45.
When the system is de-tuned from the proximity to the
QCP, the exponent α increases and becomes α ≈ 1.5 at
very low temperatures.
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FIG. 11: (Color online) Fluctuation correction to the heat
capacity due to system’s proximity to magnetic QCP as a
function of temperature for various values of the parameter
η ∝ (B − BQCP). The temperature is given in the units of
the characteristic energy scale for the magnetic subsystem.
Although δCsf(T ) ∝ Tα has a power-law (and not logarith-
mic) temperature dependence, the exponent α shows strong
dependence on the parameter η, a feature which is also ob-
served experimentally.

Samarium substitution on cerium sites brings about a
novel feature into the phase diagram: the possible co-
existence between superconductivity and antiferromag-
netic ordering of Sm local moments in the narrow region
of 0.10 ≤ x ≤ 0.17, Fig 1. The Néel temperature van-
ishes at x ≈ 0.10 giving rise most likely to an antifer-
romagnetic QCP. In this regard we would like to note
that quantum critical fluctuations may already manifest
themselves in the superconducting state. Indeed, recent
theoretical works have shown the the effect of quantum
critical fluctuations can be also probed in the supercon-
ducting state by studying the temperature dependence of
thermodynamic functions such as heat capacity [29, 30]
and London penetration depth [30]. In particular, it has
been shown that in a fully gapped superconductor, quan-
tum fluctuations produce power-law dependences in both
of these quantities on the background of the (mean-field)
exponential temperature dependence. In the context of
Ce1−xSmxCoIn5, it would be intriguing to probe the vari-
ation in the temperature dependence of the heat capac-
ity of the x = 0.10 samples in the superconducting state.
From the point of view of the theoretical analysis, this
problem poses an additional challenge since the fermionic
spectrum is not fully gaped.

V. SUMMARY

Through the measurements of specific heat, resistiv-
ity, and magnetoresistivity on both Ce0.90Sm0.10CoIn5

and Ce0.85Sm0.15CoIn5 samples, we observe that the
FL regime recovery is established with increasing B in
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both ρ and Ce/T along with the low T evolution of
positive magnetoresistivity. We conclude that BQCP

decreases with increasing Sm concentration. The sin-
gle crystal with x = 0.15 exhibits zero temperature
quantum criticality associated with the antiferromagentic
ground state of Ce ions.However,the lower doped crystal
Ce0.90Sm0.10CoIn5 reveals BQCP at 2.5 T. As compared
to the parent compound and low doped sample (x = 0.1),
the normal-state transport and thermodynamic proper-
ties of Ce0.85Sm0.15CoIn5 are controlled by the presence
of QCP alone. Moreover, the scaling analysis of the Ce/T
data provides strong evidence for the existence of BQCP.
Similarly, excellent fits of Ce/T and ρ data measured at
several magnetic fields also suggest that the QCP is an-
tiferromagnetic in nature as supported by the spin fluc-
tuation theory.
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Appendix A: Temperature correction to the heat
capacity from quantum critical spin-fluctuations

The contribution of the quantum critical spin-
fluctuations to the free energy is [29, 30]:

δFsf = 3T

∞∑
m=−∞

∫
d2q

(2π)2
log
[
χ−1(q,Ωm)

]
. (A1)

Here χ−1(q,Ωm) = ν
(
E2

q − i|Ωm|/ωsf + Ω2
m/ω

2
0

)
, Eq =√

η + (q/Q0)2, ν is inverse proportional to the static
spin-susceptibility at T = 0, parameter η controls the
proximity to the magnetic QCP, Ωm = 2πTm is the
bosonic Matsubara frequency, ωsf is an energy scale which
describes the interaction between the localized moments
and conduction conductions, ω0 is a typical energy scale
of the magnetic system [31, 32] and the numerical pre-
factor takes into account three fluctuating modes: two
transverse and one longitudinal.

Since the spin-fluctuation propagator is a non-analytic
function of Ωm, in order to evaluate the free energy we
will need to keep the real part of the expression under
the integrals only. In the Matsubara summation (A1) we
can single out the m = 0 term and reduce the remaining
summation over m ≥ 1:

δFsf = 3T

∫
d2q

(2π)2
log(νE2

q) + 6T

∫
d2q

(2π)2
log

 ∞∏
n=1

(
1 +

ω2
0E

2
q

Ω2
n

) ∞∏
m=1

(
νΩ2

m

ω2
0

) ∞∏
l=1

1− iΩl/ωsf

E2
q +

Ω2
l

ω2
0

 . (A2)

The first term in this expression represents a ”zero-point-
motion” correction and, therefore, does not produce the
temperature dependent contribution to the heat capacity.

In the second term, there are three products under the
logarithm which we will discuss them separately below.
The first product evaluates to

∞∏
m=1

(
1 +

ω2
0E

2
q

Ω2
m

)
=

sinh(πz)

πz
, z =

ω0Eq

2πT
. (A3)

To evaluate the second product we need to use regular-
ization scheme to assign it a finite value. We use the
zeta-function regularization scheme [30] to find

∞∑
m=1

log

(
νΩ2

m

ω2
0

)
= log

(
ω0√
νT

)
. (A4)

Finally, for the third product we clearly need to evaluate
the real part only. It obtains:

∞∏
l=1

√√√√1 +
(Ωl/ωsf)2(
E2

q +
Ω2

l

ω2
0

)2 =
sinh(r+

q ) sinh(r−q )

2 sinh2(πz)
, (A5)

where we introduced auxiliary variables

r±q =
ω2

0

2
√

2ωsfT

√√√√1 +
2ω2

sf

ω2
0

E2
q ±

√
1 +

4ω2
sf

ω2
0

E2
q. (A6)

Thus, the expression for the fluctuation correction to the
free energy is

δFsf = 6T

∫
d2q

(2π)2
log

[
sinh(r+

q ) sinh(r−q )

sinh(ω0Eq/2T )

]
. (A7)

The fluctuation correction to the heat capacity is directly
obtained from (A7), δCsf/T = −∂2(δFsf)/∂T

2. We find

δCsf(T ) = 6

∫
d2q

(2π)2

[
(r+

q )2

sinh2(r+
q )

+
(r−q )2

sinh2(r−q )

−
ω2

0E
2
q

4T 2 sinh2(ω0Eq/2T )

]
.

(A8)

Our numerical analysis of this expression shows that at
low temperatures, T � ω0 and ωsf ≈ ω0, δCsf(T ) ∝ Tα

with α ≈ 0.45 at the QCP.
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