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We investigate the scattering of elastic waves off a disordered region described by a one-
dimensional random-phase sine-Gordon model. The collective pinning results in an effective static
disorder potential with universal and non-Gaussian correlations, acting on propagating waves. We
find signatures of the correlations in the wave transmission in a wide frequency range, which covers
both the weak and strong localization regimes. Our theory elucidates the dynamics of collectively-
pinned phases occurring in any natural or synthetic elastic medium. The latter one is exemplified
by a one-dimensional array of Josephson junctions, for which we specify our results. The obtained
results provide benchmarks for the array-enabled quantum simulations addressing the dynamics in
broader and yet-unexplored domains of individual pinning and quantum Bose glass.

I. INTRODUCTION

The interplay of elasticity and disorder has attracted a
wide interest because of its relevance to describe a large
variety of physical systems, both classical (superconduct-
ing vortex lattice [1], ferroelectric and magnetic domain
wall [2], charge density wave [3, 4]) and quantum (Bose
glass [5, 6], Wigner crystals [7, 8]). It has been real-
ized that a weak disorder potential destroys long-range
order in any dimension D < 4 due to the collective pin-
ning mechanism first described by Larkin in the 1970s [1].
Since then, many technical tools have been developed to
treat the correlation functions in disordered elastic media
both in space [9] and time [10], and use them to unveil
a glassy behavior in the melting and creep of the charge
density, or discuss the bulk electromagnetic absorption,
see Ref. [11] for a review. Nevertheless, the interplay of
elasticity and disorder remains a difficult optimization
problem, with many remaining open questions both for
static and dynamic properties.

Applied to the charge density waves’ propagation, the
classical dynamics can be analyzed by considering the
properties of small oscillations on top of a static charge
density [3]. In the weak pinning theory, the static charge
density determines a correlated, non-Gaussian disorder
potential in the wave equation for plasmons. A one-
dimensional (1D) nature of the system allows for most
comprehensive analytical and numerical studies. So far,
both the spatially-averaged [4, 12–17] and local [18] plas-
mon density of states in a 1D array have been computed.
The novelty of our work is to consider the plasmon trans-
mission across a disordered region of a finite length. This
is the standard quantity for revealing the localization
properties of the disorder [19–21]. We find signatures
of the collective pinning in a wide frequency range that
extends from the Anderson localization limit at large fre-
quencies to the limit of strong localization at low frequen-
cies.

In the collective pinning regime, the Larkin length is
the natural length scale for the correlation of the static

FIG. 1. As an example of wave propagation through a dis-
ordered elastic medium, we consider the microwave plasmon
scattering by a one-dimensional Josephson-junction array of
length d. The Josephson energy and capacitance of each junc-
tion along the array are EJ and C, respectively; the ground
capacitance of each superconducting island is Cg. In the pres-
ence of random background charges, the Josephson-junction
array realizes a random interacting medium. Classically, an
incident plasmon wave from one of the waveguides contacted
to the array is either reflected to the same waveguide or trans-
mitted to the opposite waveguide, with the respective ampli-
tudes r(ω) and t(ω) at frequency ω. The plasmon velocities in
the waveguides and the array are, respectively, v0 and v; the
waveguide and array impedances are, respectively, RQ/2K0

and RQ/2K, where RQ = π~/2e2 is the resistance quantum.

disorder induced in the pinned medium [1, 2, 4]. We find
that the universality in the static correlation gives rise to
universality of the finite-frequency wave scattering by the
pinned medium. While the scattering properties are uni-
versal, they differ from those for a Gaussian white-noise
disorder. The differences are most prominent both in
the limits of almost-ballistic propagation and of strongly
localized regime.

At sufficiently high frequencies, i.e., when the
frequency-dependent mean free path exceeds the length
of the system, the differences are encoded in the forward-
scattering amplitude. This amplitude is sensitive to the
static disorder correlations, in spite of the wavelength
being shorter than the Larkin length.

At low frequencies, corresponding to wavelengths
larger than the Larkin length, we focus on the disorder-
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averaged transmission coefficient 〈T 〉 and its logarithm
(commonly referred to as the Lyapunov exponent). Pre-
viously these two characteristics, 〈T 〉 and 〈lnT 〉, were
studied extensively for a Gaussian white-noise disorder.
It was realized that T exhibits giant mesoscopic fluctu-
ations, while lnT is a self-averaging quantity: the vari-
ance of its distribution function is inversely proportional
to the system’s length. The transmission T is not a self-
averaging quantity, which is manifested in a small value
of ln 〈T 〉 / 〈lnT 〉 < 1. We find that the correlations in the
pinned medium suppress the fluctuations. Namely, corre-
lations reduce the variance of the lnT distribution func-
tion. Moreover, the transmission T remains to be a non-
self-averaging quantity: the ratio ln 〈T 〉 / 〈lnT 〉 ≈ 0.90
remains smaller, but quite close to1. We infer that the
pinning-induced correlations suppress the difference be-
tween the optimal and typical disorder configurations,
which determine ln 〈T 〉 and 〈lnT 〉, respectively.

We find the transmission amplitude in a broad range
of frequencies covering all the said regimes. We pro-
pose that this physics can be probed in long Josephson-
junction arrays [22–25] by measuring their microwave
impedance [18, 26]. A combined effect of phase slips and
disorder in these arrays may drive a transition into a
“glassy” insulating state, which retains short-range su-
perfluid correlations [5], and hence called Bose glass [6].
In the classical limit of a high impedance array, which is
the focus of our work, the static properties of the Bose
glass lead to its universal dynamic response. Our theory
facilitates the use of Josephson-junction arrays as a quan-
tum simulation platform, allowing for the investigation
of the Bose-glass phase and possibly observing the glass-
superfluid transition taking place at smaller impedance.

The rest of this article is organized as follows. In
Sec. II, we characterize the static correlation of the
pinned medium and we define the plasmon scattering
problem within the random phase sine-Gordon model.
In Sec. III, we derive an analytical formula for the trans-
mission in the regime of weak disorder (large frequency)
using the Fokker-Planck method; we compare it with the
numerical result. In Sec. IV, we discuss our numerical re-
sults on the statistics of the transmission in the strongly
localized regime (small frequency). Finally, our results
are summarized in Sec. V.

II. MODEL

In this section, we introduce the 1D random phase
sine-Gordon model using, as an example, a Josephson-
junction array connected to waveguides at its ends. Then
we formulate the scattering problem for plasmons prop-
agating through the array in the classical limit. The nu-
merics is used to find the average and the second moment
of the effective disorder potential that appears in the lin-
ear wave equation for plasmons.

A. Lagrangian

The Lagrangian that describes the setup of Fig. 1 is a
1D random phase sine-Gordon model, which consists of
two terms,

L = Lfree + Lint. (1)

The harmonic term consists of the kinetic and elastic
contributions,

Lfree =

ˆ
dx

~
2πK(x)

[
1

v(x)
θ̇2 − v(x)(∂xθ)

2

]
, (2)

where θ(x, t) is a local field associated with the accumu-
lated charge, ∂xθ is the one-dimensional charge density.
It describes the propagation of waves in an inhomoge-
neous medium with local plasmon velocity v(x) and local
admittance (4e2/π~) ·K(x). In the waveguides (x < 0 or
x > d), v(x) = v0 and K(x) = K0; in the medium (0 <
x < d), v(x) = v and K(x) = K. Here d is the length
of the Josephson-junction array. The harmonic term can
be used to describe plasmons with wavelengths exceed-
ing the screening length, `sc = a

√
C/Cg, where a is the

unit cell length in the array, and C and Cg are the junc-
tion and ground capacitances along the array (typically
`sc � a). Furthermore, the low-frequency impedance of

the array is given by K = π
√
EJ/8Eg with Eg = e2/2Cg,

and the plasmon velocity is v = a
√

8EJEg/~. Using the
continuity of θ and (v/K)∂xθ at an interface between
the waveguides and the medium, we find that the prob-
abilities of the plasmon wave reflection and transmission
at that interface are determined by the impedance mis-
match,

R0 =

(
K −K0

K +K0

)2

, T0 =
4KK0

(K +K0)2
. (3)

The interaction term in Eq. (1),

Lint =

ˆ d

0

dx Λ cos(2θ + χ), (4)

describes the pinning of the charge density. At EJ � Ec

Λ =
8Ec√
πa

(
2EJ
Ec

)3/4

e−
√

8EJ/Ec , (5)

where Ec = e2/2C is the charging energy of a junction.
The random background charge introduces phase χ in the
phase-slip amplitude [27, 28] due to the Aharonov-Casher
effect; χ is a random variable with a short range of cor-
relations. In the experiment, the timescale for the varia-
tions of the configuration of background charges largely
exceeds the relevant time scale for plasmon propagation.
Therefore we will assume the configuration to be static
in all subsequent calculations. On the other hand, the
averaging time of an experiment may be sufficiently long
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for the disorder averaging over different configurations to
be effectively realized on that timescale [18, 24].

The characteristic Larkin length in the medium and
the corresponding energy scale are determined [1, 11, 18]
by the competition between the elastic and disorder
terms in Eqs. (1), (2), and (4),

ξ =

(
~v

2πKΛσ

)2/(3−2K)

and Ω =
v

ξ
, (6)

respectively. Here we assumed the random back-
ground charges to be characterized by vanishing averages,
〈cosχ(x)〉 = 〈sinχ(x)〉 = 0, and dispersion

σ2 =

ˆ
dx 〈cosχ(x) cosχ(0)〉 =

ˆ
dx 〈sinχ(x) sinχ(0)〉 .

(7)

The collective pinning regime corresponds to the condi-
tion ξ � σ2. The limit K � 1 in Eq. (6) corresponds
to the classical pinning. In this limit, one may crossover
from the regime of the collective pinning to that of in-
dividual pinning by increasing Λ. A finite K allows for
quantum fluctuations [18, 29] favoring longer ξ at the
same value of Λ. The divergence of ξ at K = 3/2 marks
the transition between the Bose glass and the superfluid
phase [5].

B. Scattering problem in the classical limit

To formulate the linear scattering problem in the clas-
sical limit (K → 0 at a fixed K/~), i.e., deep in the Bose-
glass phase, we represent the field θ(x, t) as the sum of a
static part, θ̄(x), plus small oscillations around it,

θ(x, t) = θ̄(x) + ψ(x)e−iωt. (8)

The static field θ̄ minimizes the energy functional

E [θ] =

ˆ d

0

dx

[
~v

2πK
(∂xθ)

2 − Λ cos(2θ + χ)

]
, (9)

with boundary conditions ∂xθ(0) = ∂xθ(d) = 0 for the
charge density. The oscillatory component, ψ(x), takes
the asymptotic form of a scattering state at frequency ω
in the waveguides,

ψ(x) =

{
eiωx/v0 + r(ω)e−iωx/v0 , x < 0,
t(ω)eiω(x−d)/v0 , x > d.

(10)

Here r(ω) and t(ω) are the (elastic) reflection and trans-
mission amplitudes, respectively. The wavefunction ψ(x)
solves the wave (Schrödinger-like) equation [30]

ω2ψ(x) = −v2∂2
xψ(x) + V(x)ψ(x), (11)

with the effective disorder potential

V(x) = (4πKvΛ/~) cos
[
2θ̄(x) + χ(x)

]
(12)

in the medium, together with boundary conditions

1 + r(ω) = ψ(0), (13a)

iωK/K0(1− r(ω)) = v∂xψ(0), (13b)

t(ω) = ψ(d), (13c)

iωK/K0t(ω) = v∂xψ(d), (13d)

which result from matching the solution ψ(x) at x = 0
and x = d, cf. Eq. (10).

The scattering properties obtained by the solution
of Eqs. (10)-(12), with θ̄ defined by minimization of
Eq. (9), depend on the frequency, medium’s length, and
impedance mismatch. Remarkably, we found numerically
(see Appendix A for details) that the results at any fre-
quency ω depend on the disorder only through the dis-
persion σ defined in Eq. (7), under the assumption of
short-range correlations (this finding is in correspondence
with the central limit theorem). Thus the results for the
transmission and reflection amplitudes are universal once
the length d and frequency ω are expressed in units of ξ
and Ω = v/ξ, see Eq. (6).

C. Effective disorder potential

The effective potential (12) depends on the solution
θ̄(x) of a nontrivial optimization problem defined by the
functional (9). It is thus expected to have a complex
pattern of non-Gaussian correlations of which, to the best
of our knowledge, little is known. The reality condition of
the eigenspectrum of the wave equation (11) means that
the local potential has a well defined sign and, hence, a
positive mean value, 〈V(x)〉 > 0. The potential V inherits
a finite correlation length ξ from θ, despite the underlying
disorder χ(x) being a short-ranged one. We characterize
the spatial correlations in V(x) by considering its second
cumulant and expressing it in the form

〈〈V(x)V(y)〉〉 ≡ 〈(V(x)− 〈V〉) (V(y)− 〈V〉)〉 (14)

= Ω4

[
4δ

(
x− y
ξ

)
− w

(
x− y
ξ

)]
.

Here, the introduced function w(x) is smooth and de-
cays at large scales. We find w(x/ξ) numerically, see
Fig. 2 and Appendix A. We note that the random po-
tential V(x) is non-Gaussian; its third-order cumulant is
shown in the inset of Fig. 2. The Fourier component of
〈〈V(x)V(0)〉〉 at small momentum (on the scale of 1/ξ) is
reduced by a factor 1− η with η = 1/4

´
dyw(y) ≈ 0.561

compared to its large-momentum value, which is deter-
mined by the first term in the r.h.s. of Eq. (14). The
property η 6= 0 is the consequence of the collective pin-
ning mechanism. In the large-frequency range of interest
in Sec. III, η is the only parameter needed to predict
the statistics of the scattering amplitudes. On the other
hand, we illustrate in Sec. IV that the signature proper-
ties of the reflection and transmission amplitudes at low
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FIG. 2. The smooth part of the second-order correlation func-
tion of the effective disorder potential at d/ξ = 20. The
green and red lines are the numerically obtained curves for
the random “phase” and “box” models (see Appendix A),
respectively; they cannot be distinguished from each other.
The dashed lines represent the fitting functions −w(x) =

−ce−|x|/a (c = 3.24, a = 0.346). The inset shows the third-
order cumulant at non-coinciding points.

frequencies cannot be accounted for by a colored Gaus-
sian disorder that would have the same average and sec-
ond moment as the effective disorder potential. Therefore
we attribute these properties to the non-Gaussianity of
the potential V(x) induced by pinning.

III. WEAKLY LOCALIZED REGIME (HIGH
FREQUENCY)

In this section, we derive an analytical formula for the
transmission probability in the regime of high frequency,
in which disorder can be treated perturbatively; we also
compare it with the results of numerical calculations.

A. Mapping to the Dirac equation

We first show that, at large frequency, the wave equa-
tion (11) is equivalent to a Dirac equation in Gaussian
random fields. For this, we introduce two functions, R(x)
and L(x), such that

ψ(x) = R(x) + L(x), (15a)

∂xψ(x) = i
ω

v
[R(x)− L(x)]. (15b)

Using ∂xψ(x) = ∂xR(x)+∂xL(x) and Eq. (11), we deduce

ωR(x) = −iv∂xR(x) +
V(x)

2ω
[R(x) + L(x)], (16a)

ωL(x) = iv∂xL(x) +
V(x)

2ω
[R(x) + L(x)]. (16b)

Functions R(x) and L(x) have the meaning, respectively,
of the right- and left-moving components of the wave
function. The terms ∝ V(x) in Eqs. (16) result in scat-
tering between the components. In the weak-disorder
regime, only the forward- and back-scattering amplitudes
evaluated in the Born approximation determine the scat-
tering properties of the medium. At ω � Ω, these ampli-
tudes are associated with the harmonics of the random
potential near momenta k = 0 and k = 2ω/v � 1/ξ,
respectively. That allows us to approximate

V(x)

2ω
≈ ∆0(x) + ∆(x)e2iωx/v + ∆∗(x)e−2iωx/v, (17)

where ∆0(x) and ∆(x) are slowly varying random func-
tions (on the scale of v/ω). We find that the slow com-
ponents of Eq. (16) yield a Dirac equation,

[−iv∂xτ3 + ∆0(x) + ∆1(x)τ1 + ∆2(x)τ2] Φ(x) = 0, (18)

with Φ(x) = [R(x)e−iω(x−d)/v, L(x)eiω(x−d)/v]T , ∆(x) =
∆1(x) + i∆2(x) with real fields ∆1(x) and ∆2(x), and
Pauli matrices τ1,2,3. Using Eq. (14), the Born approx-
imation applied to scattering off a potential given by
Eq. (17) yields the forward- and back-scattering lengths,

`0(ω) = `π(ω)/(1− η) and `π(ω) = ξ(ω/Ω)2, (19)

respectively. Thus the correlation between the random
background charge and the static charge ∝ ∂xθ̄ induced
by it tends to weaken the forward-scattering rate and in-
troduces a (quantitative) difference between `0 and `π.
As `0, `π � ξ in the considered high-frequency regime,
the random fields in Eq. (18) may be viewed as Gaussian
ones, due to the sampling over a large number of corre-
lated regions, each of which having a length scale ∼ ξ.
The needed two Fourier components of the correlation
function of V are reproduced by the Fourier components
of the respective correlation functions

〈∆0(x)∆0(y)〉 =
Ω4

ω2
(1− η)δ

(
x− y
ξ

)
, (20a)

〈∆(x)∆∗(y)〉 =
Ω4

ω2
δ

(
x− y
ξ

)
. (20b)

Both fields ∆0 and ∆ induce a random phase between
right- and left-movers. The contribution from ∆0 to the
phase acquired over a distance x is readily obtained,
(2/v)

´ x
0
dy∆0(y); its variance grows as 4x/`0. As we

will see below, the additional contribution from ∆ is
2x/`π; it only quantitatively modifies the result. Phase
scrambling occurs in a medium of length d � `0, `π.
Using Eq. (19), this condition is equivalent to a small
frequency condition, ω � ωcr with crossover frequency
ωcr = Ω

√
d/ξ � Ω. Reference [18] addressed the role of

ωcr in the visibility of oscillations in the reflection ampli-
tude. Below we find a similar effect in the frequency de-
pendence of the transmission coefficient, see Sec. III B 3.

In addition, ∆ is responsible for the plasmons localiza-
tion, due to the waves’ back-scattering it generates.
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B. Fokker-Planck formalism

To proceed further, we rely on the Fokker-Planck for-
malism that was developed to predict the statistics of
scattering properties of waves subject to Gaussian white-
noise disorder. The previously known results [19, 31–34]
assume a perfect impedance matching. Below we gener-
alize them to the case of a finite impedance mismatch.

For a scattering state, the wave functions in the waveg-
uides and the medium are related through(

R(0)
r(ω)

)
= S0

(
1

L(0)

)
,

(
t(ω)
L(d)

)
= ST0

(
R(d)

0

)
.

(21)

Here a phase factor e−iωd/v was absorbed in t(ω) and we
introduced the scattering matrix at each interface,

S0 =

(
t0 r0

−r0 t0

)
(22)

with r0 =
√
R0 and t0 =

√
T0, see Eq. (3) [35]. This

allows us to relate the scattering amplitudes with the
Ricatti variable,

z(x) = [L(x)/R(x)]e2iω(x−d)/v, (23)

at the ends of the medium,

r(ω) =
−r0 + z(0)e2iωd/v

1− r0z(0)e2iωd/v
with z(d) = r0. (24)

Interestingly, the Ricatti variables that appear in Eq. (24)
are related through a first-order nonlinear stochastic dif-
ferential equation derived from Eq. (18),

−iv∂xz(x) = 2∆0(x)z(x) + ∆∗(x) + ∆(x)z2(x). (25)

Thus r(ω) and, subsequently, the transmission probabil-
ity T (ω) = 1−|r(ω)|2 are expressed in terms of a solution
of Eq. (25) with a given boundary condition.

Taking advantage of the Gaussian correlators (20), we
derive the Fokker-Planck equation for the conditional dis-
tribution probability P (x, θ1, θ2), where we introduced
the decomposition of the Ricatti variable into its am-
plitude and phase, z = eiθ1e−θ2 (θ2 ≥ 0, such that
|r(ω)| ≤ 1 [19]). It reads

−∂P
∂x

=
2

`

∂2P

∂θ2
1

+
1

`π

∂2

∂θ2
2

(
sinh2 θ2P

)
, 0 < x < d,

(26)

with

`(ω) =

(
1

`0(ω)
+

1

2`π(ω)

)−1

=
2

3− 2η
`π(ω) (27)

(see Appendix B for the derivation). The solution of
Eq. (26) is separable, P (x, θ1, θ2) = P1(x, θ1)P2(x, θ2);

each factor satisfies

−∂P1

∂x
=

2

`

∂2P1

∂θ2
1

, (28a)

−∂P2

∂x
=

1

`π

∂2

∂θ2
2

(
sinh2 θ2P2

)
, (28b)

with initial conditions P1(d, θ1) = δ(θ1) and P2(d, θ2) =
δ(θ2 − θ0) with θ0 = − ln r0. Noteworthy, the statistics
of θ2 is only sensitive to back-scattering, thus reflect-
ing the medium’s localization properties; it is insensi-
tive to Larkin’s physics. By contrast, the statistics of
θ1, which describes the random phase between right-
and left-movers, depends both on forward- and back-
scattering; as η 6= 0, it is sensitive to Larkin’s physics.

Equation (28a) is a standard diffusion equation, its
solution at x = 0 is

P1(θ1) ≡ P1(0, θ1) =
1√

8πd/`
exp

(
− θ2

1

8d/`

)
; (29)

the variance
〈
θ2

1

〉
= 4d/`0 + 2d/`π includes the contri-

bution from ∆0 discussed in Sec. III A, plus the contri-
bution from ∆, which has the same order of magnitude.
The solution of Eq. (28b) can also be obtained,

P2(θ2) ≡ P2(0, θ2) (30)

=
e−d/4`π

4 sinh2 θ2

ˆ ∞
0

dkk tanh
πk

2
P− 1

2 +i k2
(coth θ2)

× P− 1
2 +i k2

(coth θ0)e−k
2d/4`π ,

where P− 1
2 +i k2

is the Legendre function of the first kind

(see Appendix C for the derivation). The ensemble-
averaged transmission is then given as

〈T 〉 =

ˆ
dθ1

ˆ
dθ2 P1(θ1)P2(θ2)T (θ1, θ2), (31)

where

T (θ1, θ2) = T0
1− e−2θ2

1 + r2
0e
−2θ2 − 2r0 sin(2ωd/v + θ1)e−θ2

(32)

is obtained by inserting z(0) = eiθ1−θ2 into Eq. (24) and
using T = 1− |r|2. Using the above equations, below we
obtain simpler formulas in various cases.

1. Perfect impedance matching, T0 = 1

At T0 = 1, Eq. (32) simplifies, T (θ1, θ2) = 1 −
e−2θ2 , such that the statistics of θ2 fully deter-
mines the transmission coefficient. We use Pν(1) =
1 and

´∞
1
dxP−1/2+ik/2(x)/(1 + x) = π/cosh(kπ/2)

(Eq. 7.131.1 in Ref. [36]) to find

〈T 〉 =

ˆ ∞
0

dk
πk

2

tanh(πk/2)

cosh(πk/2)
e−(1+k2)d/4`π . (33)
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At d � `π, 〈T 〉 ≈ 1 as expected for a ballistic junction.
At d � `π, the ensemble-averaged transmission coeffi-
cient is

〈T 〉 ≈ π5/2

2

(
`π
d

)3/2

e−d/4`π , (34)

in agreement with Ref. [31]. This results was rediscov-
ered in Refs. [32, 33]. The multichannel generalization
was performed in Ref. [34]. Notably, the frequency de-
pendence of 〈T 〉 is smooth (no oscillation) and fully cap-
tured by `π(ω).

2. Asymptote at d� `(ω) and arbitrary T0

The sine term in Eq. (32) produces Fabry-Pérot oscil-
lations of the transmission, with period πv/d, provided
that the impedance mismatch is finite. At d� `(ω), the
dispersion of θ1 given by Eq. (29) washes out the oscil-
lations on average. In that regime, θ1 can be taken as
uniformly distributed, and Eq. (31) simplifies to

〈T 〉 =

ˆ
dθ2P2(θ2)T (θ2), T (θ2) =

T0(1− e−2θ2)

1−R0e−2θ2
.

(35)

At T0 = 1, the result reproduces Eq. (33).
Returning to an arbitrary T0, we use Eq. (35) with

P2(θ2) of Eq. (30). At d� `π, the k-integral in Eq. (30)
is dominated by the region k � 1, so that we can replace

P−1/2+ik/2(x) ≈ P−1/2(x) =
2
√

2

π
√
x+1

K
(
x− 1

x+ 1

)
(36)

with complete elliptic integral K(m) =´ π/2
0

dφ/
√

1−m sin2 φ, and perform the k-integral
explicitly. Then, the dependences on the length and the
barriers’ transmission decouple, and we get

〈T 〉 =
π5/2

2

(
`π
d

)3/2

e−d/4`πf(T0) (37)

with f(T0) = (4T0/π
2)K2(1 − T0), see Fig. 3. In partic-

ular, f(T0 = 1) = 1, reproducing Eq. (34), while

f(T0 � 1) ≈ T0

π2
ln2

(
16

T0

)
. (38)

Note that, as in Eq. (34), the ω-dependence of the pre-
exponential factor in Eq. (37) comes only via `π. The
ω-dependence of the transmission is again smooth in this
regime.

3. Asymptote at d� `(ω) and T0 � 1

At finite impedance mismatch and d � `, T0 6= 0,
Fabry-Pérot oscillations do exist. If in addition the mis-
match is large, T0 � 1, we may use the initial value for

FIG. 3. Graph of f(T0) = (4T0/π
2)K2(1 − T0) (plain line)

and its asymptote, Eq. (38), at T0 � 1 (dashed line).

the θ2-distribution, P2(θ2) ≈ δ(θ2 − T0/2) to find

〈T 〉 =
∑
n

ˆ
dθ1

T 2
0

T 2
0 + [2(ω − ωn)d/v + θ1]

2P1(θ1) (39)

with P1 of Eq. (29). Here ωn = nπv/d are the frequen-
cies at which the transmission has local maxima. Equa-
tion (39) describes how, upon lowering ω, the oscilla-
tions’ Lorentzian lineshapes with half-width T0v/2d (de-
termined solely by the impedance mismatch) evolve into

Gaussian lineshapes with half-width v
√

2 ln 2/d` deter-
mined by the medium randomness. The crossover fre-
quency, which is reached when T0 ∼

√
d/`(ω), is ωcr/T0.

Remarkably, in the frequency range ωcr � ω � ωcr/T0

the width of the oscillations is sensitive to η, cf. Eq. (27),
and, henceforth, to the collective pinning.

C. Discussion

The brute-force numerics is compared with the predic-
tions from the Fokker-Planck formalism in Fig. 4. In that
Figure, Eq. (33) is used at perfect impedance matching,
while we use

〈T 〉 = 2πT0

∑
n

P1

(
2ωnd

v

)ˆ
dθ2

2θ2

2θ2 + T0
P2(θ2), (40)

valid in the frequency range Ω� ω � ωcr/T0, at T0 � 1,
see Figs. 4(a) and 4(b) respectively.

The localization properties of a disordered 1D medium
are frequently characterized by its Lyapunov exponent,
γ(ω) = −(2d)−1lnT (ω) at large d. In contrast with
the transmission, its logarithm is indeed a self-averaging
quantity [19]. In Fig. 5(a) we show the frequency de-
pendence of the averaged Lyapunov exponent, 〈γ(ω)〉, at
fixed medium’s length. Its inverse defines the localiza-
tion length, Lloc(ω) = 1/ 〈γ(ω)〉. We checked numeri-
cally that a celebrated Thouless relation [37], Lloc(ω) =
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(a)

(b)

FIG. 4. Frequency dependence of 〈T (ω)〉 for (a) K/K0 = 1.0
and (b) K/K0 = 0.01 and d/ξ = 20. The green dots are
the numerics, the dashed line is Eq. (33) in (a) and Eq. (40)
in (b).

2`π(ω), works at large frequencies, ω � Ω, and per-
fect impedance matching. The self-averaging nature of
γ is associated with the log-normal character of the dis-
tribution of the transmission. The frequency depen-
dence of the ratio Σ(ω) = d 〈〈γ2(ω)〉〉 / 〈γ(ω)〉 is plotted
in Fig. 5(b). According to the Fokker-Planck formal-
ism [19], that ratio should be 1 at Ω � ω � ωcr. De-
spite the tendency as d increases, the agreement is not
perfect. (We attribute it to insufficient length.) There
was a renewed interest in Σ(ω) [38–41] to test the single-
parameter scaling hypothesis of the theory of localiza-
tion [42].

The presence of the factor 1/4 in the argument of
the exponent in Eq. (34) or (37) reflects that the av-
eraged transmission is dominated by rare, optimal dis-
order configurations – not captured by the log-normal
distribution (tails), and which produce a resonant trans-
mission T ∼ 1 [43–45]. In other words, 〈T 〉 � Ttyp where
Ttyp = exp(〈lnT 〉) is the typical transmission. To check
this effect, in Fig. 6 we plot the frequency dependence
of ln 〈T (ω)〉 / 〈lnT (ω)〉 for various lengths and K = K0.

(a)

(b)

FIG. 5. (a) The average of the Lyapunov exponent and (b)
its variance as a function of frequency for different lengths
d/ξ = 20, 40, 80, 160 and K/K0 = 1.0. The frequency range
covers the regimes of weak and strong plasmon localization,
ω � Ω and ω � Ω, respectively. Arrows indicate the
crossover frequency to the ballistic regime, ωcr = Ω

√
d/ξ,

for each length. The inset is an enlarged view of the low (a)
and intermediate (b) frequency regions. The dotted lines in
(a) and (b) show the result of the Gaussian white-noise poten-
tial at d→∞ for comparison. As d increases, the Lyapunov
exponent approaches a constant value. At ω � Ω, the aver-
age of the Lyapunov exponents in the two models coincide,
in agreement with the Thouless relation 〈γ(ω)〉 = [2`π(ω)]−1.
At Ω � ω � ωcr, the difference in the Lyapunov variance
between the brute-force numerics and the result for a model
with Σ = 1 [19] is attributed to insufficient medium’s length.
At ω � Ω, the average exponent and its variance saturate to
different values in the two models.

(We attribute to insufficient length the deviation of that
ratio from 1/4 at ω � Ω.)

For completeness, we compare the effect disorder has
on the waves’ transmission with that it has on their reflec-
tion. We may use Eq. (24) and the flat distribution of θ1

mentioned above Eq. (35) to find that the real part of the
reflection amplitude averages to a frequency-independent
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FIG. 6. The frequency dependence of the ratio of ln 〈T (ω)〉
and 〈lnT (ω)〉 for different lengths d/ξ = 20, 40, 80, 160 and
K/K0 = 1.0. The ratio takes a frequency-independent value
at low frequency, ω � Ω. Upon increasing the frequency, it
decreases while remaining above the value 1/4 (dashed line)
predicted in the frequency range Ω � ω � ωcr, then it in-
creases to the value 1 at larger frequencies, when disorder
becomes irrelevant. Arrows indicate ωcr = Ω

√
d/ξ for each

of the four curves. A scaling analysis with the length (see
footnote [52]) gives the result ln 〈T (ω)〉 / 〈lnT (ω)〉 ≈ 0.90 at
ω � Ω and d/ξ →∞.

value,

〈r′(ω)〉 = −r0, (41)

when Ω � ω � ωcr. The averaged reflection ampli-
tude is insensitive to disorder, in contrast to the averaged
transmission coefficient 〈T 〉, which is manifestly depen-
dent on `π, cf. Eqs. (34) and (37). At higher frequency,
ωcr � ω � ωcr/T0, and T0 � 1, we use the same meth-
ods as in Sec. III B 3 to find

〈r′(ω)〉 = −1 +
T0

2

∑
n

P1

(
2ωnd

v

)
. (42)

It expresses the inhomogeneous broadening of plasmon
standing waves confined in the medium, in correspon-
dence with Ref. [18, 46]. Finally, the standard Fabry-
Pérot formula for the reflection is recovered at ω �
ωcr/T0 when the levels’s broadening is dominated by
the radiation to waveguides, rather than inhomogeneous
broadening.

IV. STRONGLY LOCALIZED REGIME (LOW
FREQUENCY)

At ω � Ω plasmons are localized over a typical length
ξ, in the fluctuations of the effective disorder potential
(12). Those fluctuations are non-Gaussian, and we have
not been able to make an analytical theory of the scatter-
ing properties in that regime. However, we could gather

several pieces of information from our numerics. We com-
pare it with known analytical results (collected in Ap-
pendix D) for the 1D theory of localization in a Gaus-
sian white-noise potential for which the function w(x/ξ)
in Eq. (14) is replaced by zero. While the scattering
properties of the two models coincide in the weakly lo-
calized regime, ω � Ω, important deviations are found
in the strongly localized regime, ω � Ω. We show that
these deviations cannot be reproduced by a model of a
Gaussian colored disorder with the values of the average
〈V〉 and of the second cumulant 〈〈V (x)V (0)〉〉 read off the
numerics for the pinning model, see Eq. (14) and Figs. 2
and 9.

A. Lyapunov exponent

The Lyapunov exponent remains a self-averaging quan-
tity, which saturates to a frequency-independent value,
〈γ〉 /ξ−1 ≈ 1.36 at low frequency. That value is
larger than the one in the Gaussian white-noise model,
〈γ〉 /ξ−1 = 31/3

√
π/Γ(1/6) ≈ 0.46 [47], cf. Fig. 5(a). On

the other hand, the Gaussian colored model produces a
very close value for 〈γ〉 (see Appendix E for details on
the numerical implementation of that model), which is
hardly distinguishable from the pinned-model result at
any ω. This raises the question whether spatial corre-
lations dominate over non-Gaussian correlations in the
determination of the plasmons’ scattering properties in
the strongly localized regime. Actually, our subsequent
results show that both (spatial and non-Gaussian) cor-
relations are relevant. We will argue at the end of this
subsection that the similarity between the results of the
pinned and Gaussian colored models for 〈γ〉 may be for-
tuitous.

In agreement with the central limit theorem, the vari-
ance of the Lyapunov exponent scales inversely with d.
The frequency dependence of Σ(ω) = d 〈〈γ2(ω)〉〉 / 〈γ(ω)〉
is plotted in Fig. 5(b). The low-frequency result, Σ ≈
0.218, is significantly smaller than the one in the Gaus-
sian white-noise model at vanishing frequency [39], Σ ≈
1.1 (that later value being quite close to the one at large
frequency, Σ = 1). The Gaussian colored model gives
Σ ≈ 0.46, which is also larger than the result of the
pinned model. Thus a Gaussian disorder (whether it is
white or colored) does note reproduce the right value of
Σ, emphasizing the role of non-Gaussian correlations in
the effective potential created by pinning.

The presented values of 〈γ〉 and Σ were obtained by a
brute-force numerical solution of the dynamical plasmon
propagation problem. Next, we show that these values
are reproduced by solving the plasmon transmission coef-
ficient problem for the static correlated random potential,
Eq. (12), upon averaging over its realizations. According
to problem §25.5 in Ref. [48], the low-frequency trans-
mission at perfect impedance matching (T0 = 1) for the
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wave equation (11) is

T (ω → 0) ≈ 4ω2

v2[ψ′0(d)]2
. (43)

Here ψ0 is the (real) solution of Eq. (11) at ω = 0
that satisfies the boundary conditions ψ0(0) = 1 and
ψ′0(0) = 0. Equation (43) works at sufficiently small
frequency for typical disorder configurations such that
ψ′0(d) 6= 0. [Note that ψ′0(d) = 0 would signal a zero-
energy bound state, and a resonant transmission not cap-
tured by Eq. (43).] An explicit solution reads

ψ0(x) = exp

(
ξ−1

ˆ x

0

dyZ(y)

)
(44)

where Z = ξψ′/ψ is another Ricatti variable, which
solves an equation derived from Eq. (11) at ω = 0,

ξ∂xZ(x) = −Z2(x) + V(x)/Ω2 with Z(0) = 0. (45)

With this Eq. (43) reads

T (ω → 0) = 4
(ω

Ω

)2 1

Z2(d)
exp

(
−2ξ−1

ˆ d

0

dyZ(y)

)
.

(46)

It was argued in Refs. [16, 17] that the solution of Eq. (45)
with V of Eq. (12) has a positive mean, 〈Z(x)〉 > 0.
Thus solving Eq. (45) provides a way to find the Lya-
punov exponent and its variance from the argument of
the exponential factor in Eq. (46), which only depends
on V, as announced above. This yields 〈γ〉 ξ = 1.37 and
Σ = 0.217, in very close agreement with the results of the
brute-force numerical evaluation of scattering amplitudes
at a low, finite frequency, 〈γ〉 ξ = 1.36 and Σ = 0.218,
respectively. The agreement is also consistent with the
more general Eq. (D8) at ω = 0.

Let us now return to the issue of the closeness of 〈γ〉
evaluated within the pinned and Gaussian colored mod-
els. Using Eq. (45), it is straightforward to evaluate
perturbatively the leading-order correction to 〈γ〉 in the

strongly localized regime, taking Ω/
√
〈V〉 as a small pa-

rameter. The result,

〈γ〉 ξ ≈ 〈V〉
1
2

Ω
− Ω2

2 〈V〉

[
1− 1

4

ˆ
dxw(x)e−2|x|〈V〉

1
2 /Ω

]
(47)

(see Appendix E for details on the derivation), only de-
pends on the average and second moment of the disorder
potential. Evaluating Eq. (47) with 〈V〉 /Ω2 ≈ 2.44 (see
Appendix A) yields 〈γ〉 /ξ−1 ≈ 1.41, very close to the
pinned-model result, 〈γ〉 /ξ−1 ≈ 1.36. We believe that
fortuitous closeness between the two results is the reason
why non-Gaussian correlations seem to play a minor role
in the determination of 〈γ〉.

FIG. 7. Probability distributions of the reflection phase at
K/K0 = 1.0 and d/ξ = 20, at ω/Ω = 0.157 (green), 1.16
(red), and 8.58 (blue). The inset shows the universal fre-
quency dependence of the distribution found numerically in
the vicinity of phase θ1 = −π either by the brute force numer-
ics at ω/Ω = 0.1 (blue) and 0.25 (red), or from the solution
of the Ricatti Eq. (45) (dashed line). The dotted line repre-
sents the analytical formula derived in Ref. [49] for a Gaussian
white-noise disorder.

FIG. 8. The local density of states as a function of the fre-
quency for K/K0 = 0.01. The dashed line represents (ω/Ω)4.
[In units used in Ref. [18], it corresponds to C(ω/ω?)

4 with

ω? = Ω/(2π2)1/3 and C ≈ 0.039 (close to C ≈ 0.032 found in
Ref. [18]).] The dotted line is the result of the Gaussian white-
noise model, see Appendix D. Arrows indicate the crossover
frequency to the ballistic regime, ωcr = Ω

√
d/ξ, for each d.

B. Reflection amplitude

In the low-frequency regime, the transmission is ex-
ponentially suppressed and waves are almost perfectly
reflected. In the limit of perfect impedance matching, we
characterize the reflection amplitudes with the distribu-
tion of the reflection phase [49, 50], see Fig. 7. While
the distribution is uniform at ω � Ω, a single-peak
structure near θ1 = ±π develops at lower frequency.
At ω � Ω, the peak in the distribution obtained from
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the brute-force numerics takes a universal frequency de-
pendence both in our model and in the Gaussian white-
noise model, see inset of Fig. 7, with important differ-
ences between the two models. Furthermore, the uni-
versal dependence in our model agrees with the one ob-
tained by solving numerically Eq. (45) in the interval
0 < x < d with a given (real) boundary condition at
x = d� ξ for various disorder configurations, then iden-
tifying Z(0) = −2(ω/Ω)/(θ1 + π), which is the conse-
quence of the boundary conditions (13a) and (13b) with
K = K0, ω/Ω → 0, and r = eiθ1 . The results don’t de-
pend on the boundary condition for Z(d) if d � ξ. The
result shown in the inset of Fig. 7 is for d/ξ = 20.

The distribution P1(θ1) can be seen as a measure of
the modes localized nearby an end of the pinned re-
gion and whose frequency lies either above (θ1 > −π)
or below (θ1 < −π) the one of the incoming wave.
The distribution appears to reach zero at θ1 = −π,
unlike both the white-noise and colored Gaussian cases
(see Appendices E and D, respectively), indicating the
scarcity of low-frequency resonances. This agrees with
the strong suppression of the low-frequency modes’ den-
sity of states [15–17] in the pinned model, in contrast
with the Gaussian models.

The distribution P1, together with Eqs. (13a) and
(13b), allows finding the statistics of the reflection phase
at any impedance mismatch between the waveguide and
half-infinite medium. In particular,

〈r′〉+ 1 =

ˆ
dθ1P1(θ1)

2

1 + (K0/K)2 tan2(θ1/2)
. (48)

At ω � Ω, the ω-scaling of the peak in P1 near θ1 = −π,
demonstrated in the inset of Fig. 7, yields [51]

〈r′〉+ 1 = A

(
K

K0

)2 (ω
Ω

)2

, A ≈ 2.4 (49)

At any K � K0, another important contribution to
Eq. (48), which scales linearly with K/K0, comes from
angles near θ1 = 0, yielding

〈r′〉+ 1 = 4π
K

K0
P1(θ1 = 0). (50)

Our numerics for 〈r′〉 at K � K0, summarized by
Fig. 8, confirms the result of Ref. [18] and Eq. (50) with
P1(θ1 = 0) ∝ ω4; in this regime (〈r′〉 + 1)K0/K can be
interpreted as the local density of plasmon modes. How-
ever, we were not able to correlate this result with the
result of a direct evaluation of P1(θ1 = 0) illustrated
by Fig. 7, presumably due to an insufficient number of
disorder configurations. Furthermore, the deviation of
the numerics from the ω4-scaling seen in Fig. 8 at the
lowest frequencies is suggestive of a crossover to the ω2-
scaling of Eq. (49); our numerics did not allow us to check
this scaling quantitatively. The different dependence of
the r.h.s. of Eq. (50) on K/K0, compared with Eq. (49),
ensures that it dominates over a wide frequency range.

The scarcity of low-frequency modes reflects in a much
stronger suppression of the local density of states ∝ ω4 at
ω � Ω in the pinned model, in contrast with the results
of the white-noise and colored Gaussian models where
(〈r′〉 + 1)K0/K ∝ 1.29ω/Ω and 0.35ω/Ω, respectively
(see Appendices D and E).

Finite-range correlations break the translational invari-
ance of the effective disorder potential near the edges of
the medium, as exemplified in Fig. 9. This prevents one
from evaluating the Lyapunov exponent with Eq. (D8)
together with the distribution of the Ricatti variable at
the edge, which determines P1(θ1) plotted in Fig. 7. Ex-
pectedly, that procedure yields 〈γ〉 ξ = 1.59, different
from 〈γ〉 ξ ≈ 1.37 found in Sec. IV A.

C. Average transmission coefficient

At any frequency in the range ω � ωcr, the averaged
transmission is determined by the optimal configurations.
Furthermore, the ratio ln 〈T 〉 / 〈lnT 〉 remains smaller
than 1, in accordance with the inequality between the
arithmetic and geometric means. In Sec. III C, we found
ln 〈T 〉 / 〈lnT 〉 = 1/4 in the diffusive regime (ω � Ω). In
the strongly localized regime, this ratio increases towards
the value ln 〈T 〉 / 〈lnT 〉 ≈ 0.9, see Fig. 6. Its closeness to
1 hints to a small difference between the typical and opti-
mal disorder configurations. This is further confirmed by
the fact that ensemble-averaging of Eq. (43) yields a very
close result for that ratio, ln 〈T 〉 / 〈lnT 〉 ≈ 0.93. As dis-
order configurations with nearly-perfect transmission [43]
are not taken into account in Eq. (43), they should have
a negligible weight among the optimal disorder configu-
rations.

Note that the frequency scaling 〈T (ω → 0)〉 ∝ ω2 in
Eq. (46) confirms that, for the waves at the bottom of the
plasmon spectrum (i.e., in the infinite wavelength limit),
the disorder potential acts like a localized one for each
realization of the disorder. Our numerics does not have
enough accuracy to check this asymptote quantitatively
and to establish its range of validity.

For comparison, we expect disorder configurations with
nearly-perfect transmission to play a major role at ar-
bitrarily low frequency in the Gaussian models. This
may result in a different frequency dependence of 〈T (ω)〉
and ln 〈T (ω)〉 / 〈lnT (ω)〉 at ω � Ω. As far as we
know, this question has not been studied systematically.
Our numerics indicates ln 〈T (ω)〉 / 〈lnT (ω)〉 ≈ 0.72 and
≈ 0.87 at ω � Ω in the Gaussian white-noise and
colored model, respectively. We attribute (again) the
difference of these results from the pinned model re-
sult, ln 〈T (ω)〉 / 〈lnT (ω)〉 ≈ 0.9, to the scarcity of low-
frequency quasi-localized modes in the latter.
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V. CONCLUSION

The study of a variety of 1D models has been influen-
tial in the understanding of waves’ localization in random
media. A wealth of analytical results could be obtained
thanks to advanced mathematical methods, most (if not
all) of them relying on a Markovian assumption for the
disorder, affecting the propagation of linear waves. This
assumption breaks down in the case of disorder associ-
ated with the pinning of an elastic medium. Our study of
the wave scattering by the pinned elastic medium reveals
the universality of the scattering properties, despite the
manifest breakdown of the Markovian nature of disorder.

The spatial correlations of the pinning-induced disor-
der affect the wave propagation at all frequencies. In
the high-frequency regime, we could use the familiar
stochastic methods for Gaussian white-noise disorder,
see Sec. III B. Surprisingly, we found that the correla-
tions still affect the forward-scattering length, despite the
wavelength being shorter than the Larkin length in that
regime, see Eqs. (19) and (27). In the almost-ballistic
regime (mean-free path exceeding the medium’s length)
and at a strong impedance mismatch between the pinned
medium and the waveguides, the transmission coefficient
〈T 〉 exhibits resonances, inhomogeneously broadened by
the disorder. Correlations affect the broadening, see
Eqs. (40), (29), and Fig. 4(b).

On the other hand, at lower frequency, the wave local-
ization is strong, the stochastic methods relying on the
Fokker-Planck equation obviously do not work. In the
strong localization regime, our findings, which are dis-
cussed in Sec. IV, are mostly numerical. We found that
the Lyapunov exponent is significantly increased, and
its variance is suppressed, in comparison with a Gaus-
sian white-noise disorder of a comparable strength, see
Fig. 5. A large part of the increase of the Lyapunov
exponent can be accounted by the spatial correlations
on the Larkin length in the pinned model of disorder;
on the other hand, both the spatial and non-Gaussian
correlations contribute to the Lyapunov’s variance sup-
pression. The closeness of the ratio ln 〈T (ω)〉 / 〈lnT (ω)〉
to 1, see Fig. 6, allows us to infer a similarity between
the optimal for the transmission and the typical disorder
configurations. This is in strong contrast with the diffu-
sive regime, in which the same ratio is significantly sup-
pressed, ln 〈T (ω)〉 / 〈lnT (ω)〉 = 1/4, as we discussed in
Sec. III C. In the regime of strong localization, in which
the transmission coefficient is exponentially suppressed
with the medium’s length, we also found signatures of the
scarcity of the localized low-frequency plasmon modes.
This mode scarcity affects the distribution function of the
phase of reflection off the pinned medium, see Figs. 7 and
8. These observables yield unique signatures of the non-
Gaussianity of the pinned medium, such as the suppres-
sion of the reflection phase distribution P1(θ1 = −π) and
an average transmission probability through the medium
that is much closer to the typical one, than for the Gaus-
sian models of disorder. Connections between the static

pinning theory and the localization theory have been re-
cently explored in Ref. [53]. We hope that our study
provides a momentum for further developments of the
theory aiming at better understanding of wave dynamics
in a pinned elastic medium.

Furthermore, our focus was mostly on the collective
pinning regime, i.e., Larkin length long compared to the
spacing between the sites comprising the medium. The
case of strong pinning may also reveal new physics.

Finally, we argued that Josephson-junction arrays pro-
vide a versatile system to address the interplay of elastic-
ity and disorder by their microwave spectroscopy. Here
we would like to stress that the development of superin-
ductances [54] allowed reaching a regime where K is
small, but not vanishingly small. Therefore it would
be interesting to investigate the deviations from classi-
cal theory, especially the inelastic scattering phenomena
that will be induced by quantum fluctuations [18, 25].
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Appendix A: Numerics

Here we describe our strategy to calculate the scatter-
ing amplitudes numerically.

1. Effective disorder potential

First, we rewrite our problem with the dimensionless
variables by rescaling the spatial dimension by ξ and the
time dimension by 1/Ω. Next, the dimensionless spatial
variables are discretized with a small spacing ε, which
divides the medium into M intervals, d/ξ = (M + 1)ε.
Then, the above prescription leads the classical energy
functional (9), in units of (ε~v/2πKξ), to take the dis-
cretized form:

Ẽ [{θm}] =

M−1∑
m=0

[(
θm+1 − θm

ε

)2

− Vm
2

]
− V0 + VM

4
.

(A1)

Here,

Vm = 2 [V ′m cos 2θm + V ′′m sin 2θm] (A2)

is the effective disorder potential in dimensionless units,
and the correlators (7) are reproduced in continuum
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limit, ε → 0, if 〈V ′m〉 = 〈V ′′m〉 = 〈V ′mV ′′n〉 = 0 and
〈V ′mV ′n〉 = 〈V ′′mV ′′n〉 = (1/ε)δm,n. The last term in
Eq. (A1) arose from considering an infinite periodic ar-
ray with the mirror symmetry Vm = V2M−m in unit array
(0 ≤ m ≤ 2M − 1). This ensures that the boundary con-
ditions ∂xθ(0) = ∂xθ(d) = 0 are satisfied in continuum
limit.

We compared two ways to generate the random fields.
In the “phase model” reminiscent of the original model,
we relate them with flatly distributed random phases at
each site, V ′m =

√
2/ε cosχm and V ′′m =

√
2/ε sinχm

with 0 < χm < 2π. Alternatively, in the “box model”,
V ′m and V ′′m are independent and flatly distributed in the

interval −
√

3/ε < V ′m,V ′′m <
√

3/ε. Our numerics could
not distinguish between the two models.

The static charge density is determined by minimizing
the classical energy functional (A1). For this we adopted
the minimization method described in Ref. [17]. Note
that a common π-shift of the angles, θm → θm+π, leaves
Eq. (A1) invariant; furthermore, the effective potential
(A2) only depends on θ̄m mod π. Thus we can look for
solutions such that −π/2 < θ̄m ≤ π/2, provided we make
the substitution (θm−θm+1)2 → mink(θm−θm+1−kπ)2

in Eq. (A1). (At weak pinning, it is enough to keep
k = −1, 0, 1.)

Generating 104 random configurations at fixed
medium’s length to calculate the static charge density
for each of them, we can evaluate the mean and second
moment of the disorder potential (12). The results are
shown in Figs. 9 and 2, respectively. The mean reaches
a constant value sufficiently far from the edges, on the
scale of ξ. We also found numerically a fitting function
that describes the enhancement of 〈V(x)〉 near the edges,
see the legend of Fig. 9. It works well at any d > 20ξ
(not shown). We also found numerically that the long-
range correlation in the second moment of V(x) are well
described by Eq. (14) with the exponentially decaying
function w(x) = ce−|x|/a. Here c ≈ 3.24 and a ≈ 0.346,
cf. Fig. 2.

2. Scattering amplitudes

The wave equation (11) and boundary conditions (13)
are discretized as(ω

Ω

)2

ψm +
ψm+1 + ψm−1 − 2ψm

ε2
− Vmψm = 0, (A3)

for 0 < m ≤M , and

1 + r(ω) = ψ0, (A4a)

iωK/K0(1− r(ω)) = Ω(ψ1 − ψ0)/ε, (A4b)

t(ω) = ψM , (A4c)

iωK/K0t(ω) = Ω(ψM − ψM−1)/ε, (A4d)

respectively. The boundary conditions (A4) are used to
express r(ω), t(ω), ψ0, ψM in terms of ψ1, ψM−1. Insert-
ing the found ψ0, ψM into Eq. (A3), we find that the

FIG. 9. The mean effective disorder potential at d/ξ = 20.
The green and red lines are the numerically obtained curves
for 104 realizations of the random “phase” and “box” models
(see Appendix A), respectively; they cannot be distinguished
from each other. The dashed lines represent the fitting func-
tions v(x) = d[e−x/b + e−(d−x)/b] + v0 (d = 1.36, b = 0.269,
v0 = 2.44).

latter forms a linear eigenvalue with a source term on
the vector {ψ1, . . . , ψM−1}. For a given disorder configu-
ration yielding the potentials Vm, the eigenvalue problem
is solved and we obtain the scattering amplitudes from
relations

r(ω) =

(
1− iε K

K0

ω

Ω

)−1(
ψ1 − 1− iε K

K0

ω

Ω

)
, (A5a)

t(ω) =

(
1− iε K

K0

ω

Ω

)−1

ψM−1. (A5b)

The averaged scattering amplitudes are evaluated numer-
ically by iterating this procedure for a large number of
disorder configurations. We used 104 disorder configura-
tions to generate the plots in Figs. 2, 4, 7, and 9, and
103 in the plots in Figs 5, 6, and 8, as well as to compute
ensemble-averages discussed in Sec. IV, which are based
on the discretized version of Eqs. (45) and (46).

Appendix B: Fokker-Planck equation

In this Appendix, we provide the recipe that can be
used to obtain the Fokker-Planck Eq. (26) from the Ri-
catti Eq. (25) and Gaussian correlators (20).

We consider the system of dynamical equations

∂tXi = ai(X) +
∑
j

bil(X)ξl(t) (B1)

on the multi-dimensional variable X = (X1, . . . , XN )
with random forces characterized by Gaussian correla-
tors,

〈ξl(t)ξm(t′)〉 = 2Dlmδ(t− t′). (B2)
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The joint probability P (t,X) of the variablesX1, . . . , XN

satisfies the Fokker-Planck equation

∂P

∂t
= −

∑
i

∂

∂Xi
(aiP ) +

∑
ijlm

Dlm
∂

∂Xi

[
bil

∂

∂Xj
(bjmP )

]
.

(B3)

Appendix C: Exact solution of P2(x, θ2)

In this Appendix, we closely follow Ref. [34] to find the
solution of Eq. (28b) for the conditional probability that
satisfies the initial condition P2(d, θ2) = δ(θ2 + ln r0).

For this we use various changes of variable to recover
equivalent formulations of that equation. With e−2θ2 =
λ/(1 + λ) (λ > 0) and P̃ (τ, λ) = P2(τ, θ2)|dθ2/dλ| (to
ensure that normalization is preserved), we find

∂P̃

∂τ
=

∂

∂λ
λ(1 + λ)

∂

∂λ
P̃ (C1)

with τ = (d − x)/`π. Introducing λ = sinh2X (X > 0)

and P̄ (τ,X) = P̃ (τ, λ)|dλ/dX| yields

∂

∂τ
P̄ =

1

4

[
∂2

∂X2
P̄ − ∂

∂X

(
2 cosh 2X

sinh 2X
P̄

)]
. (C2)

Then, introducing Q(X) = P̄ (X)/
√

sinh 2X, we find

− ∂

∂τ
Q =

(
H+

1

4

)
Q (C3)

with an effective Hamiltonian

H = −1

4

∂2

∂X2
− 1

4 sinh2 2X
. (C4)

Together with Eq. (C2), the probability conservation,

ˆ ∞
0

dXP̄ (τ,X) = 1, (C5)

imposes

lim
X→0

(
∂P̄

∂X
− P̄

X

)
= 0 (C6)

and, subsequently,

lim
X→0

(
∂Q

∂X
− Q

2X

)
= 0. (C7)

Knowing a normalized eigenspectrum of Eq. (C4),
Hψk = εkψk, together with the boundary condition (C7)
then allows expressing the conditional probability

P̄ (τ,X) =

√
sinh 2X

sinh 2X ′

∑
k

ψk(X)ψ∗k(X ′)e−(εk+ 1
4 )τ ,

(C8)

such that P (0, X) = δ(X − X ′) with cosh 2X ′ = (2 −
T0)/T0. (Reference [34] considered the case T0 = 1, cor-
responding to X ′ = 0, only.) The next paragraph is
devoted to the solution of the eigenproblem.

The change of variable ψk(X) =
√

sinh 2Xfk(cosh 2X)
shows that fk(z) with z = cosh 2X > 1 solves the Leg-
endre differential equation

d

dz

[
(1− z2)

dfk
dz

]
+ ν(ν + 1)fk = 0 (C9)

with (ν + 1/2)2 = −εk. The boundary condition (C7)
translates into[

(z − 1)3/4 dfk(z)

dz

]
z→1

= 0. (C10)

Equation (C9) is solved by the Legendre functions of
the first and second kind, Pν(z) and Qν(z), respectively.
The boundary condition (C10) excludes Qν(z), which di-
verges logarithmically at z → 1, from the set of solutions.
As Pν(z) ∼ z−ν−1, the normalizability condition of the
wavefunctions also requires Re ν > 1/2. Therefore, only
solutions with εk > 0 (meaning that the Hamiltonian
(C4) defined at X > 0 does not admit for bound states)
are allowed. The set of solutions is thus given by the con-
ical functions, fk(z) = CkP−1/2+ik/2(z) with εk = k2/4
and k > 0 [as P−1/2+ik/2(z) = P−1/2−ik/2(z)]. The nor-
malization conditionˆ ∞

0

dxψk(x)ψk′(x) = δ(k − k′) (C11)

is then obtained by choosing Ck =
√
πk tanh(πk/2).

Equation (C8) then reads

P̄ (τ,X) =
1

2
e−

τ
4 sinh 2X

ˆ ∞
0

dkk tanh
πk

2
P− 1

2 +i k2
(cosh 2X)

×P− 1
2 +i k2

(cosh 2X ′)e−
k2τ
4 .

(C12)

Reverting to variable θ2 and setting x = 0, i.e., τ = d/`π,
we obtain Eq. (30).

Appendix D: Gaussian white-noise disorder

In this Appendix we quote analytical results from the
literature on a model with Gaussian white-noise disor-
der, which were used in plotting some of the lines in
Figs. 5, 8 and 7. We assume that the variance of the dis-
order potential corresponds to the first term of Eq. (14).
Note that the literature mostly adresses the stationary
Schrödinger equation at energy E. In the context of
Eq. (11), we set E = ω2 in the results from literature,
constraining them to E ≥ 0.

The Lyapunov exponent is given by [47]

〈γ(ω)〉ξ =
1

2

´∞
0
dx
√
x exp

(
−x3/24− xω2/2Ω2

)
´∞

0
dx/
√
x exp (−x3/24− xω2/2Ω2)

; (D1)
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it is plotted by dotted line in Fig. 5(a). It yields the
zero-frequency result

〈γ(0)〉ξ =
31/3
√
π

Γ(1/6)
≈ 0.46, (D2)

as well as 〈γ(0)〉ξ = Ω2/2ω2 at ω � Ω.
The Lyapunov’s variance is given by [41]

〈〈γ2(ω)〉〉ξd =

ˆ ∞
0

ds

s
Re

[(
2〈γ(ω)〉ξ − i d

ds

)
f2(s)

]
(D3)

with f(s) = φ(s)/φ(0) and

φ(s) = Ai

(
− (ω/Ω)2 + 2is

22/3

)
− iBi

(
− (ω/Ω)2 + 2is

22/3

)
,

(D4)
where Ai and Bi are Airy functions; it is plotted by dotted
line in Fig. 5(b). It yields the zero-frequency result [39]

〈〈γ2(0)〉〉d = 〈γ(0)〉
[

5π

3
√

3
− 3F2

(
1, 1,

7

6
;

3

2
,

3

2
;

3

4

)]
≈ 1.1〈γ(0)〉 (D5)

(here 3F2 is an hypergeometric function), as well as
〈〈γ2(ω)〉〉d = 〈γ(ω)〉 at ω � Ω.

The distribution of the reflection phase at perfect
impedance matching between a half-infinite medium and
a waveguide [49],

P1(θ1) =
(ω/Ω)2 + Z2

2|ω|/Ω
P (Z)

∣∣∣∣
Z=−(ω/Ω) tan(θ1/2)

, (D6)

is related with the distribution of the Ricatti variable Z,

P (Z) =

´∞
0
dx exp

(
−x3/24− xω2/2Ω2 − x/2(Z − x/2)2

)
´∞

0
dx
√

2π/x exp (−x3/24− xω2/2Ω2)
.

(D7)
With the help of Eqs. (D1) and (D7), one may check that
the relation

〈γ(ω)〉ξ =

ˆ
dZZP (Z) (D8)

holds at any ω. At ω � Ω, the distribution is uniform,
P1(θ1) ≈ 1/2π. At 0 < ω � Ω, the distribution is con-
centrated around phase θ1 = −π, with

P1(θ1) ≈ Ω

ω
p

(
Ω(θ1 + π)

ω

)
, (D9)

p(ϕ) =
35/6

√
πΓ(1/6)

ˆ ∞
0

dx

ϕ2
exp

(
−x3/6 + x2/ϕ− 2x/ϕ2

)
if |θ1 + π| � 1. The function p(ϕ) is plotted by dotted
line in the inset of Fig. 7. The tails of the distribution
P1 at |θ1 + π| � ω/Ω are given by

P1(θ1) ≈ αω/Ω

cos2(θ1/2)
, α =

31/6Γ(2/3)

27/3π
. (D10)

Note that Eqs. (D9) and (D10) match each other in their
common range of validity, ω/Ω� |θ1 + π| � 1.

Equation (D6) allows finding the disorder average of
the reflection phase’s real part at any impedance mis-
match K < K0,

r′ + 1 =
2

1 + (K0/K)2 tan2(θ1/2)
. (D11)

At ω � Ω, Eq. (41) is reproduced with the uniform dis-
tribution. At 0 < ω � Ω, the average is contributed by
the tails of the distribution P1, Eq. (D10), which yields

〈r′〉+ 1 = 4πα
K

K0

ω

Ω
. (D12)

At large impedance mismatch, K � K0, Eq. (D11) is
approximated by r′ + 1 ≈ 4π(K/K0)δ(θ1), such that

〈r′〉+ 1 = 4π
K

K0
P1(θ1 = 0) (D13)

with P1 of Eq. (D6), which is plotted by dotted line in
Fig. 8.

The linear frequency dependence in Eq. (D12) at low
frequency, as well as the saturation at ω � Ω, mirror
the frequency dependence of the bulk plasmon density of
states. Indeed by using the particle density of states of
the Schrödinger problem [47, 55, 56] at energy E = ω2

we find

ν(ω)

ν0
=

2ω

Ω

√
π

2

´∞
0
dx
√
x exp

(
−x3/24− xω2/2Ω2

)[´∞
0
dx/
√
x exp (−x3/24− xω2/2Ω2)

]2 ,
(D14)

where ν0 = 1/πv. In particular, ν(ω) = ν0 at ω � Ω and

ν(ω)

ν0
=

6π × 31/6

Γ2(1/6)

ω

Ω
, 0 <ω � Ω. (D15)

The linear ω-dependence in Eq. (D15) reflects the finite
(particle) density of states ν̃(0) of the Schrödinger prob-
lem at E = 0, together with the relation ν(ω) = 2ων̃(ω2),
which connects the waves’ and particles’ densities of
states. The finiteness of ν̃(0) (instead of its divergence in
the disorder-free problem) is a precursor of the Lifshits
tail of states at E < 0 (a region inaccessible for waves).
Note that the overall frequency dependences of 〈r′(ω)〉+1
and ν(ω) are different.

Note that Eqs. (D1) and (D15) alternatively read

〈γ(ω)〉ξ = −Im [f ′(s = 0)] , (D16a)

ν(ω)/ν0 = −ΩRe

[
d

dω
f ′(s = 0)

]
, (D16b)

respectively. Actually, the relation of 〈γ(ω)〉 and ν(ω) to
a common analytic function in the upper complex plane
is valid beyond the Gaussian white-noise model. It is a
consequence of the Herbert-Jones-Thouless relation [57]
for any translationally invariant potential,

γ(E)− γ0(E) =

ˆ
dE′ ln |E − E′| [ν̃(E′)− ν̃0(E′)] .

(D17)
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Here γ0(E) = Θ(−E)
√
−E/v and ν̃0(E) =

Θ(E)/(2πv
√
E) are for a free particle. In the case

of a random potential, γ(E) and ν̃(E) are the respective
functions averaged over the disorder realizations, and
the translational invariance property refers to the corre-
lation function of the potential. Equation (D8), which
relates the Lyapunov exponent with the average the
Ricatti variable, also holds for a translationally invariant
disorder potential, under an additional assumption of
inversion symmetric disorder [19].

Appendix E: Gaussian colored-noise disorder

In Sec. E 1, we derive asymptotic formulas for the Lya-
punov exponent at small and large frequency; they only
depend on the average and second moment of the disorder
potential. In Sec. E 2 we show how to implement a ran-
dom Gaussian colored potential numerically; we provide
plots that illustrate the difference between the pinned
and Gaussian colored models for the plasmon’s scatter-
ing properties.

1. Asymptotes for the Lyapunov exponent

Let us start with the small frequency regime. The
Lyapunov exponent is a self-averaging quantity defined
as 〈γ〉 = Z(x → ∞)/ξ, where Z(x) is a solution of the
Ricatti equation

ξ∂xZ(x) = −Z2(x) +
[
V(x)− ω2

]
/Ω2, (E1)

which generalizes Eq. (45) at finite frequency, irrespective
of the initial condition Z(x = 0). We ignore mathemat-
ical details related with the existence of the Lyapunov
exponent [19] and note that Z(x→∞) = 〈Z(x→∞)〉.

Let us assume ω <
√
〈V〉. Then, treating v(x) =

V(x) − 〈V〉 as a perturbation, we find that the leading-
order contribution to Z(x) = Z(0)(x)+Z(1)(x)+Z(2)(x)+

. . . is constant, Z(0) =
√
〈V〉 − ω2/Ω. The next-order

term is found as the solution of the equation

ξ∂xZ
(1)(x) = −2Z(0)Z(1)(x) + v(x)/Ω2; (E2)

it yields

Z(1)(x) = Z(1)(0)e−2xZ(0)/ξ +

ˆ x

0

dy

ξ

v(y)

Ω2
e−2(x−y)Z(0)/ξ.

(E3)

As
〈
Z(1)(x→∞)

〉
= 0, it does not contribute to the

Lyapunov exponent. In the next order,

ξ∂xZ
(2)(x) = −2Z(0)Z(2)(x)− Z(1)(x)2; (E4)

the solution yields〈
Z(2)(x→∞)

〉
= − 1

8Z(0)2

ˆ
dx

ξ

〈v(x)v(0)〉
Ω4

e−2|x|Z(0)/ξ,

(E5)

which only depends on the second cumulant of the dis-
order potential. Inserting Eq. (14) for the correlator
〈v(x)v(0)〉 = 〈〈V(x)V(0)〉〉, we find Eq. (47) at vanish-
ing frequency.

Switching to the regime of large frequencies, we intro-
duce ψ = ρ sinϑ and ψ′ = κρ cosϑ with κ =

√
ω2 − V/v

to find that the Schrödinger equation, Eq. (11), trans-
forms into

ϑ′ = κ− v(x)

κ
sin2 ϑ, ρ′ = ρ

v(x)

2κ
sin 2ϑ. (E6)

The Lyapunov exponent can also be defined as the rate
of growth of the wavefunction’s envelope [19],

〈γ〉 = lim
x→∞

ln ρ(x)

x
. (E7)

Solving Eq. (E6) perturbatively in v(x) and inserting the
solution into Eq. (E7), we find that the leading-order
contribution reads

〈γ〉 =
1

8v2(ω2 − V)

ˆ
dx〈v(x)v(0)〉 cos

(
2x
√
ω2 − V
v

)
.

(E8)
Using Eq. (14) for the correlator 〈v(x)v(0)〉, we note
that that Eq. (E8) reproduces the semiclassical result of

Sec. III, 〈γ〉 = (Ω/ω)2/2ξ at ω �
√
V ∼ Ω.

The two asymptotes, Eqs. (47) and (E8), are shown in
Fig. 10(a).

2. Numerics

We readily check that

V1(x) = 〈V〉+ V0(x) +

ˆ
dyW(x− y)V0(y), (E9)

where V0 is a Gaussian white-noise potential such that
〈V0(x)〉 = 0 and 〈V0(x)V0(x)〉 = 4Ω4ξδ(x− y), and

W(x) =

ˆ
dq

2π
eiqx

[√
1− wq

4
− 1

]
, (E10a)

wq = ξ−1

ˆ
dxe−iqxw(x/ξ), (E10b)

is a Gaussian colored potential that has the same average
and second cumulant, Eq. (14), as the pinned potential
V(x). By implementing numerically the white noise po-
tential V0(x) on a lattice, as in Appendix A, we may then
study the scattering properties of a medium character-
ized by the Gaussian colored potential V1(x). In Fig. 10,
we compare the frequency dependence of the Lyapunov
exponent and its variance in the pinned and Gaussian
colored models. Figures 11, 12, and 13 show the com-
parison for the ratio ln 〈T (ω)〉 / 〈lnT (ω)〉, the probability
distribution of the reflection phase, and the local density
of states, respectively. They mirror Figs. 5, 6, 7, and 8,
which were shown in the main text, see Sec. IV for the
discussion of the results.



16

(a)

(b)

FIG. 10. (a) The average of the Lyapunov exponent and (b)
its variance as a function of frequency for different lengths
d/ξ = 20, 40, 80, 160 and K/K0 = 1.0 in the Gaussian colored
model. The inset is an enlarged view of the low (a) and in-
termediate (b) frequency regions. The dotted lines in (a) and
(b) show the result of the Gaussian white-noise potential at
d→∞ for comparison, the black line shows the result for the
pinned potential at d/ξ = 160. The dashed lines in (a) show
the result of the weak-disorder expansion for 〈γ(ω)〉 at small
and large ω, Eqs. (47) and (E8), respectively. The Lyapunov
exponents in the pinned and Gaussian colored models hardly
differ from each other; we ascribe their similarity to the suc-
cess of the weak-disorder expansion in most of the frequency
range, apart from the close vicinity of Ω. By contrast, the
variances of the Lyapunov exponent computed in the Gaus-
sian and pinned models differ from each other in the strongly
localized regime

FIG. 11. The frequency dependence of the ratio of ln 〈T (ω)〉
and 〈lnT (ω)〉 for different lengths d/ξ = 20, 40, 80, 160 and
K/K0 = 1.0 in the Gaussian colored model. A scaling
analysis with the length (see footnote [52]) gives the result
ln 〈T (ω)〉 / 〈lnT (ω)〉 ≈ 0.87 at ω � Ω and d/ξ → ∞. The
analysis for the pinned model, illustrated with the black line
corresponding to d/ξ = 160, gives ln 〈T (ω)〉 / 〈lnT (ω)〉 ≈ 0.90
at ω � Ω and d/ξ →∞.

FIG. 12. Probability distributions of the reflection phase at
K/K0 = 1.0 and d/ξ = 20, at ω/Ω = 0.1, for the Gaussian
colored (purple), and pinned (black) models. The dotted line
represents the analytical formula derived in Ref. [49] for a
Gaussian white-noise disorder. The inset illustrates the satu-
ration of P1(θ1) to a finite value at θ1 = −π in the Gaussian
models; by contrast, P1(θ1 = −π) vanishes in the pinned
model.
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FIG. 13. The local density of states as a function of the fre-
quency for K/K0 = 0.01. The black and purple lines show
the result of the pinned and Gaussian colored models, re-
spectively. They differ in their frequency dependence, which
is ∝ ω4 in the first case and ∝ ω in the second case, at
ω � Ω. The dotted line is the result of the Gaussian white-
noise model; it also shows the dependence ∝ ω at ω � Ω.
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