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We perform Floquet spectroscopy in a GaAs double quantum dot system coupled to a high-
impedance superconducting resonator. By applying microwave induced consecutive passages under
a double resonance condition, we observe novel Landau-Zener-Stückelberg-Majorana interference
patterns that stem from a cavity-assisted interference pattern modified by the depletion of the
ground state. Our experimental results reveal the stationary state behavior of a strongly driven
two-level system, and are consistent with the simulations based on our theoretical model. This study
provides an excellent platform for investigating the dynamics of Floquet states in the presence of
strong driving.

Driving a quantum two-level system strongly and pe-
riodically leads to a variety of quantum effects, such
as Landau-Zener-Stückelberg-Majorana (LZSM) interfer-
ence and multi-photon resonance [1, 2]. These phenom-
ena provide clear evidence for the quantum coherence of
a physical system [3–13] and can be employed to probe
the energy spectrum [14, 15] and the Floquet spectrum
[16]. Since driving and active gating are integral parts of
the quantum circuit paradigm for quantum computing,
a thorough understanding of the strongly driven dynam-
ics of a qubit could help to explore the limits to qubit
control and manipulation.

Theoretical investigations of driven dissipative systems
yielded interesting results in recent years. For example,
it has been shown that at low temperatures, the station-
ary state of a dissipative driven quantum system is often
dominated by one particular Floquet state. Depending
on the system parameters and the driving frequency, this
may be the state with a certain quasienergy [17, 18] or
the one with the smallest mean energy [19]. At avoided
[19] or exact [18] level crossings of the Floquet spectrum,
however, the stationary state may turn from an (almost)
pure state to a mixed state made up of several Floquet
states. Despite these theoretical advances in relating Flo-
quet state dynamics to spectral properties of strongly
driven quantum systems, corresponding experimental in-
vestigations [20] in semiconductor systems are scarce.

Cavity quantum electrodynamics [21] allows the study
of atom-photon interaction at the single quantum level
[22–27]. Recent progress in hybrid circuit quantum elec-
trodynamics (cQED) systems, composed of high quality

∗ These authors contributed equally to this work.
† sigmund.kohler@icmm.csic.es
‡ gcao@ustc.edu.cn
§ gpguo@ustc.edu.cn

microwave resonators and semiconductor double quan-
tum dots (DQDs), enables similar explorations in these
artificial atoms at the microwave regime. For example,
it has been shown that strong electron-photon coupling
can be realized in such a cQED system [28–33], and
photon-mediated interaction can provide long-distance
coupling between qubits [34–37]. An additional benefit of
a high quality resonator is that it can also act as a high-
sensitivity dispersive photonic probe of the DQD [38, 39],
as is widely done for superconducting qubits [40, 41].

In this work, we study the strongly driven dynamics of
a two-level system by performing Floquet spectroscopy in
a DQD-resonator hybrid system. When we apply a con-
tinuous microwave tone onto the DQD, the nonequilib-
rium population of the eigenstates displays novel features
in the cavity-assisted LZSM interference patterns mea-
sured by the high-impedance superconducting resonator.
In particular, when the hybrid system is driven near
half of the resonator frequency, there arise in the inter-
ference fringes crescent-shaped holes, where reflectance
peaks acquire troughs in analogy to optical hole-burning
[42]. Applying the theory for dispersive readout of driven
systems [16], we reveal that this phenomenon is caused
by a redistribution of the Floquet state population at
avoided quasienergy crossings where the system experi-
ences a double resonance, and can be controlled via the
driving parameters.

Our device consists of a semiconductor DQD and a
1/4 wavelength superconducting quantum interference
device (SQUID) array resonator with a high impedance
of Zr ≈ 1 kΩ, as illustrated in Fig. 1(a). A few elec-
trons are trapped in the DQD defined electrically within
a GaAs/AlGaAs heterostructure. The electron occupa-
tion (m,n) of the DQD is controlled by gate voltages VL

and VR, as depicted in the charge stability diagram in
Fig. 1(b). In the parameter range considered, the DQD
dynamics is restricted to the charge states with one ex-
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FIG. 1. (a) Scanning electron micrograph of the device. Two
quantum dots indicated by dotted circles are defined by metal-
lic top gates. The right plunger gate is connected to the
SQUID array resonator. The qubit is driven by continuous
microwave tone via the gate L. (b) Charge stability diagram
of the DQD measured by the resonator.

cess electron in the left or right QD, denoted by |L〉 and
|R〉, respectively. Within this basis, the DQD Hamilto-
nian can be written as H0 = εσz/2 + tcσx, where ε is the
detuning between |L〉 and |R〉 controlled by VL, tc is the
interdot tunnel coupling, while σz and σx are Pauli ma-
trices. Diagonalizing H0, we obtain the energy splitting
of a free qubit, ∆E =

√
ε2 + (2tc)2.

The DQD is connected via the right plunger gate
[blue in Fig. 1(a)] to a high-impedance SQUID array
resonator with a tunable resonance frequency νr. Un-
less specified otherwise, νr = 6.51 GHz. The internal
loss rate, external coupling rate and total linewidth of
the resonator are (κi, κe, κ)/2π = (31.0, 34.2, 65.2)MHz
[43]. Taking advantage of the high impedance of the res-
onator, our DQD-resonator system achieves a coupling
strength gc/2π ≈ 70 MHz [37] at resonance ∆E/h = νr

for 2tc/h = 6.2 GHz, where h is the Planck constant.
The coupling strength is larger than both qubit de-
coherence rate γ/2π ≈ 50 MHz and photon loss rate
κ/2π ≈ 65.2 MHz, indicating that the cQED system op-
erates in the strong coupling limit [28–30], which enables
a photonic probe with better resolution than conven-
tional 50 Ω resonators.

We apply a continuous microwave modulation to the
left barrier gate L, such that the interdot detuning ac-
quires a time dependence ε → ε + A cos(2πfdt), where
A is the microwave amplitude, fd = 1/T and T is the
period of the driving. The system can thus be described
by Floquet theory [44], see Appendix B, which states
that the Schrödinger equation has solutions of the form
e−2πiµαt/h|φα(t)〉, α = 0, 1, where |φα(t)〉 are the Floquet
states satisfying |φα(t+ T )〉 = |φα(t)〉. The phase factor
is governed by the quasienergy µα, which is distinct from
the mean energy defined as the time-average of the en-

ergy expectation value, Eα ≡ 1
T

∫ T
0

dt〈φα(t)|H(t)|φα(t)〉.
The Floquet states can be Fourier decomposed into com-
ponents separated by the energy quantum of the driving
field, hfd, as sketched in Fig. 2(a). The quasienergy split-
ting µ ≡ µ1 − µ0 determines the relative phase 2πµT/h
between two Floquet states acquired during one driving
period. When this phase is close to a multiple of 2π, i.e.,

when µ/h ≈ kfd with an integer k, the two Floquet states
will interfere constructively, so that both become signif-
icantly populated [1]. Consequently, LZSM patterns ap-
pear in conductance or electron occupation when such
a driven DQD is probed via transport or charge sensing
[5, 7, 10].

The driven dynamics of our DQD is probed by the con-
nected microwave resonator [40]. Specifically, we send in
a microwave tone via the resonator and measure its re-
flection. We choose the probe microwave to be at reso-
nance with the resonator, so that the coupling between
the DQD and the resonator causes a dispersive frequency
shift νr → νr+(g2

c/2π)χ(0)(νr) [16], which modifies the re-
flection. The central quantity here is the phase-averaged
susceptibility χ(0) of the DQD dipole operator [16],

χ(0)(ν) = (p0 − p1)
∑
k

|Z10,k|2

2πν − 2πµ/h+ 2πkfd + iγ/2
,

(1)
where Z10,k is the kth Fourier component of the transi-
tion matrix element 〈φ0(t)|σz|φ1(t)〉, and pα is the occu-
pation probability of the Floquet state |φα〉 in the sta-
tionary limit. The pα are obtained as the well-defined
stationary solution of a Bloch-Redfield master equation
which allows a realistic description of the weakly dissipa-
tive qubit. Details and full expressions can be found in
Appendix B.

According to Eq. (1), χ(0)(ν) and hence the cavity re-
flection assume an appreciable size when two conditions
are fulfilled. First, with the probe frequency set at the
resonator frequency ν = νr, the denominator yields the
resonance condition µ/h = νr + k′fd for some integer
k′. It resembles the resonance condition for the pop-
ulation, but contains an additional cavity photon. The
modified fringes observed in the reflection can thus be in-
terpreted as cavity-assisted LZSM interference with one
state dressed by a cavity photon [11, 16, 45, 46]. Sec-
ond, one Floquet state must be predominantly populated
such that |p0 − p1| ≈ 1. Figure 2(b) shows such Floquet
spectroscopy measured by the reflectance of the resonator
|S11| as a function of interdot detuning ε and drive power
P ∝ A2 for fd = 2.5 GHz and 2tc/h ≈ 6.2 GHz. As ex-
pected, the LZSM pattern is similar to the one reported
in Ref. [45].

An interesting and qualitatively new situation arises
when the resonance conditions for both the transition
between Floquet states and the cavity-assisted transition
coincide, i.e., when the system reaches the double reso-
nance

kfd = µ/h = νr + k′fd . (2)

This implies that the drive frequency obeys fd =
νr/2, νr/3, . . . (fd = νr is discarded because it would di-
rectly affect the cavity and pollute the measurement).

Figure 2(c) shows the LZSM pattern for the “one-half
resonance” fd = 3.3 GHz ≈ νr/2. Compared to the
cavity-assisted LZSM pattern in Fig. 2(b), every fringe
splits up and acquires a crescent-shaped hole, where the
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FIG. 2. (a) Schematic energy level diagram explained by Flo-
quet theory. The quasienergy spectrum of the Floquet states
has a Brillouin zone structure, which is defined by multiples
of the energy quantum of the driving field, hfd. The state
transfer between the two Floquet states, |φ0〉 and |φ1, k〉, can
be realized with the population resonance condition (red ar-
row) or cavity-assisted LZSM resonance condition (blue ar-
row plus red arrow). (b)–(c) LZSM interference for different
drive frequencies fd. Resonator reflectance |S11| measured as
a function of detuning ε and drive power P for fd = 2.5 GHz
(b), 3.3 GHz (c), and 2tc/h ≈ 6.2 GHz. (d) A zoom-in view
of panel (c). The crescent-like holes are outlined using yellow
dotted lines. (e) Simulated result for the parameters used in
panel (c), where P = −29 dBm corresponds to A = 60µeV.
To consider an inhomogeneous broadening of the LZSM in-
terference pattern induced by the slow fluctuations of the de-
tuning ε [6, 7, 11], all theoretical plots are convoluted with a
Gaussian of width 2.5 µeV. The yellow line marks the param-
eters used in Fig. 3. (f) Calculated mean population of the
Floquet state |φ0〉.

reflection is strongly suppressed. The emergence of these
“crescents” can be attributed to the strong driving ef-
fect on the Floquet state occupation that modifies the
cavity-assisted LZSM interference patterns.

The impact of Floquet state occupation dynamics can
be seen in the expression of the susceptibility (1). While
the denominators give the cavity-assisted LZSM reso-
nance conditions, the occupation probability pα also
plays an important role. When the resonance condition
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FIG. 3. (a) Floquet spectrum (solid) in the first Brillouin zone
(shaded area) and corresponding mean energies (dashed).
Gray lines mark the sidebands of the quasienergies. The mi-
crowave power and the detuning are both varied along the line
in Fig. 2(e). (b) Corresponding populations in the stationary
state (dashed) together with the measured (circles) and the
simulated (solid) cavity response.

for the transition between the Floquet states, µ/h = kfd,
is fulfilled, the constructive interference between the Flo-
quet states leads to a significant population of both
states, such that p1 ≈ p0 = 1/2 and p0 − p1 ≈ 0. Conse-
quently, χ(0) is strongly suppressed, and the cavity sig-
nal diminishes. A numerical simulation based on Eq. (1)
is shown in Fig. 2(e), which is in good agreement with
the experiment. The expected population of the Floquet
state with smaller quasienergy in Fig. 2(f), confirms that
the crescents emerge when the population of this state is
significantly reduced.

The analysis above provides an intuitive and qualita-
tive picture for the emergence of the crescents in the
cavity-assisted LZSM patterns, and points to the impor-
tance of the Floquet state spectrum and population. We
thus examine them more closely, and calculate the mean
energies and populations of the Floquet states. The solid
lines in Fig. 3(a) show the quasienergies µ0,1 and their
replica for parameters marked by the line in Fig. 2(e).
Most significant are the avoided quasienergy crossings
located at the center and border of the Brillouin zone.
Since the crossings are avoided, the resonance condition
for the population, µ = khfd, will only be fulfilled ap-
proximately. At the avoided quasienergy crossings, the
mean energies generically cross exactly, see Appendix B.

The key to the cavity response, however, is not whether
µ = khfd can be satisfied exactly, but how the popula-
tions of the Floquet states behave. As shown in Fig. 3(b),
the Floquet state with lower mean energy is populated
predominantly. In this case the prefactor of the suscep-
tibility (1) is of the order unity. However, at the avoided
quasienergy crossings, the populations in both Floquet
states are equal, p0 = p1 = 1/2. Consequently, the DQD
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FIG. 4. (a) Resonator reflectance |S11| as a function of detuning ε and drive frequency fd for power P = −36 dBm and
2t/h = 6.2 GHz. The evolution of the crescents is indicated by red arrows. (b) Numerical simulation for the parameters used
in panel (a). (c) Corresponding mean population of the Floquet state |φ0〉.

susceptibility vanishes and the simulated cavity reflection
assumes its minimum. In comparison, the corresponding
experimental result is plotted with circles in Fig. 3(b). It
shows good agreement for the positions of the minima.
The magnitude of the reflection, including the visibility of
the fringes, is predicted fairly well, too. For drive power
beyond the second crossing, the agreement becomes more
qualitative because the heating effect caused by the large
power deteriorates the system coherence. Nevertheless,
the agreement between experiment and simulation clearly
shows that dispersive readout by a cavity can be em-
ployed to probe changes of the stationary Floquet state
population and quasienergy crossings.

With cavity frequency νr fixed, the double resonance
conditions can be satisfied when sweeping both the drive
frequency fd and the qubit detuning ε. As discussed
above, we expect a peak in the cavity reflection for
µ/h = νr + k′fd, while a valley emerges for µ/h = kfd.
With µ/h = νr + k′fd = kfd (k 6= k′), we expect that
as a function of fd, the peaks and valleys in the cavity
reflection in the spectroscopy have different inclinations
and cross each other.

Figure 4(a) depicts this feature of the measured re-
flection as a function of ε and fd in the vicinity of the
one-half resonance νr/2 at a fixed driving power. As ex-
pected, upon increasing fd, the gaps (signifying suppres-
sion of reflection) in the cavity fringes evolve outwards
and intersect the interference stripes when fd = νr/2. A
selection of the corresponding LZSM patterns is shown
in Appendix A. The simulated measurement in Fig. 4(b)
is in good agreement with the experiment. The reduced
population of the Floquet state |φ0〉 can be identified as
the origin of the collapsing cavity signal. We also com-
puted the expected population of the Floquet state, as
shown in Fig. 4(c). Indeed, along the gaps in the interfer-
ence strips, p0 is reduced to a value considerably below
unity. In short, Fig. 4 not only reconfirms the interplay
between the two resonances, but also demonstrates how
we can influence and electrically control the dynamics of
Floquet states.

With our high-impedance superconducting resonator
we were able to measure a crescent-like pattern near the
one-half resonance fd = νr/2. Theoretically, one would

expect to find a similar structure for fd = νr/3, νr/4, . . .
However, the LZSM fringes in the populations will be
narrow with decreasing drive frequency [1] such that the
narrow crescents are blurred by the typical inhomoge-
neous broadening in GaAs [6, 47]. Nevertheless, we could
still observe the characteristic feature of the one-third
resonance, which appears as claw-shaped patterns at the
end of the interference fringes as shown in Fig. 7 in Ap-
pendix A.

In conclusion, we have demonstrated a novel inter-
ference pattern in the Floquet spectroscopy of a driven
semiconductor DQD probed by a high-impedance res-
onator. Specifically, when the driving microwave tone
is at half of the resonator frequency, crescent-shaped
holes/depressions appear in the LZSM interference peaks
of the cavity reflection. The physical origin can be
explained by the reduced cavity response due to the
population redistribution of Floquet states. A system-
atic investigation revealed that the resonance condition
for the population is approximately fulfilled at avoided
quasienergy crossings at which the stationary state of
the DQD turns from an almost pure state into a mix-
ture. Therefore the emergence of the crescents can be
considered as an experimental signature of the nature of
the stationary state of a strongly driven two-level sys-
tem. The LZSM patterns emerging from double reso-
nance are not particular to semiconductor-resonator hy-
brid systems, but should be generic for all cQED systems.
They may be used to gain further insight into Floquet
state dynamics in the presence of strong driving.
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Appendix A: Additional data

1. LZSM patterns for different drive frequencies

Here we illustrate how the crossing of the bright and
the dark stripe [see Fig. 4 of the main text] manifests it-
self in the LZSM pattern. To this end, we slightly vary fd

around the half-resonance νr/2. The resulting measured
patterns are shown in Fig. 5. With increasing drive fre-
quency fd, the crescent-shaped holes in the fringes move
outwards, which correspond to a shift along the red ar-
rows in Fig. 4(a).

2. Tuning the resonator frequency

Taking advantage of the tunability of the SQUID ar-
ray resonator, we are able to vary also the resonance fre-
quency νd by the current Icoil of a cm-sized coil mounted
on the sample holder from 6.5 GHz to below 5.2 GHz as
shown in Fig. 6(a). Tuning the resonance frequency νr
from 6.51 GHz to 6.07 GHz while keeping the drive fre-
quency at fd = 3.3 GHz, the crescents in Fig. 6(d) vanish
once the condition for double resonance, νr = nfd with
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n ≥ 2, is sufficiently violated. In contrast, when we de-
crease fd to 2.9 GHz which is close to νr/2 (for fd a value
below one-half resonance 3 GHz may result from the shift
of the resonance frequency due to the fluctuation of the
magnetic environment), crescents arise again in Fig. 6(c).
Thus, we have tested our conjecture for the interplay of
cavity reflection and Floquet state population by inde-
pendently varying all relevant frequencies.

3. Crescents of higher order

In the experiment, we have observed crescents only
for the one-half resonance fd ≈ νr/2. For resonances of
higher order, i.e., for fd ≈ νr/k with k > 2, similar pat-
terns are expected to be observed. However, the LZSM
fringes in the populations will diminish with decreasing
drive frequency [1] such that their size eventually drops
below the experimental resolution.

We show in Fig. 7(a) the theoretical prediction for the
cavity reflection near the one-third resonance, which ex-
hibits very narrow crescents. However, to predict the
result of a realistic measurement, we have to take into
account that the level detuning ε is slowly fluctuating.
This causes an inhomogeneous broadening of the order
of some µeV [7, 47] which can be captured by convolv-
ing the theory data with a Gaussian of corresponding
width. Figure 7(b) depicts the resulting prediction for
a measurement, where we have assumed a broadening of
2.5 µeV. This blurs the LZSM pattern so much that the
narrow crescents practically disappear. Nevertheless, we
could still find the characteristic feature of the one-third
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resonance, which appears as claw-shaped patterns at the
end of the interference fringes. Figure 7(d) demonstrates
these claw-shaped patterns measured in the experiment.

Appendix B: Theoretical background and methods

In the following, we briefly review the theoretical tools
and concepts used in the main text.

1. Floquet theory

The Schrödinger equation of a T -periodically driven
quantum system possesses a complete set of solutions of
the form [44]

|ψα(t)〉 = e−iµαt/~|φα(t)〉, (B1)

where the Floquet states |φα(t)〉 obey the periodicity of
the driving, while the quasienergies µα determine the
phase acquired by |ψα(t)〉 during one driving period.
Both the quasienergies and the Floquet states can be
obtained by solving the Floquet eigenvalue equation

H(t)|φ(t)〉 ≡
(
H(t)− i~ d

dt

)
|φ(t)〉 = µ|φ(t)〉. (B2)

The quasienergy spectrum has a Brillouin zone structure,
which means that they are defined only up to multiples
of the energy quantum of the driving field, ~Ω, where
Ω = 2π/T is the angular frequency of the driving. As the
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FIG. 7. (a) Theoretical prediction for the cavity response
for the one-third resonance with driving frequency fd =
2.27 GHz ≈ νr/3 at which the drive power −29 dBm corre-
sponds to A = 45 µeV. (b) The same data, but after con-
sidering for the detuning ε an inhomogeneous broadening of
2.5 µeV. (c) Corresponding mean population of the Floquet
state |φ0〉. (d) Experimental data for the resonator reflectance
|S11| with fd = 2.27 GHz.

quasienergies follow from an eigenvalue equation, they
exhibit level repulsion, i.e., in the absence of symmetries
they generically form avoided crossings. At such avoided
crossings the participating states interchange their phys-
ical properties, in particular their mean energies

Eα =
1

T

∫ T

0

dt 〈ψα(t)|H(t)|ψα(t)〉. (B3)

This implies that at avoided quasienergy crossings, the
corresponding mean energies cross exactly.

2. Floquet spectrum of the two-level system

In the main text, we describe the DQD by the two-level
Hamiltonian

H(t) =
∆

2
σx +

ε+A cos(Ωt)

2
σz , (B4)

where ∆ is the interdot tunnel coupling, A is the drive
amplitude and σx,y,z are Pauli matrices. Let us con-
sider the transformation of the corresponding Floquet
Hamiltonian H = H(t) − i~ d/dt under the anti-unitary
transformation θ = iσyK, where K causes complex con-
jugation, i.e., KzK−1 = z∗. One readily sees that
θH(t)θ−1 = −H(t) (notice that for the present reason-
ing, we do not invert the time argument of the Hamil-
tonian), which implies that any solution of the Floquet
equation (B2) with eigenvalue µ has a time-reversed part-
ner with eigenvalue −µ. It is therefore convenient to
choose the Brillouin zone symmetrically around zero,
−~Ω/2 < µα ≤ ~Ω/2, which for the two-level system
ensures the relation µ0 + µ1 = 0.

It is now tempting to conclude that (exact) quasienergy
crossings can occur only when µ0 = µ1 = 0. This how-
ever, would ignore crossings with equivalent states from
other Brillouin zones with quasienergies shifted by mul-
tiples of ~Ω. Taking them into account yields for the
crossings the weaker condition µ0 + k~Ω = µ1, where k
may be any integer, such that µ0 = k~Ω/2. This means
that for the Hamiltonian (B4), quasienergies may cross
only at the border or in the middle of the Brillouin zone.
In the absence of symmetries, the crossings are gener-
ally avoided, but nevertheless are found under the same
condition, see Fig. 3(a).

3. Stationary state of a driven system

In quantum mechanics, dissipation can be modeled by
coupling the system to a heat bath. For weak dissipation,
one may eliminate the bath by second order perturbation
theory to obtain a Markovian master equation for the
reduced density operator. For a driven system, Floquet
states form a suitable basis for the numerical treatment
of such master equations, because then the driving is
already included by the choice of the basis [48]. Finally,
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FIG. 8. (a) Quasienergies (solid lines) and mean energies
(dashed) for the driven two-level system as function of the
detuning for driving frequency Ω = 5∆ and amplitude A = 2Ω
at zero temperature in the weak coupling limit. The bath
couples to the system operator σx. (b) Populations of the
corresponding Floquet states in the stationary limit.

one obtains for the populations pα of the Floquet states
a rate equation of the form

ṗα =
∑
β

(wα←βpβ − wβ←αpα). (B5)

The transition rates wα←β are given by golden-rule like
expressions for the transition matrix elements of the oper-
ator that couple the system to the bath. In the numerical
calculations of the main text, this coupling is established
via the qubit operator σx. This choice leads to the ob-
served generic LZSM pattern [49] and fits the observation
rather well.

Generally, this master equation possesses a unique sta-
tionary solution with ṗα = 0 for all α, despite that it does
not fulfill a detailed balance condition. The latter makes
it virtually impossible to find a generic formal solution
for the stationary state. Nevertheless, in a few cases this
is possible. Here we sketch two typical limits and apply
the ideas to the driven two-level system described by the
Hamiltonian (B4).

For small or intermediate frequencies, a natural guess
is that the system eventually resides in the Floquet state
with the smallest mean energy, possibly with a small ad-
mixture of other Floquet states. This was indeed found
for systems with mixed chaotic/regular phase space with
some exception close to avoided crossings [19]. For the
present case of a two-level system, the spectra and the
populations are shown in Fig. 8. This confirms that
far from the crossings, the state with smaller mean en-
ergy is predominantly occupied. At the center of the
crossing, however, both states have equal mean energy
and, consequently, we observe a mixture of both Flo-
quet states, where each one is occupied with probability
p0 ≈ p1 ≈ 1/2.

For high-frequency driving, the system may be mapped
approximately to a time-independent Hamiltonian [50,
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FIG. 9. The same as Fig. 8 for detuning ε = 0.03∆ as function
of the driving amplitude for a bath coupled via σz, which far
from the quasienergy crossings leads to a Floquet-Gibbs state.

51]. If in addition, the system-bath coupling commutes
with the driving, one often finds a Floquet-Gibbs state,
i.e., a statistical mixture that resembles a Gibbs states
but with the energies replaced by quasienergies [17, 18],
provided that the Brillouin zone is chosen such that it
covers the spectrum of the undriven system. For the
two-level system, this was found for zero detuning [18].
For small detuning this is still valid, as can be appre-
ciated in Fig. 9. In panel (b), we indeed see that, in
contrast to Fig. 8(b), the populations are governed by
the quasienergies.

These situations emphasize the role of avoided
quasienergy crossings for the long-time solution of a
driven dissipative quantum system. The characteristic
feature is that far from the crossings, one Floquet state
dominates, while at the crossings, both states are equally
populated. In our experiment, these equal populations
are responsible for the emergence of crescents in the
LZSM patterns.

4. AC-driving and dispersive readout

A Floquet theory for the response of a microwave cav-
ity coupled to a periodically driven double quantum dot
(DQD) has been derived in Ref. [16]. Its cornerstones
are summarized in the following. The central idea of dis-
persive readout is that a resonantly driven cavity acts
via a coupling Hcoupl = gcZ(a + a†) with some system
operator Z and the creation and annihilation operators
a† and a of a cavity photon on the DQD (or any other
quantum system). In turn the DQD acts back to the
cavity, which leads to a frequency shift of the cavity that
provides information on the DQD state. Within linear-
response theory, this backaction is captured by the sus-
ceptibility χ(t, t′) = −i〈[Z(t), Z(t′)]〉θ(t − t′) with θ the
Heaviside step function and Z = σz the operator that
couples the DQD to the cavity. If the DQD experiences
an additional external driving, the susceptibility depends
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explicitly on both times. In the case of periodic driving,
after a transient stage, χ(t, t′) = χ(t + T, t′ + T ), which
implies that χ(t, t− τ) with τ = t− t′ is T -periodic in t.

The susceptibility χ allows one to calculate via input-
output theory [40, 52] the reflection of our one-sided cav-
ity to read

S11 =
aout

ain
= 1 +

iκi

ωc − ω + g2
cχ

(0)(ω)− iκ/2
, (B6)

where κi,e are the internal and external loss rates of the
cavity, while the total loss κ = κi + κe.

The impact of the DQD is contained in the k = 0
component of the Fourier transformed susceptibility

χ(k)(ω) =

∫ ∞
0

[
1

T

∫ T

0

eikΩt+iωtχ(t, t− τ)dt

]
dτ, (B7)

where for k = 0 the t-integration corresponds to the aver-
age over one driving period which is equivalent to averag-
ing over the phase of the driving. When the DQD is de-
scribed by a density operator ρ∞ =

∑
α pα|φα(t)〉〈φα(t)|

with probabilities pα computed as described above, one
obtains for the susceptibility after some algebra the ex-
pression [16]

χ(0)(ω) =
∑
α,β,k

(pα − pβ)|Zαβ,k|2

ω + µα − µβ − kΩ + iγαβ/2
. (B8)

Here, Zαβ,k denotes the kth Fourier component of
the T -periodic transition matrix element Zαβ(t) =
〈φα(t)|Z|φβ(t)〉, while the dephasing rates γαβ have been
introduced phenomenologically.
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