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Abstract

Bragg coherent diffraction imaging (BCDI) has the potential to provide significant insight into

the structure-properties relationship for crystalline materials by imaging, with nanoscale resolution,

three-dimensional (3D) strain fields within individual grains and nanoparticles. The capability of

present-day synchrotrons to locate and measure a multiplicity of Bragg reflections from a single

grain makes it possible to recover the full strain tensor with nanometer resolution. Recent methods

for coupling reconstructions from several peaks to determine the strain tensor have been developed

and applied to synthetic data, but have not been applied to experimental data. Here, using a

coupled genetic reconstruction algorithm, we reconstruct an experimental data set and demonstrate

improvements in the ability to resolve vector-valued displacement fields internal to the particle as

compared to what is achieved with a non-coupled approach. The coupled approach developed in

this work was also validated on simulated data sets. In both simulated and experimental data,

reconstructions from our coupled Bragg peak algorithm show improvements over the non-coupled

independent reconstruction method of 5% in terms of accuracy and 53% in terms of consistency.

I. INTRODUCTION

Illuminating the structure-property relationship in crystalline materials remains a pri-

mary objective for the crystallographic community. To this end, many x-ray and electron

diffraction techniques have been developed to probe fundamental mechanisms at the nano-

scale [1–3]. To reveal strain inhomogeneity and defect fields within crystals, several such

methods require the recovery of phase information, which is lost during the measurement

of diffracted intensity on a detector. Various computational phase-retrieval techniques have

been developed to efficiently solve the general ”phase-problem” for scattering from finite-

sized objects [4].

Among the techniques to benefit from progress in these fields is Bragg coherent diffrac-

tion imaging (BCDI), an experimental tool for non-destructive imaging of the shape and

displacement fields of a 3D crystal from a coherent Bragg peak [2]. Recent work has demon-

strated its viability for the study of dislocation dynamics, stacking faults, and twinning at the

nanoscale through reconstruction of a single Bragg peak [5–12]. Tools such as Laue diffrac-

tion [13] and High Energy Diffraction Microscopy (HEDM) [14, 15] have shown potential

to locate neighboring grains and nanoparticles of interest on the length scales required for
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BCDI, opening the door for multi-grain experiments. With the enhanced x-ray brightness

from upcoming fourth-generation synchrotrons, this technique will be capable of achieving

significant improvements in throughput and spatial resolution, with the potential to help

validate theoretical models, such as plasticity, on atomistic and mesoscopic length scales

[16–18].

The phase retrieval process applied to a BCDI data set measured at a single Bragg re-

flection returns a three-dimensional image sensitive to a single component of the lattice

distortion field, from which the corresponding strain projection can be calculated [19, 20].

Three or more BCDI data sets from non-coplanar Bragg reflections contain enough infor-

mation to determine the entire displacement vector field, and by extension, the full six-

component strain tensor [21, 22]. Though this has typically been accomplished through

independent reconstruction of each Bragg Peak, recently developed phase retrieval methods

propose coupling multiple BCDI data sets [23, 24], sharing information among peaks within

the image reconstruction algorithm. While reconstructing Bragg peaks independently is

more straightforward in practice, coupling reconstructions from multiple Bragg peaks from

the same crystal has the potential to significantly reduce the error of the retrieved strain

field and crystal shape by increasing the number of constraints on the reconstructed object.

These methods have proven effective in the reconstruction of simulated data sets, but as

yet, none have been used on experimental data, which typically present more challenges

than simulated data [25]. Here we demonstrate that a coupled Bragg peak phase retrieval

approach can successfully be applied to reconstruct displacement vector fields in 3D from

experimental data and that this approach provides improvements as compared to the non-

coupled independent reconstruction approach in terms of robustness and error, marking a

significant step in moving the method towards practical use.

II. BACKGROUND: CONVENTIONAL PHASE RETRIEVAL

In BCDI, a compact single crystal is illuminated by a nominally monochromatic and

spatially coherent x-ray beam. As the crystal is rotated through one of its Bragg condi-

tions, corresponding to reciprocal lattice vector Ghkl, the 3D coherent diffraction pattern

is sampled in a series of area detector images with the detector in the optical far-field or

Fraunhofer regime [20]. In this limit, the complex scattered wave amplitude, ψ̂(q), with
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q = Q − Ghkl being the deviation from the nominal Bragg condition in reciprocal space,

can be approximated as the Fourier Transform (FT) of the exit wave field at the location of

the particle.

The real-to-reciprocal space relationship can be denoted in shorthand as:

ψ̂(q) = FT [ψ(x)] (1)

Given that BCDI measurements consist of pixelated detector images measured at regular

angular intervals, the fields ψ(x) and ψ̂(q) are discrete and span a finite range in x and q,

and we designate this discretization (or voxelization) of these spaces with the subscript n,

(i.e. xn). Thus, the we define the discrete complex-valued sample exit field corresponding

to a given Bragg peak as

ψ(xn) = ρ(xn)e2πiφ(xn). (2)

The amplitude ρ(xn) corresponds to the electron density, and the phase, φ(xn), is a pro-

jection of the atomic displacement u(xn) with respect to the unperturbed lattice along the

scattering vector Ghkl:

φhkl(xn) = u(xn) ·Ghkl. (3)

The measured intensity of a Bragg peak is related to ψ̂(q) by

I(q) = |ψ̂(q)|2. (4)

To find the phase and amplitude of ψ(x), it is necessary to recover the lost phases of

ψ̂(q), which is accomplished via iterative phase retrieval. In this work, we utilize phase

retrieval algorithms that are broadly used in the BCDI field, namely error reduction (ER)

[26] and hybrid input-output (HIO) [27]. The approach entails making an initial guess for

ψ(x) and utilizing a combination of ER and HIO to subsequently improve the guess of

ψ(x) by iteratively transforming the object between real space and Fourier space, enforcing

constraints in each domain until the solution converges with respect to the error metric χ2,

given as

χ2 =
N∑
n=1

(√
In − |ψ̂n|

)2
, (5)

where n denotes a sampled point in reciprocal space and N is the total number of sampled

points.
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In the iterative ER and HIO routines, constraints are applied in both reciprocal and real

spaces. The Fourier space constraint consists of setting the forward-modeled Fourier space

amplitude |ψ̂n| equal to the measured amplitude
√
In. The real space constraint is applied

by cropping the real space modulus [4] by a support function S

ψ(x) = 0 if x /∈ S. (6)

The support function is allowed to shrink over the course of the phase retrieval procedure

by a process called ‘shrinkwrap’ [28], wherein the object amplitude in real space, |ψ(x)| is

convolved with a Gaussian f ,

ξ(x) = (f ∗ |ψ(x)|), (7)

and thresholded, according to

S =

1, if ξ(x) > (th ∗ ξmax),

0, otherwise,
(8)

where th is the threshold value as a fraction of the maximum value in ξ(x). Together, HIO,

ER, and Shrinkwrap make up the foundation of the methods presented here, together with

a strategy for coupling information from multiple Bragg peaks during the reconstruction

process.

III. COUPLED PHASE RETRIEVAL WITH GENETIC ALGORITHMS

The coupled phase retrieval (CPR) approach we developed and deployed on simulated and

experimental data is described in this section. The strategy is composed of two major com-

ponents: an adaptation of the BCDI ER/HIO phase retrieval strategy in which a mechanism

of coupling information from multiple Bragg peaks is introduced; and utilization of multiple

instances of this modified ER/HIO strategy within the framework of a genetic algorithm,

which is known to provide robustness against stagnation in the context of experimental data.

A. Coupled Phase Retrieval with ER/HIO

A flow chart of the CPR algorithm utilized here is pictured in Fig. 1a. A CPR reconstruc-

tion consists of J parallel constituent reconstructions (hereafter called “constituents”) of J
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Bragg peaks which have been interpolated onto a uniform grid and rotated into a common

laboratory frame using the approach defined by Maddali et al. [20]. A sequence of fixed

point iteration steps consisting of ER and HIO (hereafter called a “recipe”) is used for each

constituent. Every twenty iterations, the phase and amplitude values from each constituent

j, (φj(x) and ρj(x)), are combined to calculate universal values ρ(x) and u(x), which are

defined below. These values are then then used to seed the new phase and amplitude values

(φj
′(x) and ρj

′(x)) for the next twenty iterations of each constituent.

During the combination step, the universal amplitude ρ(x) is calculated by averaging the

ρj(x) fields returned from each peak according to

ρ(x) =

∑J
j=1 ρ̂j(x)

J
. (9)

where ρ̂j(x)) is the real space amplitude for constituent j, normalized by its sum over all

voxels. At specified iterations, shrinkwrap (Eq. (8)) is applied to this universal amplitude

ρ(x) (rather than to each constituent amplitude ρj(x)), and the universal support S is

updated. This new support function is then used as the new real-space constraint for

each constituent at all successive ER and HIO steps until shrinkwrap is applied again. This

support refinement process effectively selects the morphology of one of the two phase retrieval

twins [29] and enforces it on all constituents to the end.

Additionally, the universal displacement field u(x) is updated during the combination

step, using the least-squares optimization proposed by Hoffman [22]. In this approach, u(x)

is optimized on a voxel-by-voxel basis to minimize the loss function

Ln =
J∑
j=1

(un ·Gj,hkl − φj,hkl,n)2, (10)

where the subscript n denotes a voxel in the reconstructed array. If the phases are consistent

for a given image voxel across all constituents, L is zero. More commonly, there will be

inconsistencies in the constituent phases, and the loss function L provides a way to find the

most consistent displacement field in that pixel.

Our algorithm utilizes this strategy to reconcile inconsistencies in the constituent recon-

structions in terms of u(x) every twenty iterations throughout the reconstruction process.
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FIG. 1. Schematic of the CPR routine (a) and CPR-GA (b). Each peak is put through a phase

retrieval recipe including iterations of ER and HIO. At designated iterations during the recipe,

the universal values u(x) and ρ(x) are computed from the most recent phases and amplitudes

from each constituent. The new u(x) is projected along each Gj,hkl vector to update the phase

guess for each constituent φj
′(x), and the new ρ(x) is used to update the amplitude guess ρj

′(x).

At specified iterations, shrinkwrap is applied to the universal amplitude to update the universal

support S, which is used for all constituents. The CPR-GA depicted consists of three generations

of three individuals. Individuals are instances of the CPR routine in (a). Individuals are bred with

the fittest individual after each generation by averaging their u(x) and ρ(x) values.

B. Genetic Algorithm

Single Bragg peak experimental BCDI data sets have been found to benefit from a guided

phase-retrieval algorithm [6, 30, 31] approach, which improves the robustness of the solution.
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Aiming to leverage the benefits of such algorithms, we have adopted a similar strategy for

the CPR approach presented here, based on the work of Ulvestad et. al. [6]. Genetic

algorithms (GA) are a family of methods which use the theory of natural selection to optimize

a solution. A population of possible solutions (“individuals”), each possessing a set of

attributes (“genotype”), are evolved over a series of generations to produce the best possible

solution. At each generation, the “fittest” individual is bred with all others, updating their

genotypes and creating a new generation of individuals. This process proceeds until the

fittest individual sees negligible improvement from generation to generation. The work by

Ulvestad et. al. describes a genetic algorithm in which each individual is a reconstruction of

the same Bragg peak, with ψ(x) being the genotype. The initial population of individuals

in the first generation are seeded with a random-phase starting guess and a cube support,

and phase retrieval is applied to each. The individual with the lowest χ2, Eq. (5), after

phasing is selected as the ‘fittest’ and bred with all other individuals according to

ψi+1
m =

√
ψif (x) ∗ ψim(x), (11)

where the subscript f denotes the fittest individual, the subscript m denotes one of the other

individual reconstructions within generation i. Then, ψi+1
m is used as the initial guess for

individual m and another round of phase retrieval is applied. This process is repeated for

a specified number of generations, after which, the fittest individual is chosen as the final

reconstruction. The state-of-the-art for independent phase retrieval (IPR) of multiple Bragg

peaks consists of reconstructing each peak using this GA and finding the common u(x) and

ρ̄(x) from the final reconstructions using Eq.9 and Eq. 10 respectively. We will call this

approach ”IPR-GA.”

In this work, we modify the above GA routine so that each individual is a CPR re-

construction and breeding is performed on the quantities ρ̄(x) and u(x). We will call this

approach ”CPR-GA.” A flow chart showing the CPR-GA is shown in Fig. 1b for three

individuals bred for three generations. For the first generation in this example, each of the

three individuals is seeded with a random phase start and a cube object support on all its

constituents. The CPR routine is executed on each individual, yielding three amplitudes

ρ̄(x) and displacement fields u(x). The individual with the lowest χ2 =
∑

j χ
2
j (summed

across all constituents) is selected as the fittest, and its amplitude and displacement are

bred with all other individuals to seed the next generation of CPR reconstructions. Thus,
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the amplitudes and displacement fields of the (i+ 1) generation of individual m are defined

by the breeding functions:

ρ̄i+1
m (x) =

√
ρ̄im(x) ∗ ρ̄if (x) (12)

and

ui+1
m (x) =

uim(x) + uif (x)

2
. (13)

This pattern repeats for a specified number of generations until χ2 converges.

IV. METHODS

The CPR-GA was validated using both simulated and experimental data sets. For the

simulated data set, a 3D shape function of a nominally 400 nm gold nano-particle was

extracted from a grain growth simulation performed with the SPPARKS Monte Carlo Potts

Model [32] and decorated with a u(x) field. Four Bragg reflections, (1, 1, 1), (1, 1, 1̄), (1, 1̄, 1)

and (1̄, 1, 1), were forward-modeled and used for validation. The peak intensity was scaled

to a max photon count of 107, and Poisson noise was then added on a pixel-by-pixel basis.

This data set was reconstructed using the IPR-GA and the new CPR-GA. For the IPR-

GA, five generations of eight individuals were used, with the population being culled to

the four best individuals after two generations. For each generation, all individuals were

reconstructed using the following phase retrieval recipe

, which consisted of:

1. 100 iterations of ER, update support after iterations 60 and 100

2. 60 iterations of HIO

3. 80 iterations of ER, update support every 40 iterations

4. 60 iterations of HIO

5. 100 iterations of ER, update support every 20 iterations

6. End of generation. Breed with fittest individual.

At the end of each generation, the displacement was calculated using the least-squares

approach in Eq.10 with the fittest individuals from each peak.
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For the CPR-GA, the recipe above was used for all constituents to evolve a single genera-

tion for each individual. For each CPR reconstruction in the CPR-GA, the universal values

u(x) and ρ(x) were updated every 20 iterations during the recipe, and, at specified itera-

tions, the support update operation was applied to the global support S. Five generations

of eight individuals were used for the CPR-GA, with the population being culled to the four

best individuals after two generations.

An experimental data set was collected at the 34-ID-C beamline at the Advanced Pho-

ton Source (APS). Using Laue diffraction, four reflections, (1̄, 1̄, 1̄), (1, 1, 1̄), (1, 1̄, 1), and

(2, 0, 0), were found for a Au nano-crystal de-wetted onto a Si(100) substrate [33]. BCDI

measurements were taken for each reflection. The diffraction patterns corresponding to each

reflection were interpolated onto a regular grid and rotated into the same reference frame

[20]. The same reconstruction approach was used as for the simulated data. Six generations

of eight individuals were used for both the CPR-GA and the IPR-GA, with the populations

being culled to the four best individuals after two generations.

A. Confidence Metrics

When reconstructing multiple peaks, it is important that the constituents show good

agreement with their measured diffraction patterns (low χ2) and with each other (low L).

We define a scalar L for a multi-peak reconstruction as

L =

∑N
n=1 ρ̄nLn∑N
n=1 Sn

, (14)

summing over all N voxels in the 3D array describing the sample reconstruction space. In

this expression, per-voxel Ln values were weighted by the amplitude ρ̄n (dampening the

contribution of low-fidelity voxels to the total value), and normalized by the support volume∑N
n=1 Sn. In general, L could be used as a metric to determine the quality of a data set. If

a data set from one Bragg reflection is significantly worse than the others, its L value would

be noticeably larger. Removing this data set, or otherwise weighting its contribution, could

result in a higher fidelity reconstruction, assuming the remaining reflections over-determine

u(x). We also utilize the scalar value χ2 (defined previously) to assess the reconstructions.

L and χ2 effectively act as fidelity metrics in real and reciprocal space respectively, and both

will be considered when analyzing results.
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For reconstruction of both the experimental and simulated data sets, the genetic algo-

rithm was run for enough generations to demonstrate stability of the solution with respect

to these confidence metrics. The number of generations necessary may vary from data set to

data set, and it is imperative to monitor the evolution of both L and χ2 to ensure solution

stability.

V. RESULTS AND DISCUSSION

A. Simulated Data

In order to assess and compare the overall efficacy of the CPR-GA approach versus the

IPR-GA approach over repeated instantiations, the simulated data sets were reconstructed

40 times using the IPR-GA and 40 times using the CPR-GA, each with different random

starting guesses. In each of the 40 reconstruction runs, five generations of the GA were

performed. A plot of confidence metrics averaged over all 40 runs is shown at each generation

(Fig. 4). The plotted metrics for each method are the average L and χ2 values at each

generation normalized by the sum over all generations, Ltot and χ2
tot respectively.

By the end of five generations, the CPR-GA performed better in both χ2

χ2
tot

and L
Ltot

showing an improvement of 3.87× 10−2 in χ2

χ2
tot

and 6.66× 10−2 in L
Ltot

or 39.2% and 96.7%

respectively. An L map of the best reconstruction from each method can be seen in Fig. 2.

The CPR-GA reconstruction shows lower L at nearly every voxel.

B. Experimental Data

The experimental data sets were also reconstructed 40 times using both algorithms. An

example CPR-GA reconstruction can be seen in Fig. 5. This result is physically plausible,

as it is expected that the Au nano-crystal would be faceted and have a flat surface where it

touches the Si substrate. The strain fields were calculated by differentiating the displacement

field with respect to the sample-frame directions x, y, and z, given as

ε =


dux
dx

1
2

(
duy
dx

+ dux
dy

)
1
2

(
duz
dx

+ dux
dz

)
0 duy

dy
1
2

(
duz
dy

+ duy
dz

)
0 0 duz

dz

 . (15)
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FIG. 2. L(x) map for IPR-GA (top) and CPR-GA (bottom) for the simulated data set. The best

reconstructions were chosen for each method. Cross sections in the x-y, x-z and y-z planes are

shown. The CPR-GA reconstruction shows lower L values at nearly every voxel, suggesting good

agreement between its constituents. L values have been capped at 10−6 in order to visualize the

values in the coupled reconstruction.

As seen in Fig. 3, the CPR-GA reconstruction shows lower L values than the IPR-GA

reconstruction throughout the crystal volume. A comparison of the error for each recon-

struction method can be seen in Fig. 4. For the experimental data, the CPR-GA again

performed better than the independent routine in both metrics, showing improvement of

4.1× 10−3 in χ2

χ2
tot

and 5.09× 10−2 in L
Ltot

, improvements of 5.07%, and 53.23% respectively.

While the χ2

χ2
tot

value converges for the IPR-GA, the L
Ltot

value actually increases gradually,

suggesting that the constituents drift further apart with each generation. Conversely, the

L
Ltot

for the CPR-GA stays constant as χ2

χ2
tot

converges. This demonstrates that, by combining

reconstructions every 20 iterations, the CPR-GA effectively reduces L
Ltot

by sharing informa-

tion from all Bragg peak measurements during phase retrieval, while the IPR-GA does not.

Though less pronounced than for the simulated data, the improvements in both L
Ltot

and χ2

χ2
tot

for the experimental data demonstrate that the CPR-GA provides a more self-consistent

estimate of u(x) than the IPR-GA.
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FIG. 3. L(x) map for IPR-GA (top) and CPR-GA (bottom) for the experimental data set. The

best reconstructions were chosen for each method. Cross sections in the x-y, x-z and y-z planes

are shown. The CPR-GA reconstruction shows lower L values than the IPR-GA, suggesting good

agreement between its constituents. L values have been capped at 4 × 10−5 in order to compare

smaller values in the interior of the crystal.

C. Discussion

Several CPR routines already exist in the literature, and recent methods developed by

Newton et al. [23] and Gao et al. [24] have sought to design phase retrieval approaches

that utilize multiple Bragg peak data sets in different ways than the routine presented here.

Newton et al. use a sequence of HIO steps interleaved with least-squares corrections to the

displacement field u(x) similar to 10, and Gao et al. intermittently update u(x) using an

iterative procedure inspired by the bisection method. What has not yet been addressed

by these works is the applicability of CPR to experimental data. This is important to

consider given that experimental BCDI data of multiple Bragg peaks inevitably contains

artifacts from factors such as particle drift, imperfect beam/sample alignment, background

scattering, etc. which are not present in simulated data sets and which may adversely effect

the performance of CPR strategies.
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FIG. 4. Comparison of the average χ2

χ2
tot

and L
Ltot

over 40 reconstructions of the simulated (top)

and experimental (bottom) data sets using the independent and coupled routines. It is clear that

the coupled routine performs favourably compared to the independent routine for both data sets.

Spurious errors for the L
Ltot

values for the independent reconstruction reflect the fact that L
Ltot

is

unconstrained in this method.

To handle such imperfections in the data, GA approaches for independent phase-retrieval

(like the IPR-GA in this work) are typically necessary to produce the best reconstructions

[21], and as such, should be the benchmark by which any CPR approach is judged. In

performing such a comparison for simulated and experimental data, we demonstrated that

using a GA with a coupled routine is able to outperform an independent GA, contributing

to the advancement of this family of techniques. Given the nascent state of research in this

field, it can be imagined that more sophisticated CPR strategies will be developed, and the

use of genetic algorithms as implemented here promises to improve the robustness of such

strategies in the context of experimental reconstructions.
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FIG. 5. CPR-GA reconstruction of experimental Au nano-crystal on Si substrate. The strong

facets and existence of a flat surface on the x-z plane agree with expectations.

VI. CONCLUSION

Coupled multi-peak phase retrieval promises to aid considerably in the recovery of 3D

strain fields for BCDI. By adapting a genetic algorithm for reconstructing a single Bragg peak

to our coupled algorithm, we were able to achieve displacement field reconstructions that

were more self-consistent in terms of both simulated and experimental data sets. Though not

alone in the coupled reconstruction domain, by demonstrating the approach on experimental

data, we establish the viability of such approaches for future of coherent x-ray experiments.
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