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We carry out density functional theory (DFT) calculations to explore the antiferromagnetic
(AFM) spin cycloid in multiferroic BiFeOs of the R3c ground state structure. We calculate the
energy dispersion E(q) of cycloidal spin spirals along the high symmetry directions of the pseudo-
cubic unit cell and find a flat AFM spin spiral (or cycloid) ground state with a periodicity of ~80 nm,
which is in good agreement with experiments. To investigate which structural distortion of the R3c
phase is the driving mechanism for the stabilization of this cycloid, we further study three artificial
phases: cubic, R3c and R3m. In all cases, we find a large exchange frustration. The comparison
between these phases provides detailed insight about how polarization and octahedral anti-phase
tilting affect the different magnetic interactions and the magnetic ground state in BiFeOgs. In R3c
BiFeO3, the magnetic ground state is driven by a competition between the frustrated exchange
stemming from the hybridization between the elements Bi, Fe, O and the Dzyaloshinskii-Moriya
(DM) interaction due to the Fe-Bi ferroelectric displacement. The cycloid appears to be stable

because the anisotropy energy in R3c BiFeOs is relatively small to enforce a collinear order.

I. INTRODUCTION

BiFeO3 (BFO) is one of the few single-phase room-
temperature multiferroics which exhibit a large sponta-
neous polarization. BFO has an antiferromagnetic tex-
ture that can be approximated locally by a G-type order
(G-AFM) in its R3¢ ground state. Its Curie tempera-
ture is 1123 K [1] and its Néel temperature is 643 K. The
R3c structure has a polarization of about 90 uC/cm?
at low temperature [2], arising from off-centered ionic
displacements along the [111] direction, and also shows
anti-phase antiferrodistortive (AFD) oxygen octahedral
tiltings (a~a~a~ in Glazer’s notation [3]). In the bulk
form, the AFM order is modified by the presence of the
Dzyaloshinskii-Moryia (DM) interaction [4, 5], which cre-
ates a spin cycloid [6] that propagates along the [110]
direction, with magnetic moments lying in the plane
formed by the polarization and the propagation direc-
tion. The periodicity of the spiral is 62 nm [7, 8].

The DM interaction originates from spin orbit coupling
(SOC). It is typically understood as the magnetic in-
teraction between two magnetic atoms mediated by an
electron which is under the influence of SOC [9]. Ad-
ditionally, in multiferroics the internal electric field has
been identified as a possible source of DM interaction
[10]. In BFO both effects could add each other: the d-
orbitals of Bi could induce a strong SOC [11] and the
structural distortions could generate an internal SOC,
specifically through polar displacements, that create an
internal dipole and break inversion symmetry [12, 13],
or AFD tilts that mediate the magnetic super-exchange
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interaction [14, 15]. The former DM interaction has a
magnetoelectric nature and is crucial to explain the sta-
bilization mechanism of the spin spiral, as it favors chi-
ral magnetic non-collinear configurations, while the latter
DM interaction is responsible for the spin density wave
(or cycloidal tilt) [16] or weak magnetization in the ab-
sence of the magnetic cycloid [14]. The presence of a
DM interaction driven spin cycloid in BFO has triggered
many works over the last ten years because it enables
electro-magnon coupling [17-19] and couples to polariza-
tion and strain [19-21].

Although of considerable interest, the cycloid of BFO
was only recently explored numerically in Ref 22. Since
the periodicity of 62 nm is too large to be studied fully
from first principles, its exploration had to rely on the
parametrization of a Heisenberg Hamiltonian based on
the four-state energy mapping method. The exploration
of the different magnetic configurations is then carried
out via Monte Carlo simulations [22]. This method gives
AFM spin cycloid ground state properties, and the result-
ing cycloidal pitch of 83 nm was found in good agreement
with experiment. However, this method does not allow
for the direct assessment of the stability of the cycloid, in
particular if long-range exchange interactions are impor-
tant, and hence, lacks a description of the different sta-
bilization mechanisms that only microscopic electronic
structure calculations could provide.

A suitable method to address this task is the calcu-
lation of incommensurate spin spirals [6]. These have
a much larger magnetic unit cell as compared with the
chemical unit cell and have been studied theoretically
for more than twenty years in ferromagnetic materials.
In metals, significant efforts have been made to simu-
late non-collinear magnetic states based on the chemical
unit cell [23]. This approach is known as the Generalized



Bloch theorem and relies on the modulation of the phase
of the electron spinors by a factor +q/2 for up and down
spin, respectively. The framework allows the calculation
of all incommensurate magnetic spin spirals in the first
Brillouin zone, at a cost which corresponds to a single
chemical unit cell.

This approach has been extended to explore the SOC
contribution to the total energy of the spin spiral [24].
In this case, SOC is included in the perturbation theory
and gives access to the DM interaction. It has been very
successful in describing non-collinear magnetic states at
surfaces or interfaces, which are stabilized by the DM
interaction in rather simple crystallographic geometries
where the model of Levy and Fert directly applies [9].
This method has the advantage of quantifying the source
of the DM interaction in terms of SOC contribution to the
total energy. It has been central to obtain key knowledge
in the fields of chiral spintronics where it could identify
the 5d-transition metal substrate [25, 26], the interfacial
electric field [27, 28] or the Oxygen concentration at sur-
faces [29] as a source of the DM interaction. Although
this methodology is now standard for metals, it has never
been applied to magnetic multiferroic oxides.

In the case of the multiferroic BFO, including the DM
interaction is crucial as it is responsible for the stabi-
lization of the spin cycloid [30], as well as the weak
(ferro)magnetization due to spin canting [14, 31, 32]. It
is also central to the mechanism for the magnetoelectric
(ME) coupling [33]. As compared with metals, the crys-
tal structure of a multiferroic oxide is of prime impor-
tance to accurately describe its physical properties. For
example, in a multiferroic of the ABOs-type, the crys-
tallographic structure must be correctly reproduced to
obtain good transport and magnetic properties [34].

For BFO, the DM interaction may occur through dif-
ferent mechanisms. The coupling between the magnetic
moments on neighboring sites is mediated by an Oxy-
gen atom which locally breaks inversion symmetry (via
octahedral tilts). This mechanism occurs via the super
exchange and could be enhanced via the SOC of the p-
orbitals of Oxygen [10]. In that case, the direction of
the DM interaction should be perpendicular to the Fe-O-
Fe planes. Another mechanism may involve the Bismuth
atoms, which break inversion symmetry via the ferroelec-
tric distortions [11]. This mechanism, also known as the
spin current model, creates a DM interaction perpendic-
ular to the polarization and spiralal propagation direc-
tion. In that case, the p-orbitals of Bismuth, which hy-
bridize with the d-orbitals of Iron, could enhance the DM
interaction. Finally an internal electric field is created
by the off-centered ferroelectric displacements (involving
Bismuth, Iron and Oxygen). In that case, the DM inter-
action would be favored in a plane perpendicular to the
potential gradient [35] e.g., to the < 111 >-directions.

Since both the positions of the Oxygen and the Bis-
muth may affect the amplitude and direction of the DM
interaction, several phases should be explored to probe
the origin of the DM interaction. This also opens up

the possibility that changing the crystal structure of the
ABOgs-type multiferroic will change the DM interaction,
and therefore also the propagation of the spin cycloid
[36].

In this paper, by means of state-of-the-art density func-
tional theory (DFT) calculations, we study the incom-
mensurate spin cycloid in BFO. To explain the magnetic
structure of the R3c bulk ground state, we compare the
results for different bulk phases: (a) in the cubic phase
where both the polarization and the tilts are suppressed;
(b) in the centro-symmetric R3¢ phase where the po-
larization - but not the tilts - is suppressed; (c) in the
R3m phase where the tilts - but not the polarization -
are suppressed; and (d) the ground state R3c phase (cf.
Fig. 1). Here the structures (a) — (c) are artificial struc-
tures to isolate the structural peculiarities of the R3c
phase. For each phase, we have determined the mag-
netic ground state and have extracted the magnetic ex-
change interaction beyond the first-nearest-neighbor ap-
proximation, the DM interaction and the magnetocrys-
talline anisotropy. In all cases, a large exchange frus-
tration is found, i.e. the exchange interaction of dif-
ferent neighbors compete in strength and sign. Despite
of its large frustration, the exchange interaction favors
the collinear order. In both cubic and R3c phase, the
DM interaction is vanishing which is why there, the G-
AFM is the magnetic ground state. Contrarily, both
the R3m and the R3c exhibit a cycloidal ground state
whose chirality is driven by a left rotating DM interac-
tion. Counter-intuitively, in the vicinity of the R-point,
the DM interaction originates from the SOC contribu-
tion of the Fe sites, with little to no contributions from
the p-orbitals of both the Bismuth and Oxygen. From
the comparison of the phases it is evident that the Fe-Bi
displacement, responsible for the strong polarization in
BFO, creates a DM interaction which stabilizes the cy-
cloid while the octahedral tilts destabilize it: the value
of the DM interation is strongly reduced by the presence
of the tilts in R3¢ compared to R3m.

This paper is organized as follows: Section II explains
the methodologies, in particular the approach of the gen-
eralized Bloch theorem for spin spirals [6]; in section III
we discuss the results of the calculations carried out for
the four different phases mentioned above. In Section IV
we compare the stability of the cycloids and assess their
stabilization mechanisms; A brief conclusion is given in
Section V.

II. METHODS
A. Structural relaxation

The R3c unit cell of BFO containing 10 atoms is re-
laxed with DFT, carried out using the ABINIT pack-
age [38-40] and the projector augmented wave (PAW)
method [41]. The exchange and correlation functional
is treated with local spin density approximation +U



Table I. DFT calculated structural parameters of the R3¢ phase of BFO, compared with reported theoretical and experimental

values.

Bi (2a)
This work (0,0,

Fe (2a)

0,0)
Theory[2] (0,0,0) (0.227,0.227,0.227) (0.542,0.943,0.397) 5.52
0,0) (0.221,0.221,0.221) (0.538,0.933,0.395) 5.63

Expt.[37] (0,0,

(0.225,0.225,0.225) (0.541,0.939,0.394) 5.54

O (6b) am (A) o (deg) Q (A®)
59.71 119.32
59.84 118.34
59.35 124.60

(@)  Cubic (b) R3c

Figure 1. Sketches of the studied BiFeOs structures. Green
spheres correspond to the Bi atoms, golden spheres in the
center of each cube denote Fe and small red spheres show O
atoms. (a) centrosymmetric cubic structure, (b) R3c struc-
ture where only the Oxygen octahedral tilts are included, rep-
resented by curved arrows and +£. (c¢) R3m structure, where
only the ferroelectric displacement is included, denoted by ar-
rows at the Bi sites and Fe sites. The displacement leads to
a large spontaneous polarization P in the [111] direction. (d)
Structural R3c ground state where both effects, Oxygen oc-
tahedral tilts from (b) and ferroelectric displacement from (c)
are included. Note that the structures of (a-c) are artificial
to isolate the structural distortions of the R3c phase.

(LSDA+U), with a Hubbard U parameter of 4.0 eV and
J of 0.4 eV on the Fe atoms, which is typical for first-
principles calculations on BFO [42, 43]. The wave func-
tions are expanded using plane-wave basis sets with a
kinetic energy cutoff of 30 Hartree. The self-consistent
calculations are performed with an un-shifted 24 x24x24
k-point grid. For structural relaxation, the collinear G-
type AFM configuration is adopted. The R3¢ structure
is optimized until the force on each atom is smaller than
1x10~° Ha/bohr. As shown in Table I, the relaxed rhom-
bohedral lattice constant of R3¢-BFO is 5.538 A and the
rhombohedral angle is 59.71°, in good agreement with the
theoretical values in Refs. 2 and 43, and the experimental
values of 5.63 A and 59.35° [37], considering that LDA
often underestimates the lattice constant by 1%-2%. The

relaxed atomic positions are also in good accordance with
other reported values.

The R3m (resp. R3c) structure in this study is gen-
erated from the R3¢ structure by removing the a”a~a™
oxygen octahedral tiltings (resp. the polar displacements
on Bi, Fe, and O atoms). The lattice vectors are kept un-
changed. For our cubic structure, both the tiltings and
polar displacements are removed, and the rhombohedral
angle is changed to 60°, while keeping the lattice param-
eter unchanged as compared with R3c.

B. Magnetic energy dispersion and magnetic
interactions

To determine the magnetic ground state and magnetic
interactions, we use the above-mentioned structures and
calculate the energy dispersions E(q) of flat homoge-
neous spin spirals [6] applying the full-potential linearized
augmented plane wave (FLAPW) approach [44-46], as
implemented in the FLEUR ab initio package [47]. For all
these calculations, we have used the local density approx-
imation [48], muffin-tin radii of 2.80 bohrs, 2.29 bohrs,
and 1.29 bohrs for Bi, Fe, and O atoms, respectively and
a large plane-wave cutoff kmax of 4.6 bohr~'. These pa-
rameters result in a magnetic moment of m = 4up for
all phases in agreement with experiments [49-51]. Spin
spirals are the general solution of the Heisenberg model
on a periodic lattice and can be characterized by the spin
spiral vector q. This vector determines the propagation
direction of the spin spiral as well as the canting angle
between two neighboring spins. A magnetic moment m;
at an atom position r; is given by

m; = m(cos(q -1;),sin(q - ry), 0) (1)

where m is the magnitude of the magnetic moment. The
vector q is a vector in reciprocal space and we choose
it along the high symmetry directions of the cubic Bril-
louin zone (BZ, for the cubic case), R-X-M-T'-R and in
the respective directions of the rhombohedral BZ for the
rhombohedral phases. In order to compare and visual-
ize the energy dispersions for all calculated phases, the
energies are presented in the pseudo-cubic BZ along R-
X-M-T'-R directions. Every point in the BZ represents
a certain collinear state, e.g. the I' point is the ferro-
magnetic (FM) state and the R point the G-type AFM
state. Along the full paths, self-consistent calculations
without SOC have been performed using the generalized
Bloch theorem [23] with a k-point mesh of 10 x 10 x 10.



To accurately determine the energies around the mag-
netic ground state at |q| — R, the magnetic force theo-
rem [52, 53] has been applied using a large k-point set of
64000 (i.e., 40 x 40 x 40). The Heisenberg exchange in-
teraction constants J;; beyond first nearest neighbors of
each phase are then determined by mapping the Heisen-
berg Hamiltonian

H= —ZJ,-j(mi-mn (2)

onto the resulting energy dispersion E(q). Here, the
number of required neighbors to describe the exchange
interaction is determined by finding the best overall fit
of the energy dispersion, for which including more neigh-
bors will not give a significantly better description (For
detailed information, see appendix A). As the exchange
interaction appears to be frustrated (i.e. different neigh-
bors J;; compete in sign and strength to form the mag-
netic ground state), we also determine the exchange in-
teraction in an effective first-nearest-neighbor approxi-
mation Jeg, which coincides with the so-called exchange
stiffness A. Jeg can be interpreted as a measure of the
curvature in the energy dispersion very close to the mag-
netic ground state, here, for E(q — R). The strength
of exchange frustration can be determined in two ways,
either by comparing the energy contributions of the dif-
ferent neighbors J;; or by comparing the ratio between
the effective nearest neighbor exchange Jeg and the ex-
change interaction of the first neighbor J;. For the latter,
a ratio of Jeri/J, ~ 1 is a sign of a very small exchange
frustration, whereas systems with a ratio Jett/J; < 1 are
known as highly exchange frustrated.

For each point calculated with the magnetic force theo-
rem at q — R, spin-orbit coupling is added in first-order
perturbation theory [24]. The energy contribution due
to SOC, AEsoc is used to determine the strength of the
DM interaction (the magnitude of the DM vector D,;)
by mapping the DM Hamiltonian

Hpm = — ZDij - (m; x my) (3)

ij

to the total SOC contribution (cf. App. A). Here, a k-
point mesh of 20 x 20 x 20 has been used.

We determine the uniaxial magnetocrystalline
anisotropy energy (MAE) in the approximation of an
easy axis anisotropy u parallel to the < 111 > directions
according to the Hamiltonian

Hani = — Z K(mz . 11)2 (4)

We self-consistently perform scalar-relativistic calcu-
lations in the collinear G-type AFM state and use the
force theorem [52] imposing the SOC quantization axis
along the [111] direction (E}) and perpendicular to this

direction [110], denoted as F; (for completeness, also the

4

[112] direction has been checked). The MAE is then de-
fined as Emag = Ej| — E1. As for the DM interaction, a
k-point mesh of 20 x 20 x 20 has been applied.

ITII. RESULTS
A. Cubic phase

In the cubic phase [see Fig. 1 (a)], both the anti-phase
tilting of the O atoms and off-centering of Fe and Bi
are lacking, i.e., the system is centro-symmetric, and we
expect neither a DM interaction nor a polarization to
be formed. This case is the simplest one and a good
benchmark for our DFT calculations.

In Fig. 2(a), the energy dispersion for flat spin spiral
states without spin-orbit coupling (SOC) along the high-
symmetry paths of the pseudo-cubic Brillouin zone (BZ,
see inset) R—X-M-T'-R is presented. All points show the
results of the energy dispersion E(q) obtained from DFT
calculations, as a function of the different q vectors. The
line is the fit of E(q) using the Heisenberg exchange in-
teraction (for more details, see App. A). In order to fit
such a curve, the function needs to reproduce the energy
minimum in the vicinity of the R-point (G-AFM) and
M-point (in-plane checkerboard AFM) as well as the two
maxima at the X- and the I'-points (FM). These max-
ima have a high energy of around 200 meV/atom and
370 meV/atom, respectively. This rather large energy
difference is usually a sign of hard magnetic behavior
and small exchange frustration, since it typically coin-
cides with a quick increase of the energy when leaving the
magnetic ground state. The nearest neighbor exchange
interaction J; = —31meV is strongly antiferromagnetic
and it prevents neighboring Fe magnetic moments from
spontaneously flipping into ferromagnetic order. How-
ever, close to the R-point, the energy dispersion appears
to be flatter than anticipated from the large J.

We determine the effective nearest neighbor exchange
interaction of Jog = —21 meV to quantify this “flatness”
in the energy dispersion for E(q — R). The energy for
very small canting angles in a spin spiral is reduced com-
pared to the parabolic behavior for large nearest neighbor
exchange J; alone. Taking these two properties into ac-
count, the ratio of Jeti/s; ~ 0.68 is a sign of large exchange
frustration in the artificial cubic phase of BFO. Similar
frustrated exchange interaction has been reported in ul-
trathin magnetic films [26, 54-56]. Here, it occurs due to
the hybridization of Fe with both Oxygen and Bismuth,
even without structural distortion.

To fully account for this exchange frustration, seven
neighbors for the exchange interaction are required to
model the DFT calculated points of Fig. 2 (a) (all de-
termined values Jy, ..., J7 are displayed in Tab. IT). This
procedure results in the dark grey line. The description
of cubic BFO based on the extended Heisenberg model
agrees well with the calculations: it can reproduce the
maxima of energy at the X- and the I'-point, and the local



energy minimum at the M-point. Note that this would
not be possible by solely taking J; or J.g into account.
Despite the large AFM nearest neighbor exchange, the
contributions of farther neighbors such as Jo ~ 5%J;
and Jy ~ 4%J; have a significant contribution and lead
to the large exchange frustration in the system.

To scrutinize the magnetic ground state, we zoom in on
the energy dispersion close to q — R [Fig. 2 (b)], for en-
ergy differences smaller than 0.1 meV. The G-type AFM
structure represents the energy minimum without SOC
(grey points and line). Due to the exchange frustration,
even a small distortion triggered by internal strain might
be sufficient to induce an energy minimum away from the
G-type AFM state. When SOC is included (red points
and curve) the magnetic ground state does not change.
In fact, the DM interaction is completely suppressed (cf.
Table II) as expected since the cubic phase is centro-
symmetric, and additionally, the uniaxial anisotropy en-
ergy is extremely small. From these results, we conclude
that in a hypothetical cubic structure of BFO, the mag-
netic ground state is the G-type AFM. To obtain a spin
cycloidal ground state, we need to take further structural
effects into account, which we describe in the following.

B. R3c phase

Next, we explore the magnetic properties of the R3c
phase [see Fig. 1 (b)], which has a lower symmetry than
the cubic crystal structure. In this case, the polarization
is still absent so the structure has inversion symmetry but
fewer mirror planes due to the presence of the Oxygen
octahedral tilts. This means that the Oxygen along the
Fe-O-Fe bonds is not a center of inversion anymore.

The energy dispersion E(q) without SOC in the R3¢
phase is shown in Fig. 3 (a). It is comparable to that in
the cubic phase [cf. Fig. 2 (a)] with only minor changes,
e.g., the energy difference between R and the other points
of the BZ, X,M, T" are reduced and so is J; ~ —28 meV
(cf. Table IT). The curvature in R3¢ BFO appears flatter
than in the cubic phase as the effective nearest neigh-
bor exchange Jog = —16.16 meV/atom is reduced. Con-
sequently, the exchange frustration is enhanced because
the ratio of Jett/J, = 0.57 is slightly smaller. To fully de-
scribe the behavior of the energy dispersion, again, the
exchange interaction of seven neighbors needs to be taken
into account, where especially Jy ~ 7%J; and Jy ~ 4%.J;
have large contributions. Thus, comparing the cubic and
the R3c phase, the anti-ferro-distortions do not majorily
affect the exchange interaction; however, small structural
distortions lead to a slight change in the hybridization of
the Fe orbitals with O and Bi and the exchange frustra-
tion is increased.

Due to the Oxygen octahedral tilts, a DM interaction
can emerge between Fe pairs mediated by the Oxygen
atoms, due to the lack of mirror planes [22]. However,
each Fe atom is surrounded by six such pairs, and serves
as center of inversion. This results in the cancellation
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Figure 2. Energy dispersion F(q) of homogeneous, flat spin
spiral states for pseudo-cubic BiFeOs [cf. Fig. 1 (a)] with re-
spect to the G-type AFM structure energy F(R). (a) Energy
dispersion without spin-orbit coupling (SOC) along the high-
symmetry directions of the pseudo-cubic first Brillouin zone.
The points are spin spiral energies computed from DFT and
the lines are obtained by mapping the Heisenberg exchange
Hamiltonian to the DFT data. The directions of high sym-
metry paths are shown in the inset. (b) Zoom around the
R point for left (positive) and right-rotating (negative) spin
spiral states with (red) and without (grey) SOC. Note that
the energy scale is below 0.1 meV. The fit including SOC
(red curve) contains exchange beyond first nearest neighbors,
Dzyaloshinskii-Moriya interaction and uniaxial anisotropy en-
ergy. Note that the red circle at the R-point point is only
shifted by K/2 (K being the uniaxial magnetocrystalline
anisotropy defiend in Eq. (4)) to keep the red points con-
tinuous. In that case, the ground state is at £ = OmeV/Fe
atom.

of the overall DM interaction for each Fe atom in the
R3c phase of BFO: antiferrodistortion is not enough to
destabilize the G-type AFM state and to form a spin cy-
cloid. However, it is known that AFD tilts in R3c-BFO
can give rise to a DM interaction of a particular symme-
try that induces a non-collinear spin canting [14, 15, 32];
within the present approach, only flat spin spiral states
are considered, and the determination of the DM inter-
action responsible for this spin canting is not accessible.

In the close-up of Fig. 3 (b) (note that the energy range
is different from Fig. 2 (b), but still extremely small), the
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Figure 3. Energy dispersion F(q) of homogeneous, flat spin
spiral states for R3¢ BiFeOs [cf. Fig. 1 (b)] with respect to the
G-type AFM structure energy F(R). (a) Energy dispersion
without spin-orbit coupling (SOC) along the high symmetry
directions of the pseudo-cubic first Brillouin zone. The points
and the line are spin spiral energies computed from DFT and
obtained by mapping the Heisenberg exchange Hamiltonian
to the DFT data, respectively. The directions of high sym-
metry paths are shown in the inset. (b) Zoom around the
R point for left (positive) and right-rotating (negative) spin
spiral states with (red) and without (grey) SOC. Note that
the energy scale is below 0.4 meV. The fit including SOC
(red curve) contains exchange beyond first nearest neighbors,
Dzyaloshinskii-Moriya interaction and uniaxial anisotropy en-
ergy. Note that the red circle at the R-point point is only
shifted by K/2 to keep the red points continuous. In that
case, the ground state is at £ = 0meV /Fe atom.

G-AFM state is the magnetic ground state, stabilized by
a large easy plane (111) anisotropy of K = +0.24meV
(cf. red points and curve with SOC and Table II). There-
fore, compared to the cubic phase, the AFD not only in-
creases the exchange frustration, but also the anisotropy.

C. R3m phase

In the R3m phase [see Fig. 1 (c)], both Fe and Bi
atoms are displaced in the [111] direction with respect
to the cubic phase, yielding a finite polarization. Since

no AFD tilts are present, the Fe-O-Fe bonds conserve a
mirror plane through the O atom and perpendicular to
the bonds. This means that a DM interaction can occur
only perpendicular to the Fe-O-Fe plane.

Figure 4 (a) shows the energy dispersion E(q) with-
out SOC for BFO in the R3m phase. As in the cu-
bic and R3c case [cf. Figs. 2, 3 (a)], the dispersion
curve shows the two maxima at the X- and the I'-point.
The energy difference between the R- and the I'-point
is increased up to E = 400meV/Fe atom which ex-
plains the increased nearest-neighbor exchange interac-
tion J; ~ —34meV (cf. Table II). The frustration of ex-
change is increased compared to the previously discussed
phases with the effective nearest neighbor exchange of
Jor = —17.76meV /atom close to the R-point and a ra-
tio of Jert/7; = 0.52. Along the complete high symme-
try path, four shells were considered in the extended
Heisenberg Hamiltonian to fit the DFT results where
Jy ~ 0.07J; (due to the appearance of the DFT data
compared to both cubic and R3c phase, including more
neighbors into the model will not give a significantly bet-
ter description of the energy dispersion, cf. App. A).

The energy dispersion curve without SOC is again very
flat near the R-point [grey points and curve in Fig. 4 (b)].
Including SOC (red points and curve) does not stabilize
the collinear G-AFM ground state as in the cubic or R3c
phase, but an AFM spin cycloidal ground state with a
pitch length of about A ~ 63 nm considering the energy
minimum in the fit. The proximity of this value to the
experimental pitch of the AFM spin cycloid present in
the R3c phase is fortuitous. The propagation direction is
along [110] (from R [2, 3, 4] to X [1,0, 3]), and the spins
lie in the plane formed by the polarization in [111] and
q in [110], dictated by the DM interaction direction of
[112] [Fig. 4 (c)]. This ground state can arise because
the ferroelectric displacement in R3m leads to a large
DM interaction (D ~ 0.6meV in [112] direction, cf. Ta-
ble IT). Figure 4 (c) shows the energy contribution to the
energy dispersion due to the presence of spin orbit cou-
pling, where we observe that the contributions of both
Bi (green) and O (blue) is negligible. The large DM in-
teraction therefore stems from the change in the internal
potential of the Fe atoms (red) as it also has been shown
in Ref. 57. Here, the Fe atoms contain the only net SOC
contribution (black). The magnetocrystalline anisotropy
(K = —0.19meV, cf. Tab. II) is quantitatively reduced
compared to the antiferrodistorted R3c phase, and fur-
thermore, the preferred magnetization direction changes
from an easy plane perpendicular to an easy axis collinear
to the (111) directions. From these results, we conclude
that the Fe-Bi ferroelectric displacements play a decisive
role for BFO to exhibit a spin cycloid ground state since
it introduces a non-vanishing DM interaction.
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Figure 4. Energy dispersion E(q) of homogeneous, flat spin
spiral states for R3m BiFeOs [cf. Fig. 1 (c¢)] with respect to
the G-type AFM structure energy F(R). (a) Energy dis-
persion without spin-orbit coupling (SOC) along the high
symmetry directions of the pseudo-cubic first Brillouin zone.
The points and the line are spin spiral energies computed
from DFT and obtained by mapping the Heisenberg exchange
Hamiltonian to the DFT data, respectively. The directions of
high symmetry paths are shown in the inset. (b) Zoom around
the R point for left (positive) and right-rotating (negative)
spin spiral states with (red) and without (grey) SOC. Note
that the energy scale is below 0.2 meV. The fit including SOC
(red curve) contains exchange beyond first nearest neighbors,
Dzyaloshinskii-Moriya interaction and uniaxial anisotropy en-
ergy. Due to slight deviations stemming from the exchange
interaction, the value for the DM interaction has been adapted
to better describe the energy dispersion with SOC. Note that
the red circle at the R-~point point is only shifted by K/2. (c)
Element-resolved energy contribution due to spin-orbit cou-
pling AEsoc to the energy dispersion of spin spirals calcu-
lated in the [112] direction. Shown are the total (black), Fe
(red), Bi (green) and O (blue) contributions. Due to an an-
tiferromagnetic unit cell, each atom appears twice with the
same contribution. Here, the lines serve as a guide to the eye.

D. R3c phase

We now turn to the structure ground-state of BFO e.g.
the R3c phase [see Fig. 1 (d)]. This phase includes the
effects of both antiferrodistortion, as in R3¢, and the fer-
roelectric displacements of the R3m phase. The energy
dispersion without SOC [Fig. 5 (a)] looks similar to all
previously discussed phases, consequently, the exchange
interaction (cf. Table II) is also strongly frustrated. The
energy differences along the whole high symmetry path
are the smallest of all phases and J; = —28 meV/atom.
Note that in BFO in general, the antiferromagnetic ex-
change interaction is large and prevents the system from
spontaneously changing the magnetic order. While J; is
still comparable with the other calculated phases, due
to the very flat energy dispersion at q — R, Jg =
—11.8meV/atom is by far the smallest. Consequently,
the magnetic exchange frustration is maximized in the
R3c phase with a ratio of Jert/s, = 0.42. To capture these
effects, seven neighbors are included to describe E(q)
along the whole path. Here, especially J; ~ 0.035J;
and J; = 0.018 J; contribute strongly to the exchange
frustration.

In this phase, it is actually possible to measure the
exchange interaction via inelastic neutron scattering
[51, 58]. The reported values of J; are ~ 4.4meV /pair
(values given per pair obtained for m; = 5 up in Ref.[58])
and m; ~ 4up (values are given per atom at 5K in
Ref.[51]) in very good agreement with J; = 3.5meV /pair
(obtained for m; = 4 up in our case ) in this work. The
difference between these two measures can be explained
by the different number of shells used on this work.

Despite the large exchange frustration, a G-AFM state
is expected when SOC is neglected [dark grey curve with-
out SOC in Fig. 5 (b)]. Including SOC and the two pre-
viously separated effects of the R3c and R3m phases, the
magnetic ground state in the R3¢ phase changes to an
AFM spin cycloid with a pitch length of about 80nm
[red points in Fig. 5 (b)]. This is in good agreement
with the experimentally measured value of 62 nm in bulk
BFO [7, 8] and the theoretical value of 83 nm [22]. The
propagation direction of the cycloid is along [110] with
the spins perpendicular to the DM interaction direction
of [112] [Note that only in [112] the DM interaction is
non-zero, cf. Fig. 5 (¢)].

Compared to the R3m phase, the DM interaction in
R3¢ BFO is reduced (D ~ 0.34meV, cf. Table II), but
the whole contribution of SOC still stems from the Fe
atoms [red points in Fig. 5 (c)], and the calculated DMI
energy of 0.04 meV at ¢ = 0.0065(27/a), where the to-
tal energy is minimized, agrees reasonably with the re-
ported experimental value of 0.07 meV [59]. Since both
structural perturbations are present in the R3c phase,
the DM interaction and MAE are smaller compared to
the phases showing only one of these perturbations (cf.
Table II). The smaller DM interaction with respect to
the R3m phase can be explained by the inclusion of the
R3c structure with vanishing DM interaction into R3c



BFO, effectively reducing its magnitude. In a similar
way, the anisotropy of the R3¢ phase can be seen as a sum
of two structural effects and their opposing anisotropy
contributions, leading to the reduced anisotropy of K ~
+0.07meV. The reported value of both the DM interac-
tion D = 0.107meV and the anisotropy K = 0.009 meV
in Ref. 58 are larger than our values D = 0.043meV
and K = 0.0043 meV, respectively, because the exchange
frustration is taken into our model Hamiltonian.

IV. DISCUSSION

We now set the results in an experimental context and
compare the different phases with each other, to under-
stand the driving mechanisms that form the magnetic
ground state in R3¢ BFO.

For all four investigated phases, cubic, R3c, R3m and
R3c, we observe a flat energy dispersion around the en-
ergy minimum at the R point of the pseudo-cubic BZ [cf.
Figs. 2, 3, 4, 5 (b)]. This behavior can be explained by a
large exchange frustration stemming from the hybridiza-
tion among the three elements Bi, Fe, and O. A distortion
of the perfect pseudo-cubic structure will not have a large
effect on the exchange interaction, but slightly increase
the frustration. In the R3c phase, the frustration of ex-
change is stronger since J; is smaller and for instance
J7 is larger in comparison with the other phases. Note
that despite the large frustration, the exchange interac-
tion will still favor the G-type AFM state because the
magnetic ground state is extremely close to the collinear
state.

Within our model, a spin cycloid ground state with
the calculated periodicity can only be obtained by a large
DM interaction. However, in the cubic and R3c phases
the DM interaction is zero [60]. It solely can arise due
to the Fe-Bi displacement in the R3m phase (cf. Fig. 4).
That means the DM interaction presented in R3¢ BFO
originates from the ferroelectric displacement, which is
also responsible for the strong polarization in BFO. This
finding is in good agreement with the so-called inverse
spin current model [10, 12].

In total, the DM interaction competes with both ex-
change and anisotropy to stabilize an AFM spin cycloid
in R3¢ BFO. A large anisotropy as calculated for ei-
ther the R3¢ or R3m phase would, however, stabilize the
collinear order and prevent the formation of a cycloid
in the R3c phase. Since the anisotropies for R3¢ and
R3m BFO prefer magnetization directions perpendicular
to each other, the total anisotropy is reduced when both
structural displacements are included into R3¢ BFO (cf.
Table II).

Our cycloid pitch length of ~ 80nm calculated from
DFT for R3¢ BFO agrees reasonably well with the ex-
perimentally measured one of 62nm [7, §].

We note that in standard implementations of spin dy-
namics, the anisotropy energy contribution is modified
for exactly collinear states. In this case for ¢ at the R-
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Figure 5. Energy dispersion E(q) of homogeneous, flat spin
spiral states for R3¢ BiFeOs [cf. Fig. 1 (d)] with respect to the
G-type AFM structure energy F(R). (a) Energy dispersion
without spin-orbit coupling (SOC) along the high symmetry
directions of the pseudo-cubic first Brillouin zone. The points
and the line are spin spiral energies computed from DFT and
obtained by mapping the Heisenberg exchange Hamiltonian
to the DFT data, respectively. The directions of high sym-
metry paths are shown in the inset. (b) Zoom around the
R point for left (positive) and right-rotating (negative) spin
spiral states with (red) and without (grey) SOC. Note that
the energy scale is below 0.1 meV. The fit including SOC
(red curve) contains exchange beyond first nearest neighbors,
Dzyaloshinskii-Moriya interaction and uniaxial anisotropy en-
ergy. Due to slight deviations stemming from the exchange
interaction, the value for the DM interaction has been adapted
to better describe the energy dispersion with SOC. Note that
the red circle at the R-point point is only shifted by K/2.
(c) Element resolved contribution due to spin-orbit coupling
AFEsoc to the energy dispersion of spin spirals calculated in
the [112] direction. Shown are the total (black), Fe (red),
Bi (green) and O (blue) contributions. Due to an antiferro-
magnetic unit cell, each atom appears twice with the same
contribution. Here, the lines serve as a guide to the eye.



Table II. Magnetic interactions in BiFeO3 mapping an atomistic spin model to the results of DF'T calculations in the conventions
per atom and in per pair per m?. All values of the i-th neighbour exchange J;, Dzyaloshinskii-Moriya constant D and uniaxial
magnetocrystalline anisotropy K are given in meV. J > 0 (J < 0) represents FM (AFM) order, D > 0 (D < 0) counterclockwise
(clockwise) rotation. K < 0 denotes a [111] directed easy magnetization direction and K > 0 prefers an easy plane perpendicular
to the [111] directions. The corresponding dispersion curves are shown in Figs. 2, 3, 4, 5. Note that the values for the DM
interaction for R3m and R3c are adapted to fit the spin spiral minimum in Fig. 4 (b) and Fig. 5 (b). To obtain a spin spiral
pitch of 62nm in the R3c phase, the DM interaction would have to be D = 40.466 meV (see Discussion).

cubic phase

J1 J2 J3 Ja Js Jo J7 Jot D K
meV /atom —31.542 —1.645 —0.657 —1.338 +0.148 +0.126 —0.075 —21.110 +0 +0.0073
meV/uQB/pair —3.943 —0.206 —0.082 —0.167 +0.019 +0.016 —0.009 —2.639 +0 +0.0005

R3c phase

J1 J2 J3 Ja Js Je J7 Joft D K
meV /atom —28.174 —1.927 —0.196 —1.216 —0.081 +0.022 —0.084 —16.156 +0 +0.239
meV/;ﬁg/pair —3.522 —0.241 —0.025 —0.152 —0.010 +0.003 —0.011 —2.020 +0 +0.0149

R3m phase

Ji Jo J3 Ja Js Js J7 Jos D K
meV /atom —33.820 —1.716 —0.026 —2.331 — — — —17.758 +0.636 —0.187
meV/uQB/pair —4.228 —0.215 —0.003 —0.291 — — — —2.220 +0.080 —0.0117

R3c phase

J1 Jo J3 Jy Js Je J7 Jott D K
meV /atom —27.814 —1.475 —0.163 —0.940 +0.027 +0.069 —0.512 —11.780 +0.342 +0.069
meV//LQB/pair —3.477 —0.184 —0.020 —0.118 +0.003 +0.009 —0.064 —1.473 +0.043 +0.0043

point there will be a jump in energy by K/2, which yields
an energy 10 peV lower than the spin cycloid ground
state. This is an artifact, but will not happen in full cal-
culations, as any departure from collinearity will restore
the continuous red curve energies from Fig. 5 (b).

To be in perfect agreement with experimental obser-
vations, a slight decrease in the AFM spin cycloid pitch
length is needed. This requires an enhancement of the
DM interaction. In fact, to recover a magnetic ground
state cycloid with 62 nm pitch — assuming the given val-
ues for the exchange interaction and anisotropy of Ta-
ble IT — the DM interaction would have to be D =
0.466 meV = 0.059meV/u% /pair. This value is consis-
tent with previously reported DM interactions of 0.18
meV /pair estimated from the experimental wavelength
[16, 30, 51], and 0.102 meV /pair calculated by density
function theory using the four-state method [22].

V. CONCLUSION

In conclusion, we applied DFT calculations to investi-
gate the magnetic ground state of multiferroic BiFeOg.
We find an AFM spin cycloid with a pitch length of
~ 80nm in the R3c phase which is in good agree-
ment with experimental and previous theoretical obser-
vations. To explain the magnetic structure, we compare
several artificial bulk phases with intermediate symme-
try, which isolate the structural properties of the R3c
bulk phase of BiFeOs: pseudo-cubic, R3c and R3m. We
find that all phases show a large exchange frustration
which leads to small energies required to cant the spins
out of the collinear G-type AFM order. In the R3c

phase, the octahedral anti-ferro-distortion stabilizes the
G-type AFM state due to a large anisotropy and zero
net Dzyaloshinskii-Moriya interaction. The R3m phase
shows ferroelectric displacements of Fe and Bi which is
responsible for a strong polarization in BFO, but also for
the appearance of a net DM interaction which is strong
enough to destabilize the collinear order of the G-type
AFM in R3m BiFeOs. The anisotropy of the R3m phase
favors a magnetization direction perpendicular to that
one of the R3c phase, and the two distortions compete.
Summing up all effects in the R3c phase, exchange frus-
tration, DM interaction from the ferroelectric displace-
ment and the competition of both anisotropy contribu-
tions from R3m and R3c lead to the stabilization of an
AFM spin cycloid in BiFeO3 with a long cycloid period.
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Appendix A: Description of Heisenberg exchange
and DM interactions in the pseudo-cubic lattice

In the main text, we map the energy dispersions with-
out spin-orbit coupling (SOC) onto the Heisenberg ex-
change interaction beyond first nearest neighbors to de-
termine the strength of the exchange constants J;;. To
understand the procedure of mapping and the applied
formulas, we provide an example for the nearest neighbor
along the R—X direction of the cubic Brillouin zone (BZ).
The Heisenberg exchange interaction between two (nor-
malized) magnetic moments m;, m; at positions R;, R;
is described via

H= —Zjij (mlmj) . (Al)
ij

The general solutions of the Heisenberg model on a dis-
crete lattice are homogeneous flat spin spirals character-
ized by the spin spiral vector q. We perform first princi-
ples calculations of these spirals to constrain and fit the
model. Transferring Eq. (A1) into reciprocal space leads
to

H=-N> J(qmg mg. (A2)

where N is the number of interacting magnetic moments
and the exchange constant

J(q) = Z Jose TR =
5

A3
Z Jos (cos(q- Rs) —isin(q - Ry)) (43)
5

The parameter § denotes the respective neighboring dis-
tance in real space. The resulting energy contribution

then is
E=-NS%J(q) . (A4)
The spin spiral vector q can be defined as
q = @1b1 + g2b2 + gsbs , (A5)

where by, by, b3 are the reciprocal lattice vectors. We
now adapt the general formulas for the simple cubic (sc)
lattice. For the sc lattice, the primitive unit vectors are
given in cartesian coordinates as

1 0 0
aj=a|0],as=a|l],a3=0a|0] , (A6)
0 0 1

where a denotes the lattice constant and for the recipro-
cal lattice,

1 0 0
2 2 2

bi="200],bo=""101],b5=""1(0] . (A7)
@ \o @ \o @ \1
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Table III. Position R of the nearest neighbor in Cartesian
coordinates and the respective scalar product of q - R.

position R q-R
a(1,0,0) 2mq1
a(0,1,0) 27
a(0,0,1) 27qs

a(—-1,0,0) —27q1

a(0,-1,0) —27q2
a(0,0,—1) —2mqs

The respective BZ of the sc lattice is also cubic (shown
in Fig. 6 (a) in the inset) has the distinct high symmetry
and corner/face points I', X, M, R, which are given in
internal coordinates with (u,v,w) where the reciprocal
vector k is defined as k = ub; + vby + wbs.

0 0 1/2 1/2
r=[o],Xx=[v2], M=[12],R=|12
0 0 0 1/2

For the nearest neighbor in the sc, the scalar product of
q - R is defined as in Table III

Inserting q - R into Eq. (A3), the fitting formula for
the nearest neighbor reads as

Ey = —2J1{cos(2mqy) + cos(2mqa) + cos(2mgs3)} . (AS)

In the R — X direction, the q vector goes along
(Y/2,1/2,1/2) — (1,0,1/2), which means the applied q vec-
toris @' = (/2 — ¢, /2 + ¢, 1/2). The length of the R — X
path is % and including the vector in Eq. (A8) leads to

B} = —2.J{cos(2m(Y/2 — q))+
cos(2m(1/2 + q)) + cos(m)} =
—2J1{—2cos(2mq) — 1}

considering the length

(A9)

of the path

ERX — 9] {—2cos(V2mq) — 1} .

According to this procedure, we determine the formulas
for mapping the exchange interaction onto the calculated
values for the whole path of q, R— X -M —T" —R.

For the DM interaction, we only focus on the mag-
netic ground state at the region of |q] — R. The DM
interaction acting on two magnetic moments m;, m; is
described with

HDM = —ZDij(mi X mj)

ij

(A10)

The cross product is linked to a sin behavior where a
linear contribution remains close to the R point where
qg— 0.



The resulting formula for the DM interaction is derived
similarly as the exchange. In the R-X direction, we ap-
plied the formula for the nearest neighbor DM interaction
as

ER. 1 = —4V2rDiq (A11)

Appendix B: Determination of exchange and
Dzyaloshinskii-Moriya interaction from first
principles

Using the description of App. A, we first map the
exchange interaction of Eq. (A8) onto the results from
the DFT calculations without spin-orbit coupling. The
data are seen in the energy dispersions (cf. Fig. 6 and
Fig. 1,...,4 in the main text) as dark grey points and the
result of the mapping is seen as dark grey lines. As en-
ergy reference for the mapping, we choose the I' point in
contrast to the DFT calculated values which show the R
point as energy reference. We do this to not restrict the
fit to go directly through the R point because around R,
we reached the limit of DF'T accuracy. Two main features
occur to be important as a result: The overall appear-
ance and representation of the fit for all data points along
R—X—-M—-T —R and a good representation of the DFT
calculated values at the energy minimum. Here, three
main problems can be seen:

1. The larger the described spin spiral period (a small
value of |q| in reciprocal space), the more distant
neighbors need to be taken into account (in real
space) to capture these features. Here, the energy
dispersion at the ground state energy is very close
to the collinear state - closer than in every other
system known in the literature.

2. The energy minimum is in the range of ~ 50 peV

3. The energy differences between the high symmetry
points of the BZ — R, X, M, I" — are large

These three features are hard to accommodate and de-
scribe within a reasonable amount of interacting neigh-
bors for the exchange interaction. Therefore, we restrict
ourselves in finding reasonable values for the exchange
interaction to obtain the most reasonable agreement be-
tween the DFT calculated values and the fit. All result-
ing values are presented in Table II. Here, the number
of included neighbors in the fit of the exchange interac-
tion are chosen, so that including more neighbors will not
give a significant improvement of the description. This
criterion needs to be subjective because the points show
some irregular shape due to the limit of accuracy which
we reach in DFT calculations — visible in the extremely
small energy windows of panels (b) of Figs. 2, 3, 4 and
5. For the two latter e.g. we decide the best line to lie
in between the first few points from R. In the case of the
R3m phase, this can be achieved by including up to four
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Figure 6. Energy dispersions of homogeneous flat spin spi-
ral states without (grey) and with (red) spin-orbit coupling
(SOC) for BiFeOs (BFO) at ¢ — R of the pseudo-cubic
Brillouinzone. The points show the DFT calculated energies
(dark grey without SOC, red with SOC) whereas lines repre-
sent the fit to the extended Heisenberg model including the
exchange interaction beyond first nearest neighbors (without
SOC, grey lines), the Dzyaloshinskii-Moriya interaction and
magnetocrystalline anisotropy energy (with SOC, red lines).
For positive (negative) values of q, the AFM spin spirals pre-
fer a counter-clockwise (clockwise) rotation. (a) R3m phase
and (b) R3c phase. Note that here, all lines are based on the
complete fitting of the DFT data.

neighbors and in the case of the R3¢ phase (due to the
slightly different shape of the dispersion), seven neigh-
bors are needed. Note that especially Jy, J; can be seen
as responsible to flatten the curve along the high sym-
metry directions. On the other hand, J5, Jg, Jg,... will
change the energy differences between the high symmetry
points, which we do not desire, once the good differences
are obtained. In the case of the R3m phase, the energy
contributions of Js, Jg, . .. therefore are negligible and for
R3c, it is Jg, Jg, . ... Due to slight deviations stemming
from the exchange interaction in Figs. 4 and 5, the values
for the DM interaction have been adapted to better de-
scribe the energy dispersion with SOC [red curve in the
respective panel (b)].

The values for the DM interaction solely from DFT
are obtained by mapping Eq. (A11) to the DFT results
of panels (c) in Figs. 4 and 5. For these values, the
curves are presented in Fig. 6. For the R3m phase, it
is D = +0.383meV/atom and for the R3¢ phase, it is
D = +0.207meV /atom. Note that this value is still in
good agreement with previously reported values.



Appendix C: Sensitivity of the spin spiral period

In the present work, the determined period of the
AFM spin spiral in R3¢ BFO A ~ 80nm from DFT
calculations is in good agreement with the experimen-
tally reported value of 62nm [7, 8]. Despite the high
accuracy of the calculations, the spin spiral period A
is a very sensitive value since it reflects the reciprocal
value of the spin spiral vector q. Note that at the R
point of the pseudo-cubic Brillouin zone, ¢ — 0 means
A — oo. In panels (b) of Figs. 2, 3, 4 and 5, the
range of |g| € [0,0.02] in units of 27/a corresponds to
A € [00,27.69nm]. Here, the rhombohedral lattice con-
stant a = 5.538 A has been taken into account. As a con-
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sequence, a very small change at the energy minimum of
¢ = 0.0085 + 0.001 27/4 will affect the spin spiral period
approximately as A ~ 65+ 8nm. In other words, a slight
change in either exchange, DM interaction or anisotropy
has a rather large change in the respective spin spiral pe-
riod. Taking the DM interaction, D = 0.342meV /atom
determined from panels (b) in Fig. 5 in the main text
(cf. Table II) yields a spin spiral period of A ~ 80nm,
while the value D = 0.466 meV /atom can reproduce the
experimentally observed period of A = 62nm. Although
the difference in AX ~ 20nm appears rather large, both
values for the DM interaction are in very good agreement
with previous reports. Even though the actual spin spiral
period is such a sensitive quantity, our conclusions and
the driving mechanisms are robust and will not change.
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