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We investigate the structural and spectral properties of deterministic aperiodic arrays designed
from the statistically isotropic pinwheel tiling. By studying the scaling of the cumulative integral of
its structure factor in combination with higher-order structural correlation analysis we conclude that
pinwheel arrays belong to the weakly hyperuniformity class. Moreover, by solving the multiple scat-
tering problem for electric point dipoles using the rigorous Green's matrix theory, we demonstrate
a clear transition from diffusive transport to localization behavior. This is shown by studying the
Thouless number as a function of the scattering strength and the spectral statistics of the scatter-
ing resonances. Surprisingly, despite the absence of sharp diffraction peaks, clear spectral gaps are
discovered in the density of states of pinwheel arrays that manifest a distinctive long-range order.
Furthermore, the level spacing statistics at large optical density exhibits a sharp transition from
level repulsion to the Poisson behavior, consistently with the onset of the wave localization regime.
Our findings reveal the importance of hyperuniform aperiodic structures with statistically isotropic
k-space for the engineering of enhanced light-matter interaction and localization properties.

I. INTRODUCTION

Isotropic nanostructures with circular symmetry in
k-space (i.e., k-space isotropy) have been proposed to
achieve more robust optical bandgaps [1–3], enhance the
efficiency and directionality of LEDs [4–8] and optical
lasers [9], create angle-insensitive structural coloration
[10, 11], and novel cavity-enhanced platforms for quan-
tum photonics [12, 13]. Isotropy in the k-space occurs
in disordered systems with long-range correlations (i.e.,
stealthy hyperuniform [1, 14] and optimized isotropic
scattering arrays [8]), quasi-periodic structures [9, 15, 16],
and aperiodic media beyond quasicrystals that feature
nearly continuous circular k-space symmetry, such as Vo-
gel spirals [17–20] and the pinwheel tiling [6, 10, 21].

In this work, we study the transport and localization
properties of optical waves in aperiodic arrays of scat-
tering dipoles positioned at the vertices of the pinwheel
tiling [22, 23]. A two-dimensional (2D) pinwheel tiling
is an aperiodic tiling of the plane constructed by a de-
terministic inflation rule that produces rotated copies of
a triangular prototile in infinitely many distinct orien-
tations, giving rise to isotropic k-space (see Section II
for more details). Motivated by the recent discovery
that two-dimensional (2D) disordered hyperuniform and
isotropic scattering media support a localization transi-
tion for transverse magnetic (TM) waves [24, 25], we ask
whether wave localization can also be achieved in deter-
ministic and isotropic pinwheel arrays. To investigate
wave localization in an open 2D scattering environment
( i.e., a system with in-plane radiation losses), we ap-
plied the rigorous Green's matrix spectral method that
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enables a systematic investigation of complex scattering
resonances and their spectral statistics [26, 27]. Specifi-
cally, by studying the Thouless number g and the first-
neighbor level-spacing statistics for different values of the
optical density our work demonstrates a transition from
the diffusive to the localized transport regime accompa-
nied by a crossover from level repulsion to level clustering
behavior. Moreover, spectral gaps are discovered at large
optical density by studying the density of optical states
(DOS) of the pinwheel structure and the formation of
localized resonances is observed around the band-edges,
similarly to disordered band-gap materials [24, 25, 28–
30].

II. GEOMETRICAL PROPERTIES OF
PINWHEEL ARRAYS

The aperiodic pinwheel tiling is a hierarchical struc-
ture iteratively generated from a simple inflation rule
that decomposes a rectangular triangle with edge lengths
proportional to 1, 2, and

√
5 (i.e., the prototile) into five

congruent copies [22, 23, 31, 32]. An infinite tiling is
produced by iterating and rescaling this linear decom-
position. Since the inflation rule also involves a rota-
tion by an angle that is an irrational modulo 2π, the
resulting tiling contains copies of the original prototile
arranged in infinitely many distinct orientations result-
ing in statistical isotropy, referred to as the “pinwheel
phenomenon” [31, 32]. As a consequence, the pinwheel
tiling displays an infinity-fold rotational symmetry. The
pinwheel tiling, first introduced by Conway and Radin,
does not contain discrete components in its diffraction
spectrum, which is conjectured to be absolutely continu-
ous although it is presently unknown whether there exists
a singular-continuous component as well [22, 23, 32].
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FIG. 1. Panel (a) shows 3907 scatters spatially arranged in a
pinwheel geometry. x̂ and ŷ indicate normalized coordinates
with respect to the average inter-particle distance d1. Panel
(b) presents the structure factor of the array shown in (a)
[cubic root is taken to enhance contrast]. Panel (c) displays
the azimuthally averaged structure factor (left blue axis) and
cumulative intensity function (right orange axis). The inset

reports a zoom-in-view of the scaling of the Z(k̂). Here, k̂
indicates the product of the wavenumber k with d1. The black
line is the power-law fit within the range 0.1 < k̂ < 3, while
the green dashed-lines represent the 95% prediction interval.
Panel (d) compares the γ1 and γ2 functions of the pinwheel
array (green lines) to the analytical trends of uncorrelated
Poisson processes (blue curves) [33, 34].

The pinwheel array shown in Fig.1 (a) is obtained by
positioning one scattering electric dipole at each node of
the corresponding tiling. The resulting scattering array is
aperiodic and features a diffraction pattern, proportional
to the structure factor S(k) shown in Fig.1 (b), that is
essentially continuous except from few bright spots that
are due to the finite size of the system [10, 32]. In the
infinite size limit, the tiles occur in infinitely many ori-
entations and the rotational symmetry of the spectrum
becomes continuous [32]. In fact, Radin has mathemati-
cally shown that there are no discrete components in the
diffraction spectrum of the pinwheel tiling [22], but we
remark again that it is unknown whether there is also
a singular continuous component [32]. Generally, the
structure factor displays a highly-structured diffuse back-
ground that manifests k-space isotropy, i.e., a circularly
symmetric diffuse scattering background that resembles
a powder diffraction pattern [35, 36].

Since the structure factor of the pinwheel array is
isotropic, we show in Fig.1 (c) its azimuthal average com-

puted according to the formula [8]:

Sθ(k) =
1

2π

∫ 2π

0

S(k, θ)dθ (1)

The sharp peaks in Sθ(k), shown by the blue line, quan-
tify the overall isotropic scattering strength of the pin-
wheel array that has been recently exploited in engineer-
ing applications to radiation extraction [6, 21] and bright
structural coloration of metal surfaces [10]. Additionally,
the point patterns obtained from the pinwheel tiling are
known to be hyperuniform [37, 38]. Hyperuniformity is
a correlated state of matter characterized by the sup-
pression of long-wavelength density fluctuations [14, 38].
Hyperuniformity has been recently shown to play an im-
portant role in light localization phenomena for both dis-
ordered and deterministic systems [24, 25, 34, 39, 40].

Hyperuniform systems can be classified according to
three main categories depending on the power-law scal-
ing of their structure factors in the vicinity of the k-space
origin, i.e., S(k) ∼ |k|α in the limit k → 0 [14]. Specif-
ically, α > 1, α = 1, and 0 < α < 1 define, respec-
tively, the strong (Class I), the logarithmic (Class II),
and the weak (Class III) hyperuniform class [14]. Cur-
rently, the hyperuniformity class of the pinwheel arrays
is not known.

In order to better understand the type of hyperunifor-
mity that characterizes pinwheel arrays we have investi-
gated the scaling behavior of the cumulative diffraction
power Z(k) that can be directly computed from the struc-
ture factor as follows [41]:

Z(k) =

∫ k

0

∫ 2π

0

S(k′, θ)dθdk′ (2)

Equation (2) scales as kα+1 when k → 0 if the array is
hyperuniform. The α coefficient can then be estimated
from a linear-fit in double logarithmic scale [41], thus
identifying the corresponding hyperuniformity class of
the investigated structure. The orange lines in Fig. 1 (c)
and in the corresponding inset show the scaling behav-
ior of the cumulative integral of the structure factor. The
black lines is the result of the power-law fit and the green
dashed-lines represent the 95% prediction interval. Our
results demonstrate that the pinwheel arrays are weakly
hyperuniform structures characterized by α = 0.6± 0.1.

General hyperuniform structures must obey the follow-
ing direct-space sum rule [42]:

ρ

∫
Rd

h(r)dr = −1 (3)

where ρ is the number density, while h(r) is the total cor-
relation function that vanishes in the absence of spatial
correlations in the system [38]. Equation (3) implies that
in hyperuniform systems the total correlation function
must become negative for some values of r [42]. A general
approach to identify regions of negative structural corre-
lations, developed initially to investigate correlations in
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the energy levels of nuclear spectra [33, 43], is based on
the analysis of skewness (i.e., γ1) and excess kurtosis (i.e.,
γ2) functions [34, 44]. These statistical quantities are de-
fined in terms of the moments:

µj =
〈(
n− 〈n〉

)j〉
(4)

where n is the number of elements in an interval of length
L and 〈· · · 〉 represents an average taken over many such
intervals throughout the entire system [34]. Besides pro-
viding a precise characterization of level repulsion and
long-range order, γ1 and γ2 are sensitive to three-level
µ3 and four-level µ4 structural correlations. In fact, γ1
and γ2 are equal to µ3µ

−3/2
2 and µ4µ

−2
2 − 3, respectively

[33].

In Fig 1 (d), we compare the size-scaling behavior of
the γ1 and γ2 functions of the pinwheel array (green
curves) with the analytical expressions (blue curves) cor-
responding to a uniform random (UR) point pattern,
which can be expressed as γUR1 = (R/d1)−1/2

√
ρ and

γUR2 = (R/d1)−2/3ρ [33, 34]. We observe that the pin-
wheel array exhibits a range where γ2 is oscillatory and
negative, indicating the presence of strong structural cor-
relations with repulsion behavior [34, 44]. On the con-
trary, UR systems do not feature structural correlations
up to fourth-order correlation functions [33]. Our scaling
analysis further demonstrates the hyperuniform nature of
the investigated pinwheel arrays and unveils a prominent
anti-clustering behavior.

III. SPECTRAL PROPERTIES OF PINWHEEL
ARRAYS

We now investigate the wave transport and localiza-
tion properties of TM-polarized electric dipoles that are
spatially arranged as in Fig.1 (a). Multiple scattering ef-
fects in two spatial dimensions (i.e., for cylindrical waves)
are studied by analyzing the spectral properties of the
Green's matrix defined as:

Gij = i
(
δij + G̃ij

)
(5)

where the elements G̃ij are given by [27]:

G̃ij =
2

iπ
K0(−ik0|ri − rj |) (6)

and K0(−ik0|ri − rj |) denotes the modified Bessel func-
tion of the second kind, k0 is the wavevector of light, and
ri specifies the position of the i-th scattering dipole in
the array. The non-Hermitian matrix (5) describes the
electromagnetic coupling among the scatterers and the
real and imaginary part of its complex eigenvalues Λn
(n ∈ 1, 2, · · ·N) correspond to the detuned frequency
(ω0−ω) and decay rate Γn (both normalized to the reso-
nant width Γ0 of an isolated dipole) of the scattering res-
onances of the system [26, 27]. This formalism accounts
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FIG. 2. Panel (a) and (b) show the complex eigenvalue dis-
tribution and the Thouless number g as a function of the
frequency ω when ρλ2 = 10−4. Panels (c) and (d) display the
complex eigenvalue distribution and the Thouless number g
when ρλ2 is equal to 5. The dashed-black lines in the panel
(b) and (d) identify the threshold of the diffusion-localization
transition g = 1. The different markers in the panel (a) and
(c) identify the spectral positions of the representative scat-
tering resonances reported in panel (b) and (d).

for all the multiple scattering orders and enables the sys-
tematic study of the scattering properties of 2D waves
with an electric field parallel to the invariance axis of the
scatterers [45]. Even though the 2D model in (5) does
not take into account the vector nature of light [46–49],
it still provides useful information on light localization
in 2D disorder media [27], transparency in high-density
hyperuniform materials [45], and correctly describes the
coupling between one or several quantum emitters em-
bedded in structured dielectric environments [50, 51].

To investigate the nature of the spectral properties
of the pinwheel arrays, we analyze the distributions of
the complex eigenvalues that describe the scattering res-
onances, the Thouless number, the level spacing statis-
tics, and the density of optical states (DOS) for different
values of the scattering strength of the system, which is
quantified by its optical density ρλ2. Here, ρ denotes
the number of scatterers per the unit area, and λ is the
optical wavelength. The spectral information is derived
by numerically diagonalizing the N ×N Green's matrix
(6). Figure (2) shows the results of this analysis at both
small (i.e., ρλ2 = 10−4) and large (i.e., ρλ2 = 15) opti-
cal density. In particular, Fig. (2) (a) and (c) display the
distributions of the complex eigenvalues of the Green's
matrix (5) in the small and large optical density regimes,
respectively. The complex eigenvalues are color-coded
according to the log10 values of the modal spatial ex-
tent (MSE) of the corresponding eigenvectors. The MSE
parameter quantifies the spatial extension of a given scat-
tering resonance of the system [52, 53]. Figure (2) (b) and
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(c) display the Thouless number g as a function of the
frequency ω corresponding to the two scattering regimes.

To evaluate the Thouless number g as a function of ω,
we have used the following definition [34, 47]:

g(ω) =
δω

∆ω
=

(1/=[Λn])−1

<[Λn]−<[Λn−1]
(7)

We have sampled the real parts of the eigenvalues of the
Green's matrix in 500 equi-spaced intervals and we com-
puted eq. (7) in each frequency sub-interval. The symbol

{· · · } in eq. (7) denotes the sub-interval averaging op-
eration, while ω indicates the central frequency of each
sub-interval. We have verified that the utilized frequency
sampling resolution does not affect the presented results.

In the low optical density regime, the complex eigen-
value distribution does not show the presence of any long-
lived scattering resonance with Γn � Γ0, as visible in
Fig. 2 (a). Consistently, the corresponding Green's ma-
trix eigenvectors are spatially delocalized across the ar-
ray. Two representative delocalized modes are shown in
Fig. 2 (b). These resonances are labelled by the square
and rhombus red markers that indicate their positions
in the spectrum. Moreover, the Thouless number g re-
mains larger than unity independently of the frequency
ω, which indicates diffusive transport.

On the other hand, at large optical density spatially
confined long-lived scattering resonances appear in the
spectrum when ωn ≈ ω0. Two representative local-
ized modes are shown in Fig.2 (d) labelled by the cir-
cle and triangle red markers indicating their positions in
the spectrum. Moreover, two dispersion branches popu-
lated by scattering resonances localized over small clus-
ters of dipoles near the center of the array [see Fig.2 (c)],
appear in the distribution of complex eigenvalues. Fig-
ure 2 (c) also shows the formation of a spectral gap region
where the critical scattering resonances reside. These are
spatially extended and long-lived resonances with strong
spatial fluctuations at multiple length scales character-
ized by a power-law scaling behavior [12, 54–56]. The
formation of a spectral gap region at large optical density
reflects the long-range correlated nature of the pinwheel
array. Furthermore, at large optical density, we find that
g becomes lower than one for ω ≈ 0, indicating the onset
of light localization, as demonstrated in Fig. 2 (d). We
remark that the long-lived scattering resonances that are
spatially confined over few scatterers appear at the fre-
quency positions where the Thouless number becomes
lower than one.

To obtain additional insights on this localization tran-
sition, we analyze the Thouless number as a function of
the normalized frequency ω for different optical density
values ρλ2, starting from 10−4 up to 12 with a resolu-
tion of 0.06. Figure 3 (a) shows a high-resolution map
that is color-coded according to the quantity ln[g] =
ln[g(ω, ρλ2)]. Localization phenomena begin to occur
when ρλ2 ≈ 1.5. Moreover, Fig. 3 (a) displays a clear
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FIG. 3. Panel (a) shows a high resolved map of the logarith-
mic values of the averaged Thouless number for different ρλ2

values as a function of ω. This map is evaluated in the range
ρλ2 = [10−4, 12] with a resolution of 0.06. Panel (b) shows
the crossover from level repulsion to level clustering of P (ŝ).
Specifically, P (ŝ) changes from the Ginibre's statistic (black
line) to the Poisson distribution (blue line) by increasing ρλ2.
Panel (c) reports the Thouless number as a function of the
frequency ω at a given optical density ρλ2 = 5 for different
system sizes. Blue, red, and green circle markers indicate a
total number of scatterers of 3907, 6934, and 15671, respec-
tively. Panels (d) displays the scaling of the minimum value
of the Thouless conductance as a function of ρλ2.

dispersion branch followed by the localized scattering res-
onances (i.e., the yellow stripes) that are similar to the
representative example previously shown in Fig. 2 (d).

The transition from diffusion to localization is con-
firmed by the switching from level repulsion to level clus-
tering of the quantity P (ŝ) as a function of ρλ2, which
is demonstrated in Fig. 3 (b). Here, P (ŝ) denotes the
probability density function of the first-neighbor level
spacing distribution of the complex eigenvalues of the
Green's matrix [57]. It is well-established that the sup-
pression of the level repulsion (i.e., P (ŝ) →0 when ŝ
goes to zero) indicates the transition into the localiza-
tion regime for both scalar and vector waves in two-
dimensional and three-dimensional disordered systems
[57–59] as well as non-uniform aperiodic deterministic
structures [34, 46, 47, 60]. When ρλ2 = 10−4, the P (ŝ)
of the pinwheel array, shown with red-circle markers in
Fig. 3 (b), can be modeled by the Ginibre distribution,
defined as [61]:

P (ŝ) =
34π2

27
s3 exp

(
−32π

24
s2
)

(8)

We emphasize that the black curve in Fig. 3 (b) does
not result from data fitting but is obtained using di-
rectly eq. (8). The Ginibre model extends the analy-
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sis of level repulsion to non-Hermitian random matrices
[61], which correspond to open-scattering systems. Our
analysis based on the Ginibre distribution demonstrates
that the level spacing of the pinwheel's complex eigen-
values exhibits cubic level repulsion in the low scattering
regime. On the other hand, at large optical density (i.e.,
ρλ2 = 5), the distribution of the level spacing statis-
tics changes drastically, showing level clustering. This
is demonstrated in Fig. 3 (b) by the blue-circle markers.
These data are well-described by the Poisson distribution
e−ŝ, which is typically associated to non-interacting, ex-
ponentially localized energy levels [33, 61].

Figure 3 (c) displays the Thouless number as a func-
tion of the frequency ω in the localized regime for pin-
wheel systems with an increasing number N of scatterers
(i.e., for an increasing size). The blue, red, and green
markers refer to arrays with 3907, 6934, and 15671 parti-
cles, respectively. All these curves cross at the threshold
value g = 1 at two points, independently from N , as dis-
played more clearly in the insets. The abscissas of these
two points can be taken as a rough estimate of the two
mobility edges that characterize the onset of the local-
ization transition [49]. Interestingly, the same behavior
was recently observed in the propagation of scalar waves
through a three-dimensional ensemble of resonant point
scatterers [62]. Figure 3 (d) shows the behavior of the
minimum value of the Thouless number as a function of
ρλ2 for three different values of N . Specifically, we have
evaluated g = g(ω) by using eq. (7) for each ρλ2 value and
we have repeated this procedure for different frequency
resolutions used in the Thouless number computation.
The circle markers and the error bars in Fig. 3 (d) are
the averaged values and the standard deviations corre-
sponding to different frequency resolutions. The scaling
of min[g] as a function of the optical density switches

from min[g] > 1 to min[g] < 1, demonstrating the diffu-
sion to localization transition.

Even though the pinwheel array manifests a character-
istic hyperuniform long-range order, the discovered wave
localization transition shares similar properties with the
Anderson transition in disordered media. In particular,
in 2D random media the Thouless number drops below
unity and the probability density of the level spacing
switches from the Ginibre distribution, describing level
repulsion in the diffusive regime, to the Poisson distri-
bution, which is characteristic of level clustering in the
localization regime.

A simple justification of the observed localization
threshold can be obtained by estimating the localization
length ξ. For a uniform and isotropic random system,
the characteristic localization length is predicted to be
[63, 64]:

ξ ∼ lt exp[π<(ke)lt/2] (9)

with lt the transport mean free-path and <(ke) the real
part of the effective wavenumber in the medium. Al-
though the numerical factor in eq. (9) may not be accu-
rate [63, 64], it nevertheless tells us that the localization

length in 2D systems is an exponential function of lt and
can be extremely large in the weak scattering regime (i.e.,
in the low optical density regime). Moreover, for isotropic
scattering systems like the ones considered in this work,
the transport mean free path coincides with the scatter-
ing mean free path ls, i.e., lt = ls = 1/ρσd. Here, σd
is the cross-section of a single point scatterer, which is
related to the 2D electric polarizability α(ω) [50]. At
resonance, σd is equal to k30|α(ω0)|2/4 [26, 45]. Consid-
ering that, under the effective medium theory, ke can be
approximated as k0 + i/(2ls) [45, 50], the eq. (9) can be
rewritten as πλ exp[π3/(2ρλ2)]/(2ρλ2), which relates the
localization length of isotropic structures with their opti-
cal density. In order to simply account for the discovered
transition we have to consider the ratio of ξ/L where L is
the linear size of the system. We immediately realize that
when ρλ2 = 10−4, L/ξ � 1 and the transport regime is
diffusive, while for ρλ2 = 5, ξ/L = 0.2 that is consistent
with the onset of the localization regime.

To further understand the physical mechanism beyond
the localization transition we study the behavior of the
density of states (DOS) associated to the spectral dis-
tribution of scattering resonances. To evaluate the DOS
within the Green's matrix spectral method we used the
approach introduced in refs.[30, 65] for the scalar case. In
particular, the DOS can be rigorously obtained from the
knowledge of the complex eigenvalues Λn of the Green's
matrix according to:

DOS =
1

Nπ

N∑
n=1

Γn/2

(ω + ωn)2 + (Γm/2)2
(10)

where N is the number of scatterers in the system,
ωm = ω0 − Γ0<[Λn]/2, and Γm = Γ0=[Λn] [30, 65]. In
Figures 4 (a) and (b) we show the behavior of the DOS
as a function of frequency (ω − ω0)/Γ0 for different val-
ues of the optical density ρλ2. As discussed in detail
in ref.[65], eq. (10) considers only the atomic component
in the excitations of the coupled system atoms+light.
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FIG. 4. Panel (a) displays a highly resolved map of the DOS
for as a function of the normalized frequency (ω − ω0)/Γ0

and for different ρλ2 values. Panel (b) shows the scaling of
the DOS with respect to N for three selected optical den-
sity values, marked with white dashed-lines in panel (a). We
have considered 3907 (blue lines), 6934 (red lines), and 15671
(green lines) scatterers, respectively.
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Therefore, eq. (10) does not converge to the DOS of the
free electromagnetic field at low optical density. Instead,
it approaches a simple Lorentzian function centered at
ω = ω0. This behavior is shown in Fig. 4 (a) up to ρλ2

equal to 1.5, where we plot a high-resolution map color-
coded according to eq.(10) as a function of (ω − ω0)/Γ0

and ρλ2. At optical densities larger than the threshold
value ρλ2 = 1.5, our results show the formation of lo-
cal band gap regions populated by band-edge localized
modes. Moreover, we notice that the frequency positions
of the scattering resonances that minimize the g values
[see Fig. 3 (a)] correspond to a spectral region where the
DOS is relatively low. This shows that, analogously to
random systems [24, 25, 28–30], wave localization in the
pinwheel array is enhanced around the spectral regions of
low DOS, i.e., close to the pseudo-band gaps of the sys-
tem. Finally, we investigate the DOS for different system
sizes. Specifically, Fig. 4 (b) shows the DOS behavior as
a function of (ω − ω0)/Γ0 when the number of scatter-
ers N is equal to 3907 (blue line), 6934 (red line), and
15671 (olive-green line), respectively. It is well-known
that the vanishing of the DOS in a gap only occurs in
the infinite-size limit [66]. In our case, the DOS inside
the gap is different from zero due to the finite size of the
investigated systems [67]. This fact is visible in Fig. 4 (b)
for ρλ2 = 10 where an increase of the size of the system
indeed reduces the DOS value inside the gap region. Our
findings demonstrate that TM-polarized electric dipoles
arranged in a pinwheel array support a transition from
wave diffusion to localization that occurs due to the sup-
pression of the DOS near spectral band-edge regions.

IV. CONCLUSIONS

In conclusion, we have systematically investigated
the structural and spectral properties of statistically
isotropic pinwheel arrays that we found to be weakly hy-
peruniform systems. Moreover, we have unveiled a tran-
sition, similar to the Anderson one, from a diffusive to
a localized regime by evaluating the Thouless number g
and studying the first-neighbor level-spacing statistics of
the complex eigenvalues of the Green's matrix. In partic-
ular, we have shown that g drops below unity by increas-
ing the scattering strength in the system and that the
level spacing switches from level repulsion, well-described
by the Ginibre distribution, to level clustering with a
Poisson distribution. Consistently, by estimating the lo-
calization length ξ we found that ξ/L is very large at low
optical density, while it becomes smaller than one at the
larger ρλ2 values that characterize the discovered local-
ization transition. Finally, by studying the behavior of
the DOS we have shown the formation of spectral gaps
at large optical density and of spatially localized scatter-
ing resonances that appear where the DOS is relatively
small. This behavior suggests that the localization phe-
nomenon in the pinwheel array is driven by the suppres-
sion of the DOS, similarly to random systems [28, 29].
Our findings reveal the importance of hyperuniform de-
terministic aperiodic structures with isotropic k-space for
the engineering of wave localization phenomena that can
be utilized to achieve enhanced light-matter interaction
and novel active nanophotonic platforms.
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F. Scheffold, and F. Mortessagne, Experimental tuning
of transport regimes in hyperuniform disordered photonic
materials, Phys. Rev. Lett. 125, 127402 (2020).
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[41] E. C. Oğuz, J. E. Socolar, P. J. Steinhardt, and
S. Torquato, Hyperuniformity of quasicrystals, Phys.
Rev. B 95, 054119 (2017).

[42] L. D. Negro, Waves in complex media (Cambridge Uni-
versity Press, London (UK), in press, 2021).

[43] O. Bohigas, R. U. Haq, and A. Pandey, Higher-order
correlations in spectra of complex systems, Phys. Rev.
Lett. 54, 1645 (1985).

[44] S. Torquato, J. Kim, and M. A. Klatt, Local Num-
ber Fluctuations in Hyperuniform and Nonhyperuniform
Systems: Higher-Order Moments and Distribution Func-
tions, arXiv preprint arXiv:2012.02358 (2020).

[45] O. Leseur, R. Pierrat, and R. Carminati, High-density
hyperuniform materials can be transparent, Optica 3, 763
(2016).

[46] L. Dal Negro, Y. Chen, and F. Sgrignuoli, Aperiodic
Photonics of Elliptic Curves, Crystals 9, 482 (2019).

[47] F. Sgrignuoli, R. Wang, F. A. Pinheiro, and L. Dal Ne-
gro, Localization of scattering resonances in aperiodic Vo-
gel spirals, Phys. Rev. B 99, 104202 (2019).

[48] F. Sgrignuoli, M. Röntgen, C. V. Morfonios,
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