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The prospect of a system possessing two or more stable states for a given excitation condition is of topical

interest with applications in information processing networks. In this work, we establish the remote transfer of

bistability from a nonlinear resource in a dissipatively coupled two-mode system. As a clear advantage over

coherently coupled settings, the dissipative nature of interaction is found to support a lower pumping threshold

for bistable signals. For comparable parameters, the bistability threshold for dissipatively coupled systems is

lower by a factor of about five. The resulting hysteresis can be studied spectroscopically by applying a probe

field through the waveguide and examining the polariton character of the transmitted field. Our model is generic,

apropos of an extensive set of quantum systems, and we demonstrate our results in the context of magnonics

where experimental interest has flourished of late. As a consequence of dissipative coupling and the nonlinearity,

a long-lived mode emerges, which is responsible for heightened transmission levels and pronounced sensitivity

in signal propagation through the fiber.

I. INTRODUCTION

The manipulation of coherent coupling in hybrid quantum

systems has been a cornerstone of quantum optics and infor-

mation processing for several years. The quest for superior in-

formation processing technologies has led to the advent of so-

phisticated quantum algorithms1–5. Researchers have tapped

into the intricate dynamics of quantum systems for developing

cutting-edge machinery for information processors, involv-

ing, for example, atoms6, trapped ions7, spins8, superconduct-

ing circuits9 and more. However, there exists no single all-

encompassing quantum system capable of holding up to all

the requirements and vital performance metrics of a modern-

day signal-processing network. A photon, in spite of being a

low-noise carrier of information, suffers from low storage po-

tential. However, integrated photonic circuits10,11, which ex-

ploit strong light-matter interaction, seem to be progressively

acquiring relevance in the design of chip-scale information-

processing devices with multitasking capabilities.

Recently, hybrid cavity-magnonic systems utilizing ferri-

magnetic materials like YIG have gained traction among the

optics community12–29. YIGs are endowed with high spin

density and the collective motion of these spins are embod-

ied in the form of quasiparticles named magnons. Strong co-

herent coupling between photons and magnons has been used

to realize an array of quantum and semiclassical effects in-

cluding, but not restricted to, squeezing23, entanglement24–26,

multistability27,29, exceptional points22 and dark modes16. In

2018, Harder et al observed a dissipative form of magnon-

photon coupling30 underscored by the attractive nature of the

eigenmodes, otherwise known as level crossing31–35. While

coherent coupling stems from the spatial overlap between two

modes, dissipative coupling can be engineered by the inclu-

sion of a shared reservoir (typically a waveguide) coupled in-

dependently to the two modes. Such an indirect coupling is

mediated by a narrow bandwidth of propagating photons sup-

ported by the waveguide continuum, with dominant frequen-

cies proximal to the mode transitions. Recently, Yu et al36

used an oscillator model to enunciate the physical origins of

dissipative couplings.

In keeping with the systematic studies on dissipative cou-

pling in linear systems, it would be befitting to extend these

treatments to the realm of nonlinear physics. Many systems

that involve transmon qubits37 or magnons38 have intrinsic

anharmonicity which has important consequences. Anhar-

monicities like Kerr nonlinearity, resonant two-level nonlin-

earities have been extensively studied in optical sciences39.

When an electromagnetic field is coupled to a nonlinear re-

source, the stationary response of the composite system can

come to wield nonunique stable states for a given input above

a threshold power. This can result in both bistable and multi-

stable behavior39–41. The bistable behavior of a magnonic sys-

tem coupled coherently to a cavity has been demonstrated27.

More complicated systems, such as a system of two magnonic

modes coupled coherently to a cavity can exhibit multistable

behavior29. In this work, we examine the nonlinear domain

of a cavity-magnon system interfacing via a waveguide chan-

nel, and uncover its remarkably low bistability threshold con-

trasted against a coherently coupled system with comparable

coupling strength. The bistable signature is also mirrored by

the modified polariton resonances of the waveguide transmis-

sion. In addition, the nonlinearity spawns a long-lived eigen-

mode with ultra-small linewidth leading to anomalous trans-

mission effects like pump-to-probe energy transfer, similar to

the Mollow gain effect42, and enhanced sensitivity in waveg-

uide transmission. This could have potential applications in

futuristic signal-processing networks.

This paper is organized as follows. In section II, we develop

a theoretical model to investigate the nonlinear response of a

two-mode system coupled via an intermediary waveguide. We

provide a detailed analysis of the bistability and the critical

drive power required to achieve the same. In section III, we

explore the specific example of a driven cavity-magnon sys-
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tem. For experimentally realizable values of the system pa-

rameters, our simulations demonstrate bistability in the cavity

response. In section IV, we employ a spectroscopic technique

to advance a testable scheme for ratifying the bistability. Sec

V contains a concise description of the higher-dimensional

eignensystem, which is directly responsible for a new domain

of coherences.

II. THEORETICAL MODEL

Before delving into particular empirical models, we spell

out the theoretical formalism describing a large class of two-

mode anharmonic systems. The characteristic Hamiltonian is

described by38

H/~ = ωaa†a + ωbb†b + g(ab† + a†b)

+Ub†2b2
+ iΩ(b†e−iωd t − beiωd t),

(1)

where ωa and ωb denote the respective resonance frequencies

of the uncoupled modes a and b, and g signifies the direct

coupling between them. The parameter U is a measure of the

strength of Kerr nonlinearity intrinsic to the mode b and acti-

vated by an external laser (pump) at frequency ωd, for which

Ω signifies the Rabi frequency. While the Hamiltonian cap-

tures the effect of coherent coupling between the modes, a an

embodiment of the dissipative coupling introduced by an in-

terposing reservoir entails full recourse to the master-equation

formalism. For a two-mode system with a density matrix ρ,

the corresponding the master equation would be given by43–49

dρ

dt
= − i

~
[H , ρ] + γaL(a)ρ + γbL(b)ρ + 2ΓL(c)ρ, (2)

where γa and γb are the intrinsic damping rates of the modes

respectively, while the parameter Γ is tied to coherences intro-

duced by the common reservoir. L is the Liouillian defined

by its action L(σ)ρ = 2σρσ† − σ†σρ − ρσ†σ. If the modes

are identically coupled to the common reservoir, the operator

c can be expressed as c = 1√
2
(a + b) when the phase lag due

to light propagation from one mode to the other is taken to be

a multiple of 2π. In the rotating frame of the laser drive, the

mean value equations for a and b would be obtained as

(

ȧ

ḃ

)

= −i

(

δa − i(γa + Γ) g − iΓ

g − iΓ δb − i(γb + Γ)

) (

a

b

)

−2iU(b†b)

(

0 0

0 1

) (

a

b

)

+

(

0

Ω

)

,

(3)

where δi = ωi − ωd (i = a, b). For brevity, 〈...〉 notations

have been excluded. Invoking the mean-field approxima-

tion allows one to decouple the higher-order expectations as

〈ξ1ξ2〉 = 〈ξ1〉 〈ξ2〉, so that
〈

b†bb
〉

essentially reduces to |b|2b.

Purely dissipative models can be pinned down by the

choices g = 0 and Γ , 0. Within this category, one can

achieve an anti-PT symmetric mode hybridization by tuning

the control field to a frequency such that δb = −δa = δ/2

and by enforcing equal damping rates γa = γb = γ0. Such

FIG. 1: General two-mode system, with both coherent and

dissipative pathways of interaction. Rα = local reservoir of

mode α, with α = S denoting a shared reservoir. The quan-

tity Γ, which denotes the rate of dissipation into the shared

reservoir, also characterizes the strength of dissipative cou-

pling entailed between a and b, as indicated by the dashed line.

models then satisfy {P̂T ,H} = 0, where {., .} stands for the

anti-commutator. When the stability criterion is fulfilled, the

time-dependent solutions decay into a stationary value in the

long-time limit, i.e. (a, b)→ (a0, b0), which can be easily de-

rived from Eq. (3) by setting ȧ = ḃ = 0. These stationary

values are, therefore, entwined via the constraints

(2γ − iδ)a0 + 2Γb0 = 0,

(2γ + iδ)b0 + 4iU |b0|2b0 + 2Γa0 − 2Ω = 0, (4)

where γ = γ0 + Γ. So γ0 represents the spontaneous rate of

emission into the local reservoirs. Eliminating b0, one has a

polynomial equation for y = |a0|2, predicting bistability in the

ensuing response,

β2

Γ2
y − 2Uβδ

γ2
+ (δ/2)2

Γ4
y2
+ 4U2 (γ2

+ (δ/2)2)3

Γ6
y3
= I, (5)

with the definitions β = Γ2 − γ2 − (δ/2)2 and I = Ω2. Note, en

passant, that this bistability is not ingrained in mode a, rather,

it is transferred from the anharmonic mode b. The turning

points of the bistability curve can be gleaned from the expres-

sion above by inspecting the solutions to dI
dy
= 0, which turn

out to be

y± =
βΓ2

6U[γ2 + (δ/2)2]2

[

δ ±
√

(δ/2)2 − 3γ2

]

. (6)

Thus, the condition for observing bistable signature can be en-

coded as: Uδ < 0 and δ2 > 12γ2. In addition, there is a cutoff

value for the pump power beyond which the bistable charac-

teristics set in. The appropriate magnitude of I(c) pertains to

the inflection point in the I − y graph and can be inferred from

the conditions dI
dy
=

d2I
dy2 = 0, leading to

I
(c)

dis
=

1

432|U |

[

√
3(4γ2 − Γ2)

γ

]3

. (7)

We would now like to compare this threshold value to the cor-

responding bound in the coherent scenario. To this end, it
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FIG. 2: Schematic of a YIG sphere inter-

acting remotely with a single-mode cavity,

with the coupling mediated by a waveguide.

is instructive to consider the cutoff power for a generic two-

mode system with the interaction comprising both coherent

and dissipative components, i.e., g , 0, Γ , 0,

I(c)
=

1

432U

[

√
3(4γ2 − Γ2

+ g2)sgn(U) + 2gΓ

γ

]3

, (8)

where sgn(x) is +1 when x > 0 and −1 for x < 0. For all the

subsequent analyses in this paper, we shall work with the as-

sumption U > 0. The precise ramifications of the expression

(7) in relation to the nature of coupling can be understood by

comparing the cutoffs for coherently coupled and dissipatively

coupled systems by letting Γ = 0 and g = 0 respectively. This

leaves us with

I
(c)

dis

I
(c)

coh

=

(

4γ2 − Γ2

4γ2 + g2

)3

, (9)

where we have assumed that the two kinds of systems decay

effectively at the same rate. Note that for Γ , 0 and g , 0,

the expression above is always less than one, implying a def-

inite lower threshold in the dissipative setting. On top of that,

this threshold can be lowered even further by engineering a

stronger dissipative interaction relative to the intrinsic damp-

ing rate γ0. For the sake of a fair comparison, we can make

an estimate of the above ratio for similar magnitudes of cou-

pling strengths, i.e., Γ ≈ g. Then, in the limit that Γ → γ,
the quantity in Eq. (9) goes over to a finite value equaling

0.22, bearing out the strong potential of dissipative couplings.

While this is a remarkable improvement on the threshold, the

78% advantage signifies a hard theoretical upper bound.

III. DISSIPATIVELY COUPLED NONLINEAR

MAGNONIC SYSTEM

To give substance to the foregoing discussion on dissipa-

tively coupled systems, we consider a hybrid cavity-magnonic

apparatus that has already evolved into a topical system of

experimental activities30,38,50. Our setup consists of a single-

mode microwave cavity and a YIG sphere separated by some

finite distance and interacting dissipatively with each other

via an intermediary one-dimensional waveguide, as illustrated

FIG. 3: Response in the cavity field plotted against the

pump power, for varying strengths of the dissipative cou-

pling. Weaker dissipative couplings support larger ranges of

the drive power pertaining to bistable states in the response.

The parameters γ0/2π = 10 MHz and U/2π = 42.1 nHz.

in fig. (2). The intrinsic anharmonicity of the YIG38 is kin-

dled by a microwave laser acting as the pump. Following the

Holstein-Primakoff transformation51 in the limit of large spin,

the Hamiltonian of this driven system simplifies to27,44

H/~ = ωaa†a + ωbb†b + Ub†2b2
+ iΩ(b†e−iωd t − beiωd t),

(10)

where ωb = γeB0 − 2~γ2
e S Kan

M2V
, U =

γ2
e Kan

M2V
, and (b, b†) repre-

sent the magnonic quasiparticle mode. Kan is a coefficient that

arises from magnetocrystalline anisotropy, S is the collective

spin of the YIG and M is the magnetization. The Fe3+ ion

density and the diameter of the YIG given by ρ = 4.22 × 1027

m−3 and d = 1 mm respectively. The Rabi frequency Ω =

γe

√

5πρdDp

3c
is determined by the system characteristics as well

as the pump power Dp. Here, c stands for the speed of light.

Since the cavity and the magnon interacts through an inter-

mediary reservoir, the dissipative dynamics of the two-mode

system would be governed by Eq. (2), with Γ acting as the dis-

sipative coupling between the modes. In particular, on choos-

ing δb = −δa = δ/2 and γb = γa = γ0, the cavity signal would

satisfy the multistable equation expressed in Eq. (5). In figure

3(a), we plot the cavity response against various pump pow-

ers. As we slowly raise the drive power, an abrupt jump is

observed in the signal as opposed to the fairly linear ascent

in the domain of weaker drives. A similar precipitous tran-

sition is seen as we tamp down the drive power, this time at

a different point, unraveling the transfer of bistability to the

cavity. This is analogous to the bistability reported in a co-

herently coupled cavity-magnon system27, in which the non-

linear resource (YIG) is contained in the cavity. A boost in
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FIG. 4: Effect of intrinsic damping on the cavity bistability.

Other parameters are Γ/2π = 10 MHz and U/2π = 42.1 nHz.

the dissipative coupling brings about a diminishing window

of bistability, as illustrated in figure 3(b)-(c). This bears stark

disparities with coherently coupled systems, where a stronger

coupling widens the region of bistability. Nevertheless, this

feature turns out to be quite advantageous as we can gener-

ate broader bistability windows for modest values of the engi-

neered dissipative coupling. The observed bistability is fairly

robust against intrinsic damping rates of the modes, as evident

from the figures 4(a)-(d).

It makes for a relevant observation that as the dissipative

coupling is downsized, not only is the bistability window

broadened but the effect is also rendered accessible at lower

drive powers. This seems to be a subtle point of divergence

between directly and indirectly coupled systems. That said,

one cannot, of course, make the dissipative coupling indefi-

nitely weak and still expect to harness bistable signatures to

one’s advantage. This is a trivial consequence of the fact that

weak couplings cannot elicit strong responses from the cavity.

IV. OBSERVATION OF BISTABILITY VIA THE

WAVEGUIDE TRANSMISSION

Spectroscopy is a quintessential tool in science and engi-

neering, and is routinely applied to QED systems. The funda-

mental principle of spectroscopy is to probe the system using

a weak electromagnetic excitation, and from the transmission

properties of the system, one extracts key information about

the system, including, but not limited to, its eigenmode con-

figuration. Here, we employ a similar technique to investigate

the transmission properties of the nonlinear cavity-magnonic

device with varying drive powers, as depicted in figure (2).

Specifically, we show how anharmonicity-induced shifts in

the polariton minima reinforce the bistable nature of cavity

FIG. 5: (a) The cavity response plotted against the pump

power showcasing the two stable states at Dp = 90 mW.

(b) Transmission spectra through the waveguide as a func-

tion of the scanning frequency. (c) Shifts in lower polariton

frequency vs. the pump power Dp. Other parameters are

Γ/2π = 10 MHz, γ0/2π = 10 MHz and U/2π = 42.1 nHz.

signal. In the presence of a monochromatic probe field guided

through the fiber, the Hamiltonian in Eq. (1) gets modified to

H +εH ′, whereH ′ = i~[(a†+b†)e−iδpt−h.c.)], δp = ωp−ωd,

ε =
√

ΓPε/~ωp and Pε is the probe power. The updated

Langevin equations then entail

ȧ = −(−iδ/2 + γ)a − Γb + εe−iδpt,

ḃ = −(iδ/2 + γ)b − 2iU |b|2b − Γa + Ω + εe−iδpt. (11)

The solution to this set of equations in the long-time limit can

be written as a Fourier series expansion,

a =

∞
∑

n=−∞
a(n)e

−inδpt, b =

∞
∑

n=−∞
b(n)e

−inδpt, (12)

where a(n) and b(n) are the amplitudes associated with n-th har-

monic of the probe frequency. The steady components a0, b0,

which are actually oscillating at the pump frequency, conform

to Eq. (4). The probe being a weak field, we ignore the higher-

order terms and truncate the series with n running up to ±1.

Utilizing Eqs. (13) and (14), we conclude the following set of

linear equations for the oscillating components of the steady

state:

MX(1)
= Fε, (13)
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FIG. 6: The lower polariton frequency shifts against

pump power Dp for varying values of the intrinsic damp-

ing. All the other parameters are identical to figure (4).

where

M =
(

A B
B∗ C

)

,

X(1)
= (a+, b+, a

∗
−, b

∗
−)

T ,

Fε = ε(1, 1, 0, 0)T ,

A =
(

γ − i(δ/2 + δp) Γ

Γ −γ + i(∆̃ + δp)

)

,

B =
(

0 0

0 2iUb2
0

)

,

C =
(

γ − i(δ/2 − δp)) Γ

Γ γ − i(∆̃ + δp)

)

,

with ∆̃ = δ
2
+ 4U |b0|2. The first-order fluctuations about the

steady state can then be obtained numerically by inverting Eq.

(12). Using the input-output relation εt = ε−Γ(a+b), where εt

designates the transmitted signal, we obtain the transmission

coefficient at the probe frequency,

t(NL)
= εt/ε = 1 − Γ(a+ + b+)/ε

= 1 − Γ
2

∑

r,s=1

(M−1)rs. (14)

In the absence of a pump, when nonlinear effects remain dor-

mant, the Rabi splitting between the cavity-magnon polariton

branches is substantiated in fig. 5 (a). For a nonzero drive

power, under conditions of bistability, the higher polariton res-

onance remains largely unscathed while the lower polariton

sustains appreciable frequency shifts. Here, lower and higher

polaritons (LP and HP) refer to the polariton branches with

lower (appearing on the left) and higher (appearing on the

right) frequencies in the transmission spectra. The respective

minima are labelled as δLP and δHP. The bistability in trans-

mission is illustrated with two stable transmission spectra in

figure 5(a) at drive power 0.09 W. In addition, we draw in-

formation on the hysteresis curve in figure 3 by investigating

shifts in the lower polariton minima. We numerically obtain

the corresponding shifts in polariton frequency ∆LP = δLP-

δ
(0)

LP
as a function of input (pump) power, where δ

(0)

LP
is the

detuning of the lower branch at zero drive power. The bista-

bility gets manifested in the frequency shifts in figure 5 (c),

which replicate the pattern of the cavity response in figure 3

(b). Further, we provide the frequency-shift curves (figures

6 (a)-(d)) against the intrinsic decay parameters of the cavity

and magnon modes, testifying to the robustness of bistability

against extraneous decoherence.

V. ANHARMONICITY-INDUCED LONG-LIVED MODE

In this section, we show how the presence of nonlinearity

activates new coherences, which, in turn, introduces anoma-

lies in the fiber transmission. Owing to its nonlinear nature,

the system of coupled-mode equations in (13) does not yield

readily to a Hamiltonian-based analysis. However, an effec-

tive Hamiltonian can be eked out by appealing to a linearized

approximation about the steady state, viz. a(t) = a0 + δa(t),

b(t) = b0 + δb(t). The fluctuations δa(t) and δb(t) are pre-

sumed to be general, albeit small in relation to a0 and b0. This

permits the dismissal of higher-order effects in these varia-

tions, akin to what was invoked in the last section. The vari-

ables δb(t) and δb†(t) get interlinked due to the anharmonic-

ity. The inter-coupling is, of course, too weak to bear on any

observable effects at smaller drive powers. However, a drive

power around 0.02 W makes this coupling paramount. Defin-

ing Y(t) = Y + δξ(t), where Y(t) =
(

a(t) b(t) a†(t) b†(t)
)T

and Y0 =

(

a0 b0 a
†
0

b
†
0

)T
are both 4-element vectors, the

Langevin equations reduce to a linear dynamical model,

[

d

dt
+

iHNL

]

δξ(t) = Ein(t), with

HNL =





























− δ
2
− iγ −iΓ 0 0

−iΓ ∆̃ − iγ 0 2Ub2
0

0 0 δ
2
− iγ −iΓ

0 −2Ub∗2
0
−iΓ −∆̃ − 2iγ





























, (15)

Ein(t) = ε
(

e−iδp t e−iδpt eiδpt eiδpt
)T

and ∆̃ has been defined

in relation to Eq. (12) earlier. A straightforward comparison

with Eq. (12) reveals thatM = i(HNL − δp), implying that an-

harmonic resonances of the system are tied to the eigenmodes

ofHNL. Observable anomalies in the transmission signal can

often be traced to exotic properties of the eigenvalues, particu-

larly when the imaginary parts of any of these eigenvalues be-

come small. The eigenvalues denoted as λi’s, with i running

from 1 through 4, manifest the attributes of level crossing.

This is portrayed, for Dp = 0.02 W and U/2π = 42.1 nHz in

fig. 7(a), (b). Since the effective dimensionality of the Hilbert
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FIG. 7: (a) Real parts and (b) Imaginary parts of the eigen-

values of HNL plotted against δ at Dp = 0.02 W. (c) |t|
is plotted against δp and δ at the same pump power. The

vertical lines in (a), (b) and (c), all at δ/γ = −3.37, iden-

tify the exceptionally long-lived mode with extreme linewidth

suppression. Other parameters are identical to figure (5).

space is augmented by the introduction of anharmonicity, a

major impact of U is to bring in new coherent phenomena in

the transmission across the hybridized cavity-magnon system.

As figures 7(c) and 8(a)-(d) reveal, the nonlinear coupling cat-

egorically skews the transmission lineshapes by introducing

asymmetry. However, the case of negative magnon detun-

ings turns out to be particularly intriguing, as a new trans-

parency window crops up, which owes its origin to a long-

lived mode of the system. With a significant Rabi frequency

(Dp ∼ 0.02 W), the enhanced pumping rate is brought to bear

on the linewidths and one of them shrinks close to nought,

leading to a region of highly elevated transmission levels. This

is highlighted by a dark red smeared out streak shown in fig.

7(c), and also illustrated for better clarity in figs. 8(a), (b)

where the transmission is plotted for a pair of fixed values

of delta. The near-perfect transmission comes to light most

prominently around δ/γ = −2.1, for the chosen set of system

parameters. In fact, at this precise magnitude of the detuning,

the waveguide photon gets transmitted unimpeded, demon-

strating perfect transparency. Equally interesting is the col-

lateral emergence of a strongly reflecting polariton minimum.

Such fundamentally conflicting behaviors transpire in a nar-

row neighborhood around δp = 0 across which the device flips

between a state of unidirectional reflection

(

∣

∣

∣t(NL)
∣

∣

∣ ≪ 1

)

to

complete transparency

(

∣

∣

∣t(NL)
∣

∣

∣ ≈ 1

)

. This conspicuous result

suggests practical advantages in engineering driven systems

for implementing nonlinearity-assisted strong signal switch-

ing.

FIG. 8: Figures (a), (b) represent the transmission spec-

tra against the probe detuning δp at two different values of

δ, portraying the asymmetry and the transition from unidi-

rectional reflection to perfect transmission. (c) Transmis-

sion spectra against δ with δp = 0, highlighting a re-

gion of significant gain around δ/γ = −3.7. (d) Trans-

mission plot demonstrating pronounced sensitivity around

δp = 0. Other parameters are identical to figure (5).

However, as evidenced by fig. 7(c), although the switch-

ing effect seems to be further amplified as δ becomes more

strongly negative, we find an obtrusive region of pump-

induced gain that makes the transmission surge past unity.

It signifies a transfer of energy from the pump to the probe.

Such a gain is well known in atomic physics42 and we report

a counterpart in magnonics. Figure 8(c) depicts an extraordi-

narily high transmission peak around δ/γ = −3.37, at which

the imaginary part of one of the poles (marked by yellow in

7(a), (b)) moves tantalizingly close to zero while the corre-

sponding eigenfrequency remains approximately zero. This is

why the signal dramatically shoots up around δp = 0. Addi-

tionally, the transmission demonstrates a sharp sensitivity to

the probe frequency, which is also responsible for the signal

flipping effect. The spectacular sensitivity in the signal can be

accredited to the existence of a second-order pole at δp ≈ 0,

δ/γ ≈ −3.37 in the derivative of the transmitted signal, i.e.

∂t(NL)

∂δp

= 2iΓ

2
∑

r,s=1

{M−2}rs. (16)

The above relation follows from the consideration that

M−1(δp + η) − M−1(δp) = iηM−1(δp + η)M−1(δp) and sub-

sequently taking the limit η → 0. One should, in practice,

exercise caution by avoiding excessive gain, as any unduly

long-lived mode with negligible width augurs a breakdown in

the validity of linearized approximations to the steady state

and requires a nonlinear treatment of the probe. Nonethe-

less, even if one avoids this unstable terrain of extraordinary

transmission, one could carefully configure the detuning δ to
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enable transparent behavior and strong signal sensitivity near

to δp = 0 as discernible from fig. 8(d). In this connection,

we also note that sensitivity in dissipatively coupled systems

has been studied in the context of linear perturbations52, and

more recently, for the detection of weak anharmonicities in an

cavity-magnonic model53.

VI. SUMMARY AND CONCLUDING REMARKS

To summarize, our foray into the nonlinear domain of

dissipatively coupled models sheds light on two fundamen-

tal anharmonic signatures of driven systems: bistability and

anharmonicity-induced coherences. Directly coupled nonlin-

ear systems, such as a YIG sphere in a cavity, are already

known to generate bistability. Our formulation demonstrates

that dissipatively coupled models, like the one we study here,

accords a lower pumping threshold for observing bistable

states. In the context of an cavity-magnonic system, the fre-

quency shifts in the polariton minima bring out the essential

hallmarks of bistability, in lockstep with the cavity response.

With the anharmonicity factored in, the increased dimension-

ality of an intricate but predominantly stable eigensystem im-

parts higher-order coherences to the hybridized polaritons, the

significance of which is accentuated by an enhanced pumping

rate. Simulation of the transmission across the waveguide re-

veals a parameter regime of pump-induced gain, where exter-

nal energy is funneled into the fiber causing a coherent buildup

of the output signal. The anharmonic gain is hardly an ad-

ventitious effect, but, rather, an upshot of intense linewidth

inhibition in one of the resonances. This long-lived mode is

also responsible for extreme sensitivity in the signal to the

probe frequency. Fortuitously, the existence of a transmis-

sion window, flanking a polariton minimum, extends well into

the stable regime. In this regime, the system demonstrates a

stark duality in signal transport, marked by the possibility of

achieving both transparency and opacity, for the same set of

system parameters. The greater signal sensitivity and control

incorporated by the anharmonicity could be harnessed for the

design of photonic devices with switching properties.
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