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I. INTRODUCTION 

Since any realistic quantum system interacts with its 

environment, a viable control protocol must ensure that 

‘dissipation’ channels created by unwanted couplings be 

eventually compensated by ‘gain’ processes able to re-

introduce order. The development of the (necessarily) non-

Hermitian formalism describing this interplay has gradually 

led to the discovery of a range of phenomena not anticipated 

for isolated, Hermitian systems. The clearest illustrations can 

be found in the investigation of photonic platforms, where 

various practical applications of non-Hermiticity are 

currently being explored including enhanced sensing1, mode-

selective laser cavities2,3, unidirectional invisibility4, or loss-

induced transparency5. Remarkably, recent work in a 

photonic mesh with tailored anisotropy of the nearest-

neighbor coupling has shown that it is possible to make all 

optical modes — otherwise extended through the lattice — 

localize at the interface between regions of the mesh with 

different topologies6.  

Since non-Hermiticity inherently leads to the breaking of 

time-reversal symmetry, a large effort is being devoted to 

exploring the connection with non-reciprocity, i.e., the 

invariance of a system upon exchange of the emitter and 

receiver. In particular, it has been shown that it is possible to 

induce one directional photon propagation by resorting, e.g., 

to non-linearity7-9 or to spatiotemporal modulation10,11. These 

strategies recreate the response observed in Faraday rotation 

and other related magneto-optical phenomena without the 

need for an externally applied magnetic field12. Beyond 

photonics, similar techniques have been adapted to areas such 

as acoustics13, where non-reciprocal transport is otherwise 

difficult to attain.    

While a large fraction of the above work draws on the 

ability to map the system’s fundamentally classical dynamics 

into a Schrödinger-like equation, less attention has been 

devoted to physical settings in the form of interacting nuclear 

and electron spins, where a quantum mechanical description 

is typically mandatory. Further, with few exceptions14, we are 

not aware of any studies considering the combined effect of 

coexisting spin polarization gain and loss, even if the impact 

of spin-lattice relaxation on the system’s time evolution is 

well understood15. At first sight, this void may seem 

surprising because dynamic nuclear polarization (DNP) — 

the process whereby external optical or microwave (MW) 

excitation leads to nuclear spin order16 — has been known for 

decades. Partly to blame is the very different time and 

frequency scales governing electron and nuclear spin 

dynamics, and thus the entrenched notion of electron spins as 

a generic source of nuclear spin relaxation in solids, typically 

cast in a semi-classical — and thus uninformative — fashion.  

Here, we theoretically consider a hybrid set of nuclear 

and electron spins simultaneously undergoing optical spin 

pumping and spin-lattice relaxation. We zero in on chain-like 

arrays where the nuclear spin coupling is mediated by pairs 

of interacting electron spins, one of which spin-polarizes 

under laser excitation. Setting the externally applied magnetic 

field so as to allow inter-electronic spin flips, we show that 

when the spin pumping rate reaches a critical threshold, 

nuclear spin polarization flows selectively in one direction of 

the chain but not in the other, a response reminiscent of a spin 

valve. The dynamics that ensues leads to asymmetric, site-

selective nuclear spin polarization along the chain, which we 

formally capture with the help of an effective nuclear-spin-

only non-Hermitian model. Transitioning from linear spin 

chains to ring-like arrays, we identify a drastically different 

limit regime, this time featuring uniform polarization 

distributions as well as persistent nuclear spin currents, even 

in the absence of net nuclear polarization. Finally, we show 
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that, to a large extent, these processes can be made robust to 

defects in the chain through the periodic modulation of the 

applied magnetic field.  

We organize this article in the following way: In Section 

II, we introduce non-reciprocal nuclear spin dynamics via a 

reduced spin set comprising two separate nuclear spins whose 

mutual coupling is made possible by two interacting electron 

spins, each hyperfine-coupled to either nuclear spin. We 

generalize these ideas in Section III, to show how optical 

pumping and spin-lattice relaxation combine to produce a 

steady state gradient of nuclear polarization across the spin 

chain. Section IV focuses on ring-like structures to expose the 

formation of persistent nuclear spin currents driven by light. 

Finally, Section V discusses the impact of disorder in the spin 

chain and shows that strategies can be put in place to mitigate 

its effects.   

II. NON-RECIPROCAL NUCLEAR SPIN 

TRANSPORT IN A FOUR-SPIN SET 

The spin set in Fig. 1 provides a suitable framework to 

introduce some of the main ideas: We consider two nuclear 

spins 𝐼𝑗 = 1 2⁄ , 𝑗 = 1,2 each of them hyperfine-coupled to 

electron spins 𝑆 = 1 and 𝑆′ = 1 2⁄ , themselves interacting 

via a dipolar coupling ℐd. For simplicity, we assume both 

electronic spins feature identical, isotropic g-tensors, and that 

spin 𝑆 experiences a cylindrically symmetric crystal field. 

This system can be viewed as an idealized model of a 

molecule featuring a bi-radical, engineered so that one of the 

electronic spins — in the present case, spin 𝑆 — dynamically 

polarizes under optical excitation at a rate Γop. Related 

systems are presently being explored for improved forms of 

DNP17-20, or as molecular spin qubits21-27. 

In the absence of illumination, we write the system 

Hamiltonian as  

𝐻(1,2) = 𝐻n + 𝐻e + 𝐻c + 𝐻h + 𝐻d,                  (1)  

where 𝐻n = −𝜔n𝐼1
𝑧 − 𝜔n𝐼2

𝑧 and 𝐻e = 𝜔e𝑆𝑧 + 𝜔e𝑆′𝑧 

respectively denote the nuclear and electronic Zeeman 

contributions, 𝐻c = 𝐷(𝑆𝑧)2 is the crystal field on spin S, 

𝐻h = 𝐴𝑧𝑧1
𝑆𝑧𝐼1

𝑧 + 𝐴𝑧𝑥1
𝑆𝑧𝐼1

𝑥 + 𝐴𝑧𝑧
′

2
𝑆′𝑧𝐼2

𝑧 + 𝐴𝑧𝑥
′

2
𝑆′𝑧𝐼2

𝑥 

contains all secular hyperfine contributions, and 𝐻d =
ℐd

2
(𝑆+𝑆′+ + 𝑆−𝑆′−) is the secular dipolar coupling between 

the two electronic spins. In the above expressions, 𝑰𝑗  (𝑗 =

1, 2) denotes the nuclear 13C spin operator, 𝑺 and 𝑺′ are the 

electronic spin operators, and 𝜔n = 𝛾n𝐵 and 𝜔e = |𝛾e|𝐵 are 

the nuclear and electron Zeeman frequencies in the presence 

of a magnetic field 𝐵. Coefficients 𝐴𝑧𝑧1
 and 𝐴𝑧𝑥1

 (𝐴𝑧𝑧
′

2
 and 

𝐴𝑧𝑥
′

2
) denote the hyperfine tensor components coupling spins 

 

Fig. 1: Energy diagram for the electron-nuclear spin set in 

the lower right. Optical illumination (red lightning) 

initializes spin 𝑆 into |𝑚S = 0⟩. The magnetic field is set at 

a value 𝐵m
(𝛼)

 so that |↑, 0, + 1 2⁄ , ↓⟩ and |↓, −1, − 1 2⁄ , ↑⟩ are 

degenerate.  

 

 

Fig. 2: One-directional transport of spin order. (a) Nuclear spin polarization 𝑃𝑗, 𝑗 = 1,2 as a function of time for the initial state 

|↑, 0, + 1 2⁄ , ↓⟩ (using notation |𝑚𝐼1 , 𝑚𝑆, 𝑚𝑆′ , 𝑚𝐼2⟩) as determined from an exact solution of the system Hamiltonian in Eq. (1) 

(top) or the effective nuclear spin Hamiltonian in Eq. (2) (bottom) in the absence of optical illumination. (b) (Left) Same as above 

but assuming optical spin pumping of S at a rate Γop ≈ ℐeff = 17 kHz. In the top plot, the solid and dashed lines respectively 

indicate a numerical calculation using the quantum master equation (QME) or a quantum jump Monte Carlo (QJM). (Right) 

Generalization for variable optical spin pumping rate Γop obtained via QJM. In all calculations, we use ℐd = 247 kHz, 𝐴𝑧𝑧1
=

𝐴𝑧𝑥1
= 13 MHz, and 𝐴𝑧𝑧

′
2

= 𝐴𝑧𝑥
′

2
= 4 MHz, and we ignore 𝑆′ spin-lattice relaxation. 
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𝐼1 (𝐼2) and S (S’), ℐd is the dipolar coupling constant between 

S and S’, and 𝐷 is the zero-field splitting of spin S, here 

assumed much greater than any hyperfine coupling constant.  

Unless explicitly noted, we set the magnetic field at (or 

near) 𝐵m
(𝛼)

 chosen so that states featuring opposite nuclear 

spin projections become degenerate* (see energy diagram in 

Fig. 1). Correspondingly, these two states hybridize and, 

despite the hyperfine coupling mismatch, reversible inter-

nuclear polarization flow takes place in the dark thanks to the 

mediating action of the electron spins28,29 (upper plot in Fig. 

2a). We have already shown in prior work30 that the above 

dynamics can be cast in the form of a simpler, nuclear-spin-

only effective Hamiltonian 

𝐻eff
(1,2)

= 𝛿eff𝐼1
𝑧 − 𝛿eff𝐼2

𝑧 + 𝐽eff(𝐼1
+𝐼2

− + 𝐼1
−𝐼2

+),        (2) 

an expression valid for variable, small magnetic field shifts 

𝛿eff = 2 |𝐵 − 𝐵𝑚
(𝛼)

| |𝛾e| near 𝐵𝑚
(𝛼)

. The effective inter-

nuclear coupling in Eq. (2) is given by30 

ℐeff =
ℐd

2
sin(𝜃1/2) sin[(𝜃2

↓ − 𝜃2
↑)/2].          (3) 

where tan(𝜃1) = 𝐴𝑧𝑥1
(𝐴𝑧𝑧1

+ 𝜔I)⁄ , tan(𝜃2
𝑚𝑆′) =

𝑚𝑆′𝐴𝑧𝑥
′

2
(𝑚𝑆′𝐴𝑧𝑧

′
2

− 𝜔I)⁄ , and 𝑚𝑆′ = ± 1 2⁄  are the 

projections of spin 𝑆′. Conceptually, 𝐻eff expresses inter-

electronic cross-relaxation as a process of nuclear spin 

transport; as shown in the lower panel of Fig. 2a, the model 

reproduces the exact numerical solution reasonably well. We 

emphasize the symmetry in the Hamiltonian ensures there is 

no preferential bias in the transport of nuclear polarization, 

i.e., polarization flows reversibly between the two nuclear 

spins in the chain. 

To quantitatively assess the impact of spin-lattice 

relaxation and electron spin pumping we formulate the 

system dynamics as a quantum master equation31 (QME), 

namely,  

�̇� = −𝑖[𝐻(1,2), 𝜌] + ℒ (1,2)(𝜌),                   (4) 

where 𝜌 denotes for the 4-spin density matrix, and ℒ (1,2)(∙) 

is the GKS-Lindblad generator. Ignoring for now spin-lattice 

relaxation, we write 

ℒ (1,2)(𝜌) = 𝐶op𝜌𝐶op
† −

1

2
{𝐶op

† 𝐶op, 𝜌},              (5) 

where the optical pumping operator 𝐶op acts on spin S as  

𝐶op = √Γop[|0⟩⟨−1| + |0⟩⟨+1|],                    (6) 

and {∙} denotes anti-commutation. 

Fig. 2b shows the results for the case Γop ≈ ℐeff: Unlike 

the case in Fig. 2a, polarization flows from I1 to I2 but the 

converse process is quenched. Qualitatively, this one-

directional response stems from the chosen optical pumping 

rate, polarizing spin 𝑆 after half an evolution cycle (i.e., after 

positive spin polarization passes from 𝐼1 to 𝐼2), and hence 

driving the system away from degeneracy, towards a state 

where no further nuclear spin flow occurs. As shown in the 

right panels of Fig. 2b, this rate amounts to a ‘critical 

damping’ of the transfer dynamics: Bi-directional 

polarization transfer reappears when Γop is sufficiently low, 

whereas strong spin pumping gradually quenches spin 

transport altogether (as the laser pins spin S into 𝑚𝑆 = 0). 

Reassuringly, similar results emerge from a quantum-jump 

Monte Carlo32,33 (QJM), an arguably more intuitive method 

where we average over multiple trajectories concatenating 

unitary evolutions and random projections of spin S into 

𝑚𝑆 = 0 with unit time probability Γop (dashed traces in the 

upper left panel of Fig. 2b). 

For future reference, here too one can quantitatively 

model the system’s non-Hermitian dynamics via a nuclear-

spin-only master equation governed by a one-directional 

coupling transferring nuclear population from state |↑ ↓⟩ to 

|↓ ↑⟩ but leaving all other populations unchanged. We thus 

write 

�̇�n = ℒeff
(1,2)

(𝜌n),                                   (7) 

where  

ℒeff
(1,2)

(𝜌n) = 𝐶eff𝜌n𝐶eff
† −

1

2
{𝐶eff

† 𝐶eff, 𝜌n}          (8) 

is the Lindblad operator of the nuclear spin pair with 𝐶eff =

√ℐeff 𝐼1
−𝐼2

+ (see lower panel in Fig. 2b). In the above 

expressions, 𝐼𝑗
±, 𝑗 = 1,2 are the nuclear raising/lowering 

operators, and 𝜌n is the reduced density matrix representing 

the state of the nuclear spins. The built-in non-reciprocity of 

the set is implicit in the definition of the collapse operator 

𝐶eff, selectively moving positive polarization from nuclear 

spin 1 to 2 (i.e., the reverse process is forbidden).   

III. THE INTERPLAY BETWEEN GAIN AND LOSS 

IN LINEAR SPIN CHAINS 

To investigate how these ideas play out in more complex 

spin sets, we introduce the notion of a ‘dressed’ nucleus, 

whereby spin 𝐼 interacts with adjacent nuclei through non-

equivalent magnetic ‘bonds’ (Fig. 3a). For presentation 

purposes, we start by considering the linear, open-ended 

chain shown in Fig. 3b, comprising a collection of dressed 

nuclei whose spin dynamics we break down into a series of 

consecutive stages, (i) through (v). The latter allows us to 

express nuclear transport as a stepped process involving 

coherent effective couplings between nuclei as well as 

electronic spin-lattice relaxation and spin pumping (with the 

understanding, however, that all of the above acts 

simultaneously in a real system). Further, we assume a well-

defined initial spin configuration where the nuclear (electron) 

spin at site 𝑗 − 2 (𝑗 − 1) is ‘up’ while all others are ‘down’. 

                                                      
* We use the supra-index 𝛼 to distinguish this field from 𝐵m

(𝛽)
 where states |↓, 0, + 1 2⁄ , ↑⟩ and |↑, −1, − 1 2⁄ , ↓⟩ become 

degenerate and analogous — though not identical — nuclear spin dynamics occurs28.   
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Under these conditions, the spin set formed by dressed nuclei 

𝑗 − 2 and 𝑗 − 1 effectively reproduces the dynamics already 

observed in Fig. 2, namely, nuclear magnetization moves one 

site to the right because the converse process is hindered by 

the optical pumping of spin S (stages (i) through (iii) in Fig. 

3b). In this case, the amplitude of the effective coupling — 

slightly different from that derived above for the 4-spin 

model — is given by  

ℐeff =
ℐd

2
sin (

𝜃0
↓ − 𝜃−1

↓

2
) sin (

𝜃0
↓ − 𝜃0

↑

2
),             (9) 

where tan 𝜃𝑚𝑆

𝑚𝑆′
=

(𝑚𝑆𝐴𝑧𝑥+𝑚𝑆′𝐴𝑧𝑥
′ )

(𝑚𝑆𝐴𝑧𝑧+𝑚𝑆′𝐴𝑧𝑧
′ −𝜔n)

, and 𝑚𝑆 = 0, −1 

(𝑚𝑆′ = ± 1 2⁄ ) are the projections of spin 𝑆 (spin 𝑆′). Note 

that we drop the site index in the hyperfine components by 

relying on the assumption of translational invariance (see 

Appendix A for details). Further directional transport is 

ensured by electron spin-lattice relaxation, as it keeps the 

system from being trapped in configurations where cross-

relaxation is disallowed (stages (iv) and (v)); by contrast, 

nuclear relaxation — typically much slower — is 

unnecessary and can be neglected. Qualitatively, the 

underlying dynamics can be loosely pictured as a stochastic 

sequence of directional hopping events, here enabled by the 

simultaneous presence of dynamic polarization and spin-

lattice relaxation (Fig. 3b). We stress that the optical spin 

pumping simultaneously acts on every spin S of the chain, i.e. 

spin transport takes place without assuming any local 

manipulation. Further, despite considering a specific 

electron/nuclear spin state when describing Fig. 3b, such an 

assumption is unnecessary and is made only to clarify the 

mechanism underlying the one-directional spin transport 

dynamics.   

The upper panels in Figs. 4a through 4c show the 

averaged time evolution of the nuclear spin polarization for a 

chain with 𝑁 = 4 sites as determined from a QJM. Unlike the 

results in Fig. 2, we assume that electron spins are subject to 

spin-lattice relaxation with a rate Γe < Γop, and they are all 

initially in a maximally mixed state (i.e. unpolarized). For the 

 

Fig. 4: Non-reciprocal spin dynamics in multi-site chains. (a) Nuclear spin polarization as a function of time for a four-site chain 

as determined from QJM (top) or the effective nuclear spin Lindbladian (bottom). Arrows in the upper cartoon indicate the initial 

nuclear spin polarization, positive for the nuclear spin 𝑗 = 1, negative for all others. (b) Same as before but assuming nuclear spins 

in sites 𝑗 = 2 ⋯ 4 are unpolarized (two sided arrows in the cartoon). (c) Same as in (a) but for a case where all nuclear spin are 

initially unpolarized. In all instances, we assume all electronic spins are initially unpolarized and use ℐd = 62 kHz, 𝐴𝑧𝑧 = 𝐴𝑧𝑥 =
13 MHz, and 𝐴𝑧𝑧

′ = 𝐴𝑧𝑥
′ = 4 MHz, which corresponds to ℐeff = 0.547 kHz. As before, we set Γop ≈ ℐeff but assume electronic 

spins relax with a rate Γe = 0.1 kHz. For the QJM results, the number of averages (6 in this case) is chosen to minimize the 

statistical error. All other conditions as in Fig. 2.  

 

Fig. 3: One-directional nuclear spin transport through gain 

and loss. (a) Schematics of a ‘dressed’ nuclear spin. (b) In 

the simultaneous presence of optical excitation and spin 

relaxation, positive (negative) nuclear spin polarization 

propagates to the right (left). In (b), arrows indicate the 

projections of electrons and nuclei with spin number ½. 
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nuclear spins, we consider alternative initial spin 

configurations, including the case where all nuclear spins 𝑗 =

1 … 𝑁 in the chain are initially unpolarized (i.e., 𝜌n
(𝑗)

= 𝕀). 

Remarkably, the system evolves in all cases towards a state 

where positive (negative) nuclear polarization concentrates at 

the right (left) end of the chain, even if the starting nuclear 

polarization is null. Unlike in DNP, the net nuclear 

magnetization of the chain remains unchanged, implying that 

electronic gain (i.e., optical spin pumping) and loss (i.e., spin-

lattice relaxation) combine herein to redistribute — not 

generate — nuclear polarization.  

Fortunately, the Lindblad formalism introduced in Eq. 

(7) for the nuclear pair can be easily generalized to multi-site 

chains, namely, we write 

�̇�n = ℒeff
(1,2,…,𝑁)

(𝜌n),                               (10) 

where 

ℒeff
(1,2,...,𝑁)(𝜌n) = ∑ [𝐶eff,𝑗𝜌n𝐶eff,𝑗

† −
1

2
{𝐶eff,𝑗

† 𝐶eff,𝑗, 𝜌n }]

𝑁−1

𝑗=1

 (11) 

and 𝐶eff,𝑗 = √Γeff 𝐼𝑗
−𝐼𝑗+1

+  with the exact value of Γeff adjusted 

to take into account the combined effects of spin pumping and 

electron spin relaxation (see Appendix B). As a comparison 

between the upper and lower panels in Figs. 4a-4c shows, we 

attain good agreement with the QJM calculations in all cases, 

regardless the initial nuclear spin configuration.  

The ability to model the system dynamics through the 

simplified framework of Eqs. (10) and (11) allows us to 

extend our theoretical analysis to large nuclear spin sets, 

beyond the capabilities of present numerical methods. Fig. 5a 

shows an example where we plot the steady state nuclear 

polarization as a function of the fractional position in the 

chain 𝜒 = 𝑗 𝑁⁄ , 𝑗 = 1 … 𝑁 for a variable number of sites 𝑁 

assuming an initial state with all spins unpolarized. The same 

trends observed before generalize to yield a limit density 

matrix 

𝜌n(𝑡 → ∞) =
1

2𝑁
∑ (

𝑁

𝑖
) [⨂𝑗=1

𝑖 |↓⟩⟨↓|]⨂[⨂𝑗=𝑖+1
𝑁 |↑⟩⟨↑|],

𝑁

𝑖=0

 (12) 

with |↑⟩, |↓⟩ representing the two possible nuclear spin 

projections at each site. This expression follows from the 

maximally mixed initial nuclear spin state: Every possible 

nuclear configuration has the same statistical weight and it 

evolves towards an ordered, ‘domain wall state’, where all 

spins at the right are positively polarized and spins to the left 

are negatively polarized. For example, in a four-spin chain, 

states |↓↑↑↑⟩, |↑↓↑↑⟩, |↑↑↓↑⟩, and |↑↑↑↓⟩ converge to |↓↑↑↑⟩. 
In addition, completely ordered states do not evolve at all, e.g. 

|↓↓↓↓⟩. Equation (12) then represents the asymptotic nuclear 

state by counting the contributions to each domain-wall state.  

Lastly, we note that similarly biased transport dynamics 

can be recreated in spin sets other than a linear chain. Fig. 5b 

shows one illustration where we numerically calculate the 

dynamics of a tree-like nuclear spin molecule engineered 

such that only the effective coupling along the ‘trunk’ (i.e., 

the central bond) is one-directional; interestingly, we find that 

nuclei in the ‘tree top’ and at its ‘roots’ polarize uniformly 

but with opposite signs.   

IV. PERSISTENT NUCLEAR SPIN CURRENTS IN 

RING-LIKE ARRAYS  

While the discussion thus far centered on open-ended 

arrays, periodic spin chains give us the opportunity to 

uncover a distinct response. This is shown in Figs. 6a and 6b, 

where we consider a three-site electron/nuclear ring, and 

calculate the time evolution of the site-selective nuclear 

polarization for two different initial conditions (upper and 

lower panels in Fig. 6b). Irrespective of whether we resort to 

the nuclear Lindblad model or conduct a full QJM (solid and 

faint traces, respectively), we find the system evolves into a 

state of uniform polarization whose amplitude correlates with 

the net initial magnetization, negative in the first case, null in 

the other.  

We emphasize that although the local nuclear 

polarization in rings and linear arrays behaves differently 

(forming opposite domains in one case, spreading uniformly 

in the other), the underlying gain/loss, dissipative dynamics 

(one-directional in both instances) must remain unchanged. 

To expose the biased nature of the transport at play, we turn 

our attention to the nuclear spin current 𝐾𝑗,𝑗+1 between sites 

𝑗 and 𝑗 + 1, which can be connected to the on-site nuclear 

polarization via the continuity equation34-36  

𝑑

𝑑𝑡
𝐼𝑗

𝑧 = 𝐾𝑗−1,𝑗 − 𝐾𝑗,𝑗+1.                          (13) 

While a numerical calculation that takes into account the full 

 
Fig. 5: (a) Calculated steady-state nuclear spin polarization as 

a function of the relative position 𝜒 = 𝑗 𝑁⁄  where 𝑗 = 1 … 𝑁 

is the site index along the chain. (b) Nuclear spin polarization 

as a function of time for the ‘tree-like’ spin structure on the 

left. Dashed lines indicate bi-directional inter-nuclear 

couplings with value ℐb = 547 Hz; the effective directional 

coupling between nuclei 5 and 6 is given by a collapse 

operator 𝐶eff = √Γeff𝐼5
−𝐼6

+, where Γeff is 13 Hz. 
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electron/nuclear spin set can be implemented via QJM, it is 

also possible to evaluate the spin current via a nuclear-spin-

only Lindblad formulation in the Heisenberg representation. 

In particular, the left-hand side of Eq. (13) can be cast as  

𝑑

𝑑𝑡
𝐼𝑗

𝑧 = 𝕃eff
(1,2,...,𝑁)

(𝐼𝑗
𝑧) =                                        

= ∑ [𝐶eff,𝑖
† 𝐼𝑗

𝑧𝐶eff,𝑖 −
1

2
{𝐶eff,𝑖

† 𝐶eff,𝑖 , 𝐼𝑗
𝑧}]

𝑁−1

𝑖=1

,               (14) 

where 𝕃eff
(1,2,...,𝑁)

 is the Hilbert-Schmidt adjoint of ℒeff
(1,2,...,𝑁)

. 

Note that since 𝐶eff,𝑖 selectively connects spins 𝑖 and 𝑖 + 1, 

only two terms in the above generator 𝕃eff
(1,2,...,𝑁)(∙) remain 

after summation, each one coupling the 𝑗-th nuclear spin to 

its left and right neighbors, i.e., 

    
𝑑

𝑑𝑡
𝐼𝑗

𝑧 = ∑ [𝐶eff,𝑖
† 𝐼𝑗

𝑧𝐶eff,𝑖 −
1

2
{𝐶eff,𝑖

† 𝐶eff,𝑖 , 𝐼𝑗
𝑧}]

𝑗

𝑖=𝑗−1

.       (15) 

A comparison between Eqs. (13) and (15) hence suggests the 

natural definition 

𝐾𝑗,𝑗+1 ≡ −𝐶eff,𝑗
† 𝐼𝑗

𝑧𝐶eff,𝑗 +
1

2
{𝐶eff,𝑗

† 𝐶eff,𝑗 , 𝐼𝑗
𝑧},         (16)  

which, after some algebra yields 

𝐾𝑗,𝑗+1 = Γeff𝐼𝑗
+𝐼𝑗

−𝐼𝑗+1
− 𝐼𝑗+1

+ = Γeff|↑𝑗↓𝑗+1⟩⟨↑𝑗↓𝑗+1|.   (17) 

Fig. 6c shows the results assuming, as before, two alternative 

initial conditions. Consistent with the QJM results for the 

whole electron/nuclear chain (faint traces), the system 

stabilizes after a variable, state-dependent transient to 

ultimately attain a uniform ring current, persisting even in the 

absence of net nuclear magnetization.  

Equation (17) is reminiscent of Ohm’s law, namely, spin 

current emerges as a consequence of a local ‘potential 

difference’ 𝑉𝑗,𝑗+1 ≡ |↑𝑗↓𝑗+1⟩⟨↑𝑗↓𝑗+1| that depends on the 

probability of finding opposite polarizations in adjacent 

nuclear sites. The unit-length ‘conductivity’ Γeff ∝ Γe — 

governing the spin current in the limit Γop > Γe used herein, 

see Appendix B — shows that spin-lattice relaxation is a 

central component of spin transport in these systems. We 

reinforce this picture in Fig. 6d where we plot the persistent 

spin current 𝐾 (local voltage 𝑉) as a function of the number 

𝑁 of nuclear sites in the ring. We find that 𝐾 changes 

inversely with 𝑁, as expected for a wire whose ‘resistivity’ 

grows linearly with its length.  

For completeness, we mention that a similar calculation 

in linear chains yields null persistent currents preceded by 

non-zero transients, consistent with the open-ended structure 

of these arrays (Fig. 7a). Even though Eq. (17) breaks down 

(in general) due to the lack of periodicity, the buildup of a 

non-zero nuclear polarization gradient shown in Fig. 7b can 

be viewed as the result of a ‘magnetic charge’ separation 

process. Such a non-uniform distribution leads to a persistent 

voltage difference, corresponding to the operator 

|↑𝑁↓1⟩⟨↑𝑁↓1|, — with no net current — between the two 

extremes of the spin wire as shown in Fig. 7c.  

V. NUCLEAR SPIN TRANSPORT IN IMPERFECT 

CHAINS 

Consistent with the resistive character of the transport, 

we find that the dynamics is sensitive to the presence of 

‘defects’ (i.e., imperfections) in the chain. This is shown in 

Fig. 8, where we consider the case of a three-site linear chain 

in which the dressed nucleus at its center is different from the 

other two; the latter can be attained, e.g., by modifying the 

hyperfine coupling to spin 𝑆′ (see schematics in Fig. 8a). 

Even in the presence of electron spin pumping, the energy 
mismatch inhibits multi-site polarization exchange and hence 

the nuclear spin set develops no collective order, regardless 

the applied magnetic field (main plot in Fig. 8a). Note that the 

 

Fig. 6: Persistent spin current in periodic chains. (a) Schematic of a three-unit electron/nuclear spin ring. (b) Time evolution of 

the nuclear spin polarization under optical excitation starting from an initial nuclear spin state |↑, ↓, ↓⟩ (top) or from a state where 

all nuclear spins are unpolarized (bottom). Solid (faint) traces indicate evolution as determined from the effective nuclear spin 

Lindbladian (QJM of the full spin Hamiltonian). (c) Time evolution of the nuclear spin current 𝐾𝑗,𝑗+1 and voltage 𝑉𝑗,𝑗+1 between 

sites 𝑗 and 𝑗 + 1 using the effective nuclear Lindbladian (solid traces) or the full Hamiltonian under QJM dynamics (faint traces); 

the initial state is |↑, ↓, ↓⟩ (top) or a state of unpolarized nuclear spins (bottom). Even in the absence of nuclear polarization, a 

non-zero spin current is seen to persist at long times. (d) Persistent spin current 𝐾 as a function of the number of nuclei 𝑁 in the 

ring assuming an initial state of the form |↑, ↓, ↓ ⋯ ↓⟩. Throughout these calculations the number of averaged QJM trajectories 

is 28; all other conditions as in Fig. 4.  
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‘cross points’ 𝐵m
(𝛼)

+ 𝛿𝐵m         

(𝛼𝑗,𝑗+1)
 — where adjacent nuclei 

𝑗, 𝑗 + 1 polarize in opposite directions — are simply a 

fortuitous consequence of local matching between the nuclear 

and electronic energy differences, and thus cannot induce 

long-range transport along the chain.  

We regain the spin dynamics observed in Fig. 4 with the 

aid of the protocol in Fig. 8b, articulating simultaneous 

electron spin pumping and magnetic field modulation. 

Motivating this scheme is the intuition that one can move 

polarization pair-wise, simply by bringing the magnetic field 

to the value required to enable a local ‘flip-flop’ between 

adjacent sites 𝑗 − 1 and 𝑗, then changing it to couple sites 𝑗 
and 𝑗 + 1. Correspondingly, successive field sweeps over a 

suitably broad range must gradually move positive (negative) 

polarization to the right (left) of the chain, thus recreating the 

prior spin dynamics. Note that the symmetric nature of the 

field modulation — featuring equally fast low-to-high and 

high-to-low ramps — ensures no net polarization emerges 

from Landau-Zener dynamics at level anti-crossings37,38.  

 Fig. 8c displays the results for a variable field 

modulation frequency ΓB assuming the field sweeps the range 

in Fig. 8a. The protocol recreates the spin dynamics already 

observed in Fig. 4c although the process is comparatively 

slower, a consequence of the finite time required to complete 

a field sweep. Increasing ΓB can only mitigate this limitation 

partially (right panels in Fig. 8c) because polarization transfer 

is gradually inhibited if the effective time during which pair-

wise energy matching is attained becomes shorter than the 

inverse effective coupling between adjacent nuclei. Lastly, 

we mention that a similar response is observed in related 

defects where the hyperfine coupling to spin 𝑆 (or to both spin 

𝑆 and 𝑆′) are changed in one (or more) sites along the chain. 

Nonetheless, we observe the gradual appearance of net 

polarization once disorder in the chain exceeds some critical 

threshold. Other types of defects are insensitive to the 

correction protocol in Fig. 8b, and can lead to different spin 

dynamics (such as the formation of multiple ‘domains’, not 

shown here for brevity).  

 

Fig. 7: (a) Ten-site spin chain. Empty circles indicate 

effective inter-nuclear couplings. (b) Time dependence of the 

nuclear spin polarization in the above chain as determined 

from the effective nuclear spin Lindbladian. (c) Nuclear spin 

current between different consecutive sites in the chain as a 

function of time. The voltage 𝑉10,1 is also evaluated. We 

assume that the initial state is fully unpolarized and use Γeff =

|ln (
7

8
)| Γe, with Γe = 0.1 kHz.  

 

 

 

 

Fig. 8: Spin dynamics of a defective dressed nuclear spin chain. (a) Three-site chain with a defect formed by a dressed nucleus 

in site 2 featuring a hyperfine tensor �⃡�  1
′ = �⃡�  3

′ = 0.885 �⃡�  2
′ . Under optical excitation and a static magnetic field, the nuclear 

polarization at all sites is null, except at ‘cross points’ 𝐵m
(𝛼)

+ 𝛿𝐵m

(𝛼𝑗,𝑗+1)
 where adjacent nuclei 𝑗, 𝑗 + 1 polarize in opposite 

directions. (b) To re-establish one-directional polarization transport, we modulate the magnetic field around 𝐵m
(𝛼)

 with amplitude 

𝛿𝐵 and frequency ΓB during electronic spin pumping. (c) Nuclear spin polarization as a function of time obtained after a single 

QJM run for the full electron/nuclear spin set. In each plot, we assume a different field modulation frequency ΓB (lower corner 

in each plot) and a field sweep amplitude 𝛿𝐵m
(𝛼)

= 10 µT centred at 𝐵m. In these simulations, we use 𝐴𝑧𝑧
′

1
= 𝐴𝑧𝑧

′
3

= 𝐴𝑧𝑥
′

1
=

𝐴𝑧𝑥
′

3
= 3.75 MHz and 𝐴𝑧𝑧

′
2

= 𝐴𝑧𝑥
′

2
= 4.25 MHz; all other conditions as in Fig. 2. In (a) and (c), 𝑃𝑗 denotes the nuclear 

polarization at site 𝑗 = 1 … 3, and 𝑃c indicates the net nuclear polarization of the chain.  
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VI. TOWARDS A NON-HERMITIAN HAMILTONIAN 

Our approach to the dynamics of gain and loss so far has 

been driven by an explicit evaluation of the system dynamics 

using the Lindblad formulation, both in the complete 

electron-nuclear and purely nuclear scenarios. An alternative 

strategy would be to analyze the same physics replacing 

Linbladians by some appropriate non-Hermitian Hamiltonian 

(nHH). While a rigourous derivation goes beyond the scope 

of this article, we can straightforwardly reshape the effective 

dynamics discussed in Section II by proposing a nHH in the 

role of the optical pumping of spin 𝑆,  𝐻𝑜𝑝 = 𝑖Γop|0⟩⟨0| −

𝑖Γop|−1⟩⟨−1|. Then, the complete nHH for the four spin 

system in Fig. 1 is 𝐻𝑛𝐻
(1,2)

= 𝐻(1,2) + 𝐻𝑜𝑝, with 𝐻(1,2) as 

defined in Eq. (1). In the subspace spanned by |↑ 0 ↑↓⟩ and 

|↓ −1 ↓↑⟩ (using notation |𝑚𝐼1 , 𝑚𝑆, 𝑚𝑆′ , 𝑚𝐼2⟩) we get 

𝐻𝑛𝐻
(1,2)

= (
𝛿eff + 𝑖Γop ℐeff

ℐeff −𝛿eff − 𝑖Γop
)            (18) 

where 𝛿eff plays the role of a detuning parameter, vanishing 

at the matching condition 𝐵 = 𝐵𝑚
(𝛼)

. 

Figure 9 shows the Riemann surfaces of the complex 

eigenvalues of 𝐻𝑛𝐻
(1,2)

 versus parameters 𝛿eff, Γop.  An 

exceptional point arises when 𝛿eff = 0 and Γop = ℐeff. This 

last condition, as discussed before, is precisely our choice for 

optimal one-directional spin flips.  

VII. CONCLUSIONS 

We studied the dynamics of nuclear spin chains whose 

interactions are mediated by pairs of coupled electron spins 

of different types, and showed that the otherwise reciprocal 

nuclear polarization transport becomes one-directional upon 

externally pumping one of the electron spin species. 

Ultimately reflecting the asymmetric nature of the effective 

inter-nuclear bond, this process requires a suitable 

combination of electron spin polarization gain and loss, i.e., 

non-reciprocity vanishes (in general) if only spin-lattice 

relaxation or spin pumping are active. We attain optimal 

transport when the optical pumping rate and the effective 

coupling constant are equal and greater than the electron spin-

lattice relaxation rate, i.e., ℐeff ≈ Γop > Γe; in this regime, a 

net transport of nuclear polarization takes place with rate 

Γeff ∝ Γe.  

Although the same underlying transport mechanisms are 

at play, the steady state of open and closed spin chains are 

markedly different: Net nuclear spin magnetization of 

opposite signs builds up on either end of a linear chain, while 

ring-like arrays feature a uniform distribution of 

polarization. Importantly, however, no polarization is 

created nor destroyed in either case, implying that, although 

related, this process differs from dynamic nuclear 

polarization. Diffusive in nature, nuclear spin transport in 

these chains can be sensitive to disorder, though we have 

shown that the impact of some imperfections (such as 

heterogeneous effective couplings between nuclei) can be 

mitigated through the use of magnetic field sweeps.  

While a rigorous comparison between the present results 

and prior work in other non-Hermitian systems falls beyond 

the scope of this manuscript, we find some interesting 

analogies and differences. For example, similar to ring-like 

arrays of opto-mechanical resonators connected to a thermal 

bath39, here we observe persistent one-directional transport, 

though in our case the system displays no long-range 

coherences and separately driving individual chain sites is 

unnecessary. By the same token, the ‘spontaneous’ formation 

of positive and negative polarization domains in the linear 

spin chains considered herein is somewhat complementary to 

the non-Hermitian ‘skin effect’40-43 where, regardless the 

initial conditions, modes localize at the interface between 

sections of the array with different topologies. As already 

observed in other physical platforms — including a 

mechanical metamaterial44, a topolectrical circuit45, and in 

photonic arrays6,46 — it should be possible to recreate 

equivalent spin-based dynamics by engineering chains 

featuring alternating dressed nuclei with anisotropic and 

isotropic effective bonds. Note that the non-trivial impact of 

topology on the steady state of the spin system makes the 

inverse design problem — namely, how to engineer 

relaxation given a target nuclear spin state — an intriguing 

research direction in its own right. Besides their intrinsic 

fundamental interest, this type of non-Hermitian spin set 

imbued with non-trivial topology could find application in 

metrology, for example, by implementing external drive 

protocols (i.e., laser excitation, magnetic field, etc.) that 

capitalize on the sensitivity of topological transitions to 

changes in the environment47.  

APPENDIX A: DERIVATION OF 𝓘𝐞𝐟𝐟 FOR THE 

MULTI-SITE SPIN CHAIN  

 The Hamiltonian governing the dynamics in a 1-D array 

composed by 𝑁 dressed spins is given by 

𝐻(1,2,...,𝑁) = ∑ [𝐻u,𝑗 +
ℐd

2
(𝑆𝑗

+𝑆𝑗+1
′+ + 𝑆𝑗

−𝑆𝑗+1
′− )]

𝑁−1

𝑗=1

+ 𝐻u,𝑁 , (A. 1) 

where we define the ‘unit cell’ Hamiltonian as 

𝐻u = −𝜔n𝐼𝑧 + 𝜔e𝑆𝑧 + 𝜔e𝑆′𝑧 + 𝐷(𝑆𝑧)2 + 𝐴𝑧𝑧𝑆𝑧𝐼𝑧           

 

Fig. 9: Riemann surface of the eigenvalues of the non-

Hermitian Hamiltonian 𝐻𝑛𝐻
(1,2)

 versus parameters 𝛿eff, Γop. An 

exceptional point appears at 𝛿eff = 0 and Γop = ℐeff. 

Throughout these calculations the coupling between electron 

spins is ℐd = 62 kHz; all other conditions as in Fig. 2.  
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+𝐴𝑧𝑥𝑆𝑧𝐼𝑥 + 𝐴𝑧𝑧
′ 𝑆′𝑧𝐼𝑧 + 𝐴𝑧𝑥

′ 𝑆′𝑧𝐼𝑥 .     (A. 2) 

To derive the effective coupling between nuclear spins we 

consider the set formed by two adjacent dressed nuclei (Fig. 

10). This system is virtually identical to that considered in 

Section II except that the couplings with the electron spins at 

both ends of the chain must be taken into account. For linear 

arrays, we assume translational invariance, i.e. the hyperfine 

couplings are the same at each ‘unit cell’, so we drop the site 

index from each hyperfine component, but keep the prime 

label to indicate the coupling to 𝑆′ spins. Furthermore, we 

also assume that hyperfine interactions are stronger than the 

nuclear Zeeman couplings, so we do a partial diagonalization 

using the quantization axes for nuclear spins 𝐼1 and 𝐼2 defined 

by 

𝑍 (𝑚𝑆, 𝑚𝑆′) = (𝑚𝑆 𝐴𝑧𝑥 + 𝑚𝑆′𝐴𝑧𝑥
′ )�̂�                                 

+(𝑚𝑆𝐴𝑧𝑧 + 𝑚𝑆′𝐴𝑧𝑧
′ − 𝜔n)�̂�,        (A. 3) 

where the laboratory frame has been chosen so that the z-axis 

coincides with the axis of the crystal field in spin 𝑆. The 

norms of these vectors are related to the strength of the 

hyperfine interactions, and will be used below,  

∆𝑚𝑆

𝑚𝑆′
= |𝑍 (𝑚𝑆, 𝑚𝑆′)| =                                                                                                    

√(𝑚𝑆𝐴𝑧𝑥 + 𝑚𝑆′𝐴𝑧𝑥
′ )2 + (𝑚𝑆𝐴𝑧𝑧 + 𝑚𝑆′𝐴𝑧𝑧

′ − 𝜔n)2. (A. 4)                              

The corresponding rotation angles required to transform into 

this eigen-frame representation are respectively defined by 

tan 𝜃𝑚𝑆

𝑚𝑆′
=

(𝑚𝑆𝐴𝑧𝑥 + 𝑚𝑆′𝐴𝑧𝑥
′ )

(𝑚𝑆𝐴𝑧𝑧 + 𝑚𝑆′𝐴𝑧𝑧
′ − 𝜔n)

,            (A. 5) 

Table A.1 contains the matrix representation of this 2-site 

dressed nuclear spin Hamiltonian in the subspace 

corresponding to 𝑚𝑆1
′ =↓, 𝑚𝑆2

= 0. These are considered 

‘dummy’ electron spins located at both ends of the array. As 

before, we find that nuclear spin flip-flops are possible 

provided that the appropriate energy-matching condition is 

met. For instance, using the notation 

|𝑚𝑆1
′ , 𝑚𝐼1 , 𝑚𝑆1

, 𝑚𝑆2
′ , 𝑚𝐼2 , 𝑚𝑆2

⟩, the states |↓ ↑ 0 ↑↓ 0⟩ and 

|↓ ↓ −1 ↓↑ 0⟩ become degenerate if 

−∆0
↑ − ∆0

↓= 𝐷 − 2𝜔e − ∆0
↓ + ∆−1

↓ ,            (A. 6) 

which defines an equation for the ‘matching’ magnetic field 

𝐵 = 𝐵𝑚
(𝛼)

. Note that the time scale for the nuclear flip-flop 

processes,  |↑↓⟩ ↔ |↓↑⟩, is defined by the rate  

⟨↓↓ −1 ↓↑ 0|𝐻(1,2)|↓↑ 0 ↑↓′ 0⟩ =                                              

ℐeff =
ℐd

2
sin (

𝜃0
↓ − 𝜃−1

↓

2
) sin (

𝜃0
↓ − 𝜃0

↑

2
).      (A. 7) 

An equivalent situation can be found for the condition 

∆0
↑ + ∆0

↓= 𝐷 − 2𝜔e + ∆0
↓ − ∆−1

↓  ,        (A. 8) 

which can be attained at a different magnetic field 𝐵 = 𝐵𝑚
(𝛽)

.  

In this case, states |↓ ↓ 0 ↑↑ 0⟩ and |↓↑ −1 ↓↓ 0⟩ are 
degenerate, and the coupling matrix element is the same as in 

Eq. (A.7). Note, however, this energy-matching condition 

corresponds to a different magnetic field 𝐵 = 𝐵m
(β)

 as Eq. 

(A.6) is not equivalent to (A.8). 

APPENDIX B: DETERMINING 𝚪𝐞𝐟𝐟  

Here we derive an expression for the effective nuclear 

spin polarization transport rate in the simultaneous presence 

of spin pumping and electronic spin-lattice relaxation. 

Throughout this derivation, we set the optical pumping rate 

to the optimum, Γop = ℐeff and assume that ℐeff, Γop > Γe. For 

the particular case of the ordered chain shown in stage (i) of 

Fig. 3b, three consecutive spins 𝑆′ must have the specific 

projections 𝑚𝑆𝑗−2
′ =↓, 𝑚𝑆𝑗−1

′ =↑, 𝑚𝑆𝑗
′ =↓ in order to enable 

the desired nuclear (𝑗 − 2, 𝑗 − 1) flip-flop. Under this 

condition, the state of two adjacent nuclear spins of opposite 

polarization evolves as 

⟨↑↓|𝜌n|↑↓⟩~ exp(−Γop𝑡)                        (B. 1) 

⟨↓↑|𝜌n|↓↑⟩~ 1 − exp(−Γop𝑡),                  (B. 2) 

which essentially corresponds to the dynamics shown in Fig. 

2b. It is important to emphasize that any other configuration 

for the three contiguous electronic spins precludes the 

magnetization exchange between the pair of nuclear spins.  

Now we consider a more general case, and assume that 

at time 𝑡 = 0, all possible configurations for these three 𝑆′ 

electronic spins are equally likely. For the sake of simplicity, 

we assume that the longitudinal relaxation of 𝑆′ spins occurs 

deterministically, once at the end of every interval of duration 

Γe
−1. We start with the occupation of the two possible nuclear 

configurations being ⟨↑↓|𝜌n|↑↓⟩ = 1 and ⟨↓↑|𝜌n|↓↑⟩ = 0. So, 

at time 𝑡 = Γe
−1 only one out of 23 = 8 configurations would 

have the nuclear flip-flop,    

⟨↑↓|𝜌n|↑↓⟩ = 1 −
1

8
[1 − exp (−

Γop

Γe
)] ≈ 1 −

1

8
=

7

8
,   (B. 3) 

where we make use of the condition Γop/Γe > 1. Extending 

the same argument, at time 𝑡 = 2Γe
−1, 

 
 

Fig. 10. (a)  Electron-dressed nuclear spin comprising one 

nuclear spin 𝐼 and two electron spins, 𝑆 and 𝑆′. Spin 𝑆 has a 

spin number equal to 1, is optically polarizable, and is 

coupled to nuclear spin 𝐼 by the hyperfine tensor �⃡�  . Spin 𝑆′ 

is a spin-1/2 particle and is coupled to nuclear spin 𝐼 by the 

hyperfine tensor �⃡�  ′. (b) Two dressed nuclear spins (at sites 

1 and 2, dashed ovals) interacting via a dipolar coupling  ℐd 

between spins 𝑆1 and 𝑆2
′ . 
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⟨↑↓|𝜌n|↑↓⟩ =
7

8
−

7

8
×

1

8
[1 − exp (−

Γop

Γe
)] ≈ (

7

8
)

2

.   (B. 4) 

Generalizing to 𝑡 = 𝑛Γe
−1, we write 

⟨↑↓|𝜌n|↑↓⟩ ≈ (
7

8
)

𝑛

= exp [ln (
7

8
) Γe𝑡],              (B. 5) 

which we use to propose an effective nuclear spin transport 

rate constant 

Γeff ≈ |ln (
7

8
)| Γe.                              (B. 6) 

While this value is appropriate for large chains or rings, the 

logarithmic pre-factor slightly changes in small systems since 

the fluctuations in the 𝑆′ electronic spins become 

comparatively more ‘restricted’ and we need to consider the 
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configurations of only two, not three, electron spins 𝑆′. In this 

special case, the above arguments can be adapted to yield 

Γeff = |ln (
3

4
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