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Ultrafast laser pulse has provided a systematic way to inspect the dynamics of electrons in condensed matter
systems. In this paper, by means of time-dependent density matrix renormalization group, we study an ultrafast
laser driven Kondo lattice model, in which conduction electrons are strongly coupled with magnetically local
moments. The single-particle spectral function due to strong correlation effects and photon emission in the
non-equilibrium states under laser driving are calculated. We find laser field excited collective doublon-hole
pairs and an associated transient melting of Kondo coherence phase, signifying the collapse of Kondo energy
gap. Moreover, we show that the photon emission, induced by a strong laser field, exhibits a different intensity
characteristics than in the equilibrium Kondo insulator, which could be explained by the Kondo collapse and
related suppression of both intra-band and inter-band contribution in Kondo melting liquid. This theoretical
insight is accessible with time- and angle-resolved photoemission spectroscopy and high-harmonic generation
spectroscopy, and will stimulate the investigation of nonequilibrium dynamics and nonlinear phenomenon in
heavy fermion systems.

I. INTRODUCTION

Interaction of intense ultrafast lasers with solids produces
extremely non-linear optical and electronic responses.1–3 In
particular, the laser-pulse driven electron dynamics allows to
track real-time evolution of charge excitations, thus making
all-optical band structure reconstruction possible.4–6 Ultra-
fast pump-probe experiments have been successfully carried
out on elemental metals and semiconductors7–16 and very re-
cently in topological materials,17–19 where the electronic dy-
namics is usually described by a noninteracting electron the-
ory. It is now also believed that the technique can provide
insight into collective behaviors in strongly correlated elec-
tronic systems.20–23 It leads to the exploration including the
photoinduced high-temperature superconductivity,24 the long-
lived photoinduced charge in the second-harmonic-generation
signal from a transition-metal oxide heterostructure,25 and the
transient dehybridization in a f -electron heavy-fermion sys-
tem26, ultrafast demagnetization of magnetic materials involv-
ing transition metals and rare earths27–34, just to name a few.
In such strongly correlated systems, complex correlations is
able to drive instabilities with macroscopic impacts like phase
transitions and emergence of novel orders, which makes the
problem much more intricate.

An ongoing quest of ultrafast spectroscopy is to inves-
tigate elementary excitations and their scattering processes,
and novel phases in strongly correlated quantum materials
driven out of equilibrium. The exciting progresses in this
field of research have been made possible by the advances in
spectroscopy probes like high-resolution time-resolved angle-
resolved photoemission spectroscopy (tr-ARPES)4–6 and non-
linear optical high-harmonic generation (HHG).7–15 In con-
trast to the well-established understanding in non-interacting
electron systems,35,36 it is much more challenging to under-
stand the underlying microscopic processes37–46 for HHG in
strongly correlated materials, where electron, spin, and orbital
degrees of freedom are fundamentally entangled. Though sev-
eral attempts were made,47–50 it is far from clear the role of

many-body strong correlation effects and how they influence
the ultrafast electron dynamics. Therefore, it is highly de-
sirable to investigate how the coupling between different de-
grees of freedom would influence ultrafast electron dynamics
in strongly correlated systems, and particularly identify the
roles of the driving field parameters (e.g. intensity, periodic-
ity) for the novel quantum phase transition out of equilibrium.

Heavy-fermion compounds containing rare-earth or ac-
tinide elements are a canonical condensed matter system with
strong correlations. In these systems, the interplay between
strong on-site Coulomb repulsion on localized f -orbital elec-
trons and their hybridization with conduction electrons in
other s-, p-, d-orbitals51,52 gives rise to emergent phenomena
such as unconventional superconductivity and local quantum
critical point.53. Despite of some attempts on ultrafast dynam-
ics in the heavy-fermion compounds26,54, to our best knowl-
edge, a thorough theoretical study is still lacking.

To fill in this gap, in this paper, we study ultrafast laser-
pulse driven many-body dynamics in the Kondo lattice model
(KLM), which is a prototypical model describing the essen-
tial heavy-fermion physics. Using time-dependent density-
matrix renormalization group algorithm (TD-DMRG),55–58

we demonstrate the complex many-body electron dynamics
and transient phase transition stemming from the Kondo co-
herence collapse, which are recorded by real-time evolution
of doublon-hole pair population and effective quasiparticle
band dispersion. We identify the re-collision between the ex-
cited doublon and its associated hole, which generates high-
harmonic emission spectra. We also address field intensity
dependence of the cutoff of emitted photon energy, field de-
pendence of spectrum intensity and time-resolved emission
spectrum. Our findings provide useful informations for under-
standing the hybridization dynamics and non-linear behavior
in heavy-fermion systems using intense ultrafast pump and
probe techniques.
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II. MODEL AND METHOD

We consider a half-filled KLM59–62 in the presence of an
intense laser field

Ĥ =

L−1∑
i,σ

[J0e
−iΦ(t)c†iσci+1,σ + h.c.] + JK

∑
i

Si · si . (1)

Here c†iσ denotes the creation operator of a conduction elec-
tron with spin σ =↑, ↓, and si (Si) is the effective spin of
conduction electron (localized spin moment). The conduction
electrons interact with local spin- 1

2 moments Si via a Kondo
coupling JK . The hopping parameter of electron bath is set
to be J0 = 250 meV≈ 0.00919 a.u., so that the band width
in the conducting limit is W0 = 4J0 = 1 eV ≈ 0.0367 a.u..
In this paper, we will frequently use atomic unit and natural
unit to serve for the readers from different backgrounds. In
Eq. (1), the laser electric field E(t) = −dA(t)/dt is incorpo-
rated through the time-dependent Peierls phase63 ea0E(t) =
−dΦ(t)/dt where a0 is the lattice constant and e is electric
charge unit. The Peierls substitution is widely used in sim-
ulating the coupling of the coupling between electrons and
laser electromagnetic field physics.64–69 To put our model in
a solid footing, we have given a detailed derivation in Ap-
pendix A for the validity of this treatment in the presence of
a time-dependent laser pulse electric field. Throughout the
work, we choose a0 ≈ 7.56 a.u.≈ 4 Å, which is close to that
in newly synthesized Kondo materials CeCo2Ga8.70 The field
vector potential is A(t) = A0 sin2( ω0t

2N0
) sin(ω0t), which en-

closes a total duration of N0 optical cycles in the time domain
t ∈ [−N0

2π
ω0
, 0]. All parameters of the pulse are well within

experimental reach, i.e. typical frequency ω0 ∈ [0.005, 0.014]
a.u. (equivalent to [30, 90] THz) and the laser peak ampli-
tude E0 = A0ω0 ∈ [0.001, 0.008] a.u. (equivalent to [5, 40]
MV·cm−1).

The unitary time-evolution is simulated by TD-DMRG
algorithm.55–58 After obtaining the steady ground state
|Ψ−∞〉 = |Ψ(t = −∞)〉, we let the system evolve accord-
ing to the time-dependent H(t) and compute the wave func-
tion |Ψ(t)〉 = U(t,−∞)|Ψ(t = −∞)〉 and time-evolution
operator U(t, t0) = e

− i
~
∫ t
t0
dt′H(t′). The time step for cal-

culation is ∆t = 0.25 a.u. ≈ 6 attosecond. In the calcula-
tions, we implement the second-order Trotter-expansion, and
use up to M = 1024 bond dimension (the resulting discard
error is at the level of 10−5). We choose the system size
of L = 24, 36, 48 and find the qualitatively same picture is
reached. The results shown below are based on L = 48 size.

The single-particle spectral function can be defined by the
probability for an electron to emit into an unoccupied state
(or absorb from occupied state) in response to a probe pulse
starting at t = 0, before which the pump pulse has been com-
pleted:

A(i, j, tf) = 〈Ψ0|{c†i,σ(tf), cj,σ(0)}|Ψ0〉 , (2)

where c†i,σ(t) = eiHtc†i,σe
−iHt and tf is the final time

for measurement. The momentum-frequency resolved spec-
tral function is obtained by Fourier transform: A(k, ω) =
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FIG. 1. Laser pulse induced breakdown of the Kondo insulator.
(a) Cartoon picture for the equilibrium ground state of Kondo insula-
tor with Kondo singlet forming on each site. The blue square (red cir-
cle) represents local moment (electron) degree of freedom. (b) Laser
field excites double-occupancy and hole states, which leads to the
collapse of Kondo singlet pairing. (c) Time-resolved wave-function
overlap with the initial state G(t) = |〈Ψ(t = −∞)|Ψ(t)〉|2, where
Ψ(t) is the time-evolution wave function. (d) Time-resolved aver-
aged double occupancy dj=L/2 = 〈Ψ(t)|nj,↑nj,↓|Ψ(t)〉. We set
the pulse frequency ω0 = 0.014 a.u. ≈ 90 THz, peak strength
E0 = 0.005 a.u. ≈ 25 MV cm−1 and a 5-cycle sin2 envelope (white
solid line). The black dashed line shows the time when the threshold
field strength Eth is reached.

1
L0

∑L0

r=1 e
ikr
∫ tf

0
dteiωt−ηtA(0, r, t). We set the smearing

energy η = 0.2 (in units of electron hopping energy J0). To
reach good resolution in time domain Fourier transform, we
choose |tf | > 1000 a.u. We also choose a segment enclosing
L0 = 12 sites in the middle of a finite chain to perform the
Fourier transform in spatial space.72

The pulse induced current operator is

Ĵ(t) = −iea0J0

∑
iσ

[e−iΦ(t)c†i,σci+1,σ − h.c.] . (3)

The harmonic emission is obtained by the square of Fourier
transform of dipole acceleration48,71 |FT [d〈J(t)〉/dt]|2.
Time-resolved harmonic emission is calculated by perform-
ing the Gabor transform (window Fourier transform) with the
sliding window e−(t−ttarget)/σ2

by setting σ = 1/(3ω0).

III. BREAKDOWN OF KONDO INSULATOR

We start by discussing the salient features induced by ap-
plying a laser pulse. Generally, in equilibrium case the ground
state of the KLM is a product state of Kondo singlets (see Fig.
1(a)), where each site hosts a spin-singlet state forming by one
local spin moment and one conduction electron. Applying the
intense laser pulse can excite the charge carriers, resulting in
a hole on one lattice site (a holon) and a neighbouring site
with two electrons (a doublon) (see Fig. 1(b)). The creation of
doublon and holon carriers will destroy the Kondo singlets. In
this context, the laser field is expected to induce the collapse
of the Kondo insulator.
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We show time-resolved laser-induced breakdown of the
Kondo insulator, via the time-evolution of wave function fi-
delity G(t) = |〈Ψ(t = 0)|Ψ(t)〉|2 (Fig. 1(c)) and the av-
eraged density of doublon, dj=L/2 = 〈Ψ(t)|nj,↑nj,↓|Ψ(t)〉
(Fig. 1(d)).73 First of all, we identify the quantum phase
transition depending on the Kondo coupling strength JK . In
small JK regime, it is found that the wave function fidelity
G(t) drops to nearly zero within several laser cycles. Simul-
taneously, the population of doublons rises and saturates to
dsat
j ∼ 0.25. Both results demonstrate the destruction of the

Kondo insulator during the pulse. On the contrary, for large
JK regime, wave function fidelity G(t) is close to one (de-
spite some regular oscillations) and dj(t) is always pinning at
zero, indicating the failure of exciting doublon-holon pairs.

To understand the above observations, we perform an adia-
batic perturbative analysis based on Landau-Zener theory.74,75

In the quantum tunneling regime (non-resonance limit ω0 �
∆), we obtain a threshold field Eth in the dc-limit (see Ap-
pendix B): Eth ≈ ∆2

4v , where ∆ is the Kondo excitation gap
of electrons which is dependent on JK and v is group ve-
locity.59–61,77 Physically, Eth characterizes that quantum tun-
neling process dominates the creation of doublon-holon pairs,
when the energy drop in length scale equivalent to electron
correlation length ξ becomes comparable to the excitation gap
ξEth ∼ ∆.76,77 Then the transition is expected at when the
condition of E(tc) = Eth can be satisfied, where tc is the first
time that electric fieldE(t) exceeds the threshold fieldEth. In
Fig. 1(c-d), we plot the dependence of JK on transition time
tc (black dashed line), estimated from Landau-Zener theory.
As we see, if E(t) exceeds the threshold value Eth, the driv-
ing laser field can induce a quantum phase transition and the
Kondo insulator breaks down. Otherwise, if the laser field is
not strong enough (E(t) < Eth), the Kondo insulator is sta-
ble against to the laser pulse. Importantly, the emergence of
threshold field Eth and its dependence on excitation gap ∆
indicate that, the Kondo insulator with larger Kondo coupling
strength is more robust against a laser pulse field, consistent
with our observations in Fig. 1.

IV. SPECTRAL FUNCTION

To strengthen the evidence leading to our previous assign-
ment, we show the effects of laser pulses on spectral func-
tions in Fig. 2 in the separated panels. For reference, we
first show the cases before arrival of pulse field (as illustrated
in Fig. 2(a-c)), which probe the equilibrium electronic struc-
tures. Clearly, there exists a spectral gap in equilibrium spec-
tral function for all finite JK , which manifests the hybridiza-
tion induced Kondo insulator.61 Importantly, the results after
applying the pulse field reveal a dichotomy as one tunes JK .
For small JK region (Fig. 2(d)), after pumping, it is found
that the spectral gap is completely smeared out, and the over-
all spectral weight shows a considerable shift toward Fermi
energy (setting at EF = 0). The closing of the Kondo en-
ergy gap through transient recovery of the gapless electronic
dispersion indicates the melting of Kondo insulating state. In
addition, the effective band dispersion is significantly broad-

ened after pumping, which can be attributed to the multi-
scattering processes by localized spins. In large JK region
(Fig. 2(f)), the Kondo coherent bands become stiff, despite
some photo-excited states appear in the Kondo gap and partial
spectral weight transfers to the low-frequency region. With
the increase of JK , we identify a smooth crossover from laser-
driven gapless liquid JK . 1.25 eV to the Kondo insulator
phase JK & 1.25 eV (Fig. 2(d-f)). Again, these observations
demonstrate that the Kondo insulator with smaller gap is more
susceptible to the photo-excitation.

Figure 2 outlines the key features that allow us to extract
the effective quasi-particle dispersion, which can be directly
mapped out by the time and angular-resolved photo-emission
spectrum (tr-ARPES) measurements.26 In addition, the effec-
tive quasi-particle dispersion is insightful to understand the
non-linear optical response, as we will show below.

V. HIGH-HARMONIC SPECTROSCOPY

The appearance of photo-excited charged carriers is ex-
pected to generate the non-linear optical responses. Figure 3
shows a typical analysis of characteristic high-harmonic emis-
sions manifesting the charged excitations. Generally, com-
pared with the non-interacting case that shows well-defined
odd harmonic structures,40–42 the harmonics spectra of the
driven Kondo insulator is less regular. Despite the noisy spec-
tra, several universal behaviors can be identified. In small
JK regime (Fig. 3(a)) the hamonics are largely bounded by
the effective band width W , below which the harmonic struc-
tures can be attributed to the intra-band current in the effective
single-band dispersion (see Fig. 2(d)). In large JK regime
(Fig. 3(b)), increasing Kondo hybridization suppresses low-
order harmonics and generate high-order harmonics above the
energy gap ∆, where the high-harmonic emissions should be
associated with the inter-band current in the effective two-
band dispersion (see Fig. 2(f)). In comparison with the HHG
spectra of the Kondo melting phase (Fig. 3(a)), one notable
difference is that the spectra of Kondo insulator (Fig. 3(b)) is
much sharper. In Fig. 3(b), one can see well-resolved odd-
harmonic signal peaks below energy gap ∆. This can be ex-
plained by much long (short) relaxation time of excitations in
the Kondo insulator (Kondo melting phase), which is again
consistent with energy-momentum resolved spectrum func-
tion as shown in Fig. 2: The effective band is significantly
broadened in the Kondo melting phase but not for the hard
Kondo insulator.

To further understand the dynamics of harmonics genera-
tion in more detail, we proceed by analyzing the time pro-
files of emission spectra (Fig. 3(c-d)), allowing for the in-
vestigation of the harmonic emission with sub-cycle temporal
resolution. We find several notable differences. Firstly, for
small JK (Fig. 3(c)), the photon emission occurs at the first
and second circles of driving field, synchronizing with the dy-
namical breakdown of the Kondo insulator (see Fig. 1). In
contrast, for large JK (Fig. 3(d)), the photon emission occurs
around the peak of driving field. Since the Bloch oscillation is
strongly suppressed, the strong photon emission should result
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FIG. 2. Energy-momentum resolved spectra. Contour plots of spectral function A(k, ω) of the conduction electron (top) without a driven
pulse field and (bottom) with a driven pulse field, for various Kondo couplings: (a,d) JK = 0.5 eV≈ 0.0183 a.u., (b,e) JK = 1.0 eV≈ 0.0367
a.u. and (c,f) JK = 1.5 eV≈ 0.0551 a.u.. The laser has peak strength E0 = 0.005 a.u., frequency ω0 = 0.014 a.u. and a 5-cycle sine-square
envelope.
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FIG. 3. High-harmonic spectroscopy of laser-pulse driven Kondo lattice model. Harmonic spectrum for (a) JK = 0.5 eV≈ 0.0183 a.u.
and (b) JK = 1.5 eV≈ 0.0551 a.u.. The vertical dashed lines show energy scales of ∆ (blue) and ∆ + W (red), where charge excitation gap
∆ and effective band width W are determined by spectral functions in Fig. 2(a,c). Gabor profiles of harmonic order as a function of time for
(c) JK = 0.5 eV≈ 0.0183 a.u. and (d) JK = 1.5 eV≈ 0.0551 a.u.. The white dashed line in (c) and (d) mark the energy gap ∆ and ∆ +W ,
related to the dashed line in (a) and (b). (e) The intensity of the fifth (red), ninth (green) and nineteenth (blue) harmonic order dependence on
the field strength. (f) Contour plot of harmonic spectra and various field intensity. The laser field has the pulse frequency ω0 = 0.005 a.u. (30
THz), peak strength E0 = 0.0036 a.u. (∼ 20 MV cm−1) and a 7-cycle sine-square envelope.

from inter-band contributions. Secondly, comparing Fig. 3(c)
and (d) in detail, we identify signals of recollision trajectories
of doublon-holon pairs in large JK region. These trajectories
can be understood by the interband recollisions, i.e. doublons
can recollide with the hole at a specific time. Upon recom-
bination of the doublon and holon, energy difference is trans-
ferred to high harmonic photons. This result also suggests

that emission is generated by one-photon transitions back the
original ground state through single double-hole recombina-
tion (see Appendix C). These differences in time-profile anal-
ysis again confirm that, after applying laser field, the small JK
region is gapless liquid described by an effective single-band
dispersion, while the large JK region corresponds to a Kondo
insulator with robust hybridization gap.
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As last, we present the emission spectra intensity and cut-
off dependence on the field strength. As functions of the
strength of driving field, Fig. 3(e) shows that harmonic inten-
sities approximately follow a Ep0 scaling (p ≈ 11) regardless
of harmonic orders in weak field regime (light blue shade),
whereas it is close to saturation in high field regime (light yel-
low shade). This dependence considerably deviates from the
atomic limit35,36 indicating a strongly non-perturbative regime
of light-matter interactions. Moreover, in Fig. 3(f), in a
wide range of field strengths, the harmonic spectra display
well-resolved plateaus, followed by a cutoff. For strong field
strength, the cutoff is field-independent (black dashed line).

The laser pulse parameters reported here are experimentally
accessible. For instance, the time-resolved high harmonic
emissions with ∼ 1 fs accuracy are experimentally achiev-
able.16 This is sufficient to distinguish the Kondo insulator
from the Kondo melting phase by using the novel nonlinear
HHG features obtained in this work.

VI. DISCUSSION AND SUMMARY

In summary, we have presented a thorough study of the
transient collapse of the Kondo insulator and documentation
of the melting Kondo energy gap, by applying an ultrafast
laser field. We were able to track electric and optical re-
sponse in real time. Importantly, knowledge of the trajectory
of recolliding doublon-holon pair links photon energy to the
effective band dispersion, is close agreement with the energy-
momentum resolved electronic structures. Thus, our results
show that, in the heavy-fermion systems the breakdown of
Kondo insulator (collapse of local Kondo singlet) can be in-

spected by the ultrafast dynamics such as HHG.
Although, in this paper, due to the computational limit, the

theoretical model is greatly simplified (e.g. we only con-
sider a single conduction band, and starting equilibrium phase
is a Kondo insulator (at the half-filling of conduction elec-
trons)), we make an essential step to study ultrafast dynam-
ics in heavy-fermion systems. Our findings have implications
well beyond the specific model, which may impact the non-
linear dynamics of charge carriers in complex materials such
as heavy-fermion systems in which several degrees of free-
dom play a critical role. On the one hand, the fundamental
many-body dynamics obtained here also sheds lights on high-
dimensional strongly-correlated f -electron systems78,79 (also
see discussion in Appendix D). On the other hand, we be-
lieve the results reported in this work will stimulate experi-
mental realization of one-dimensional heavy-fermion systems
(e.g. CeCo2Ga8

70) for the study of non-equilibrium many-
body dynamics. In future, it is deserved to further study ultra-
fast dynamics in heavy-fermion systems, by considering more
realistic experimental conditions.

ACKNOWLEDGMENTS

We thank Chen-Yen Lai for fruitful discussion. This work
was carried out under the auspices of the National Nuclear
Security Administration of the U.S. Department of Energy at
Los Alamos National Laboratory (LANL). It was supported
by the LANL LDRD Program. This work was also sup-
ported by the Key R&D Program of Zhejiang Province, China
(2021C01002).

Appendix A: Peierls substitution derivation

In this section we show a derivation of the Peierls form for a time-dependent electric field described by a vector potential field
A(t) with ∇×A(t) = 0 (i.e., no magnetic field). We focus on the conduction orbital and write down the Hamiltonian in terms
of the second quantized field operators,

H(t) =

∫
drΨ†(r)

[
(−i~∇+ eA(t))

2

2m
+ V (r)

]
Ψ(r), (A1)

where the explicit time dependence comes from a time-dependent vector potential whereas Ψ†(r) and Ψ(r) are field field
operators. Here we have used electronic charge as −e (e > 0) and suppressed the spin index for the simplicity of the discussion.
Now we express the field operator in terms of the atomic orbital basis,

Ψ(r) =
∑
l

φ(r−Rl)cl (A2)

Here φ(r −Rl) is the atomic-like orbital, e.g., Wannier orbitals, at the atomic site l and cl is the annihilation operator of one
electron at site. We substitute Eq. (A2) into Eq. (A1), and obtain

H(t) =
∑
ll′

Jll′(t)c
†
l cl (A3)
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where the hopping integral is given as

Jll′(t) =

∫
drφ∗(r−Rl)

[
(−i~∇+ eA(t))2

2m
+ V (r)

]
φ(r−Rl′). (A4)

Given a general HamiltonianH(r,p) as function of position and momentum, the minimal coupling transformation can be written
as a gauge transformation,

exp

(
ie

∫ r

A(t)ds

)
H(r,p) exp

(
−ie

∫ r

A(t)ds

)
= H(r,p + eA(t)). (A5)

Under the assumption that the Wannier orbitals are strongly localized and within the long wave length approximation without a
magnetic field (i.e. ∇×A(t) = 0), we can approximate the hopping integral (A4) as

Jll′ =

∫
drφ∗(r−Rl) exp

(
ie

∫ r

A(t)ds

)[
(−i~∇)2

2m
+ V (r)

]
exp

(
−ie

∫ r

A(t)ds

)
φ(r−Rl′) (A6)

≈ ei
∫R

l′
Rl

eA(t)dr′
∫

drφ∗(r−Rl)

[
(−i~∇)2

2m
+ V (r)

]
φ(r−Rl′) (A7)

= e
−i
∫Rl
R′

l
eA(t)dr′

J0
ll′ (A8)

which is the Peierls form of the hopping.

Appendix B: The threshold field Eth

In this section, we will estimate the threshold field Eth in the DC-limit based on the effective hybridization bands in Kondo
lattice model in the framework of the Landau-Zener’s method. Fig. 4(a) shows dispersion relation of conduction electrons
(brown) and a flat band (blue). Hybridization leads to form an indirect energy (hybridization) gap due to the coherent Kondo
screening of the local moments by the sea of conduction electrons. In case of Kondo insulators the Fermi level is located in
the hybridization gap, thus the band below Fermi level is full occupied. Note that, the cartoon picture in Fig. 4(a-b) has been
confirmed by our DMRG calculations (see Fig. 2 in main text). The resulting band dispersion contains two bands (green in
Fig. 4(a)), which will be the starting point for the Landau-Zener’s analysis.74,75

Following adiabatic perturbation theory, we have

Ĥ(Φ)|0; Φ〉 = E0(Φ)|0; Φ〉, (B1)

Ĥ(Φ)|1; Φ〉dh = Edh(1; Φ)|1; Φ〉dh, (B2)

where |0; Φ〉 and |1; Φ〉dh respectively denotes the ground state without a doublon-hole pair and excited state with one doublon-
hole pair. By ignoring multiple pair states, we only consider the excitation channel with one doublon-hole pair. To simplify the
problem, we can study the tunneling process in a Hilbert space spanned by two states, thus the problem reduces to solving the
time-dependent Schrödinger equation of the form

|Ψ(t)〉 = a(t)|0; Φ(t)〉+ b(t)|1; Φ(t)〉dh (B3)
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FIG. 4. (a) Dispersion relation of conduction band (brown) and a localized flat band (blue). (b) Hybridization induced effective band structures
(green). (c) The dependence of estimated threshold field Eth on Kondo coupling strength JK . The charge excitation gap is obtained on system
size L = 48 Kondo lattice model. (d) The time-profile of electric field E(t) (black line), where the laser field has peak strength E0 = 0.006
a.u., frequency ω0 = 0.014 a.u. and a 5-cycle sin2 envelope. The estimated threshold field Eth (red dashed line) for various Kondo couplings
(from top to bottom) JK = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2. The first crossing between E(t) and Eth gives the transition time tc.
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and the initial condition is a(0) = 1, b(0) = 0. Next we consider the dc electric field: E(t) = E0, dΦ(t)/dt = E0. With the
help of the Landau-Zener’s theory, the tunneling probability from the ground state to the excited state is

PLandau−Zenerp = |b(t→∞)|2 = exp(−πEth

E0
), Eth =

∆2

4v
. (B4)

Here, ∆ is the charge excitation gap between conduction band and valence band, v is the group velocity. The key message of
Eq. (B4) is, the threshold field Eth quadratically depends on energy gap ∆.

Next, we will numerically determine the excitation gap ∆ in Kondo lattice model and estimate Eth. In Kondo lattice model,
since there are spin and charge degrees of freedom, the typical energy scales include spin gap and charge gap. In this work, we
focus on the charge excitation gap, since the laser electric field is directly coupled to electrons. The charge gap is defined by the
difference of the lowest energy in the subspace Ne = L and Ne = L+ 2:

∆ = E0(Ne = L+ 2, Sz = 0)− E0(Ne = L, Sz = 0). (B5)

Owing to the hidden SU(2) symmetry in the charge space, the energy difference is the same as the charge excitation gap in the
subspace of the fixed number of electrons Ne = L.59 After we determine the charge gap, we can get the threshold field Eth

using Eq. (B4). In Fig. 4(c), we show the dependence of Eth on Kondo coupling strength JK on the system size L = 48.
Although Eq. (B4) is obtained at the dc-limit, we find it is helpful to understand the physics under the influence of time-

dependent laser field. In Fig. 4(d), we plot the time-profile of electric field E(t) (black) and threshold value Eth for various JK .
Here, we reach the condition of E(tc) = Eth(JK), where tc is the first time that electric field exceeds the threshold field. In
general, the larger JK , the longer critical time tc is expected, as shown in Fig. 4(d). This basically gives us an understanding
why the JK dependent laser-induced phase transition in the main text (Fig. 1). The threshold value Eth shown in Fig. 1 (white
dashed line) is estimated using Eq. (B4).

Appendix C: Semi-classical analysis of recollision trajectory

Under a single active electron approximation and a two-band model, usually the inter-band current determines the highest
harmonics emitted by a laser driven semiconductor media.44 Hence, the electron-hole trajectories three steps classical approach
could predict the harmonic emission along the plateau and cutoff.43,44 Here, we assume the band structure of conduction band
and valence band as

εc(q) = ∆ + vc cos q, εv(q) = −∆ + vv cos q. (C1)

The electron and hole wave vector relative to its value at t = 0,

q(t) = − e
~

∫ t

0

E(t′)dt′ = A(t) + q(0), (C2)

Here, E(t) is the electric field of the laser andA(t) its vector potential. Since in the recollision classical model, the electron-hole
trajectories are computed via integrating the group velocity, we have that the group velocity reads:

ve(t) =
∂εc(q)

~∂q
= vc sin q(t) = vc sin[A(t) + q(0)],

vh(t) =
∂εv(q)

~∂q
= vv sin q(t) = vv sin[A(t) + q(0)]. (C3)

Using the velocity, we obtain the position of electron and hole:

xe(t) =

∫ t

0

ve(t
′)dt′,

xh(t) =

∫ t

0

vh(t′)dt′. (C4)

At the recollison time tc, the electron and hole return to the same position in spatial space, that is43,44

xe(tc) = xh(tc). (C5)

Once we get the solution of tc, we will have the energy difference between electron and hole at time tc:

∆E(tc) = εc(q(tc))− εv(q(tc)). (C6)
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This energy difference will transfer to photon emission.
In Fig. 5, we show the semi-classical solution of electron and hole trajectory, and the harmonic photon energy as a function of

the recollision time. One can see that the recollision almost occurs within one optical cycle. Although the analysis here is semi-
classical, this observation is largely consistent with the Gabor time-profile analysis in the main text (Fig. 3). This calculation
provides a way to understand the trajectories observed in HHG spectra.
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FIG. 5. (Top and Left) Dispersion relation of conduction band and valence band. (Top and Right) Trajectory of electron (blue) and hole
(green) as a function of time. (Bottom) The resulting photon emission as a function of the recollision time tc (blue dots). The red line shows
the derivative of electric field.

Appendix D: Mean Field Solution of Kondo Breakdown

In this section, we will explore the mean field solution of the time-dependent Kondo lattice model:

Ĥ =

L−1∑
i,σ

[J0e
−iΦ(t)c†iσci+1,σ + h.c.] + JK

∑
i

Si · si. (D1)

c†i,σ denotes the creation operator of a conduction electron in the state with spin σ. The Si is localized moment with spin-1/2.
And each localized moment interacts via an exchange coupling JK with spin of conduction electron, where spin degree of
freedom of conduction electron is defined as si = 1

2

∑
α,β c

†
iασαβciβ . Next we set 4J0 = 1 in the calculations.

We first decouple the local moment using fermionic operators

Szi =
1

2
(f†i↑fi↑ − f

†
i↓fi↓), S

†
i = f†i↑fi↓, S

− = f†i↓fi↑ (D2)

and f†i↑fi↑ + f†i↓fi↓ = 1 should be satisfied. Thus, the Kondo coupling term becomes

JK
∑
i

Si · si = JK
∑
i

1

2
[f†i↑fi↓c

†
i↓ci↑ + c†i↑ci↓f

†
i↓fi↑] +

1

4
[f†i,↑fi,↑ − f

†
i↓fi↓][c

†
i↑ci↑ − c

†
i↓ci↓] (D3)

In the mean-field approximation, we have

f†i↑fi↓c
†
i↓ci↑ = 〈f†i↑ci↑〉fi↓c

†
i↓ + f†i↑ci↑〈fi↓c

†
i↓〉 − 〈f

†
i↑ci↑〉〈fi↓c

†
i↓〉 (D4)

c†i↑ci↓f
†
i↓fi↑ = 〈c†i↑fi↑〉ci↓f

†
i↓ + c†i↑fi↑〈ci↓f

†
i↓〉 − 〈c

†
i↑fi↑〉〈ci↓f

†
i↓〉 (D5)

f†i↑fi↑c
†
i↑ci↑ = f†i↑fi↑(1− ci↑c

†
i↑) = f†i↑fi↑ + 〈f†i↑ci↑〉fi↑c

†
i↑ + f†i↑ci↑〈fi↑c

†
i↑〉 − 〈f

†
i↑ci↑〉〈fi↑c

†
i↑〉 (D6)
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and

(nfi↑ − n
f
i↓)(n

c
i↑ − nci↓) = 〈nfi↑ − n

f
i↓〉(n

c
i↑ − nci↓) + (nfi↑ − n

f
i↓)〈n

c
i↑ − nci↓〉 − 〈n

f
i↑ − n

f
i↓〉〈n

c
i↑ − nci↓〉 (D7)

The Hamiltonian becomes

HMF = J0

∑
i,σ

c†i,σci+1,σe
−iΦ(t) + h.c (D8)

+JK
1

2

∑
i

hi,↑fi↓c
†
i↓ + h∗i,↓ci↑f

†
i↑ + h∗i,↑ci↓f

†
i↓ + hi,↓fi↑c

†
i↑ + hi↑h

∗
i↓ + h∗i↑hi↓ (D9)

+JK
(1− x)

4

∑
i

f†i↑fi↑ + hi,↑fi↑c
†
i↑ + h∗i,↑ci↑f

†
i↑ + f†i↓fi↓ + hi,↓fi↓c

†
i↓ + h∗i,↓ci↓f

†
i↓ + hi↑h

∗
i↑ + h∗i↓hi↓ (D10)

+JK
x

4

∑
i

Szi n
c
i,↑ − nci↓Szi + nfi,↑s

z
i − szin

f
i,↓ − Szi szi (D11)

where the mean-field parameters are

Szi = 〈nfi↑ − n
f
i,↓〉, szi = 〈nci↑ − nci,↓〉, hi,↑ = 〈f†i↑ci↑〉, hi,↓ = 〈f†i↓ci↓〉, (D12)

and hi,↑, hi,↓ describe the hybridization between c-electron and f-electron, which can be taken as an order parameter for Kondo
insulator. x is a decoupling parameter controlling the weight of different mean-field channels.80 Here we choose x = 0.2 in our
calculation. That is, in the density-density interaction Szi s

z
i , the weight in mean-field channel Eq. (C10) is 0.8 and in the channel

of Eq. (C11) is 0.2.

At initial time t = 0, we first get the mean field solution self-consistently. For JK 6= 0, the mean field solution are:
Szi = 0, szi = 0, hi,↑ = hi,↓ 6= 0, which relates to the Kondo insulator phase with non-zero hybridization between local
moments and conduction electrons.

For time evolution at t 6= 0, the dynamics of the system are determined by the following time-dependent equation

i
d

dt

(
c†{i}
f†{i}

)
= HMF (h{i},↑(t), h{i},↓(t))

(
c†{i}(t)

f†{i}(t)

)
.

Here, HMF is the time-dependent Hamiltonian in which the hybridization parameters h{i},↑(t), h{i},↓(t) now evolves in time.

We show the mean field phase diagram is shown in Fig. 6. The Kondo insulator phase is identified by hybridization param-
eters h{i}↑(↓)(t) 6= 0. The transient transition point (open square) is determined by hybridization parameters becomes zero:
h{i},↑(↓)(tc) = 0. In Fig. 6 (left), the laser field can drive a transition from the Kondo insulator to a liquid phase when JK is
below a critical value (JK < JcK). When JK is strong enough (JK > JcK), the Kondo insulator can be not destroyed. This
mean field phase diagram captures the main features shown in Fig. 1(c-d) in the main text. Moreover, we also study the two-
dimensional Kondo lattice model under the driven laser field, as shown in Fig. 6 (right). We find very similar feature as in the
one-dimensional case: The driven laser field can destroy the Kondo insulator phase when JK is smaller than a critical value,
while Kondo insulator phase is robust when JK is strong enough. This mean-field calculation indicates that the Kondo collapse
is general for driven Kondo systems, despite that our full quantum mechanical method is only limited to one-dimension.
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FIG. 6. (Left) The mean-field phase diagram of time-dependent Kondo lattice model (Eq. (12)). (Right) The mean-field phase diagram of
two-dimension Kondo lattice model. We choose the square lattice as an example. The Kondo insulator phase is identified by hybridization
parameters hi(t) 6= 0, and the transition time tc is identified by hi(tc) = 0. The laser field has peak strength E0 = 0.16 a.u., frequency
ω0 = 0.02 a.u. and a 5-cycle sin2 envelope.

1 T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
2 F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
3 M. F. Ciappina, J. A. Prez-HernAndez, A. S. Landsman, W. Okell,

S. Zherebtsov, B. Farg, J. Schatz, J. L. Seiffert, T. Fennel, T.
Shaaran, T. Zimmermann, A. Chacon, R. Guichard, A. Zaar, J.
W. G. Tisch, J. P. Marangos, T. Witting, A. Braun, S. A. Maier,
L. Roso, M. Krager, P. Hommelhoff, M. F. Kling, F. Krausz, M.
Lewenstein, Rep. Prog. Phys. 80, 054401 (2017).

4 F. Schmitt, P S Kirchmann, U Bovensiepen, R G Moore, L Rettig,
M Krenz, J-H Chu, N Ru, L Perfetti, D H Lu, M Wolf, I R Fisher,
Z-X Shen, Science 321, 1649 (2008).

5 J. A. Sobota, S.-L. Yang, A. F. Kemper, J. J. Lee, F. T. Schmitt, W.
Li, R. G. Moore, J. G. Analytis, I. R. Fisher, P. S. Kirchmann, T. P.
Devereaux, and Z.-X. Shen, Phys. Rev. Lett. 111, 136802 (2013).

6 G. Vampa, T.J. Hammond, N. Thire, B.E. Schmidt, F. Lgar, C.R.
McDonald, T. Brabec, D.D. Klug, and P.B. Corkum, Phys. Rev.
Lett. 115, 193603 (2015).

7 S. Ghimire, Anthony D. DiChiara, Emily Sistrunk, Pierre Agos-
tini, Louis F. DiMauro and David A. Reis, Nat. Phys. 7, 138
(2011).

8 F. Langer , M. Hohenleutner, C. P. Schmid, C. Poellmann, P. Na-
gler, T. Korn, C. Schller, M. S. Sherwin, U. Huttner, J. T. Steiner,
S. W. Koch, M. Kira, R. Huber, Nature 533, 225 (2016).

9 G. Ndabashimiye et al., Nature 534, 520 (2016).
10 N. Yoshikawa, T. Tamaya, and K. Tanaka, Science 356, 736

(2017).
11 T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. Th. Hassan

and E. Goulielmakis, Nature 521, 498 (2015).
12 O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange,

U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, R. Huber,
Nat. Photon. 8, 119 (2014).

13 H. Liu, Yilei Li, Yong Sing You, Shambhu Ghimire, Tony F.
Heinz1, and David A. Reis, Nat. Phys. 13, 262 (2017).

14 T. T. Luu and Hans Jakob Wörner, Nat. Comm. 9, 916 (2018).
15 S. Ghimire and David A. Reis, Nat. Phys. 15, 10 (2019).
16 M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner,

S. W. Koch, M. Kira and R. Huber, Nature 523, 572575 (2015).
17 D. Bauer, K. K. Hansen, Phys. Rev. Lett. 120, 177401 (2018).
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