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Microscopic model of the interaction of spins with a microwave field in a random-anisotropy
magnet has been developed. Numerical results show that microwave absorption occurs in a broad
range of frequencies due to the distribution of ferromagnetically correlated regions on sizes and
effective anisotropy. That distribution is also responsible for the weak dependence of the absorption
on the damping. At a fixed frequency of the ac-field spin oscillations are localized inside isolated
correlated regions. Scaling of the peak absorption frequency agrees with the theory based upon
Imry-Ma argument. The effect of the dimensionality of the system related to microwave absorption
by thin amorphous magnetic wires and foils has been studied.

I. INTRODUCTION

In conventional ferromagnets the ac field can induce
the uniform ferromagnetic resonance (FMR) and/or ex-
cite spin waves with a finite wave vector. In the pres-
ence of strong disorder in the local orientation of spins,
however, that exists in spin glasses and amorphous ferro-
magnets, spin waves must be localized while the existence
of the FMR becomes non-obvious. On general grounds
one should expect that random magnets would exhibit
absorption of the ac power in a broad frequency range
that would narrow down when spins become aligned on
increasing the external magnetic field.

Collective excitation modes have been observed in
random magnets in the past!™. In spin-glasses they
were attributed® to the random anisotropy arising from
Dzyaloshinskii-Moriya interaction and analyzed® within
hydrodynamic theory®Z. Later Suran et al. studied col-
lective modes in amorphous ferromagnets with random
local magnetic anisotropy® and reported evidence of their
localization?. Longitudinal, transverse and mixed modes
have been observed in thin amorphous films. Detailed
analysis of these experiments, accompanied by analyt-
ical theory of the uniform spin resonance in the ran-
dom anisotropy (RA) ferromagnet in a nearly saturating
magnetic field, has been recently given by Saslow and
Sun!”. Experimental evidence of localized spin excita-
tions and micromagnetic models of the observed phenom-
ena have also been reported in inhomogeneous thin mag-
netic filmsM, submicron magnetic heterostructures'?,
and in films where inhomogeneous magnetic field was
generated by a tip of a force microscopels.

A rigorous approach to this problem in RA ferromag-
nets requires investigation of the oscillation dynamics of a
system of a large number of strongly interacting spins in
a random potential landscape. While it was not possible
at the time when most of the above-mentioned work on
RA magnets was performed, the capabilities of modern
computers allow one to address this problem numerically
in great detail. Such a study must be worth pursuing
because of the absence of the rigorous analytical theory
of random magnets and also with an eye on their appli-
cations as microwave absorbers.

In this paper we consider the dynamics of an amor-
phous ferromagnet consisting of up to half-million spins
within the RA model. It assumes (see, e.g., Refs. [14-
16l and references therein) that spins interact via fer-
romagnetic exchange but that directions of local mag-
netic anisotropy axes are randomly distributed from one
spin to another. In the past this model was success-
fully applied to the description of static properties of
amorphous magnets, such as the ferromagnetic correla-
tion length, zero-field susceptibility, the approach to sat-
uration, etc 17,

The essence of the RA model can be explained in the
following terms. The ferromagnetic exchange tends to
align the spins in one direction but it has no preferred
direction. In the absence of the magnetic field, such di-
rection in a crystalline body is determined by the mag-
netic anisotropy that arises from the violation of the ro-
tational symmetry by the crystal lattice. Still, due to
the time reversal symmetry, any two states with oppo-
site directions of the magnetization have the same energy.
In a macroscopic magnet this leads to the formation of
ferromagnetically aligned magnetic domains. Magnetic
particles of size below one micron typically consist of one
such domain.

This changes in an amorphous magnet. If no material
anisotropy was introduced by a manufacturing process,
such a magnet would be lacking global anisotropy axes.
Random on-site magnetic anisotropy disturbs the local
ferromagnetic order but cannot break it at the atomic
scale a because the RA energy per site, Dp, is small com-
pared to the exchange energy J. The resulting magnetic
state can be understood within the framework developed
in the seminal papers of Larkin'®, and Imry and Mat
Due to random local pushes from the RA the magneti-
zation wonders around the magnet at the nanoscale in
a random-walk manner (see Fig. [1)), with the ferromag-
netic correlation length given by Ry /a o (J/Dg)* (=9,
where d is the dimensionality of the system.

This statement, known as the Imry-Ma (IM) argu-
ment, works for many systems with quenched random-
ness, such as disordered antiferromagnets?), flux lat-
tices in superconductors?l, charge-density waves2 lig-
uid crystals and polymers®*24 and superfluid 3He-A in
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Figure 1: Spin configuration in a 2D RA ferromagnet ob-
tained by relaxation from random initial orientations of three-
component Heisenberg spins. Spins form correlated regions
- Imry-Ma domains. The color coding reflects the sign of
the out-of-plane s, component of the spin, with orange/green
corresponding to positive/negative. The in-plane spin com-
ponents sz, s, are shown by white arrows.

aerogel?®. In the case of the RA ferromagnet it suggests
that the RA, no matter how weak, breaks the long range
ferromagnetic order for d = 1, 2, 3, although the order can
persist locally on the scale Ry that can be large compared
to the interatomic distance a if Dg < J. For the same
ratio Dg/J, the lower is the dimensionality of the system
the smaller is the correlated region. (Formally, the long-
range order is restored in higher dimensions, d = 4,5, ....)

A fundamental feature of the RA model is that it
can be rescaled in terms of spin blocks of size r > a
with the effective strength of random anisotropy D, ~
Dr(a/r)%? and the effective exchange J' ~ J(a/r)? up
to the size r at which D, ~ J’, which is the essence of
the IM argument. This can be useful for numerical work
but it also means that the model is intrinsically non-
perturbative. It describes a strongly correlated system
that cannot be treated perturbatively on small Dg/J.
The latter is evidenced by the IM result for the ferro-
magnetic correlation length Ry.

One deficiency of the IM model is that it ignores
topological defectd28 (apparent in Fig. that lead to
metastability. It was recently argued that random field
(RF) converts a conventional ferromagnet into a topo-
logical glass in which ferromagnetically correlated re-
gions (often called IM domains) possess non zero topo-
logical charges??. Although this argument was made for
the RF rather than the RA, the two models have much
in common due to the fact that the RA creates a lo-
cal anisotropy field that acts on spins similarly to the
RF. The RA model, however, is more nonlinear than the

RF model. High metastability, history dependence, and
memory effects?¥ exhibited by ferromagnets with random
magnetic anisotropy reveal complex non-ergodic tempo-
ral behavior typical of spin glasses®?.

Fueled by potential applications, there has been a
large body of recent experimental research on the ab-
sorption of microwave radiation by nanocomposites com-
prised of magnetic nanoparticles of various shapes and
dimensions, embedded in dielectric matrices®?. With the
use of more and more exotic shapes and materials, the
complexity of such systems has increased dramatically in
recent years®l 33 but their evaluation as microwave ab-
sorbers has been largely empirical and often a matter of
luck rather than driven by theory.

Here we investigate the microwave absorption by the
RA magnet in a zero external field. This case is the least
obvious from the theoretical point of view and the least
studied in experiments, although it must be the most in-
teresting one for applications. We consider the model in
which the ferromagnetic correlation length is dominated
by the RA that is large compared to the local dipolar
fields. As has been discussed above, static properties of
this model were intensively investigated in the past and
good agreement with experiment was achieved. However,
theoretical studies of the dynamics were scarce. Our goal
is to fill that gap and try to understand the fundamental
physics of the absorption of the ac power by the random
magnet without focusing on material science. The refer-
ence to microwaves throughout the paper is determined
by the outcome: The peak absorption happens to be in
the microwave range due to the typical strength of the
magnetic anisotropy.

We should emphasize that this problem is noticeably
different from the microwave absorption by a nanocom-
posite. Coated magnetic particles or particles dissolved
in a dielectric medium are absorbing the ac power more
or less independently when neglecting weak dipole-dipole
interaction between them. On the contrary, in the amor-
phous ferromagnet all spins are coupled by the strong
exchange interaction and they respond to the ac field
collectively. Metastability and magnetic hysteresis ex-
hibited by the RA magnet™® makes such response highly
nontrivial.

Here, we study the regime of the linear energy transfer
from the input mode (the ac field) into a continuum of
magnetic modes. Linear resonance transitions require a
small amplitude of the ac field that is the case in many
practical situations. In the linear regime, transitions be-
tween different metastable states of the random magnet
are rare, most of the spins are precessing near their local
energy minima. The physics of the linear energy trans-
fer into the continuum is similar for both classical and
quantum systems (Fermi’s “Golden rule”).

Our most interesting observation is that the absorp-
tion of the microwave power in the RA magnet is domi-
nated by spin oscillations localized inside well-separated
ferromagnetically correlated regions (IM domains) that
at a given frequency are in resonance with the microwave



field. In that sense there is a similarity with a nanocom-
posite where certain particles react resonantly to the ac
field of a given frequency. However, the number of such
areas in a random magnet must be greater due to the
higher concentration of spins.

The paper is organized as follows. The RA model and
the numerical method for computing the absorption of
the ac power are introduced in Section [[Il Results of the
computations are given in Section [[TI} Interpretation of
the results, supported by snapshots of oscillating spins,
is suggested in Section [[V] Estimates of the absorbed
power and implications of our findings for experiments
are discussed in Section [V1

II. THE MODEL AND NUMERICAL METHOD

We consider classical Heisenberg RA model described
by the Hamiltonian

H:—%Zsi-sj—%Z(ni-si)Q—h(t)-Zsi, (1)

%

where the first sum is over nearest neighbors, s; is a
three component spin of a constant length s, Dg is the
strength of the easy axis RA in energy units, n; is a
three-component unit vector having random direction at
each lattice site, and h(¢) = hg sin(wt) is the ac magnetic
field in energy units. We assume ferromagnetic exchange,
J > 0. Factor 1/2 in front of the first term is needed to
count the exchange interaction Js? between each pair of
spins once. In our numerical work we consider a chain
of equally spaced spins in 1D, a square lattice in 2D,
and a cubic lattice in 3D. For the real atomic lattice of
square or cubic symmetry the single-ion anisotropy of the
form —(n - s)? would be absent, the first non-vanishing
anisotropy terms would be fourth power on spin compo-
nents. However, in our case the choice of the lattice is
merely a computational tool that should not affect our
conclusions.

The last term in Eq. describes Zeeman interaction
of the spins with the ac magnetic field of amplitude hg
and frequency w. We assume that the wavelength of the
electromagnetic radiation is large compared to the size
of the system, so that the time-dependent field acting on
the spins is uniform in space. This corresponds to situa-
tions of practical interest when the microwave radiation
is incident to a thin dielectric layer containing random
magnets.

As in microscopic studies of static properties of ran-
dom magnetst#1420 e assume that in the absence of
net magnetization the dynamics of the spins is dominated
by the local exchange and the effective random magnetic
anisotropy. The latter is determined by the amorphous
structure factor or the size of the grain in a sintered ma-
terial. It is typically large compared to the dipole-dipole
interaction (DDI) between the spins. Adding DDI to the
problem would have resulted in a considerable slowdown

of the numerical procedure since the study of RA ferro-
magnets requires system of size large compared to the
ferromagnetic correlation length. It would be justified
only if DDI was significantly changing the results, which
is not the case here. This can be understood in the fol-
lowing terms. Long-range magnetostatic interactions in
crystalline ferromagnets are responsible for the formation
of magnetic domains of size ranging from micrometers to
millimeters depending on the geometry of the samplel®.
On the contrary, the RA leads to the formation of much
smaller nanometer size Imry-Ma domains for which local
interactions are dominant.

The effective exchange field acting on each spin from
the nearest neighbors in d dimensions is 2dJs. In our
model it competes with the anisotropy field of strength
2sDpg. The case of a large random anisotropy, 2sDpg >
2dJs, that is, Dgr > dJ, is obvious. It corresponds to
a system of weakly interacting randomly oriented spins,
each spin aligned with the local anisotropy axis n. Due
to the two equivalent directions along the easy axis the
system possesses high metastability with the magnetic
state depending on history.

On the contrary, weak anisotropy, Drp < dJ, can-
not destroy the local ferromagnetic order created by the
strong exchange interaction. The direction of the magne-
tization becomes only slightly disturbed when one goes
from one lattice site to the other. As in the random walk
problem, the deviation of the direction of the magneti-
zation would grow with the distance. In a d-dimensional
lattice of spacing a the average statistical fluctuation of
the random anisotropy field per spin in a volume of size
R scales as Dog = 2sDg(a/R)%/?. Since Heisenberg ex-
change is equivalent to J(Vs)? in a continuous spin-field
model, the ordering effect of the exchange field scales as
2d.Js(a/R)?. The effective exchange and anisotropy en-
ergies become comparable at R ~ Ry, where

Ry ~ a(dJ/Dp)*/ =9 (2)

determines the ferromagnetic correlation length. The ex-
act numerical factor in front of (dJ/Dg)? =% is un-
known but the existing approximations and numerical
results suggest that it increases progressively with the
dimensionality of the system*2*20,

Since magnetic anisotropy has relativistic origin its
strength per spin is usually small compared to the ex-
change per spin. Anisotropy axes in the amorphous fer-
romagnet are determined by the local arrangement of
atoms. When the latter has a short range order the axes
are correlated within structurally ordered grains whose
size must replace a in the RA model. This results in a
greater effective RA, making both limits, D < dJ and
Dg > dJ, relevant to amorphous ferromagnetsi#19,

As to the Zeeman interaction of the ac field with the
spins, that is determined by the amplitude of h in Eq. ,
in all situations of practical interest it would be smaller
than all other interactions by many orders of magnitude.
It is worth noticing, however, that for a sufficiently large
system the random energy landscape created by the RA



and the ferromagnetic exchange would have all energy
scales, including that of h. This, in principle, may in-
ject nonlinearity into the problem with a however small
amplitude of the ac field.

The dynamics of the system is given by the Landau-
Lifshitz equation

oH
asi

hSl =8; X heffﬂ' —aS; X (Si X heffﬂ') y

heff,i =— (3)
that describes precession of the spin about the direction
of the local effective field and relaxation towards it. Here,
a < 1 is the phenomenological damping constant. How-
ever, as will be discussed later, a random magnet has
a continuous distribution of resonances (normal modes)
that makes the power absorption insensitive to the small
damping. Using the equation of motion above (see Ap-
pendix), one obtains the relation
. . «

H(t)=—h(t) D _si(t) - & i

%

(si(t) X heri)*,  (4)

for the rate of change of the energy of the magnetic sys-
tem. It equals the work of the ac field per unit time
(absorbed power) minus the dissipated power. We de-
fine the change of the energy of the spin system and the
absorbed energy of the ac field as time integrals

AE:/dt’H(t), Eops = f/dth(t)-Zsi(t), (5)

g

respectively. For a conservative system (o = 0) these
two quantities coincide. They represent the two ways
of calculating the absorbed power numerically, which is
important for checking the self-consistency and accuracy
of computations. In the presence of dissipation (a > 0),
these two quantities are different.

When the phenomenological damping is included, the
energy of the spin system, and thus AFE, saturate in a
stationary state in which the power absorption is bal-
anced by dissipation. On the contrary, the work done
by the ac field, F,s, continues to increase period after
period of the ac field. In this case the rate of change of
E.1s becomes the single measure of the absorbed power.

If the damping was due to the emission of electromag-
netic waves by spins, then at large times the energy would
saturate due to the detailed balance between absorption
and emission of photons. However, in real systems the
damping would be dominated by the interaction of spins
with electrons and phonons, making re-emission of mi-
crowaves irrelevant. For a large system, a long comput-
ing time is needed to reach saturation, especially when
the damping is small. Fortunately, in most cases the ab-
sorbed power can be already obtained with a good accu-
racy from a short computation on a conservative system,
typically using 5 periods of the ac field.

One other complication arises from the necessity to
keep the amplitude of the ac field as small as possible in
relation to the exchange and anisotropy to reflect situa-
tions of practical interest. In this case, one can expect

normal modes to respond to the ac field independently.
However, decreasing the amplitude of the ac field below a
certain threshold increases computational errors. Large
amplitude of the ac field causes resonant group of the
normal modes to oscillate at higher amplitudes, which
triggers nonlinear processes of the energy conversion.

We use the following procedure. At the first stage, the
magnetic state in zero field is prepared by the energy
minimization starting from random orientation of spins.
This reflects the process of manufacturing of amorphous
ferromagnet by a rapid freezing from the paramagnetic
state in the melt. The numerical method®*# combines
sequential rotations of spins s; towards the direction of
the local effective field, Heg ;, with the probability 7, and
the energy-conserving spin flips (overrelaxation), s; —
2(s; - Hegr i )Hegr i /HZ; ; — si, with the probability 1 — 7.
We used n = 0.03 that ensures the fastest relaxation. At
the end of this stage, a disordered magnetic state with
the ferromagnetic correlation length R is obtained (see
Fig. [1)).

At the second stage, the ac field is turned on and Eq.
is solved with the help of the classical fourth-order
Runge-Kutta method. We also have tried the 5th or-
der Runge-Kutta method by Butcher®? that makes six
function evaluations per time step. This method can be
faster as it allows a larger time step for the same accu-
racy. However, for the RA model it shows instability and
has been discarded. The frequency dependence of the ab-
sorbed power was computed in a parallelized cycle over
frequencies. For each frequency, the dynamical evolution
was run up to five periods of the ac field. For the lowest
frequencies, the computation was rather long. Wolfram
Mathematica with compilation on a 20-core Dell Preci-
sion Workstation was used. In the computations, we set
s = h = J =1, which corresponds to energy in the units
of J and time in the units of h/J. In most cases the
integration step was At = 0.1 or 0.05. We computed
the absorbed power in 1D, 2D, and 3D systems with a
number of spins N up to 400,000 in 3D.

In three dimensions, the ferromagnetic correlation
length at small Dg is very large and can easily become
longer than the system size. In this case, the magneti-
zation per spin m = |m|, where m = (1/N)}_.s; is the
average spin polarization, may be far from zero at the
energy minimum. For the sake of uniformity, the ac field
was always applied in the direction perpendicular to m
for which the power absorption is stronger than in the
direction parallel to m. The absorbed power P,,s was
obtained by numerically integrating the left or right side
of Eq. during Nt periods of the ac field and divid-
ing the result by NpT with T = 1/f = 27 /w. In most
cases we used Ny = 5. All time-dependent results are
represented for the times equal to the multiples of the
half-period of the ac pumping for which sin (wt) = 0 and
thus the Zeeman term due to the ac field does not add
up to the energy of the magnetic system. It was numer-
ically confirmed that Pypg o h%, so, in the plots we show
Paps/h3 per spin.



III. NUMERICAL RESULTS

To test our short-time method of computing the ab-
sorbed power, we performed longer computations and
plotted the absorbed energy vs time for the integer num-
ber of periods of the ac field, t = nT, n =0,1,2,... For
the undamped model, & = 0, both methods of comput-
ing the absorbed energy discussed in the previous section
give the same result, which proves sufficient computa-
tional accuracy. For the damped model, the energy of
the system saturates at long times while the magnetic
work, obtained by integrating the right-hand side of Eq.
(M) continues to increase linearly.

An example of these tests is shown in Fig. [2] for a 2D
system of 300 x 300 spins with Dgr/J =1, hw/J = 0.2,
the ac-field amplitude ho/J = 0.01, and different values
of the damping constant «. For the unrealistically high
damping a = 0.1 the absorbed energy line goes higher
than the other dependencies. For o = 1072, 1073, and
10~* the magnetic work is practically the same. This
confirms our conjecture about a continuous distribution
of resonances for which the absorption does not depend
of the resonance linewidths, see the next section. In the
undamped case, a = 0, the absorbed energy goes lower
at large times which indicates saturation of resonances
at a given amplitude of the ac-field.

An important finding of these numerical experiments
is that the absorbed energy increases nearly linearly in
time, that is, the absorbed power is practically time in-
dependent. This allows one to use a small number of
periods, Ny = 5 or 10, in the computation of the ab-
sorbed power at different frequencies for different system
dimensionalities. Still, computations for large systems
and low frequencies are rather long.

Short time intervals lead to the broadening: Aw ~
1/t = 1/(N7T) = w/(2nNr). For Np = 5 one obtains
Aw ~ 0.03w, a rather small broadening given that the
absorption spectrum is broad and the computations are
performed over many decades of the frequency w of the ac
field. Computations with Ny = 10 produced essentially
the same results as computations with Ny = 5. As an
illustration, one can consider a pumped harmonic oscil-
lator with the energy (m/2) (i? + wiz?) — z fo sin (wt),
described by the equation of motion # + 2I'# + wiz =
(fo/m)sin (wt) with low damping, I' < wy. At short
times, I't <« 1, the absorbed power (rate of energy
change) is given by

_ fLQtl—cos[(w—wo)t]
[(w — wo) )

abs

(6)

T 2m

The width of the peak in the absorption decreases with
the measurement time as Aw ~ 1/¢, while its height
grows linearly with ¢, so that its integral intensity is in-
dependent of time. For a broad distribution of the oscil-
lators’ frequencies wy, this function can be replaced by
Paps &~ [f3/ (2m)] 76 (w — wo). This is the limit in which
computations reported here have been performed.

Given the weak dependence of the absorption on the
damping at small a the bulk of our results were obtained
for « = 0. The choice of the amplitude of the ac-field
is important for numerical work. Large hg reduces nu-
merical noise while leading to the flattening of the ab-
sorption maxima due to a partial saturation. Small hg
increases computational errors. We have chosen the val-
ues ho/J = 0.0001 in 1D (where numerical errors are the
smallest), ho/J = 0.0003 in 2D, and hg/J = 0.003 in 3D.
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Figure 2: Upper panel: Absorbed energy of the ac field vs time
for a 2D system of 300 x 300 spins for different values of the
damping constant. The energy increase AFE of the magnetic
system caused by the ac power absorption, that saturates at
long times due to dissipation, is shown at & = 10~%. The
short-time dependence of the absorbed power is the same in
all cases except for that of the largest damping. Lower panel:
The short-time dependence of the absorbed energy shows that
the slope that determines the power absorption is nearly con-
stant and can be established with good accuracy after 5 pe-
riods of the ac field.

The frequency dependence of the absorbed power for
in a 1D RA ferromagnet is shown in Fig. This is the



easiest case computationally. One can use a long chain
of spins (here N = 30000) that is much longer than the
magnetic correlation radius Ry in 1D. Thus, after the
energy minimization the system remains well disordered,
m < 1. Fig. |3| shows broad absorption maxima shifting
to lower frequencies with decreasing Dgr. The heights
of the maxima are approximately the same. At large
frequencies, there is a cut-off at the highest spin-wave
frequency, wmax = 4dJ = 4J in 1D.

Microwave absorption in a 1D random-anisotropy magnet -
N =30000
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Figure 3: Absorbed power vs w for different values of the
random anisotropy Dr in 1D.

Frequency dependence of the absorbed power for the
2D model is shown in Fig. @ Qualitatively the results
are the same as in 1D, only we used a larger system of
N = 340 x 300 = 102000 spins. Here, we were able
to go down to the RA only as small as Dr/J = 0.2 as
compared to 0.1 in 1D because the absorption maximum
is shifting to very low frequencies on decreasing RA.

Frequency dependence of the absorbed power for the
3D model is shown in Fig. [5| In the range of Dg/J that
is reliably accessible numerically, the absorption curves
are similar to 1D and 2D. However, the 3D model is the
hardest to crack numerically because the ferromagnetic
correlation length Ry, given by Eq. with d = 3, be-
comes very large at small Dr. We had to use 3D systems
of a much greater number of spins, 68 x 74 x 80 = 402560,
but of smaller lateral dimensions than 1D and 2D systems
that we have studied. The lowest RA for which we could
observe the absorption maximum in 3D was Dg/J = 2.
For lower Dy the absorption maxima shift to very low
frequencies for which computation becomes impractically
long and inhibited by the accumulation of numerical er-
rors.

Frequency dependence of the power on the right side
of the absorption maximum allows scaling shown in Fig.
[6l We have found that P(w) in this region follows the
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Figure 4: Absorbed power vs w for different values of the
random anisotropy Dg in 2D.
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Figure 5: Absorbed power vs w for different values of the
random anisotropy Dr in 3D.

power law:

D2 J (4-d)/2
Pops o Tg (hw) . (7)

up to the high-frequency cutoff determined by the
strength of the exchange interaction. Away from the
maximum the absorption in this high-frequency region
is lower in higher dimensions. However the heights of the
absorption maxima are comparable in all dimensions, see
figures B} @] and [} The maximum absorption has weak
dependence on the strength of the RA and the strength
of the exchange interaction. By order of magnitude it is
given by Ppax ~ h3N/h.
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Figure 6: Scaling representation of the absorbed power at
high frequencies for d = 1,2, 3.

IV. INTERPRETATION OF THE RESULTS
A. Independence of the phenomenological damping

One noticeable feature of the ac power absorption by
the RA magnet is its independence of the damping within
a broad range of the damping constant o < 1, see Fig.
It can be understood along the lines of the qualitative
argument presented below.

The absorption power by a conventional ferromagnet
near the FMR frequency, w = wy, has a general form™®

aw%G (8)
(w? — w§)? + (awp G)?

P(w,wo,a) o< hiws

with G being a geometrical factor depending on the po-
larization of the ac-field and the structure of the mag-
netic anisotropy. In the amorphous magnet, parameters
wo and G are broadly distributed due to the distribution
of the magnitude and the direction of the effective RA.
At o — 0 Eq. becomes

P(w,wo) o< hiwdd(w? — w}) o< hwod(w —wo).  (9)

Assuming the distribution function f(wq) for the reso-
nances, satisfying

/mwmrﬂ7 (10)

one obtains for the power absorption at a frequency w
P(w) x [ dunflan)ifiod(e - wo) = Huf() (1)

which is independent of «.
In fact, Eq. is valid at the times longer than the
relaxation time so that the stationary state of the system

is achieved. In this work, to the contrary, short times are
used, for which the relaxation can be neglected and ab-
sorption in the magnetic system is described by a formula
similar to Eq. @ for the undamped harmonic oscillator.
Nevertheless, for a broad distribution of wg, both formu-
las can be replaced by the same frequency delta-function
x §(w — wp), so that one obtains the same result.

The function f(wp) for the RA magnet is unknown.
It is related to a more general poorly understood prob-
lem of excitation spectrum of systems characterized by
a random potential landscape that we are not attempt-
ing to solve here. Based upon our numerical results, an
argument can be made, however, that sheds light on the
physics of the absorption by the RA magnet, see below.

B. Estimation of the maximum-absorption
frequency

I Maximum of the absorbed power
in random 1D, 2D, and 3D RA ferromagnets

T T T T

0.1

J

max

T T

0.01

T T T

0.0025(D,/J )*

1073 b |

Figure 7: Peak absorption frequency vs strength of the RA.
Points: numerical experiment. Lines: Power-law fits. In 1D,
the expected power law 4/3 is shown by the dashed line while
the best fit 3/2 is shown by a solid line.

The spin field in the RA ferromagnet, see Fig. , re-
sembles to a some degree a domain structure or magneti-
zation of a sintered magnet comprised of densely packed
single-domain magnetic particles. The essential differ-
ence is the absence of boundaries between IM domains.
They are more of a reflection of the disordering on the
scale Ry than the actual domains. If one nevertheless
thinks of the IM domains as independent ferromagneti-
cally ordered regions of size Ry, their FMR frequencies,
in the absence of the external field, would be dominated
by the effective magnetic anisotropy, De.g, due to sta-
tistical fluctuations in the distribution of the RA axes.
In this case the most probable resonance frequency that
determines the maximum of P(w) must be given by

Wmax ™~ Deff ~ DR(a/Rf)d/Q' (12)



Substituting here Ry/a ~ k(d)(J/Dg)* =9, with the
factor k(d) increasing™® progressively with d, we obtain

Wmax - 1 DR /(=)
J k2T '

It suggests that wpay/J must scale as (Dgr/J)*? in
one dimension, as (Dg/J)? in two dimensions, and as
(Dg/J)* in three dimensions. For typical parameters of
RA magnets'? wy,,, falls in the microwave range.

The dependence of wyax/J on Dg/J for d = 1,2,3
derived from figures [ and [f] is shown in Fig. [7]
In 2D and 3D there is a full agreement with the above
argument. In 1D the best fit seems to be the 3/2 power
of Dr/J instead of the expected 4/3 power. Given the
qualitative nature of the argument presented above and
good fit for d = 2,3 the agreement is nevertheless quite
good. The small factor in front of the power of Dg/J,
that becomes progressively smaller as one goes from d =
1 to d = 3, correlates with the established fact14%38 that
k(d) increases with d.

(13)
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Figure 8: Spatial dependence of spin deviations in a 1D RA
ferromagnet after Ny = 10 periods of ac pumping.

C. Visualization of the local dynamical modes

Further evidence of the validity of our picture that
the power absorption occurs inside resonant IM domains
comes from the analysis of the spatial dependence of lo-
cal spin deviations from the initial state SEO), defined as

As? = (s; — )2, They are related to local spin os-
cillations induced by the ac field and are illustrated in
Fig. [§| for a 1D RA ferromagnet with Dr/J = 0.1 at the
frequency w/J = 0.015 that corresponds to the absorp-
tion maximum (see Fig. . Noticeable spin deviations
occur at multiple discrete locations. Their amplitude is
apparently determined by how well the frequency of the

ac field matches the resonant frequency of the IM domain
at that location. The oscillating domains appear to be
well separated in space. Their positions depend on fre-
quency in a random manner because for each frequency
there is a different resonant domain and there is no clear
correlation between positions of domains corresponding
to close frequencies.

0.004 . . . . . . r .
Absorption in 1D RA model
N =10000, 1
DR/J =0.1, o/J =0.015
0.003 ]
hy/J =107
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Figure 9: Spatial dependence of spin deviations in one areas
of resonant absorption at different moments of time: Np =
2.5,5,10 periods of ac pumping. Upper panel: The highest
peak at n = 6074 in Fig. [ zoomed in; Lower panel: The
second-highest peak at n = 2499 zoomed in.

Two regions of maximal spin deviations of Fig. [§ are
zoomed at in Fig. [0} It shows that the amplitude of
resonant spin oscillations steadily grows with time. Spin
deviations rapidly disappear away from the maximum.
For the frequency w/Dgr = 0.015, the widths of these
regions is of order 10a which roughly agrees with the
1D ferromagnetic correlation length computed in Ref.[36
Up to the unknown factor of order unity it is also in
agreement with the expected relation between Ry
and the resonant frequency. Time dependence of the spin
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Figure 10: Time dependence of the heights of the largest and
second-largest absorprion peaks in the preceding figures.

deviations at these two spatial maxima is plotted in Fig.
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Figure 11: Spatial dependence of spin deviations in a 2D RA
ferromagnet after N = 5 periods of ac pumping.

Fig. [T1] shows oscillating regions in a 2D RA ferro-
magnet. Here again the spin regions that absorb the ac
power are well separated in space. This is in line with
our picture of resonant IM domains in which the effec-
tive magnetic anisotropy due to statistical fluctuations
of easy axis directions matches the frequency of the ac
field. The peaks in figures [ [0} and [I1] grow in time, as
the energy is absorbed.

At present we do not have the full theory of the fre-
quency dependence of the absorbed power. Apparently,
it is related to the size distribution of ferromagnetically
correlated regions (Imry-Ma domains), which remains a
challenging unsolved problem of statistical mechanics.

Our numerical findings, however, may shed some partial
light on this problem.

Indeed, we have found that at large frequencies the
power absorption follows Eq. : P x w(@/2)=2 If it
is related to the precession of IM domains of size R,
then according to Eq. the frequency of this preces-
sion scales as w oc R~%/2. Since this is a high-frequency
regime, it must correspond to small R. According to
Eq. P x wf(w). Combined with Eq. it gives
f(w) oc w(@2)=3 at large w. If distribution of IM domains
is given by F(R) satisfying [ dRF(R) = [dwf(w) = 1,
then, using the above formulas we obtain

F(R) = f(w)j% o R(-1)°, (14)

This suggests R~'/* distribution of small-size IM do-
mains in 1D and 3D, and independence of R (up to a
log factor) in 2D.

The qualitative argument leading to Eq. is based
upon the picture of independently oscillating IM do-
mains. In reality there are no boundaries between ferro-
magnetically correlated regions. Our derivation suggests
a large fraction of compact correlated regions of size that
is small compared to the ferromagnetic correlation length
Ry. It is supported by Fig. |I|but is different from the pre-
diction of the exponentially small number of such regions
in the random-field xy model made within the variational
approachZ.

V. DISCUSSION

We have studied the power absorption by the random-
anisotropy ferromagnet in a microwave field in one, two,
and three dimensions. The one-dimensional problem de-
scribes a thin wire of diameter smaller than the 1D fer-
romagnetic correlation length Ry and of length greater
than Ry. The two-dimensional problem corresponds to
a film of thickness that is small compared to the 2D fer-
romagnetic correlation length and of lateral dimension
large compared to Ry. The three-dimensional problem
corresponds to a particle of amorphous ferromagnet of
size large compared to the 3D ferromagnetic correlation
length.

Our main finding agrees with the statements made by
experimentalists?. It elucidates the physics of the mi-
crowave absorption by an RA ferromagnet. The absorp-
tion is localized inside well separated regions. Scaling
of the peak absorption frequency with the strength of
the RA points towards the mechanism of the absorption
in which oscillations of spins are dominated by isolated
ferromagnetically correlated regions (Imry-Ma domains)
that are in resonance with the microwave field.

Broad distribution of sizes of ferromagnetically corre-
lated regions results in the broad distribution of reso-
nance frequencies. It makes the absorption broadband.
In 1D and 2D systems the linewidth at half-height is close



to the frequency wpax that provides the absorption max-
imum. The linewidth is greater than wyay in a 3D sys-
tem. Another consequence of the broad distribution of
resonance frequencies is independence of the absorption
on the damping of spin oscillations within a few orders
of magnitude of the damping constant.

A remarkable observation is that the maximum of the
absorbed power in a random magnet has a weak depen-
dence on basically all parameters of the system, such as
dimensionality, damping, the strength of the RA, and
the strength of the exchange interaction. By the order of
magnitude it is determined solely by the total number of
spins absorbing the microwave energy and the amplitude
of the microwave field. This again is a consequence of
the broad distribution of sizes of ferromagnetically corre-
lated regions, causing broad distribution of the effective
magnetic anisotropy and effective exchange interaction.

A practical question is whether the RA (amorphous)
magnets have a good prospect as microwave absorbers.
Frequencies that provide the maximum of the absorption
depend on the strength of the RA. The latter can be
varied by at least two orders of magnitude by choosing
soft or hard magnetic materials in the process of manu-
facturing an amorphous magnet. It must allow the peak
absorption in the range from a few GHz to tens of GHz.

Rigorous computation of the fraction of the incoming
microwave power absorbed by the system depends
on its composition and boundary conditions but an
order of magnitude estimate can be made based upon
the following simple argument. One of our findings
is that the power absorption at frequencies near the
absorption maximum depends weakly on the parameters
of the RA ferromagnet, see Figs. 3] - [f} By order of
magnitude it equals Ppax ~ 4(1 + x)u%s?BingAd/h
in terms of the length of the dimensionless spin s
and the dimensional amplitude, By, of the microwave
field, with x being the magnetic susceptibility and
up being the Bohr magneton. Here we introduced
concentration of spins ng, the area A and the thickness
d of the absorbing layer. Since the incoming microwave
delivers to the layer the power P,, = (cB2/2u)A, with
io being the permeability of free space®®, we obtain
Prax/Pm ~ 85%(1+ x)uopinod/(he).  This ratio is
assumed to be smaller than one. When it reaches unity
on increasing d this means that the microwave power
would be totally absorbed by a thicker layer. Given
large susceptibilities exhibited by the RA magnetstd,
this regime may, in principle, be achieved in a dielectric
layer of a few millimeter thickness densely packed with
coated microscopic amorphous wires, foils, and particles.
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Appendix: Absorption of the ac field by a magnetic
system

The energy of the classical-spin system under the ac-
tion of the ac field can be written as

H(t) = —h(t)- > sit) + Ho(t), (15)

%

where h(t) is the ac field and H(t) is the rest of the
energy of the magnetic system. Due to the action of the
ac field (as well as other factors), orientation of spins
depends on time. The time derivative of the energy is

H(t) = —h(t)- Zsi(t) —h()- Zéi(t) +Ho(t)
= —h(t)- Zsz‘(t) —h()- Zéz‘(t) - ZHeff,i -8;(t)

= —h(t)- Z si(t) — Z heg i (2) - 8i(1), (16)

i 7

where

OHo . _ oH
- 8si ) heff,z =h+ Heff,z = 8S1’ .

He{‘f,i = (17)

The time derivative of the spin vector is given by the
equation of motion or, equivalently, by

hSZ(t) = Si(t) X heﬁ’i — [Si(t) (Si(t) . heff’i) — heff’iSQ:I .
(1)

This gives
A1) = (1) Y sil) 5 D |k — (s:(0) - her)°]
K2 ? (19)
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