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We demonstrate how quantum entanglement can be directly witnessed in the quasi-1D Heisenberg antiferro-
magnet KCuF3. We apply three entanglement witnesses — one-tangle, two-tangle, and quantum Fisher infor-
mation — to its inelastic neutron spectrum, and compare with spectra simulated by finite-temperature density
matrix renormalization group (DMRG) and classical Monte Carlo methods. We find that each witness provides
direct access to entanglement. Of these, quantum Fisher information is the most robust experimentally, and
indicates the presence of at least bipartite entanglement up to at least 50 K, corresponding to around 10% of
the spinon zone-boundary energy. We apply quantum Fisher information to higher spin-S Heisenberg chains,
and show theoretically that the witnessable entanglement gets suppressed to lower temperatures as the quantum
number increases. Finally, we outline how these results can be applied to higher dimensional quantum materials
to witness and quantify entanglement.

I. INTRODUCTION

Quantum entanglement (QE) is intrinsically linked to mea-
surements of correlations between observables. Celebrated
examples of this relationship are the Bell1 and Clauser-
Horne-Shimony-Holt (CHSH)2 inequalities involving corre-
lations of e.g. photon polarization, used to demonstrate en-
tanglement in few-particle systems3–5. Recently, such exper-
iments have been successfully extended to systems of many
particles6,7. Indeed, entanglement in many-body systems is
attracting great interest8–13 for potential technological appli-
cation as well as a route to new insight into novel states of
matter — particularly ones with interesting emergent14 and
topological15 states and dynamics16. Experimentally detect-
ing and quantifying entanglement in macroscopic systems,
though, is challenging13,17–20 especially in the solid state. In
cases where a quantum system can be quantitatively modeled,
insight into quantum behavior can be gained by measuring
correlation functions and carefully comparing experiment and
theory21–25. However, model-independent approaches to veri-
fying and quantifying entanglement would give a more direct
route to quantum properties of materials and their enhance-
ment.

The most commonly studied form of QE within condensed
matter physics is bipartite entanglement, defined as follows.
If one considers a quantum system described by a density ma-
trix ρ, in a Hilbert space H , one can (bi)-partition H into
two parts, A and B. The trace of ρ over the degrees of free-
dom in B yields the reduced density matrix, ρA = TrB

[
ρ
]
.
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From ρA we can obtain e.g. (i) the von Neumann entangle-
ment entropy S vN = −Tr

[
ρA lnρA

]
, which provides a natural

quantitative measure of the entanglement between regions A
and B, and (ii) the related entanglement spectrum26 given by
the eigenvalues of ρA. This formalism has allowed significant
progress, including a deep understanding of critical systems14,
topological states15, and development of advanced numerical
methods10. In particular, both entanglement entropy27–29 and
spectrum26,30–33 can be used to identify topological ground
states and low-energy field theories of quantum systems. De-
spite being a nonlocal measure, the entanglement entropy has
been directly probed in cold atom19,20 and photonic34 systems.
These measures do not readily lend themselves to experimen-
tal detection in solid systems, where the number of particles
is very large. Fortunately, however, other entanglement mea-
sures exist. Researchers studying quantum information have
defined many types of entanglement, and have introduced
measures to detect, quantify and witness them. Since quan-
tum information is mainly concerned with systems of qubits,
which are mathematically equivalent to spin-1/2 systems, we
can directly apply many of its insights to quantum materials.

Entanglement witnesses (EWs)8,9,17 are functionals of the
density matrix ρ used to identify specific sets of entangled
states and distinguish them from separable (unentangled)
states. Every entangled state can, in principle, be detected
by some EW17. However, the construction of an EW capa-
ble of detecting all possible entangled states would be equiva-
lent to a solution of the so-called separability problem, which
is NP-hard, meaning that the runtime of any algorithm solv-
ing the problem is believed to grow exponentially with the
size of the Hilbert space. Hence, for practical purposes,
no single EW can detect all entangled states, much like a
single order parameter cannot describe all phase transitions.
To be practically useful in experiment an EW (like an or-
der parameter) should correspond to a quantity that can be
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Figure 1. Crystal structure of KCuF3. The Cu orbital order makes
interchain exchange, J⊥, much weaker than intrachain exchange, J.

directly measured or calculated from measurable quantities.
While many EWs have been proposed, in the present work we
choose to focus on three EWs suited for magnetic systems,
where the QE is reflected in spin-spin correlations. These
are (i) the one-tangle35–37, (ii) concurrence22,35,37–39 and the
related two-tangle35–37, and (iii) quantum Fisher information
(QFI)40–42. These probe different types of entanglement, re-
flecting the rich mathematical structure of many-body states.
As the results on the transverse-field XXZ spin chain mate-
rial Cs2CoCl443 demonstrate, the chosen EWs are practical to
apply in the analysis of neutron scattering data, allowing for
a protocol of entanglement identification in spin systems. By
utilizing multiple witnesses, this approach goes beyond pre-
vious neutron scattering measurements of concurrence as ap-
plied to dimerized alternating chains22,44 and molecular mag-
net systems45. By obtaining the scattering intensity in ab-
solute units we also go beyond a recent study46 of tempera-
ture scaling of QFI in an isotropic spin chain, allowing for a
quantitative determination of the entanglement present. Our
method may further be combined with independent measure-
ments of EWs based on e.g. static susceptibility47 or magnetic
specific heat48, which have been applied to a number of spin
chain materials22,49–52. We thus believe our approach is widely
applicable to quantum spin systems, and can allow rapid iden-
tification of materials hosting highly entangled states, such as
quantum spin liquids53–55 with stringent but feasible measure-
ments.

In this study we apply our protocol to high-quality inelastic
neutron scattering (INS) data on the one-dimensional S = 1/2
Heisenberg antiferromagnetic (HAF) chain material KCuF3.
Previous literature has established that KCuF3 provides an ex-
cellent realization of the isotropic HAF chain model,

H = J
N∑

i=1

~S i · ~S i+1, (1)

both qualitatively and quantitatively56. KCuF3 consists of
chains of interacting Cu2+ ions extending along the c-axis

[Fig. 1], with intra-chain coupling J = 33.5 meV. Weak
inter-chain coupling (J⊥ = −1.6 meV) causes the system to
order magnetically at 39 K, nevertheless at low temperatures
the spectrum is dominated by a continuum of scattering above
∼ 15 meV57, and is essentially 1D above 30 meV56. The form
of the scattering continuum is a signature of fractionalized ex-
citations (spinons) and long-range entanglement in 1D21,56.

Importantly, the one-dimensional setting allows accurate
simulation of the system at various temperatures using the
numerically exact Density Matrix Renormalization Group
(DMRG) technique, and analytical Bethe ansatz calculations
at low temperature. Thus we can compare the entanglement
quantified from data to accurate theoretical values. Since both
excitation spectra and entanglement properties of the Heisen-
berg model are relatively well-understood, this system is an
ideal platform for testing the use of many-body EWs.

We find that, when experimental conditions are taken into
account, the entanglement inferred from the data agrees with
theoretical predictions of entanglement witnesses. However,
each EW has strengths and weaknesses. The one-tangle is
straightforward to calculate but suffers from strictly being ap-
plicable only at zero temperature. The concurrence and two-
tangle, on the other hand, measure finite-temperature two-spin
entanglement—but the precision required in the low-energy
correlations make their quantification difficult for KCuF3, so
for gapless or very small-gap systems they may be of limited
utility. In contrast, the quantum Fisher information is found
to be a more practical measure of entanglement. It involves
an integral that can be determined from inelastic neutron scat-
tering data and gives a measure of multi-partite entanglement,
making it well suited for strongly fluctuating quantum mag-
nets.

We provide here a theoretical and experimental examina-
tion of applying entanglement witnesses to a model S = 1/2
HAF chain. In Sec. II we briefly review the notions of sep-
arability and entanglement, and describe the studied entan-
glement witnesses. We present our methods in Sec. III and
results in Sec. IV. Section V discusses the results and guide-
lines for future experiments probing entanglement properties
in quantum matter. We end with conclusions in Sec. VI, and
provide appendices with further technical details.

II. ENTANGLEMENT WITNESSES

What does it mean for a state to be entangled? A state is en-
tangled if its density matrix is not separable. An arbitrary state
can be described with the density matrix ρ =

∑
i pi|φi〉〈φi|,

where pi are probabilities of individual pure states |φi〉. In
the case of bipartite entanglement we say that ρ is a separable
state if it can be expressed ρ =

∑
i piρ

A
i ⊗ ρ

B
i , where ρA

i (ρB
i )

is constructed from the states in region A (B) in H . Product
states are a special class of separable states with ρ = ρA ⊗ ρB.
The state ρ is then called entangled if it is not separable17.
Note that some separable states have genuine quantum corre-
lations (quantified by e.g. quantum discord) despite not being
entangled12,58,59, and may be of use in quantum information
applications60. Identifying whether a given state ρ is separa-
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ble or not has been shown to be NP-hard17. This is known as
the separability problem.

The definitions above can be generalized to the multipartite
case17,41. We say that a state is fully separable if it can be ex-
pressed ρ =

∑
i piρ

(1)
i ⊗ · · · ⊗ ρ

(N)
i , where N is the number of

regions in the Hilbert spaceH , e.g. the number of lattice sites
or particles in the spin system described by Eq. (1). If a state
cannot be expressed this way, it possesses some entanglement.
However, this does not require that all N particles are entan-
gled. Indeed, we generally only expect full entanglement in
specially engineered states, and not in typical condensed mat-
ter systems. To quantify how many particles are entangled,
we first need two more definitions. We say that a pure state is
m-separable if it can be written |φm−sep〉 = ⊗M

l=1|φl〉, where |φl〉

is a state of Nl ≤ m particles and
∑M

l=1 Nl = N. The pure state
has m-partite entanglement if it is m-separable but not (m−1)-
separable. A mixed state has m-partite entanglement if it can
be written as a mixture of (ml ≤ m)-separable pure states, i.e.
ρm−sep =

∑
l pl|φm−sep〉〈φm−sep|, where |φm−sep〉 = ⊗M

l=1|φl〉.
The above may seem rather formal, but provides back-

ground necessary to appreciate entanglement witnesses8,9,17.
As mentioned earlier, these are functionals of the density ma-
trix, ρ, that identify some set of (bi- or multi-partite) entangled
states without having to solve the separability problem in gen-
eral. If the EW corresponds to an observable O it can be used
to identify entangled states without full knowledge of ρ, since
any measurement gives 〈O〉 = Tr

[
ρO

]
. EWs thus provide a

way to experimentally detect entanglement in materials. The
choice of witness (or witnesses) will depend on the system or
state of interest, and the type of entanglement to be probed.

In this study we focus on three entanglement witnesses
expressible as spin-spin correlation functions measurable by
neutron scattering.

A. One-tangle

The one-tangle, τ1, which quantifies entanglement of a sin-
gle spin with the rest of the system35,36,61 gives a measure of
total entanglement. For translation-invariant S = 1/2 sys-
tems it can be expressed in terms of the ordered moment
Mα = 〈S α〉, α ∈ {x, y, z} as

τ1 = 1 − 4
∑
α

(Mα)2. (2)

It vanishes for a classical magnetic order and reaches its max-
imum in the absence of order due to quantum fluctuations.
However, it is only defined at T = 0, restricting its experi-
mental use to the lowest temperatures. We are not aware of a
finite-temperature generalization.

B. Two-tangle

The two-tangle, τ2, quantifies the total entanglement stored
in pairwise correlations37,39 and satisfies τ2 < τ1

35,62. It is de-
fined as τ2 = 2

∑
r,0 C2

r , where Cr is the concurrence35,37–39

for a pair of spins separated by a distance r. The concurrence
is itself an entanglement witness that quantifies the pairwise
entanglement of two spins and is closely related to Bell’s type
inequalities. For the isotropic S = 1/2 HAF chain in the ab-
sence of order it simplifies to,

Cr = 2 max
{

0, 2|gzz
r | −

∣∣∣∣∣14 + gzz
r

∣∣∣∣∣ } , (3)

where gzz
r = 〈S z

i S
z
i+r〉. In general, concurrence for S = 1/2

systems is a function of real-space spin correlations and mag-
netization components36. The concurrence remains short-
ranged and τ2 is non-infinite even at quantum critical points
where correlations become long-ranged; a consequence of
quantum monogamy (the tradeoff in bipartite entanglement
between multiple spins)35,37,62, which is itself linked to frus-
tration effects in spin-spin correlations62.

One can see the limitations inherent in pairwise EWs by
considering resonating valence bond type states in higher di-
mensional lattices. Monogamy will mean the correlations be-
tween pairs will be reduced due to sharing of singlets in the
ground state. For such a state, although clearly quantum en-
tangled, the strict condition of exceeding the classical correla-
tion value of 1/4 may not be met and this can be expected to be
a problem for most quantum magnets beyond explicitly dimer-
ized systems and low-dimensional geometries. For example,
the concurrence vanishes for the highly entangled Kitaev spin
liquid63, reinforcing the point that a single EW cannot detect
all non-separable states. There are generalizations of concur-
rence to S > 1/264–66, but to our knowledge there are so far
no simple expressions for spin models of interest. Thus con-
currence and two-tangle are currently only useful for S = 1/2
systems.

C. Quantum Fisher information

Finally, quantum Fisher information (QFI) originates from
quantum metrology in analogy with classical Fisher informa-
tion. It puts precision bounds on parameter estimation through
the quantum Cramér-Rao bound67,68, and has been shown to
act as a witness of multi-partite entanglement41,42. In non-
integrable systems, QFI could also be used to test the eigen-
state thermalization hypothesis69. For a system of N spin-
1/2’s in a separable state the QFI FQ is limited to FQ[ρ; S α

tot] ≤
N (where S α

tot =
∑N

i=1 S α
i and Q in the subscript denotes

“Quantum”)—whereas the maximum is FQ[ρ; S α
tot] ≤ N2 for a

completely entangled quantum state. It is convenient to define
the QFI density fQ[ρ; S α

tot] = FQ[ρ; S α
tot]/N.

The QFI is rigorously related to the dynamical susceptibil-
ity of the observable O40. For spin systems, where the dynam-
ical susceptibility is accessible to INS experiments, we have
the QFI density:

fQ(T ) =
4~
π

∫ ∞

0
d (~ω) tanh

(
~ω

2kBT

)
χ′′(~ω,T ), (4)

where the dynamical susceptibility, χ′′, is measured at a spe-
cific point in reciprocal space. For a S = 1/2 antiferromag-
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netic chain, QFI is evaluated at the nearest neighbor correla-
tion k = π (which would be the ordering wavevector of an
equivalent classical system). If the QFI density satisfies the
bound

fQ > m (hmax − hmin)2 , (5)

where hmax and hmin are the maximum and minimum eigenval-
ues of the observable O, and m is an integer, then the system
must be at least (m + 1)-partite entangled41,42. (Strictly speak-
ing this holds only if m is a divisor of N. We assume that N
in experiment is large enough and indeterminate, such that N
is divisible by all m � N. Note also that, unlike Ref.40, we
treat χ′′ as an intensive quantity, i.e. it includes a factor 1/N,
as is conventional in the study of magnetism.) To determine
if this bound is met, it is thus necessary to obtain the inelastic
scattering in absolute units.

Here, the fluctuation-dissipation theorem, χ′′ (k, ω) =
1
~

tanh (~ω/2kBT) S (k, ω), links χ′′ to the dynamical spin struc-
ture factor S (k, ω) measured by neutron scattering. Sum rules
for total scattering, e.g.

∑
α∈{x,y,z}

∫ ∞

−∞

∫ 2π

0
dωdk S αα (k, ω) = S (S + 1) (6)

in the isotropic case, constrain the dynamical response. It is
evident then that Eq. (4) relates QFI to a quantum enhance-
ment in the linear response of a system, and thus provides
a potentially useful discriminator for quantum materials. For
neutron scattering studies of spin-S systems satisfying Eq. (6),
the bound (5) becomes43

nQFI =
fQ

12S 2 > m. (7)

This is the relevant bound for systems of arbitrary spin.
Throughout this work we will call the left hand side ( fQ

12S 2 )
“normalized QFI” (nQFI). Unlike the other EWs we discuss,
QFI is generally applicable to physical systems over all phys-
ical conditions (e.g. temperature) reinforcing its usefulness.

III. DATA ANALYSIS AND NUMERICAL METHODS

A. Analysis of INS data

We use inelastic neutron scattering data on KCuF3 from
Refs.56,70 to evaluate experimental entanglement witnesses.
The spectra were measured on the MAPS time-of-flight spec-
trometer at the ISIS pulsed neutron source and cover the full
frequency and wave-vector response of the material over tem-
peratures (6, 50, 75, 150, 200, and 300 K) up to of order
the Curie-Weiss temperature ΘCW = JS (S + 1) = 274 K.
At high temperatures the low energy scattering is dominated
by phonons. Accordingly, the estimated phonon contribu-
tions were subtracted from the data at all temperatures. To
ensure this was done accurately the phonon spectrum was
remeasured carefully using the ARCS spectrometer at Oak

Ridge National Laboratory; see Appendix B for details. Af-
ter phonon subtraction, data were corrected for anisotropic
Cu2+ form factor and converted to absolute units to obtain
S(k, ω), see Appendix A for details. Phonon-subtracted and
form-factor corrected S(k, ω) are shown in Fig. 2.

The concurrence and two-tangle require the distance-
dependent equal-time correlations gααr . These are extracted
from Sαα(k) =

∫ ∞
−∞

dωSαα(k, ω) by an inverse Fourier trans-
form [see Fig. 3(a-f)]. The elastic line has been masked due to
the incoherent scattering from other sources. Negative-energy
transfers were not measured in the experiments so they are
calculated from the positive energy scattering using detailed
balance—see Appendix A for details. From this spin-spin cor-
relation we calculate the concurrence and two-tangle, using
Eq. (3). We find that only on-site and nearest neighbor spin-
spin correlations exceed the |gzz

r | = 1/4 threshold in Eq. (3).
Thus only the latter correlations contribute to concurrence and
two-tangle (r = 0 is excluded by definition). The uncertainty
on all experimental entanglement witnesses in this paper are
statistical, and arise from counting statistics of the neutron ex-
periments.

B. Simulations

To compare these calculated quantities with the theoretical
behavior of a pure S = 1/2 HAF chain, neutron spectra were
simulated with DMRG71–73. We used the Krylov-space cor-
rection vector approach74,75 to calculate S (k, ω), allowing ac-
curate results at all ω. Due to finite-size limitations the spec-
tra were calculated with a Lorentzian energy broadening with
half-width at half-maximum (HWHM) η = 0.1J. To simulate
experimental conditions, the DMRG spectra were convolved
with a resolution function using the ms_simulate package of
the MSLICE program (see Appendix A for details). The sim-
ulated spectra are shown in Fig. 2(g-l).

The DMRG calculations were carried out with the
DMRG++ code73, keeping a minimum of 100 and up to 1000
states in the calculation, while targeting a truncation error be-
low 10−8. In practice, the actual truncation error in obtaining
wave functions was . 10−10. The 6 K result was approxi-
mated with a T = 0 DMRG calculation on a chain with 100
sites and open boundary conditions (OBC). For T > 0 calcu-
lations we used the ancilla (or purification) method76–78 with
a system consisting of 50 physical and 50 ancilla sites, also
with OBC. Details on how to reproduce our results are given
in Appendix C and the Supplemental Material79. Based on
finite-size scaling between 50, 100, and 120 site DMRG, we
estimate an uncertainty of 0.4% in the overall intensity of the
DMRG simulations.

To highlight the quantum nature of entanglement, we
also consider a fully classical system where entanglement
is strictly absent. For this purpose, we simulated a HAF
chain using Landau-Lifshitz dynamics (LLD) followed by
Metropolis annealing80. A spin chain of 2000 classical vec-
tor spins of length S = 1/2 was solved for LLD starting
from a thermalized spin configuration at a given temperature.
A standard Metropolis sampling algorithm has been used to



5

0

50

100

 (m
eV

)

(a)  
MAPS

0

50

100

 (m
eV

)

(b)  

0

50

100

 (m
eV

)

(c)  

0

50

100

 (m
eV

)

(d)  

0

50

100

 (m
eV

)

(e)  

00

50

100

 (m
eV

)

(f)  

(g)  
DMRG

(h)  

(i)  

(j)  

(k)  

0

(l)  

0

0.20

(
) (m)6 K

Bethe Az, nQFI = .
DMRG, nQFI = .
MAPS, nQFI = . ( )

0

0.05

0.10

(
) (n)50 K

DMRG, nQFI = .
MAPS, nQFI = . ( )

0

0.05(
) (o)75 K

DMRG, nQFI = .
MAPS, nQFI = . ( )

0

0.05

(
) (p)150 K

DMRG, nQFI = .
MAPS, nQFI = . ( )

0

0.05
(

) (q)200 K
DMRG, nQFI = .
MAPS, nQFI = . ( )

0 25 50 75 100
 (meV)

0

0.05

(
) (r)300 K

DMRG, nQFI = .
MAPS, nQFI = . ( )

10 2 10 1
( , ) (meV )

Figure 2. Spectra and quantum Fisher information. (a)-(f): Neutron scattering of KCuF3 measured on MAPS at different temperatures. (g)-(l):
DMRG simulated scattering from a 1D HAF with experimental resolution broadening applied. (m)-(r): QFI integrand at k = π, shown with
normalized Quantum Fisher Information ( fQ

12·S 2 ) calculated at that point. At 6 K the data is also compared with the algebraic Bethe ansatz result
(m).

thermalize the spin system starting from a long-ranged anti-
ferromagnetic configuration. Correlation functions were cal-
culated by averaging over 192 independent simulation runs.

IV. RESULTS

A. One-tangle

The low-temperature (T � TN) ordered moment for
KCuF3 is µ = 0.49(7) µB

81 (〈S z〉 = 0.24(3)). This gives a
one-tangle value, Eq. (2), of τ1 = 0.76 ± 0.14. Theoretically,
the S = 1/2 HAF chain does not order (giving τ1 = 1), but
the ordering in KCuF3 is due to inter-chain coupling57. Al-
though τ1 is reduced due to long-range order it still indicates



6

0

2

 K(a)
( )
DMRG
MAPS

0

0.5

 K

      Fourier
transformed ( )(g) DMRG

Class.
MAPS

0

1

2
 K(b)

0

0.5  K(h)

0

1

2
 K(c)

0

0.5  K(i)

0

1

 K(d)

0

0.5  K(j)

0

1

 K(e)

0

0.5  K(k)

00

1

 K(f)

5 0 5
 (l.u.)

0

0.5  K(l)

Figure 3. Spin-spin correlations. The left column (a)-(f) shows the
energy-integrated scattering S (k) (blue) from the MAPS KCuF3 data
compared to DMRG S (k) (black). The right column (g)-(l) shows
the spin-spin correlation calculated as the Fourier transform of S (k).
The x axis in this case gives neighbor distance along the 1D chain.
The horizontal grey bars show the threshold of quantum correlations
|gzz| = 1

4 ; see Eq. (3). Any value within the shaded regions indicates
quantum entanglement. The comparison of classical Monte Carlo,
DMRG and experimental results clearly shows the quantum behav-
ior of the system, with enhanced on-site correlations and decay of
correlation functions at low temperatures driven by quantum fluctu-
ations.

substantial entanglement.

B. Two-tangle

The calculated two-tangle τ2 values as a function of tem-
perature are plotted in Fig. 4. In this case, τ2 extracted di-
rectly from DMRG simulations is noticeably higher than the
experimental values over the whole temperature range. This
discrepancy is surprising: the prima facie agreement for S (k)

0 100 200 300
 (K)

0

0.1

0.2

0.3
Bethe Ansatz, experimental broadening
Bethe Ansatz ( = )

DMRG

MAPS DMRG, low-E
     masked

Figure 4. Two-tangle. Two-tangle τ2 for KCuF3 calculated from
the spin-spin correlation functions in Fig. 3. DMRG two-tangle is
≈ 0.1 higher than the experimental values, but the correspondence is
very close if the low-energy scattering is excluded (light blue data),
showing the low-energy features are key to accurate two-tangle cal-
culations. Classical MC two-tangle is zero at all temperatures.

in Fig. 3 between theory and experiment appears excellent
while the Bethe ansatz calculations (shown by the green bars
in Fig. 4) show resolution effects are small.

The origin of the discrepancy can be deduced from a close
examination of the data in Fig. 3(a)-(f). DMRG S (k)—which
was calculated with resolution broadening—is much sharper
than experiment at k = π at low temperatures. This is because
the elastic line was masked below ~ω = 4 meV in the MAPS
data to eliminate substantial background contamination from
unavoidable incoherent elastic scattering. The most intense
magnetic scattering at k = π is then masked, resulting in S (k)
not being as sharp as theory, nearest-neighbor 〈S · S 〉 being
slightly reduced, and the calculated τ2 is suppressed.

Another thing to note about the data in Fig. 3 is that 〈S · S 〉
at R = 0 falls off in the experimental data as temperature in-
creases. This is not true for the DMRG—it remains constant
for all temperatures. This shows that there is missing mag-
netic spectral weight for the MAPS data at elevated tempera-
tures. (〈S · S 〉 at R = 0 corresponds to the zero-moment sum
rule, which for S = 1/2 should be S (S + 1) = 3/4.) Both
MAPS and DMRG satisfy the sum rule at low temperatures,
but at high temperatures only the DMRG does. The reason for
this can be seen in Fig. 2, where the high-temperature MAPS
data is oversubtracted at low energies due to intense phonon
scattering (see Appendix B). To simulate this missing inten-
sity, we masked the low-energy DMRG intensity (details are
given in Appendix A), and recalculated two-tangle. As shown
by Fig. 4, the DMRG-masked two-tangle closely matches
the experimental calculations below 100 K. This shows that
the low-energy scattering has a strong influence on two-tangle
calculations, in contrast to QFI.

As a final note, the classical MC simulations, shown in pur-
ple in Fig. 3, have zero concurrence, and thus zero two-tangle
at all temperatures. This is as expected for a classical system.
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Figure 5. Normalized Quantum Fisher information [Eq. (7)] as a
function of temperature. The y-axis units directly indicate the degree
of multipartite entanglement present. When nQFI = fQ/

(
12S 2

)
> m,

where m > 0 is an integer, the system is in a state with ≥ (m + 1)-
partite entanglement. We show nQFI densities calculated accord-
ing to the formula in Eq. (4) from DMRG simulations and MAPS
data. We also show theoretical nQFI calculated for a S = 1 chain
("Sørensen")82 and for S = 5/2 ("G-M-A")83. Classical MC nQFI is
zero at all temperatures.

C. Quantum Fisher Information

The experimental and DMRG-simulated QFI values agree
remarkably well with each other, as shown in Fig. 5. Such cor-
respondence between theory and experiment is possible be-
cause the tanh function in the finite-temperature QFI integral
suppresses the low-energy scattering, which is where the ef-
fects of inter-chain coupling and background subtraction are
most manifest70. Thus, the theoretical integral is quite close
to the experiment as shown in Fig. 2(m-r). To show the ef-
fects of finite resolution, we include a Bethe ansatz calcula-
tion of the T = 0 HAF S = 1/2 chain with and without
resolution broadening56, shown by the green bars in Fig. 5.
(Bethe ansatz is exact and not subject to finite-size broaden-
ing like DMRG is.) To avoid the zero-temperature divergence,
we calculated the QFI at T = 6 K. This shows that resolu-
tion effects decreases the normalized QFI by about 1. This
effect is noticeable, but it by no means suppresses the normal-
ized QFI. However, there is a qualitative difference in that the
Bethe ansatz result indicates the presence of at least tripartite
entanglement, while experiment and DMRG witness at least
bipartite entanglement.

We now consider QFI in higher-spin HAF chains. Partial
suppression of nQFI = fQ/

(
12S 2

)
occurs for the isotropic

S = 1 spin-chain QMC calculation in Ref.82, which is plot-
ted in Fig. 5. We also simulated higher-spin systems with
exchange strength J scaled to keep the exchange energy
scale (approximated by the Curie-Weiss temperature ΘCW ∝

JS (S + 1)) constant across all spin values. Appendix C shows
T = 0 DMRG spectra for S = 3/2 and S = 5/2 HAF chains,
which are quantum critical systems with extensive entangle-

ment. We find that T = 0 nQFI is approximately the same
for these S values. Meanwhile, finite-temperature S (k, ω) and
nQFI for higher spin chains can be calculated with the semi-
classical Gozel-Mila-Affleck approximation in Ref.83, and the
S = 5/2 QFI is plotted in Fig. 5. nQFI is noticeably sup-
pressed with the larger spin at nonzero temperature. Increas-
ing the spin quantum number further shows a power-law de-
crease in nQFI as S → ∞, as shown in Appendix D. Thus,
although higher spin chains are highly entangled at T = 0, the
larger spin quantum number suppresses the measurable en-
tanglement to lower and lower temperatures. In the classical
limit, which we consider in Appendix E, the ability to witness
entanglement is completely suppressed.

V. DISCUSSION

We have shown three different EWs which quantitatively
demonstrate entanglement in KCuF3. These results highlight
the requirements and limitations of measuring the one-tangle,
two-tangle, and QFI.

The one-tangle is the easiest EW to measure and provides
an immediately useful number directly related to the entangle-
ment of a spin with the rest of the system61. For a translation-
ally invariant Hamiltonian at zero temperature the one-tangle
can be extracted from the ordered moment, which is readily
measurable with neutron scattering (through magnetic elastic
intensity). However, some care is needed in interpreting the
results, since τ1 may be overestimated if the moments are not
fully characterized, see Ref.43. A major problem though is
that τ1 is derived for a pure eigenstate, and thus restricted to
zero temperature. Generalizing this result would be very use-
ful in the experimental quantification of quantum effects in
materials. Despite the lack of rigorous derivation beyond zero
temperature, it is reasonable to expect that the non-entangled
contribution will be within kBT of the elastic line at low tem-
perature and instead of the Bragg peak intensity it will be
given by the total long-time correlations beyond t ∼ 1/kBT ,
i.e.

τ1 ∼ 1 − 4
∑

α, β=x,y,z

∫ kBT

−kBT
dω

∫
B.Z.

dqSαβ(q, ω). (8)

Similarly, a useful expression for the one-tangle in disordered
systems would provide a way of determining whether an ex-
perimental system is of interest as say a quantum spin liquid
versus a glassy or thermally disordered state.

Two-tangle is less susceptible to experimental broaden-
ing effects than QFI, but it is more susceptible to other ex-
perimental artifacts and perturbations away from quantum-
criticality. Of all the EWs we considered, two-tangle re-
quired the most careful isolation and treatment of magnetic
scattering—DMRG had to be masked in accord with miss-
ing experimental spectral weight—which may prove a serious
limitation to studying less ideal systems than KCuF3. On the
other hand, the two-tangle is easy to compute theoretically,
and is almost immune to finite-size effects. However, since
concurrence is typically short-ranged, τ2 is less powerful than
the QFI in demonstrating long-range entanglement.
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Finally, QFI is a powerful measure of finite-temperature en-
tanglement for low-dimensional systems, showing ≥ 2-partite
entanglement in KCuF3. At finite-temperature, QFI remains
robust against weak perturbations away from quantum criti-
cality, as shown by the correspondence to DMRG at the quan-
tum critical point. This correspondence also shows the robust-
ness against experimental artifacts in the neutron scattering
data. Nevertheless, there are two limitations to QFI as an EW.
First, resolution broadening somewhat suppresses the calcu-
lated QFI, and thus good energy resolution is key to a success-
ful calculation. Second, the T → 0 QFI for a real experiment
will never diverge. This is because (i) resolution effects are
always present which smooth over divergent intensity, and (ii)
real condensed matter systems are generally not ideal. KCuF3
for example has interchain coupling which brings the system
away from criticality, causing the low-energy scales—which
determine the low-temperature multipartite entanglement—to
deviate from the theoretical T → 0 behavior.

Higher spin simulations show that normalized QFI also dis-
criminates between systems of different spin size. A spin-1/2
chain shows extreme quantum behavior — a quantum criti-
cal ground state and pairs of fractional S = 1/2 spinons as
quasiparticles. The QFI shows an immediate difference be-
tween S = 1/2 and S = 1 chains, with a low-temperature
plateau in S = 1 due to the Haldane gap82,84. The difference
in the behavior is due to a topological term in the quantum
field theory describing the systems. The strength of this term
is JS 2 exp(−πS ), which defines an energy scale above which
the dynamics behaves akin to spin-waves. Correlations on
temperature and energy scales below this exponentially sup-
pressed crossover will still show divergent QFI in the case of
half-odd-integer spins. This agrees with the conformal field
theory predictions for the von Neumann entanglement entropy
and QFI14,85. However, this energy and temperature scale sup-
pression implies that the regime of diverging multipartite en-
tanglement will be extremely hard to access in high-spin sys-
tems. DMRG at zero temperature on S = 3/2 and 5/2 1D
chains are plotted in Appendix C, and we expect similar rapid
cross over to semiclassical behavior with spin length in other
quantum magnets. QFI may then prove to be a very useful ex-
perimental indicator for when a fully quantum theoretical ap-
proach is required, and when a semi-classical approach may
suffice instead.

We can expect, on the basis of the results here, that com-
bining quantum entanglement witnesses could prove useful in
a wide range of other magnetic systems. For short-range en-
tangled systems, such as dimerized and molecular magnets
the concurrence and two-tangle alone provide a useful mea-
sure of the entanglement86,87. Meanwhile, the combination of
two-tangle and one-tangle is able to provide new potential in-
sights into both entanglement and quantum phase transitions
by identifying changes in entanglement and quantum wave-
functions. A prominent example of this is the proposed en-
tanglement and QPTs in the XXZ model in transverse field,
which is explored in Ref.43. However, the addition of the
Quantum Fisher Information provides a powerful, system ag-
nostic indication of the impact of entanglement on the re-
sponse of the materials. Further, the observation of significant

multi-partite entanglement in systems where it is not expected
could lead to discovery of new quantum states where theories
have not yet been developed.

Of particular interest are quantum spin liquids and their dis-
crimination from the effects of other forms of disorder. As
mentioned earlier, quantum monogamy is likely to make the
concurrence and two-tangle go to zero between all sites in
higher dimension spin-liquids63. Instead, non-zero two-tangle
in a higher-dimensional system might be a signature of a ran-
dom singlet phase88–90, and so possibly discriminates spin-
liquid-like random singlet phases from true quantum spin liq-
uids. The QFI on the other hand may well show multipartite
entanglement in higher dimensions. The approach to mea-
suring QFI we have outlined is necessarily local, and does
not directly probe the topological entanglement in quantum
spin liquids40,84,91,92. However, such measurements can still
confirm the presence of entanglement, and derivatives of lo-
cal QFI may signal topological phase transitions92. Thus,
although topological quantum spin liquids such as the Kitaev
model have long-range quantum entanglement that cannot be
fully quantified by multi-partite entanglement, a combination
of (i) substantial τ1, (ii) τ2 = 0, and (iii) finite QFI would
strongly indicate long-range entanglement. This would be a
useful way of selecting systems on which to undertake ex-
periments to probe topological quantum states (like quantum
interference measurements).

As a final note, these results show that neutron scattering
is well suited to witnessing entanglement in solid state sys-
tems. The demands of entanglement witnesses will require
high-resolution techniques and carefully designed scattering
experiments. For systems more complex than the S = 1/2
HAF chain, polarized scattering may be required to isolate the
magnetic signal. Also, for anisotropic systems, quantifying
entanglement witnesses will require measuring the full polar-
ization tensor of the spin-spin correlation functions43. These
EW measurements could be aided by self-entangled neutron
beams as recently demonstrated for CHSH states93. These
measure spin-spin correlations like un-entangled beams, but
they can be conditioned to simultaneously measure combina-
tions of correlations of distance, time, and polarization, mea-
suring Fourier components directly. In this respect, these tech-
niques could be used to develop more direct measurements of
EWs in materials. For other systems and methods, a recent re-
formulation of QFI94 or the related quantum variance EW95,96

may prove useful.
Although our results have focused on neutron scattering,

many other experimental techniques can measure EWs (QFI
in particular), for example inelastic x-ray scattering and THz
spectroscopy. Furthermore, there is rich information content
in the correlation functions not used in the present entangle-
ment witnesses, so other insightful neutron scattering wit-
ness measures could powerfully elucidate many-body quan-
tum states. Given the potential utility of identifying and quan-
tifying entanglement in the response behavior of quantum ma-
terials, experimental and theoretical approaches should be ex-
plored further. In theoretical condensed matter physics we
are often used to thinking about entanglement exclusively in
terms of bipartite entanglement — e.g. in the form of entan-
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glement entropies and spectra. It is time to broaden this per-
spective, and more seriously consider entanglement measures
that are experimentally accessible.

VI. CONCLUSION

We have demonstrated several model-independent means
of quantifying entanglement using the neutron spectrum of
the 1D Heisenberg antiferromagnet KCuF3. One-tangle, two-
tangle, and QFI all show non-zero entanglement. We find
each has specific advantages and disadvantages: One-tangle is
simple to calculate, but limited to the zero-temperature limit.
Two-tangle provides direct insight to the bipartite entangle-
ment, but is easily disrupted by experimental artifacts. QFI
we find to be the most robust, giving quantitative agreement
with DMRG calculations across the entire temperature range.
Further, QFI directly and unambiguously shows that KCuF3
has at least bipartite entanglement, up to at least 50 K.

These results serve as a proof of principle that meaning-
ful information about quantum entanglement can be extracted
from experimentally measured spin-spin correlations. Our re-
sults call for the development of additional EWs accessible
through spin correlation functions. More generally, EWs for-
mulated in terms of accessible observables present a promis-
ing direction forward. Armed with such tools, the study of
exotic quantum materials can progress in new ways.

Acknowledgments

We gratefully acknowledge Jean-Sébastien Caux for per-
forming the Bethe ansatz calculations in Ref.56. We thank
Matthew Stone for a critical reading of the manuscript. D.A.T.
acknowledges stimulating and useful discussions with Cris-
tian Batista, Gábor Halász, Pavel Lougovski, Gerardo Or-
tiz, and Roger Pynn. The research by P.L., S.O., and G.A.
was supported by the Scientific Discovery through Advanced
Computing (SciDAC) program funded by the US Department
of Energy, Office of Science, Advanced Scientific Comput-
ing Research and Basic Energy Sciences, Division of Materi-
als Sciences and Engineering. GA was in part supported by
the ExaTN ORNL LDRD. This research used resources at the
Spallation Neutron Source, a DOE Office of Science User Fa-
cility operated by the Oak Ridge National Laboratory. The
work by DAT and SEN is supported by the Quantum Science
Center (QSC), a National Quantum Information Science Re-
search Center of the U.S. Department of Energy (DOE). Soft-
ware development has been partially supported by the Center
for Nanophase Materials Sciences, which is a DOE Office of
Science User Facility.

Appendix A: Data processing

The MAPS KCuF3 neutron scattering data were corrected
for the anisotropic dx2−y2 Cu2+ form factor in order to account

for the orbital order in Fig. 1:

f (k) =〈 j0〉 +
5
7

(3 cos2 β − 1)〈 j2〉 +
3

56
(35 cos4 β−

30 cos2 β + 35 sin4 β cos 4α + 3)〈 j4〉,
(A1)

where β is the angle between k and the dx2−y2 orbital z axis,
and α is the angle from the x axis in the xy-plane97. Cu2+

〈 jn〉 constants were from from Ref.98. To isolate the magnetic
scattering, a phonon background was subtracted (described in
Ref.56). This background intensifies as temperature increases
(see Appendix B), so the low-energy scattering at the highest
temperatures has a large uncertainty—but the higher energy
scattering is clear. Data were already normalized to absolute
units, but we normalized the data again by setting the zero
moment total sum rule of the 6 K data explicitly to 0.75. This
was done to ensure greater accuracy in the entanglement wit-
ness calculations; absolute unit conversions often carry large
uncertainty99 in themselves.

In order to compare the DMRG calculations directly with
the experimental data, we simulated the dataset that would be
collected on the MAPS instrument at ISIS, for a sample with
the dynamic structure factor (DSF) of the DMRG, by using
the ms_simulate package of the MSLICE program. Before
this was done however a number of corrections were applied
to the theoretical DSF. First, in order to model the instrumen-
tal resolution, the DSF was convolved numerically by a Gaus-
sian whose width was the energy-dependent resolution ob-
tained from the MCHOP program. Second, to take account of
the mosaic spread of the sample, a Gaussian angular broaden-
ing was introduced which resulted in an effective wavevector
broadening. The resulting simulated datasets were identical in
form to the experimental datasets, and all manipulations (such
as binning) performed on the real data were also performed on
the virtual data. Direct comparison between theory and exper-
iment was achieved by using the MSLICE program to perform
the same cuts and slices on the virtual and real datasets.

To simulate the effects of experimental artifacts and back-
ground subtraction, we masked the low-energy DMRG sim-
ulated intensity as shown in Fig. 6. Because the region of
missing intensity grows with temperature [see Fig. 6(a-g)], we
varied the region masked with the phenomenological function

masked < 4 meV +
8.5 meV

1 + exp (− T−80 K
15 K )

.

This function is not meant to be exact, but to approximate the
missing intensity in the MAPS data. Below 100 K, it matches
the spectrum visually, and matches two-tangle quantitatively.

Calculating QFI: According to the formalism in Ref.40,
QFI for a linear response function is evaluated at a fixed
wavevector. We have evaluated QFI at k = π in this study,
because the spin correlations are strongest at the antiferromag-
netic wavevector π and staggered magnetization is a relevant
order parameter in the HAF chain. In principle, QFI could be
evaluated at other wavevectors (see Fig. 7), but the nQFI is by
far the largest at the antiferromagnetic point.
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Appendix B: KCuF3 phonon spectrum.

The phonon spectrum of KCuF3 was measured at the ARCS
spectrometer100 at the ORNL SNS in the (hh`) scattering
plane with Ei = 50 meV neutrons (T0 chopper at 90 Hz,
Fermi 1 chopper at 120 Hz, Fermi 2 chopper at 420 Hz, slits
40 mm wide and 18 mm tall). The sample was the same 6 g
single crystal used in the MAPS data. The large scattering
vector k coverage of ARCS allows for a much clearer pic-
ture of the phonons than MAPS, which are stronger at large
k. This data also have significantly better energy resolution
than the MAPS data. Data were analyzed and plotted using
Mantid101. The data at 6 K, 100 K, and 300 K are shown

00

0.5

1.0

1.5

2.0

nQ
FI

, 6 K

Figure 7. Normalized Quantum Fisher information (nQFI) as a func-
tion of wavevector k for KCuF3 at 6 K, with a k bin size 2π/100. Note
that the largest nQFI corresponds to the strongest spin correlations:
k = π.

in Fig. 8. The phonon dispersions are primarily below 30
meV, and grow more intense as temperature increases, con-
firming the phonon subtraction scheme used for the MAPS
data. (Note that the the ARCS data were not used as phonon
background, but as confirmation of the MAPS phonon sub-
traction described in56,70.) At high temperatures, the com-
plicated spectrum makes the phonon subtraction difficult: as
shown in Fig. 8, the 300 K low-energy magnetic scattering is
much weaker than 6 K, whilst the phonon scattering is much
stronger at 300 K than 6 K. This explains why the high tem-
perature KCuF3 data from MAPS that was used to extract the
two tangle witness is noisy at low energies.

Appendix C: DMRG calculations

In this appendix we provide additional DMRG results. De-
tailed instructions on how to reproduce the DMRG results are
given in the Supplemental Material79.

1. Finite size effects

We investigated finite-size scaling effects by running T = 0
DMRG simulations with 50, 100, and 120 sites, shown in
Fig. 9. The Lorentzian broadening was set to η = 0.1J for
N = 100, and scaled as η ∼ 1/N for other system sizes fol-
lowing Ref.102. These results show QFI increases with sys-
tem size. This is because QFI is strongly dependent upon the
low-energy intensity at k = π, which gets sharper as system
size increases. However, experimental broadening suppresses
QFI and removes this size-dependence. Meanwhile, the two-
tangle is nearly independent of system size, both with and
without experimental effects. This is because τ2 is dominated
by the nearest-neighbor concurrence, which is determined by
nearest-neighbor correlations that are less influenced by the
overall size of the simulated system.
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displayed on the figures.

2. Higher half-integer spin Heisenberg antiferromagnets

We also calculated the DMRG spectrum at T = 0 for
S = 3/2 and S = 5/2 HAF spin chains, as shown in Fig.
10. Similarly to the main T = 0 S = 1/2 calculation, these
results were obtained with J = 1, η = 0.1J and N = 100
sites. In order to reduce computational and memory cost, a
ground state in the S z = 0 sector was targeted. To avoid an
unphysical artifact in the spectrum (a line of moderately in-
tense scattering at k = π extending to the highest frequencies,
due to a combination of diverging intensity as ω → 0 and
the Lorentzian energy broadening) we removed a Lorentzian
with height S (k, 0) and η = 0.1J at each k-point. This was
necessary to avoid unphysical contributions to the QFI values.
Following the DMRG computation, J was scaled to keep the
Curie-Weiss temperature ΘCW ∝ JS (S +1) constant across all
spin values.

Appendix D: Semiclassical approximation

As the spin size increases, numerically computing the dy-
namical correlations with e.g. DMRG or Quantum Monte
Carlo and therefore calculating the QFI becomes increas-
ingly demanding — especially at finite temperature. The
spin-1 case has, however, been calculated by Lambert and
Sørensen82 in a single-mode approximation. Their results are
shown in Fig. 5, normalized to match the bound given by Eq.
(7). To understand the case of higher S we turn to a recent
semiclassical theory work.

Gozel, Mila, and Affleck (GMA)83 have considered the
mapping of the large-spin Heisenberg chain to an O(3) non-
linear σ-model, and constructed a perturbative spin-wave the-
ory in 1/S . Exploiting asymptotic freedom and rotational in-
variance, they obtain analytic expressions for the dynamical
spin structure factor valid for distances shorter than S −1eπS

and energies greater than JS 2e−πS . These distance and en-
ergy scales rapidly lengthen and decrease, respectively, with
spin size, and GMA find that their theory is useful mainly
to describe S ≥ 5/2 HAF chains. The scales involved also
mean that the semiclassical correlations will rapidly exhaust
the experimentally relevant scales. Such spin-wave type exci-

tations/correlations are consistent with inelastic neutron scat-
tering studies of Heisenberg chains with S = 3/2103 and
S = 5/2104.

We have calculated the QFI of large half-integer spin-S
HAF chains using the GMA theory83 to simulate the neutron
spectrum. Several sample spectra are shown in Fig. 11. Since
this approach is valid at energies above Λ = JS 2e−πS , we
used Λ as a cutoff to define the lower bound of the QFI inte-
gral. Figure 11(g) shows the decay of calculated fQ/

(
12S 2

)
for S ≥ 5/2. As spin increases, this quantity falls off with a
power-law [Fig. 11(h)].

Appendix E: Classical limit

We used Landau-Lifshitz dynamics to calculate spectra also
for a fully classical (S → ∞) spin system. In this method,
spins are evolved by the classical equation of motion,

dSi

dt
= Si × Bi, (E1)

where Bi is the effective local magnetic field. Each S (k, ω)
is calculated by Fourier-transforming real-space correlations
into momentum space, and averaging over 192 independent
simulation runs. In order to match experimental conditions,
LLD spectra were convolved with a resolution function de-
fined by the MAPS spectrometer. Fig. 12 shows the resulting
spectra. We stress that the spectra obtained with the classi-
cal simulation are in frequency-space — i.e. not in energy-
space. To compare calculated S (k, ω) spectra with experiment
it is common to introduce the semi-classical approximation
εSCl(k) = ~ωCl(k), with ~ finite, and where the superscripts Cl

and SCl denote “classical” and “semi-classical”, respectively.
However, it is important to note that while this scaling by ~
will introduce apparent scattering at finite energy, it cannot
by itself induce entanglement. Thus care needs to be taken
to correctly take the classical limit when evaluating the QFI
integral, Eq. (4), from semiclassical simulations.

Taking the classical limit of a quantum spin system is, in
general, a subtle problem. Here we will thus specialize to the
HAF chain, for which we can make some precise statements.
As S → ∞, linear spin-wave theory (LSWT) becomes exact.
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Figure 11. Semiclassical inelastic spectrum computed following ref.83. (a)-(f) show scattering from S = 5/2 and S = 9/2 chains at several
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Figure 12. Landau-Lifshitz dynamics simulated spectrum for the classical S → ∞ limit, with experimental resolution broadening applied.
Because ~ → 0, the y axis is in units of frequency. (For comparison to Fig. 2 where ~ , 0, 1 THz ≈ 4.1 meV). Despite the finite spectral
weight at non-zero frequency, nQFI vanishes at all temperatures when the classical limit is taken.

At T = 0 the system is in a classical Néel state, and the spec-
trum predicted by LSWT consists of a single sharp magnon
mode dispersing as ωCl(k) ∝ |sin(k)|. This collapse of the con-
tinuous spectrum for S = 1/2 to a discrete branch as S → ∞
can be understood as a consequence of sum rules105. It fol-
lows that the QFI density, (4), evaluated at k = π, vanishes
in the classical limit at T = 0. Resolution and thermal ef-
fects (at finite temperature) may broaden the sharp mode and
induce scattering at finite frequency ωCl, as seen in Fig. 12.
However, when we take ~ = 0 as is appropriate for a classical
system (see below), the QFI density again vanishes. Hence,
QFI correctly does not witness entanglement in the classical
HAF chain.

To formalize this statement at finite temperature, we take
the classical limit of the HAF following the approach of Harris
et al.106. We let ~ → 0, J → 0, S → ∞, while ~S = 1

2 N0

and the characteristic temperature scale kBT0 = 2JS 2 remain

finite. Here N0 = 1 for spin-1/2. Using that tanh (x) ≤ x in
Eqs. (4), (7) we obtain the inequality

nQFI ≤
~

6πS 2

∫ ~ωmax

0
d (~ω)

(
~ω

kBT

)
χ′′ (~ω,T ) , (E2)

where we have introduced an explicit cutoff frequency, ωmax,
corresponding to the highest frequency in the spectrum of χ′′.
In the classical limit, the spectrum consists of a single magnon
branch with dispersion relation ωCl (Q) = 2JClS Cl |sin (k)| ,
and the highest frequency is the zone boundary frequency
ωCl

ZB = 2JClS Cl, which may be large. However, the energy
in any mode is ε (k) = ~ωCl (k) ≤ ~ωCl

ZB = 2JS = kBT0/S ,
which vanishes as S → ∞. It is thus enough to note that the
integral in (E2) must vanish since it is taken over an interval
that vanishes in the classical limit. In Appendix D we provide
additional evidence that nQFI → 0 as the classical limit is
approached.
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