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Hyperuniform many-body systems in d-dimensional Euclidean space Rd are characterized by com-
pletely suppressed (normalized) infinite-wavelength density fluctuations, and appear to be endowed
with novel exotic physical properties. Recently, hyperuniform systems of disordered varieties have
been observed in the context of various atomic-scale two-dimensional (2D) materials. In this work,
we analyze the effects of localized defects on the density fluctuations across length scales and on
the hyperuniformity property of experimental samples of two-dimensional transition metal dichalco-
genides. In particular, we extract atomic coordinates from time series annular dark field-scanning
transmission electron microscopy (ADF-STEM) imaging data of 2D tungsten chalcogenides with the
2H structure (Te-doped 2H-WSe2) showing continuous development and evolution of electron-beam
induced defects, and construct the corresponding chemical-bonding informed coordination networks
between the atoms. We then compute a variety of pair statistics and bond-orientational statistics
to characterize the samples. At low defect concentrations, the corresponding materials are nearly
hyperuniform, characterized by significantly suppressed scattering at the zero wave-number limit
(omitting forward/ballistic scattering). As more defects are introduced, the (approximate) hyper-
uniformity of the materials is gradually destroyed, and the system becomes non-hyperuniform even
when the material still contains a significant amount of crystalline regions. At high defect concen-
trations, the structures become antihyperuniform with diverging (normalized) large-scale density
fluctuations, mimicking those typically observed at the thermal critical points associated with phase
transitions. Overall, the defected materials possess varying degrees of orientation order, and there
is apparently no intermediate hexatic phase emerging. To understand the observed nearly hyper-
uniform density fluctuations in the slightly defected materials, we construct a minimalist structural
model and demonstrate that the experimental samples can be essentially viewed as perturbed hon-
eycomb crystals with small correlated displacements and double chalcogen vacancies. Moreover,
the small correlated displacements alone can significantly degrade hyperuniformity of the perfect
honeycomb structure. Therefore, even a small amount of vacancies, when coupled with correlated
displacements, can completely destroy hyperuniformity of the system.

I. INTRODUCTION

Hyperuniformity is a recently introduced novel concept
that provides a unified framework to categorize crystals,
quasicrystals, and certain unusual disordered systems [1–
3]. Hyperuniform many-body systems in d-dimensional
Euclidean space Rd are characterized by completely sup-
pressed (normalized) density fluctuations at large length
scales. In particular, the static structure factor S(k),
which is proportional to the scattering intensity in X-
ray, light, or neutron scattering experiments, vanishes
in the infinite-wavelength (or zero-wavenumber) limit for
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hyperuniform systems, i.e., limk→0 S(k) = 0, where k is
the wavenumber. Here S(k) is defined as

S(k) ≡ 1 + ρh̃(k), (1)

where ρ is the number density of the system, and h̃(k) is
the Fourier transform of the total correlation function

h(r) = g2(r)− 1, (2)

where g2(r) is the pair correlation function. Note that
this definition implies that the forward scattering contri-
bution to the diffraction pattern is omitted. Equivalently,
the local number variance

σ2
N (R) ≡ 〈N2(R)〉 − 〈N(R)〉2 (3)

of these systems associated with a spherical window of
radiusR grows more slowly than the window volume (i.e.,
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a scaling of Rd in d-dimensional Euclidean space) in the
large-R limit [1, 3], whereN(R) is the number of particles
in a spherical window with radius R randomly placed into
the system. Recently, hyperuniformity has been observed
in many physical, biological and material systems [4–20].
Hyperuniform systems, in particular the disordered

varieties, appear to be endowed with novel photonic,
phononic, transport and mechanical properties, and
wave-propagation characteristics [21–27]. For example,
disordered hyperuniform dielectric networks were found
to possess complete photonic band gaps comparable in
size to photonic crystals, while at the same time main-
taining statistical isotropy, enabling waveguide geome-
tries not possible with photonic crystals [21, 22]. More-
over, disordered hyperuniform patterns can have nearly
optimal color-sensing capabilities, as evidenced by avian
photoreceptors [28]. In addition, disordered stealthy hy-
peruniform two-phase materials and cellular solids were
recently found to possess virtually optimal transport
properties [24, 26, 27]. The reader is referred to Ref.
[3] for a thorough overview of hyperuniform systems.
Despite the exotic structural characteristics and phys-

ical properties that hyperuniform systems possess, in
practice it is very difficult to find perfect hyperuniform
systems of both ordered and disordered varieties due to
the inevitable existence of imperfection [29], except in
a few cases where tailored optimization techniques are
designed and deployed to fabricate perfect hyperuniform
materials [30–34]. Therefore, it is important to system-
atically investigate how various types of imperfections
affect hyperuniformity and the associated physical prop-
erties of the systems. In the past, the investigation of
the effect of imperfections on the physical and struc-
tural properties of crystals is well documented [35–37].
The effects of imperfections/defects on hyperuniformity
have also been extensively investigated theoretically in
the context of perturbed lattices, e.g., see Refs. [29, 38–
41] and references therein. Recently, in a seminal study,
using various theoretical models, Kim and Torquato [29]
demonstrated that while thermal excitation and point
defects such as vacancies and interstitials destroy hyper-
uniformity, uncorrelated random displacements preserve
hyperuniformity, but could change the class of hyperuni-
formity. To quantify the degree of hyperuniformity of
real systems, the hyperuniformity index [29, 42–44]

H ≡ S(k → 0)/S(kmax) (4)

based on the structure factor S(k) is often employed,
where kmax is the position of the largest peak in the
Fourier space. We note that for most practical pur-
poses effective hyperuniform systems with H ≤ 10−4

[29, 42–44] behave essentially the same as perfect hy-
peruniform systems. However, systematic study of how
the introduction of imperfections affect hyperuniformity
of real experimental systems, in particular atomic-scale
low-dimensional materials, is still lacking.
Very recently, disordered hyperuniformity (DHU) has

been observed in the context of various atomic-scale two-

dimensional (2D) materials [45–48]. For example, DHU
is found to arise in patterns of electrons emerging from a
quantum jamming transition of correlated many-electron
state in a quasi-two-dimensional dichalcogenides, which
leads to enhanced electronic transport [46]. It is also
discovered that DHU distribution of localized electrons
in 2D amorphous silica results in an insulator-to-metal
transition in the material, which is in contrast to the
conventional wisdom that disorder generally diminishes
electronic transport [47]. Moreover, Chen and coworkers
[48] have rigorously demonstrated that the introduction
of Stone-Wales (SW) topological defects [49] into hon-
eycomb network structures preserves hyperuniformity of
these systems to a large extent, and the resulting amor-
phous structural models capture the salient features of
graphene-like 2D materials at low temperatures.

While SW defects are prevalent in graphene-like 2D
materials, other types of defects such as chalcogen va-
cancies, metal vacancies and trefoil defects are dominant
in monolayer transition metal dichalcogenides (TMDCs)
such as MoS2 and WSe2 [50, 51]. For example, Lin and
coworkers [50] have elaborated how the local structures
evolve as various types of defects are introduced into
MoS2. There are also a few preliminary experimental
studies [52–54] examining the evolution of structures as
various types of defects are introduced into samples of
TMDCs.

In this work, we conduct a comprehensive characteri-
zation of the evolution of global structures as defects are
gradually introduced into real experimental samples of
TMDCs, in the context of hyperuniformity. Specifically,
we employ deep-learning algorithms to extract the atomic
positions in a sequence of image frames obtained from
ADF-STEM, as the scanning electron probe continuously
introduces defects into a monolayer crystalline 2D transi-
tion metal dichalcogenide alloy, Te-doped 2H-WSe2. We
then employ a multi-step procedure to identify and refine
the chemical-bonding informed coordination networks in
this evolving system. Subsequently, we employ a vari-
ety of theoretical and quantitative tools from soft-matter
physics, in particular pair statistics and bond-orientation
statistics to quantify the evolution of global structures.
We find that the systems are nearly hyperuniform at low
defect concentrations, and the (approximate) hyperuni-
formity is completely destroyed even when there is still
a significant portion of crystalline sites (specifically, less
than 20% defects). No intermediate hexatic phase are
found to exist as the defects are gradually introduced
into the systems, which is distinctly different from the
2D melting process as temperature increases. Moreover,
we generalize an analytical formula to describe the struc-
ture factor S(k) of crystal with correlated displacements
and vacancies. Using this analytical formula and Monte
Carlo simulations, we demonstrate that the experimental
samples in the early frames can be essentially viewed as
perturbed crystals with small correlated displacements
and double chalcogen vacancies. Moreover, our results
indicate the level of degradation of hyperuniformity that
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one should expect due to the finite experimental mea-
surement precision in real STEM experiments. In addi-
tion, we note that our analysis procedures can be readily
adapted to characterize the structures of other ordered
and disordered two-dimensional materials.

FIG. 1. (Color online) A schematic (a) of the 2H-WSe2 mono-
layer and its projection (b) when seen from above. Note that
the Te-doped 2H-WSe2 monolayer (at low Te concentration
can be viewed as effectively the 2H-WSe2 monolayer), when
projected from above, is mapped into a perfect honeycomb
lattice (ignoring the local strains introduced by the Te substi-
tutions, which are small compared to our measurement preci-
sion), with each “particle” in the projected plane possessing
three bonds. Moreover, half of the honeycomb lattice sites are
occupied by the W atoms, and each of the other half sites is
occupied by 2 overlaying Se/Te atoms. Each pair of W sites
are separated by a Se/Te site, and vice versa.

The rest of the paper is organized as follows: in Sec.
II, we describe the methods that we employ to extract
atomic coordinates and determine chemical bonds be-
tween atoms from the obtained STEM images, as well
as the statistical descriptors that we use to characterize
these structures. In Sec. III, we employ various statisti-
cal descriptors to characterize the evolving global struc-
tures of the experimental samples. In Sec. IV, we present
a minimalist structural model of the real experimental
samples in the early frames, and use analytical formula
and Monte Carlo simulations to validate it. In Sec. V,
we provide concluding remarks.

FIG. 2. (Color online) A schematic illustrating the map-
ping from a raw image (top) of a defected monolayer crys-
talline transition metal dichalcogenide obtained using the
ADF-STEM technique to the extracted atomic positions (bot-
tom).
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FIG. 3. (Color online) Extracted atomic coordinates and determined chemical-bonding informed coordination networks overlaid
with raw images of different frames obtained using the ADF-STEM technique.

II. METHODS

A. Extraction of Atomic Coordinates and
Identification of Chemical-Bonding Informed

Coordination Networks

We acquired aberration-corrected scanning transmis-
sion electron microscopy images of Te-doped WSe2. In
ADF-STEM, an angstrom-scale electron beam is scanned
across the sample, and scattered electrons are collected
as a function of the position of the electron beam. The
material studied is WSe2−2xTe2x where x = 0.06. The
synthesis and TEM sample preparation methods were
previously described in Ref. [51]. Because the Te frac-
tion is small and the local lattice distortion induced by
Te substitutions (2-4 pm) is below the measurement pre-
cision of these frames (∼15 pm), we do not expect the
impact of the Te to be significant (a schematic of the 2H-
WSe2 structure is shown in Fig. 1), and the sample can
be treated as if it were primarily WSe2. During imaging,
beam-induced defects, primarily vacancies, voids, and lo-
cal stripes of phase transformations [55], gradually mod-
ify the underlying lattice. In this text, we analyzed a 120-
frame atomic-resolution movie to capture the generation
and evolution of beam-induced defects. The readers are
referred to the supplementary information of Ref. [51]

for more details including sample fabrication, acquisition
parameters, and the movie itself. Next, we extracted
2D-projected atomic coordinates from the movie using a
deep learning package (AtomSegNet [56]). The extracted
atomic coordinates are further processed to remove pos-
sible artifacts from the imaging and the deep learning
treatment, particularly for the atomic coordinates that
are too close to each other. For example, we merge to-
gether any group of atoms that are within 73.3 pm from
each other by averaging over their coordinates. Since the
average shortest projected bond length is around 190 pm,
pair of atoms within the 73.3 pm threshold are consid-
ered non-physical and thus merged together. The map-
ping from a raw image frame to the extracted atomic
positions is schematically shown in Fig. 2.

To construct chemical-bonding informed coordination
networks from the final extracted atomic positions, we
compute the distance between each pair of atoms, and use
a three-step procedure to identify and refine the chemi-
cal bonds. We first assign a bond to those pairs with a
pair distance smaller than the cutoff 241.89 pm, which is
found to identify the bonds in the crystalline region rel-
atively well. Next, we add bonds around the defects by
allowing a larger cutoff of 322.52 pm for any particle with
one or zero bonds identified in the first step. Finally, we
limit the maximum number of bonds that any particle
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can possess to three and remove the extra bonds by sort-
ing bonds according to the bond length and only keeping
the shortest three bonds for each particle. Visual ex-
amination indicates that overall our procedure generates
reasonably accurate coordination networks that faithfully
represent the actual chemical bonding network.

B. Statistical descriptors

We consider a variety of statistical descriptors that
are sensitive in picking up structural information across
length scales. A basic quantity of a point configuration is
the aforementioned pair correlation function g2(r), which
is proportional to the probability density function of find-
ing two centers separated by distance r [57]. In practice,
g2(r) is computed via the relation

g2(r) =
〈N(r)〉

ρ2πr∆r
, (5)

where 〈N(r)〉 is the average number of particle centers
that fall into the circular ring at distance r from a central
particle center (arbitrarily selected and averaged over all
particle centers in the system), 2πr∆r is the area of the
circular ring, and ρ is the number density of the system
[57, 58]. The static structure factor S(k) is the Fourier
counterpart, and for computational purposes, S(k) is the
angular-averaged version of S(k), which can be obtained
directly from the particle positions rj , i.e.,

S(k) =
1

N
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∣
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∣

∣

∣

N
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exp(ik · rj)
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∣

∣

∣

∣

2

(k 6= 0), (6)

where N is the total number of points in the system [58–
60]. The trivial forward scattering contribution (k =
0) in Eq. 6 is omitted, which makes Eq. 6 completely
consistent with the aforementioned definition of S(k) in
the ergodic infinite-system limit.

The aforementioned local number variance σ2
N (R) is

another quantity that is often used to characterize den-
sity fluctuations of many-body systems. To compute
σ2
N (R), we randomly place circular observation windows

with radius R in the system under the constraint that the
windows should fall entirely within the image frame to
avoid boundary artifacts [28, 61]. Also, the largest radius
of the window that one can sample must be much smaller
than half of the box length, otherwise density fluctuations
are artificially diminished [11]. We count the number
of particles N(R) that fall into the observation window,
which is a random variable. The variance associated with
N(R) is denoted by σ2

N (R) ≡ 〈N(R)2〉− 〈N(R)〉2, which
measure density fluctuations of particles within a window
of radius R.

The bond-orientational order metric Q6 and correla-
tion function C6(r) [62, 63] are often used to study the

melting process. Specifically, the order metric Q6 is de-
fined as

Q6 ≡ |〈Ψ6〉|, (7)

where

Ψ6(ri) =
1

ni

ni
∑

j=1

e6θij , (8)

and 〈· · · 〉 denotes ensemble average, ni is the number of
neighbors of vertex i located at ri, and θij is the polar
angle associated with the vector from vertex i to j-th
chemically bonded neighbor of vertex i.
The bond-orientational correlation function C6(r) is

defined as

C6(r) ≡ 〈Ψ6(ri)Ψ
∗

6(rj)〉 | r = |ri − rj |, (9)

where Ψ∗

6 is the complex conjugate of Ψ6. In practice, to
compute C6(r), for each pair of particles located at ri and
rj , respectively, we compute Ψ6(ri)Ψ

∗

6(rj), and bin the
results according to the distance r = |ri − rj |. We note
that Q6 = 1 and C6(r) = 1 for a perfect honeycomb net-
work; while for isotropic fluid phase, Q6 ≈ 0 and C6(r)
decays with an exponential envelop at large r [62, 63]. To
avoid artifacts caused by the image boundaries, we ex-
clude the vertices that are within certain distance (439.8
pm in this work) from each edge of the bounding box of
the image.

III. STRUCTURAL CHARACTERIZATION OF
EVOLVING GLOBAL STRUCTURE OF

DEFECTED TWO-DIMENSIONAL TRANSITION
METAL DICHALCOGENIDES

We apply the aforementioned scheme to extract atomic
coordinates from different frames of STEM images, as
shown in Fig. 3. We then construct chemical-bonding in-
formed coordination networks using the aforementioned
procedures and the resulting networks are shown in Fig.
3. We note that crystalline Te-doped 2H-WSe2, an al-
loyed 2D TMDC monolayer, when projected from above
onto a 2D plane, is mapped into a perfect honeycomb
lattice and thus hyperuniform, with each “particle” in
the projected plane possessing three bonds. Moreover,
half of the honeycomb lattice sites are occupied by the
W atoms, and each of the other half sites is occupied by 2
overlaying Se/Te atoms. Visual examination of the con-
figurations and the associated networks in Fig. 3 suggest
that the samples in the early frames appear to be primar-
ily affected by double chalcogen vacancies. The Atom-
SegNet [56] identifies any occupied site with significant
image intensity as an atom. As a result, it does not dis-
tinguish between metal and chalcogen sites, and it only
identifies a site as a “defect” if there is no atom in projec-
tion or the intensity is significantly weaker than others.
For example, although single chalcogen vacancies are also
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prevalent [51] in these Te-doped 2H-WSe2 samples, these
vacancies still contain single chalcogen atoms and will
not be identified as defects in the projected structures.
Also, the atomic coordinates in the crystalline region de-
viate slightly from the perfect honeycomb crystal, which
might be due to various experimental factors including 1)
detector noise, 2) uncertainties introduced by the deep-
learning algorithm, and 3) instrument instabilities (sam-
ple drift, scanning errors, mechanical vibrations). These
factors limit the measurement precision and accuracy to
∼ 15 pm. It is noteworthy that various types of de-
fects such as vacancies and interstitials, and correlated
displacements may destroy or degrade hyperuniformity
of the structures, as studied theoretically. In the later
frames, large voids begin to form in the samples. The
Te-doped WSe2 sample gradually evolves from a nearly
perfect crystal to a highly defective crystal due to the
damage introduced by the electron beam used for imag-
ing. The high energy (80keV) electrons induce knock-on
damage and radiolysis in the sample, producing vacan-
cies, voids, and local lattice reconstruction. The ability
to image and generate atomic-scale defects allows us to
systematically study how hyperuniformity evolves with
defect concentration. In addition, we note that when an-
alyzing any real experimental samples from images, one
is almost inevitably limited by the finite precision for the
determination of atomic coordinates, which effectively
adds random uncorrelated displacements to the particle
positions. However, as previously proven in a theoret-
ical study, random uncorrelated displacements preserve
hyperuniformity, so finite measurement precision should
not affect our ability of determining the particular hype-
runiformity property of a given experimental system.

A. Pair statistics

While previously it has been rigorously demonstrated
that random introduction of even a tiny fraction of va-
cancies into a crystal destroys perfect hyperuniformity
[i.e., S(k → 0) is strictly zero] of the crystal, the quan-
tification of the degree of approximate hyperuniformity
of real experimental samples when vacancies and other
types of imperfections are jointly affecting the structures
remains an important problem to explore, which we ad-
dress in the following sections. It is noteworthy that
there appear to be correlations between damage events,
which are initially low (when the vacancy concentration
is low) and then increase (e.g., when large voids begin
to form). To characterize the density fluctuations of the
experimental samples across different length scales, we
compute various pair statistics of these samples, and the
results are shown in Figs. 4 and 5. In particular, as the
defects are gradually introduced into the system from
frame 0 to frame 20, the magnitudes of the Bragg peaks
in S(k) decrease, which indicates the degradation of the
crystalline order of the system. Moreover, the structure
factor S(k) of the structures in frames 0-10 appear to

decrease slightly or plateau to relatively small values as
k approaches 0, indicating suppressed large-scale fluctu-
ations. On the other hand, S(k) of frame 20 in Fig. 5
appears to converge to value appreciably larger than zero
as k decreases at small k, showing the destruction of hy-
peruniformity at this point. There are significant wiggles
in S(k) at large k as well in all of these structures, sug-
gesting short-scale structures in these materials. Also,
the scaling exponent β in |h(r)| = |g2(r) − 1| ∼ 1/rβ

increases from frame 0 to frame 10, i.e., the total cor-
relation function h(r) decays faster as r increases as de-
fects are introduced into the system, which is consistent
with the increasing disorder and loss of large-scale struc-
tural correlation in the system. In addition, the normal-
ized local number variance σ2

N (R)/R2 of the structures in
frames 0-10 decreases slightly as R increases at large R,
indicating (approximate) hyperuniformity of the struc-
tures, while σ2

N (R) scales as R2 for frame 20, indicating
the loss of hyperuniformity at this point. To quantify
the degree of hyperuniformtiy, we employ the hyperuni-
formity index H for the series of structures in different
frames by extrapolating S(k) to k = 0 with a linear fit-
ting of S(k) within k ∈ [0.0025pm−1, 0.0147pm−1]. We
find that H / 10−3 for the first 10 frames and H > 10−3

for frame 20, suggesting that the structures in frames
0-10 are nearly hyperuniform and the (approximate) hy-
peruniformity is essentially destroyed for the structure in
frame 20. We note that the hyperuniformity index H is
primarily suited for characterizing hyperuniform systems
or those that are not too away from being hyperuniform,
and thus we only compute H for frames 0-20.

For structures in frames 20-40, S(k) plateaus at small
k and converges to finite values as k approaches 0, and
σ2
N (R) scales as the volume of the observation window

(i.e., R2) as shown in Fig. 5, indicating that the cor-
responding systems enter the nonhyperuniform regime.
In this regard, these structures are similar to typical liq-
uids and glasses [3, 64]. As more defects are introduced
and large voids begin to appear beyond frame 60, S(k)
of the corresponding structures start to diverge as k goes
to zero, and σ2

N (R) grows faster than the window volume
(i.e., σ2

N (R)/R2 is an increasing function of R), and such
structures can be regarded as antihyperuniform with hy-
perfluctuations [3], since they are the antithesis of a hy-
peruniform system. Note that antihyperuniform systems
are often observed at thermal critical points, all of which
have fractal structures [3]. To our best knowledge, this
is the first time that antihyperuniformity is observed in
real disordered atomic-scale 2D materials. In addition,
the total correlation function h(r) decays faster as r in-
creases as more defects are introduced into the system
beyond frame 20, which is consistent with the increasing
disorder.
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FIG. 4. (Color online) Pair statistics associated with different frames of ADF-STEM images in the nearly hyperuniform regime.
(a) Structure factor S(k). (b) Log-log plot of |g2(r)−1| with a linear fitting (dashed line). (c) Normalized local number variance
σ2

N (R)/R2. The legends in (c) are the same as those in (a). (d) Hyperuniformity index H .

FIG. 5. (Color online) Pair statistics associated with different frames of ADF-STEM images in the nonhyperuniform and
antihyperuniform regime. (a) Structure factor S(k). (b) Log-log plot of |g2(r) − 1| with a linear fitting (dashed line). (c)
Normalized local number variance σ2

N(R)/R2. The legends in (c) are the same as those in (a).

B. Bond-orientational statistics

The process of introducing defects into the honey-
comb lattice can also be viewed as the “melting” of
hexagonal 2D materials to some extent. It is widely
known that 2D melting of colloidal systems is a two-step
crystalline-hexatic-liquid phase transition, and the bond-
orientational correlation function changes from oscillat-
ing around certain constant to power-law scaling, and
then exponential scaling at large length scale as tem-
perature increases [62, 63, 65, 66]. To investigate the
melting behavior of our experimental system, we com-
pute the bond-orientational order metric Q6 and bond-
orientational correlation function C6(r), which have been
routinely used to study 2D melting [62, 63]. The results

of C6(r) and Q6 are shown in Fig. 6. It can be clearly
seen that C6(r) oscillates around certain constant for all
of the investigated structures, i.e., the scaling behavior
does not change, although that constant decreases as de-
fects are gradually introduced, suggesting decreased ori-
entational order of the system. Moreover, Q6 also de-
creases relatively smoothly, which is consistent with the
results of C6(r). We note that Q6 is small but still much
larger than 0 even for the structure in frame 119, which
means that there is remaining orientatinal order in the
system, a reflection of the presence of the remaining crys-
talline regions in the system. These results indicate that
there is no intermediate hexatic emerging in the “melt-
ing” of 2D TMDC monolayer, which is consistent with
the fact that there is no mechanism in the system lead-
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ing to the formation of grain boundary and the loss of
long-range orientational order. This behavior is differ-
ent from the 2D melting of colloidal systems and similar
to the observation in structural models of graphene-like
materials where disorder is introduced through the SW
topological defects [48].
To quantify the “perfectness” of the honeycomb lat-

tice during the damaging process, we compute the defect
concentration pd defined as:

pd = 1−Nc/N0, (10)

where Nc is the number of crystalline sites in a struc-
ture (excluding the region within 439.8 pm of the edges),
and N0 is the number of particles in a reference perfect
honeycomb lattice (if it were to occupy the same region)
where the side length of a hexagon in the perfect crys-
tal is set as the same as the average bond length of all
the crystalline sites in the experimental structure under
consideration. Here we consider a particle to reside in
a crystalline site if the following conditions are met: 1)
this particle has three bonds; 2) the bond length dif-
ference of its longest bond and shortest bond is within
certain threshold (set as 36.65 pm here); 3) all of its bond
angles are in the vicinity of 120 degrees (set as 100 ∼ 140
degrees here). This geometric definition of defect con-
centration is distinct from the “real” atomic point defect
concentration in the lattice (for example the number of
Se vacancies, Te substitutions, or antisite defects). Vi-
sual examination of identified crystalline sites in different
frames indicates that our procedure produces reasonably
good results consistent with our definition of crystalline
sites. We note that combining the results in Figs. 4-6,
we find that the (approximate) hyperuniformity is es-
sentially destroyed when the defect fraction pd is much
smaller than 20%, i.e., when the material still contains a
significant amount of crystalline sites, and the structures
enter the antihyperuniform regime when pd exceeds 40%.

IV. STRUCTURAL MODEL OF DEFECTED
TWO-DIMENSIONAL TRANSITION METAL

DICHALCOGENIDES

As mentioned above, the experimental samples in the
early frames appear to be primarily affected by double
chalcogen vacancies and correlated displacements. To
fully understand the effect of imperfections on the struc-
tures, we construct a simplistic structural model of the
experimental samples that enables us to tune different
factors independently and see the outcomes. Here we
consider a simple honeycomb lattice where each parti-
cle is connected to its chemically-bonded neighbors by
springs of spring constant K. Specifically, the energy E
of the system is given by

E =
∑

i<j,Hij=1

Ka2

2
|
ui − uj

a
|2, (11)

where Hij = 1 indicates that vertices i and j are con-
nected by a chemical bond, and ui is the vector displace-
ment of vertex i from its corresponding reference honey-
comb lattice site. We introduce correlated displacements
to the particles in the honeycomb lattice according to a
multivariate Gaussian distribution:

p(u) ∼ exp(−
E

kBT
) =

∏

i<j,Hij=1

exp(−
|(ui − uj)/a|

2

2σ2
)

(12)
where σ2 = kBT/(Ka2) is an effective variance associ-
ated with the Gaussian distribution and can be viewed
as “fictitious” dimensionless temperature. Here kB is
the Boltzmann’s factor, T is the “fictitious” tempera-
ture, and a is the side length of the hexagon in the orig-
inal honeycomb lattice. By varying T , one can effec-
tively vary the variance σ2. It is noteworthy that un-
correlated stochastic displacements of crystals preserve
perfect hyperuniformity, and for this reason we employ
correlated displacements in our model to account for the
loss of perfect hyperuniformity observed in the relatively
defect-free experimental samples in the first few frames.
Experimentally, correlated displacements can result from
as scan distortions, sample drift, mechanical vibration,
noise, and local phase transitions. However, thermal mo-
tion can be excluded from the potential source of these
displacements since the time scale associated with ther-
mal motion is much shorter than the STEM image ac-
quisition time, and thus the obtained atomic positions
are time-averaged and the thermal motion information
filtered out.
Note that introducing correlated displacements in the

above fashion is mathematically equivalent to generat-
ing equilibrium structures at finite positive temperature,
which would allow us to utilize standard Monte Carlo
simulations to obtain perturbed honeycomb lattices with
correlated displacements according to Gaussian distribu-
tion with different variance σ2. Specifically, at each trial
move, each vertex is allowed to randomly move within
a prescribed maximal distance from its old position in
each dimension and the trial move is accepted with the
probability

pacc(old → new) = min{1, exp(−
Enew − Eold

kBT
)}, (13)

whereEold and Enew are the energies of the system before
and after the trial move as defined in Eq. 13. To fully
equilibrate the system, we perform 1000N trial moves,
whereN is the number of particles/vertices in the system.
Using this scheme, we generate configurations of dis-

placed honeycomb crystals with N = 2, 500 particles at
different σ2. Moreover, to introduce chalcogen vacancies
into the displaced crystal, we randomly remove pN/2
particles at chalcogen sites according to prescribed va-
cancy concentration p, where p is defined as the ratio
of double chalcogen vacancies over the total number of
chalcogen sites in the lattice. Representative configura-
tions at σ2 = 0.005 with varying p are shown in Fig. 7.
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FIG. 6. (Color online) Bond-orientational statistics associated with different frames of ADF-STEM images. (a) Bond-
orientational correlation function C6(r) of the frames in the nearly hyperuniform regime. (b) Bond-orientational correlation
function C6(r) of the frames in the nonhyperuniform and antihyperuniform regime. (c) Bond-orientational order parameter
Q6. (d) Defect fraction pd.

We note that chalcogen sites comprise half of the total
sites in the honeycomb lattice, and every pair of chalco-
gen sites is separated by a metal site. We then compute
S(k) of these stochastically displaced configurations with
or without defects. To better compare the results with
the experimental systems, we normalize the distance in
our simulated systems so that the characteristic length
scale d0 = 2π/k0 is the same for the initial experimental
frame and the vacancy-free displaced crystal at a given
temperature, where k0 is the position of the first peak.
We find that S(k) of vacancy-free displaced honeycomb

crystal at σ2 = 0.005 shown in Fig. 8(a) captures the
salient features of the experimental sample in the ini-
tial frame, which contains relatively few vacancies. Also
note here that correlated displacements already largely
degrades hyperuniformity even in the absence of vacan-
cies, similar to the effect of thermal motions [67, 68] .
Moreover, as more chalcogen vacancies are introduced
into the simulated system, S(k) at small k further in-
creases as p increases, as shown in Fig. 8(a), indicating
the loss of hyperuniformity. In addition, the scaling ex-
ponent β in |h(r)| = |g2(r)− 1| ∼ 1/rβ slightly increases
as p increases, i.e., the total correlation function h(r)
decays faster as r increases as vacancies are introduced
into the system, as shown in Fig. 8(b). These trends are
consistent with those observed in experimental systems,
and demonstrate that the series of experimental samples
studied in the early frames can be essentially viewed as
honeycomb crystals with small correlated displacements
and varying concentration of double chalcogen vacancies.
In Fig. 8(a) we also show S(k) of the reference perfect
honeycomb crystal with N = 2, 500 particles in Fig. 7(a),
and S(k) is strictly zero in the intervals between the sharp
Bragg peaks.
To further validate our simulation results, we gener-

alize a previously known analytical formula for S(k) of
defective point process in any space dimension with spa-
tially uncorrelated point vacancies [29] to displaced hon-
eycomb crystals with double chalcogen vacancies. We

note that this formula was first known for defective crys-
tals [68, 69]. Specifically, following similar procedures in
Ref. [29] , we derive the generalized formula for S(k) as

S(k) = 1 + (1− p′)[S0(k)− 1],

= 1 + (1−
p

2
)[S0(k)− 1],

=
p

2
+ (1 −

p

2
)S0(k),

(14)

where S0(k) is the structure factor of the vacancy-free
displaced crystal, and p′ = p/2 is the effective vacancy
concentration in the system, i.e., the ratio of chalcogen
vacancies over the total number of lattice sites. Since in
our model vacancies can only be introduced randomly at
chalcogen sites, strictly speaking the vacancies are not
completely spatially uncorrelated, but we assume that
this spatial correlation can be neglected. We compute
S(k) of displaced honeycomb crystal with p concentra-
tion of double chalcogen vacancies using this analytical
formula by plugging in the simulated S0(k) of vacancy-
free displaced crystals. We find that the analytical results
match the directly simulated S(k) of defected displaced
crystals well, as shown in Fig. 9, which demonstrates
that our assumption is indeed valid.

Because certain correlated displacements of atomic po-
sitions may be due to various experimental measurement
errors rather than intrinsic features of the experimental
samples, we also use computer simulations to investigate
the large-scale structural features of honeycomb crystals
with double chalcogen vacancies and no correlated dis-
placements. Specifically, we randomly remove particles
at chalcogen sites and compute the structure factor S(k)
of the defected honeycomb crystals at different double
chalcogen vacancy concentrations without correlated dis-
placements, as shown in Fig. 10. It is noteworthy that
S(k) is relatively flat away from the Bragg peaks asso-
ciated with the honeycomb crystals, and the values of
S(k) in these intervals between Bragg peaks are roughly
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(a)

(b)

(c)

FIG. 7. (Color online) Representative configurations of hon-
eycomb crystal with correlated Gaussian displacements with
variance σ2 = 0.005 at different vacancy concentrations p. (a)
p = 0. (b) p = 0.02. (c) p = 0.04.

proportional to the vacancy concentration, which is con-
sistent with previous theoretical predictions [29].

V. CONCLUSION AND DISCUSSION

In this work, we investigated structural features of
timelapse STEM images of 2D TMDCs across length
scales as an electron probe was used to gradually intro-
duce various types of defects into the 2D materials. In
particular, we quantified density fluctuations and the as-
sociated hyperuniformity/antihyperuniformity property
of these defected 2D materials. We find that in the early
frames the chemical bonding-informed coordination net-
work is mainly influenced by double chalcogen vacancies,

FIG. 8. (Color online) Pair statistics of simulated honeycomb
lattice with correlated Gaussian displacements with variance
σ2 = 0.005 at different vacancy concentrations. (a) Structure
factor S(k) of the simulated frames and representative refer-
ence experimental frames, and reference perfect honeycomb
lattice. (b) Log-log plot of |g2(r) − 1| with a linear fitting
(dashed line).

and at very low defect concentrations the correspond-
ing materials are nearly hyperuniform, as manifested in
various pair statistics and quantified by the hyperunifor-
mity index H . However, as additional defects are intro-
duced, the (approximate) hyperuniformity of the mate-
rials is completely destroyed, when there is significant
amount of crystalline regions in the system. No interme-
diate hexatic phase emerged, which is different from the
2D melting process for colloidal systems. In later frames
large voids begin to form in the samples, leading to the
rise of antihyperuniformity of the structures. By con-
structing a minimalist structural model for the samples
in the early frames, we were able to demonstrate that
the experimental samples can be essentially viewed as
perturbed honeycomb crystals with small correlated dis-
placements and double chalcogen vacancies. Moreover,
the correlated displacements alone, which is the result of
various uncontrollable experimental noises and pertur-
bations that one should usually expect when acquiring
STEM images of atomic-scale 2D materials, largely de-
grade hyperuniformity of the system, and low concentra-
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FIG. 9. (Color online) Structure factor S(k) of honeycomb
crystal with correlated Gaussian displacements with variance
σ2 = 0.005 at different vacancy concentrations obtained from
analytical expression (solid line) and Monte Carlo simulations
(dots). (a) p = 0.02. (b) p = 0.04.

tion of vacancies, when coupled with correlated displace-
ments, basically destroy (approximate) hyperuniformity.
We note that here we primarily studied the effect of

double chalcogen vacancies and correlated displacements
on the density fluctuations of defected TMDCs. How-
ever, if other more complex types of defects such as
trefoil defects can be introduced into experimental sam-
ples of TMDCs in a controllable manner, in principle we
can employ similar procedures to investigate the effect of
those defects. Also, it is noteworthy that while chalco-
gen vacancies are dominant in the projected structures
of certain samples of TMDCs such as those in the early
frames of the current work, SW defects are prevalent in
graphene-like 2D materials. In the future it would be in-
teresting to look at how SW defects, when coupled with
other factors, affect structural features and physical prop-
erties of real graphene-like materials in experiments. Pre-
viously, it has been demonstrated [48] that the introduc-

tion of SW defects and local structural relaxation alone
preserves hyperuniformity of honeycomb lattice while the

FIG. 10. (Color online) Structure factor S(k) of honeycomb
crystals at different double chalcogen vacancy concentrations
without correlated displacements.

disorder of the structure increases, and are accompanied
by the emergence of exotic physical properties. It is im-
portant to note that while a single experimental real-
ization of amorphous graphene was previously found to
be hyperuniform [48], even the samples of TMDCs in the
very early frames in the current work are found to be only
nearly (or approximately) hyperuniform. More generally,
to our best knowledge we for the first time introduce a
variety of theoretical machinery from soft-matter physics
to study the structural evolution of experimental sam-
ples of atomic-scale 2D materials, and these techniques
can be readily adapted and applied to other ordered and
disordered 2D materials. The structural studies of 2D
materials in this paper and related works will strengthen
our fundamental understanding of the physics underlying
these materials, and serve as the basis for future func-
tional materials design.
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