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ENS, Université PSL, CNRS, Sorbonne Université,
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We find exact analytic expressions for the energies and wavefunctions of the charged and neutral
excitations above the exact ground states (at rational filling per unit cell) of projected Coulomb
Hamiltonians in twisted bilayer graphene. Our exact expressions are valid for any form of the
Coulomb interaction and any form of AA and AB/BA tunneling. The single charge excitation
energy is a convolution of the Coulomb potential with a quantum geometric tensor of the TBG bands.
The neutral excitations are (high-symmetry group) magnons, and their dispersion is analytically
calculated in terms of the form factors of the active bands in TBG. The two-charge excitation
energy and wavefunctions are also obtained, and a sufficient condition on the graphene eigenstates
for obtaining a Cooper-pair from Coulomb interactions is obtained. For the actual TBG bands at
the first magic angle, we can analytically show that the Cooper pair binding energy is zero in all
such projected Coulomb models, implying that either phonons and/or non-zero kinetic energy are
needed for superconductivity. Since [Vafek et al., arXiv:2009.09413 (2020)] showed that the kinetic
energy bounds on the superexchange energy are less 10−3 in Coulomb units, the phonon mechanism
becomes then very likely. If nonetheless the superconductivity is due to kinetic terms which render
the bands non-flat, one prediction of our theory is that the highest Tc would not occur at the highest
DOS.

I. Introduction

The rich physics of the experimentally observed in-
sulating states in magic angle twisted bilayer graphene
(TBG) at integer number of electrons per unit cell and
the superconducting phase with finite doping above the
insulating states has attracted considerable interest [1–
111]. The single-particle picture predicts a gapless metal-
lic state at electron number ±(3, 2, 1), and hence the
insulating states have to follow from many-body inter-
actions. The initial observations of the insulating states
[2–5] were then followed by the experimental discovery by
both scanning tunneling microscope [20, 21] and trans-
port [6, 11, 22–25] that these states might exhibit Chern
numbers, even when the TBG substrate is not aligned
with hBN, which would indicate a many-body origin of
the Chern insulator.

These remarkable experimental advances have been
followed by extensive theoretical efforts aimed at their
explanation [51–104]. Using a strong-coupling approach
where the interaction is projected into a Wannier ba-
sis, Kang and Vafek [71] constructed a special Coulomb
Hamiltonian, of an enhanced symmetry, where the
ground state (of Chern number 0) at ±2 electrons per
unit cell can be exactly obtained (with rather weak as-
sumptions). In Ref. [110] we have showed that the type
of Kang-Vafek type Hamiltonians [71] (hereby called pos-
itive semi-definite Hamiltonians - PSDH) are actually
generic in projected Hamiltonians, and that the pres-
ence of extra symmetries [38, 63, 71] renders some Slater
determinant states to be exact eigenstates of PSDH. We

found at zero filling, these states are the ground states
of PSDH. At nonzero integer filling, these states are the
ground states of the PSDH under weak assumptions (first
considered by Kang and Vafek [71]). With a unitary
particle-hole (PH) symmetry first derived in Ref. [43],
the PSDH projected to the active bands has enhanced
U(4) (in all the parameter space) and U(4)×U(4) (in
a certain, first chiral limit) symmetries first mentioned
in Refs. [71–73]. We showed [109, 110] that these sym-
metries are valid for PSDHs of TBG irrespective of the
number of projected bands. We also found that, for two
projected bands in the first chiral limit (a second chi-
ral limit, of U(4)×U(4) defined in Ref. [109] was also
found), ground states of different Chern numbers are ex-
actly degenerate [110]. These ground states are all vari-
ants of U(4) ferromagnets (FM) in valley/spin. When
kinetic energy is added or away from the chiral limit, the
lowest/highest Chern number becomes the ground state
in low/high magnetic field, which explains/is consistent
with experimental findings [6, 11, 20–25].

In this paper we show that the Kang-Vafek type of
PSDH also allow, remarkably, for an exact expression of
the charge ±1 excitation (relevant for transport gaps)
energy and eigenstate, neutral excitation (relevant for
the Goldstone and thermal transport), and charge ±2
excitation (relevant for possible Cooper pair binding en-
ergy). We show that the charge excitation dispersion
is fully governed by a generalized “quantum geomet-
ric tensor” of the projected bands, convoluted with the
Coulomb interaction. The smallest charge 1 excitation
gap is at the ΓM point. The neutral, and charge ±2
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excitation, on top of every FM ground state can also
be obtained as a single-particle diagonalization prob-
lem, despite the state having a thermodynamic number
of particles. The neutral excitation has an exact zero
mode, which we identify with the FM U(4)-spin wave,
and whose low-momentum dispersion (velocity) can be
computed exactly. The charge ±2 excitations allows for
a simple check of the Richardson criterion [112–115] of
superconductivity: We check if states appear below the
non-interacting 2-particle continuum. We find a sufficient
criterion for the appearance/lack of Cooper binding en-
ergy in these type of PSDH Hamiltonian systems based
on the eigenvalues of the generalized “quantum geomet-
ric tensor”. We analytically show that, generically, the
projected Coulomb Hamiltonians cannot exhibit Cooper
pairing binding energy. As such, this implies that ei-
ther phonons or non-zero kinetic energy are needed for
superconductivity. Since the Ref. [103] showed that the
kinetic energy bounds on the superexchange energy are
less 10−3 in Coulomb units, the phonon mechanism be-
comes becomes likely. If however, experimentally, the
kinetic energy is stronger, a Coulomb mechanism for su-
perconductivity is still possible. Since we proved that
flat bands cannot Cooper pair under Coulomb, a predic-
tion of a Coulomb with non-flat bands mechanism for
superconductivity would be that the highest supercon-
ducting temperature does not happen at the point of
highest density of states DOS. This is in agreement with
recent experimental data [25].

II. The positive semi-definite Hamiltonian and its
ground states

We generically consider the TBG system with a
Coulomb interaction Hamiltonian projected to the ac-
tive 8 lowest bands (2 per spin-valley flavor) obtained
by diagonalizing the single particle Bistritzer-MacDonald
(BM) [1] TBG Hamiltonian (see App. A 1 for a brief re-
view, and more detail in Refs. [107, 108]). The projected
single-particle Hamiltonian reads

H0 =
∑
n=±1

∑
kηs

εn,η(k)c†k,n,η,sck,n,η,s , (1)

where we define η = ± for graphene valleys K and K ′,
s =↑, ↓ for electron spin, and n = ±1 for the lowest con-

duction/valence bands in each spin-valley flavor. c†k,n,η,s
is the electron creation operator of energy band n, with
the origin of k chosen at Γ point of the moiré Brillouin
zone (MBZ).

The density-density Coulomb interaction, when pro-
jected into the active bands of Eq. (1), always takes the
form of a positive semidefinite Hamiltonian (PSDH) (see
proof in Ref. [109], see also brief review in App. A 2):

HI =
1

2Ωtot

∑
G

∑
q∈MBZ

Oq,GO−q,−G, (2)

where Ωtot is the sample area, and G runs over all vec-
tors in the (triangular) moiré reciprocal lattice Q0. This
Hamiltonian is of a same positive semidefinite form as
that Kang and Vafek [71] obtained by projecting the
Coulomb interaction into the Wannier basis of the ac-
tive bands. In this work we will omit the kinetic energy.
Due Ref. [110], the energy splitting between the degen-
erate ground states of Eq. (2) is smaller than 0.1meV per
electron. As shown in the rest of this work, the character-
istic energy of charged and neutral excitations is about
10meV. Thus, it is safe to neglect the kinetic energy for
most of the excitations. But some of the U(4) Goldstone
modes might be opened a small gap due to the kinetic
energy. We leave this effect of kinetic energy to future
studies.

The Oq,G operator takes the form:

Oq,G =
∑

k,m,n,η,s

√
V (G + q)M (η)

m,n (k,q + G)

×
(
ρηk,q,m,n,s −

1

2
δq,0δm,n

)
, (3)

where V (q) is the Fourier transform of the Coulomb in-

teraction, ρηk,q,m,n,s = c†k+q,m,η,sck,n,η,s is the density

operator in band basis, and the − 1
2δq,0δm,n factor is a

chemical potential added to respect many-body charge
conjugation symmetry (see App. A 2 a and Ref. [109]).
For theoretical derivations we shall keep V (q) general
except that we assume V (q) ≥ 0 and only depends
on q = |q|; although for numerical calculations we will
take V (q) = 2πe2ξ tanh(qξ/2)/εq for dielectric constant
ε(∼ 6) and screening length ξ(∼ 10nm) (see App. A 2).

In particular, O−q,−G = O†q,G, and thus HI in Eq. (2) is

a PSDH. An important quantity in Eq. (3) for our many-
body Hamiltonian are the form factors, or the overlap
matrices, of a set of bands m,n (App. A 2 a)

M (η)
m,n (k,q + G) =

∑
αQ

u∗Q−G,α;mη (k + q)uQ,α;nη (k) ,

(4)
where uQα;nη is the Bloch wavefunction of band n and
valley η (here α = A,B denotes the microscopic graphene
sublattices, and Q are sites of a honeycomb momentum
lattice with definition in App. A 1, see also [107] for de-
tails). A nonzero Berry phase of the projected bands
renders the spectra of the PSDH Eq. (2) not analytically
solvable: the Oq,G’s at different q,G generically do not
commute (unless in the stabilizer code limit discussed
in Refs. [109, 110]), and hence the PSDH is not solv-
able. The properties of the PSDH Eq. (2) depend on
the quantitative and qualitative (symmetries) properties
of the form factors in Eq. (4), which are detailed in Refs.
[107–109] and briefly reviewed in App. A 2 a. First, in

Ref. [107] we showed that M
(η)
m,n (k,q + G) falls off expo-

nentially with |G|, and can be neglected for |G| >
√

3kθ,
where kθ = 2|K| sin(θ/2) is the distance between the K
points of two graphene sheets. Furthermore, we showed
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in Refs. [108, 109] that by gauge-fixing the C2z, T , and
unitary particle-hole symmetry P [43], the form factors
can be rewritten into a matrix form in the n, η basis as
(see Eq. (A11))

M (η)
mn (k,q + G) =

3∑
j=0

(Mj)m,η;n,ηαj(k,q + G) , (5)

where M0 = ζ0τ0, M1 = ζxτz, M2 = iζyτ0, and
M3 = ζzτz, and αj(k,q + G) are real scalar functions
satisfying (Eqs. (A12) and (A13) in App. A 3).

A further simplification [72] happens in a region of
the parameter space where the AA interlayer coupling
w0 = 0 [72], which is called the (first) chiral limit [37]
(a similar simplification occurs in a second chiral limit
[109]). In this limit there is another chiral symmetry
C anticommuting with the single-particle Hamiltonian,
which further imposes the constraints α1(k,q + G) =
α3(k,q + G) = 0 (see Ref. [110] and App. A 3). The
first chiral limit also allows for the presence of a Chern
band basis in which bands of Chern number eY = ±1 are
created by the operators

d†k,eY ,η,s =
1√
2

(c†k,+,η,s + ieY c
†
k,−,η,s) , (6)

In Ref. [108] we detail the gauge-fixing for this basis.
The Chern basis is also discussed in Refs. [72, 74, 108].
The form factors under the Chern basis take the simple
diagonal form

M (η)
eY (k,q + G) = α0(k,q + G) + ieY α2(k,q + G). (7)

The symmetries of the projected Hamiltonian in the
nonchiral (w0, w1 6= 0) and two chiral w0 = 0 or w1 = 0
limits are important. We will use the matrices ζa, τa, sa

with a = 0, x, y, z as identity and x, y, z Pauli matrices
in (particle-hole related) band, valley and spin-space re-
spectively. In Ref. [109] (short review in App. A 2 c), we
have showed that the PSDH has a U(4) symmetry in the
nonchiral limit (with single-particle representations of
generators sab = {ζyτysa, ζyτxsa, ζ0τ0sa, ζ0τzsa} with

a, b = 0, x, y, z in the energy band basis c†k,+,η,s), and

a U(4)×U(4) symmetry in the two chiral-flat limits
(with single-particle representations of generators sab± =

(1 ± eY )τasb/2 in the Chern band basis d†k,eY ,η,s, [108]

App. A 2 b), mirroring the results obtained by Refs.
[42, 71–73] for projection into the two active bands. We
note that in Ref. [109] we showed these symmetries hold
for any number of PH symmetric projected bands. In
Apps. A 2 c and A 2 e we provide a summary of these
detailed results. Adding the kinetic term in the first
chiral limit breaks the U(4)×U(4) symmetry of the pro-
jected interaction to a U(4) subset ( with generators
s̃ab = ζ0τasb in the energy band basis, (a, b = 0, x, y, z)).
The symmetries we found in the first chiral and nonchiral
limits agrees with that in Ref. [72], and the relation be-
tween our U(4) symmetry generators and those of Kang

and Vafek [71] are given in Ref. [109]. We will restrict
our study within the nonchiral-flat limit and first chiral-
flat limit in this paper. Thus, without ambiguity, we will
simply call the first chiral limit the “chiral limit”.

With these symmetries, in the nonchiral-flat limit
(where the projected kinetic Hamiltonian H0 = 0), one
can write down exact eigenstates of the PSDH Eq. (2),
which we have analyzed in full detail in Ref. [110] and
review in App. A 3 b. In the nonchiral limit, Oq,G is
diagonal in η and s, and filling both n = ± bands of
any valley/spin gives a Chern number 0 eigenstate for all
even fillings ν = 0,±2,±4 (along with any U(4) rotation)
[110]:

|Ψν〉 =
∏
k

(ν+4)/2∏
j=1

c†k,+,ηj ,sjc
†
k,−,ηj ,sj

 |0〉, (8)

where {ηj , sj} are distinct valley-spin flavors which are

fully occupied. They form the [(2NM )(ν+4)/2]4 irre-
ducible representation (irrep) of the nonchiral-flat limit
U(4) symmetry group, where [λp]4 is short for the Young
tableau notation [λ, λ, · · · ]4 with 0 ≤ p ≤ 4 identical
rows of length λ (see Ref. [110] for a brief review). With

M
(η)
m,n (k,q + G) in Eq. (A11), we have that the state
|Ψν〉 is an eigenstate of Oq,G satisfying Oq,G|Ψν〉 =
δq0NMAG|Ψν〉, where AG is given by (Eq. (A34))

AG = ν

√
V (G)

NM

∑
k

α0(k,G), (9)

where NM is the total number of moiré unit cells. For
ν = 0, the state Eq. (8) is always a ground state as it is
annihilated by Oq,G [110].

In the first chiral-flat limit (where H0 = 0 and w0 = 0),
the projected Hamiltonian Eq. (2) has as eigenstates, the
filled band wavefunctions [110] (see App. A 3 a for brief
review):

|Ψν+,ν−
ν 〉 =

∏
k

 ν+∏
j1=1

d†k,+1,ηj1 ,sj1

ν−∏
j2=1

d†k,−1,ηj2 ,sj2

 |0〉
(10)

where ν+ − ν− = νC is the total Chern number of the
state, and ν+ + ν− = ν + 4 (0 ≤ ν± ≤ 4) is the to-
tal number of electrons per moiré unit cell in the pro-
jected bands, k runs over the entire MBZ and the oc-
cupied spin/valley indices {ηj1 , sj1} and {ηj2 , sj2} can
be arbitrarily chosen. Moreover, these eigenstates of
Eq. (2) are also eigenstates of Oq,G in Eq. (3), satisfying
Oq,G|Ψν+,ν−

ν 〉 = δq0NMAG|Ψν+,ν−
ν 〉, where AG is still

given by Eq. (9). They form the
(
[N

ν+
M ]4, [N

ν−
M ]4

)
irrep

of U(4)×U(4) (Young tableaux notation, see Ref. [110]).
For a fixed integer filling factor ν, we found that the
states with different Chern numbers νC are all degener-
ate in the chiral-flat limit [110]. In particular, at charge
neutrality ν = 0, the U(4)×U(4) multiplet of |Ψν+,ν−

0 〉
with Chern number νC = ν+ − ν− = 0,±2,±4 are exact
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degenerate ground states. At nonzero fillings ν, we can-
not guarantee that the ν 6= 0 eigenstates are the ground
states.

In Ref. [110] we found that under a weak condition, the
eigenstates Eqs. (8) and (10) become the ground states
of HI for all integer fillings −4 ≤ ν ≤ 4 (ν even in Eq. 8).

If the q = 0 component of the form factor M
(η)
m,n (k,G)

is independent of k for all G’s, i.e.,

Flat Metric Condition: M (η)
m,n (k,G) = ξ(G)δm,n, (11)

then all the states in Eqs. (8) and (10) become ground
states of HI by an operator shift (Eq. (A29)) [71, 109,
110] (see Apps. A 3 a and A 3 b). We noted in Ref. [107]
that this flat metric condition is always true for G = 0,

for which M
(η)
m,n (k, 0) = δmn from wavefunction normal-

ization. In Ref. [107] we have shown that, around the

first magic angle, M
(η)
m,n (k,G) ≈ 0 for |G| >

√
3kθ for

i = 1, 2. Hence, the condition Eq. (11) is valid for all G
with the exception of the 6 smallest nonzero G satisfying
|G| =

√
3kθ. Hence, the condition is largely valid, and

our numerical analysis [107] confirms its validity for k in
a large part of the MBZ. The idea to impose a similar
condition as Eq. (11) first used by Kang and Vafek [71]
to find the ν = ±2 ground state for their PSDH. Due to a
slightly different U(4) symmetry, our U(4) FM states are
different, but overlap with the Kang and Vafek ones in
the chiral limit, as discussed in detail in Refs. [109, 110].

We note that for ν 6= 0, the states in Eqs. (8) and (10)
still remain the exact ground states if the flat metric con-
dition Eq. (11) is not violated too much [110, 111]. This is
because they correspond to gapped insulator eigenstates
[110, 111] when condition Eq. (11) is satisfied, and the
flat metric condition Eq. (11) has to be largely broken
to bring down another state into the ground state. From
now on, we “call” Eqs. (8) and (10) ground states of the
system.

Remarkably, as we will show in the rest of our paper
below, one can analytically find a large series of excita-
tions above the ground states Eqs. (8) and (10).

Our excitations will be build out of acting with the
band creation and annihilation operators on the ground
states in Eqs. (8) and (10). We first need to compute the
commutators in the non-chiral Hamiltonian (see App. B
in particular B 1)

[Oq,G, c
†
k,n,η,s] =

∑
m

√
V (G + q)M (η)

m,n (k,q + G) c†k+q,m,η,s,

[Oq,G, ck,n,η,s] = −
∑
m

√
V (G + q)M (η)∗

m,n (k,−q−G) ck−q,m,η,s,

(12)

where we have used the property M
(η)∗
m,n (k,−q−G) =

M
(η)
n,m (k− q,q + G) [109]. In the chiral limit, the same

operators read in the Chern basis (see App. B 2)

[Oq,G, d
†
k,eY ,η,s

] =
√
V (G + q)MeY (k,q + G)d†k+q,eY ,η,s

,

[Oq,G, dk,eY ,η,s] = −
√
V (G + q)M∗eY (k,−q−G)dk−q,eY ,η,s.

(13)

From these equations, we can obtain the commutators of
O−q,−GOq,G with the band electron creation operators
in the non-chiral case as

[O−q,−GOq,G, c
†
k,n,η,s] =

∑
m

P (η)
mn (k,q + G) c†k,m,η,s

+
√
V (G + q)

∑
m

(
M (η)
m,n (k,q + G) c†k+q,m,η,sO−q,−G

+
∑
m

M (η)
m,n (k,−q−G) c†k−q,m,η,sOq,G

)
(14)

and in the first chiral limit in Chern basis as

[O−q,−GOq,G, d
†
k,eY ,η,s

] = P (k,q + G) d†k,eY ,η,s

+
√
V (G + q)

(
MeY (k,q + G) d†k+q,eY ,η,s

O−q,−G

+MeY (k,−q−G) d†k−q,eY ,η,sOq,G

)
, (15)

respectively. Similar relations for [O−q,−GOq,G, ck,n,η,s]

and [O−q,−GOq,G, dk,eY ,η,s], where M (η)(k,q + G) →
M (η)∗(k,−q − G), are derived in App. B. The matrix
factor P is the convolution of the Coulomb potential and
the form factor matrices. In the non-chiral case, P is a
matrix given by

P (η)
mn (k,q + G) = V (G + q)(M (η)†M (η))mn (k,q + G) .

(16)
In the first chiral limit, it is a number independent on
eY :

P (k,q + G)) = V (G + q)|MeY (k,q + G) |2

= V (G + q)(α2
0(k,q + G) + α2

2(k,q + G)), (17)

where α0(k,q + G) and α2(k,q + G) are the decompo-
sition of the form factors in Eq. (7). The above com-
mutators and the existence of exact eigenstates Eqs. (8)
and (10), which are ground states with the flat metric
condition Eq. (11), allow for the computation of part of
the low energy excitations with polynomial efficiency. We
now show the summary of the computation for the bands
of charge +1, +2 and neutral excitations. The charge
−1,−2 excitations can be found in Apps. C 3 and E 4,
respectively.

III. Charge ±1 excitations

A. Method to obtain the ±1 excitation spectrum

To find the charge one excitations (adding an electron
into the system), we sum the commutators in Eq. (14)
over q,G, and use the fact that the ground states in
Eqs. (8) and (10) satisfy (Oq,G−AGNMδq,0)|Ψ〉 = 0 for
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FIG. 1. Exact charge ±1 excitations given by the simplified
excitation matrix (Eq. (20)) for three different w0/w1 at the
twist angle θ = 1.05◦. Here we change w0 while keeping
w1 = 110meV fixed. Other parameters are given in App. A.
These excitations are exact at the charge neutrality point (ν =
0) for generic state and are exact at finite integer fillings if
the flat metric condition is satisfied. The charge +1 and −1
excitations are degenerate. The exact charge ±1 excitations
obtained using the full excitation matrix (Eq. (19)) without
assuming the flat metric condition are given in Figs. 5 and 6 in
App. C 4. The charge gap in those cases shrinks considerably.

coefficient AG in Eq. (9) in their corresponding limits.
For any state |Ψ〉 in Eqs. (8) and (10), we find:[
HI − µN, c†k,n,η,s

]
|Ψ〉 =

1

2Ωtot

∑
m

Rηmn(k)c†k,m,η,s|Ψ〉 ,

(18)
where N is the electron number operator, and the matrix

Rηmn(k) =
∑

Gqm′

V (G + q)M
(η)∗
m′m (k,q + G)M

(η)

m′n (k,q + G)

+
∑
G

2NMA−G

√
V (G)M (η)

m,n (k,G)− µδmn. (19)

We hence see that, if |Ψ〉 is one of the |Ψν+,ν−
ν 〉 Eq. (10) or

one of the |Ψν〉 Eq. (8) eigenstates ofHI , then c†k,m,η,s|Ψ〉
can be recombined as eigenstates of HI with eigenvalues
obtained by diagonalizing the 2× 2 matrix Rηmn(k).

In the nonchiral case, the eigenstates |Ψν〉 we found in
Ref. [110] (and re-written in Eq. (8)) have both active
bands n = ±1 in each valley η and spin s either fully
occupied or fully empty.

In this case, we can consider two charge +1 states

c†k,n,η,s|Ψ〉 (n = ±) at a fixed k in a fully empty val-
ley η and spin s. These two states then form a closed
subspace with a 2 × 2 subspace Hamiltonian Rη(k) de-
fined by Eq. (19). Diagonalizing the matrix Rη(k) then
gives the excitation eigenstates and excitation energies.
Furthermore, at ν = 0, the state |Ψν=0〉 in Eq. (8) is
the ground state of the interaction Hamiltonian HI re-
gardless of the flat metric condition Eq. (11), and hence

c†k,n,η,s|Ψν=0〉 always gives the charge excitation above
the ground state.

If we further assume the flat band condition Eq. (11)
(or its violation is small enough), all eigenstates |Ψν〉 be-
come exact ground states and the second row of Eq. (19)

vanishes (see App. C 1 a). Since the U(4) irrep of the
ground state |Ψν〉 is [(2NM )(ν+4)/2]4, the U(4) irrep of
the charge 1 excited state is given by [(2NM )(ν+4)/2, 1]4.
A similar equation for the charge −1 excitations is de-
rived in in App. C 3, where we denote the excitation ma-

trix as R̃.
As explained in App. A 3, when the flat metric con-

dition is satisfied, the second term in Rη (Eq. (19)) can
be canceled by the chemical potential term (the third
term), and thus we obtain a simplified expression for Rη

independent of ν:

Rηmn(k) =
∑

Gqm′

V (G + q)M
(η)∗
m′m (k,q + G)M

(η)

m′n (k,q + G) .

(20)

It is worth noting that Eq. (20) is exact for ν = 0
even without the flat metric condition Eq. (11), because
the coefficient AG (Eq. (9)) in the second term of Rη

(Eq. (19)) and the chemical potential in the third term
of Rη vanish at ν = 0.

The simplified matrix R̃η for charge −1 excitation with
the flat metric condition Eq. (11) is the complex conju-

gation of Rη, i.e., R̃ηmn(k) = Rη∗mn(k). This shows that,
the charge −1 excitations are degenerate with the charge
+1 excitations if either ν = 0 or the flat metric condition
Eq. (11) is satisfied.

The charge +1 excitation dispersion determined by
Eq. (20) (which does not depend on ν) is plotted in Fig. 1.

The parameters used in the calculation to obtain the
spectrum are given in App. A. We find that, with the
flat metric condition imposed, the charge ±1 excitation
(Fig. 1) is gapped, and the minimum is at the Γ point,
with a large dispersion velocity. The exact charge ±1
excitations at different fillings obtained using the full Rη

matrix (Eq. (19)) of realistic parameters (which break
the flat metric condition Eq. (11)) are given in Figs. 5
and 6 in App. C 4.

The degeneracy of the excitation spectrum depends on
the filling ν of the ground state. In the nonchiral-flat
U(4) limit, Rη does not depend on spin, and R+, R−

have the same eigenvalues because they are related by
the symmetry C2zP , where P is a single-body unitary PH
symmetry (App. A 2 a) [43, 108, 109]. Thus charge +1
excitations in different valley-spin flavors have the same
energy. For the state |Ψν〉 (Eq. (8)), the +1 excitations
in the empty (4−ν)/2 spin-valley flavors are degenerate.
Correspondingly, −1 excitations in the occupied (4+ν)/2
spin-valley flavors are also degenerate.

In the (first) chiral-flat limit, and with the flat metric
condition Eq. (11) (or at ν = 0 without (11)), the ex-
pression for the charged excitations in the Chern basis

d†k,eY ,η,s|Ψ
ν+,ν−
ν 〉 becomes diagonal and independent of

eY (see App. C 2 for the chiral-flat limit without the flat
metric condition Eq. (11)):[

HI − µN, d†k,eY ,η,s
]
|Ψ〉 =

1

2Ωtot
R0(k)d†k,eY ,η,s|Ψ〉,

R0(k) =
∑
G,q

P (k,q + G), (21)
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provided that the Chern band eY (= ±1) in valley η and
spin s is fully empty and P (k,q + G) given in Eq. (17).
We obtain

R0(k) =
∑
G,q

V (G + q)[α0(k,q + G)2 + α2(k,q + G)2].

(22)
The spectrum at the magic angle is shown in Fig. 1. The
U(4)×U(4) irrep of the charge +1 excited states with
eY = 1 and eY = −1 are given by

(
[N

ν+
M , 1]4, [N

ν−
M ]4

)
and

(
[N

ν+
M ]4, [N

ν−
M , 1]4

)
, respectively. The charge −1 ex-

citation details can be found in App. C 3.
Since in the chiral-flat limit the scattering matrix

R0(k) is identity in the eY space, the excitation has de-
generacy in addition to the valley-spin degeneracies. For
a state in Eq. (10) with filling ν, the charge +1 and −1
excitations have degeneracies 4−ν and 4+ν, respectively.

B. Bounds on the charge ±1 excitation gap

In this subsection, we will focus on the charge neu-
trality point (ν = 0), where the second and third terms
in Rη(k) (Eq. (19)) vanish, and nonzero integer fillings
ν = ±1,±2,±3 with the flat metric condition Eq. (11)
such that the second and third terms inRη(k) cancel each
other. In these cases Rη(k) is a positive semidefinite ma-
trix and hence has non-negative eigenvalues. We are able
to obtain some analytical bounds for the gap of the ±1
excitation. Detail calculations are given in App. C 1 b.
Since charge ±1 excitations in this case are degenerate,
our conclusion below for charge +1 excitations also apply
to charge -1 excitations.

We rewrite the Rη(k) matrix as Rηmn(k) =
(M (η)†(k)VM (η)(k))mn, where now M (η)(k) with given
η and k is a matrix of the dimension 2NM ·NG×2 (with
2 because we are projecting into the two active TBG
bands). NM is number of moiré unit cells, NG is the
number of plane waves (MBZs) taken into consideration.
By separating the {q,G} = 0 contribution, and using
Weyl’s inequalities we find in App. C 1 b that the ener-
gies of the excited states are ≥ 1

2V (q = 0)/Ωtot. The

bound 1
2V (q = 0)/Ωtot is small but nonzero for large but

finite Ωtot. This shows that the states c†k,n,η,s|Ψ〉 are not

exactly degenerate to the ground state |Ψ〉 (note that we
did not prove these are the unique ground states).

The excited states of the PSDH appears to give
rise to finite gap charge 1 excitations. The largest
gap happens in the atomic limit or a material,
where 〈um(k + q)|un(k)〉 = δmn, for which Rmn =
δmn

∑
q,G V (q + G) = δmnΩtotV (r = 0). Hence the

gap is 1
2V (r = 0). Away from the atomic limit, the gap

is reduced, but will generically remain finite. We now
give an argument for this. Since we know that TBG is
far away from an atomic limit - the bands being topo-
logical, we expect a reduction in this gap. We perform
a different decomposition of the matrix Rηmn: we sepa-
rate it into G = 0 and G 6= 0 sums (see App. C 1 c).

The G 6= 0 part, besides being negligible for |G| ≥
√

3kθ
[107], is also positive semidefinite, and the eigenvalues of
Rηmn are bounded by (and close to) the G = 0 part:

Rηmn(k) ≥
∑
q

V (q)M
(η)∗
m′,m (k,q)M

(η)
m′,n (k,q) , (23)

where q is summed over the MBZ, and the inequal-
ity means that the eigenvalues of the left hand side
are equal to or larger than the eigenvalues of the right
hand side. We then re-write the right hand side as∑

q V (q)(δmn − Gmnη (k,q)), where we call the positive

semi-definite matrix Gmn(k,q) the generalized “quan-
tum geometric”, whose trace is the generalized Fubini-
Study metric. For small momentum transfer q, we can
show that Gmn(k,q) =

∑
ij qiqjG

mn
ij (k) +O(q3). where

Gmnij (k) is the conventional quantum geometric tensor
(and the Fubini-Study metric) [77, 116] defined by

Gmnij (k) =

N∑
a,b=1

∂kiu
∗
a,m(k)

(
δa,b −

∑
l∈B

ua,l(k)u∗b,l(k)

)
× ∂kjub,n(k), (24)

in which m,n ∈ B are energy band indices and i, j
are spatial direction indices of the orthonormal vectors
um(k) in a N dimensional Hilbert space, with k being
the momentum (or other parameter). The Gmn(k,q)
tensor quantifies the distance between two eigenstates in
momentum space.

Generically, we expect [77] that the inner product be-
tween two functions at k and k + q to fall off as q in-
creases, leaving a finite term in Rηmn(k), the electron gap,
at every k. In trivial bands in the atomic limit, the pos-
itive semi-definite matrix Gmn(k,q) reaches its theoreti-
cal lower bound 0 and hence the charge 1 gap is maximal.
In topological bands, such as TBG, the quantum metric
has a lower bound and hence the charge 1 gap is reduced.

IV. Charge neutral excitations

A. Method to obtain charge neutral excitations

To obtain the charge neutral excitations, we choose the

natural basis c†k+p,m2,η2,s2
ck,m1,η1,s1 |Ψ〉, where |Ψ〉 is any

of the exact ground states and/or eigenstates in Eqs. (8)
and (10) and p is the momentum of the excited state.
The scattering matrix of these basis can be solved as eas-
ily as a one-body problem, despite the fact that Eqs. (8)
and (10) hold a thermodynamic number of electrons. The
details are given in App. D. For |Ψ〉 being a state in

Eq. (8), the scattering of c†k+p,m2,η2,s2
ck,m1,η1,s1 |Ψ〉 by

the interaction is:[
HI − µN, c†k+p,m2,η2,s2

ck,m1,η1,s1

]
|Ψν〉
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FIG. 2. Exact charge neutral excitations with the flat metric
condition being imposed for three different w0/w1 at the twist
angle θ = 1.05◦. Here we change w0 while keeping w1 =
110meV fixed. Other parameters are given in App. A. These
excitations are exact at the charge neutrality point (ν = 0)
for generic states and are exact at finite integer fillings if the
flat metric condition is satisfied. The exact charge neutral
excitations at different fillings without imposing flat metric
condition are given in Figs. 7 and 8 in App. D 4. Note the
softening of further Goldstone modes from finite to zero w0,
reflecting the symmetry enhancement of the first chiral limit.
The continuum above the Goldstone modes is fundamentally
made of independent particle-hole excitations

=
1

2Ωtot

∑
m,m′

∑
q

S
(η2,η1)
m,m′;m2,m1

(k + q,k;p)

× c†k+p+q,m,η2,s2
ck+q,m′,η1,s1 |Ψν〉, (25)

S
(η2,η1)

m,m′;m2,m1
(k + q,k; p) (26)

=δq,0(δm,m2R̃
η1
m′m1

(k) + δm′,m1
Rη2mm2

(k + p))

−2
∑
G

V (G + q)M (η2)
m,m2

(k + p,q + G)M
(η1)∗
m′,m1

(k,q + G) ,

where Rηmn(k) (Eq. (19)) and R̃ηmn(k) are the charge ±1
excitation matrices. A valley-spin flavor in |Ψν〉 (Eq. (8))
is either fully occupied or fully empty, thus {η1, s1} be-
longs to the valley-spin flavors which are fully occupied,
while {η2, s2} belongs to the valley-spin flavors which are
not occupied. Eq. (26) shows that the neutral excita-
tion scattering matrix is a sum of the two single-particle

energies (δm,m2R̃
η1
mm1

(k1) + δm,m1R
η2
mm2

(k2)) plus an in-
teraction term. By translation invariance, the scatter-
ing preserves the total momentum p. The spectrum of
the charge neutral excitations at each p is a diagonaliza-
tion problem of a matrix of the dimension 4NM × 4NM ,
where the left and right indices are (k + q,m,m′) and
(k,m2,m2), respectively.

The excitation spectrum with the flat metric condition
Eq. (11) being imposed, i.e., with the Rη (Eq. (19)) being
replaced by the simplified Eq. (20), is shown in Fig. 2. As
explained in Section III A, the simplified charge ±1 ma-

trices R and R̃ do not depend on the filling ν. Thus the
obtained charge neutral excitation dispersion also do not
depend on ν. Fig. 2 is exact for ν = 0 even when the flat
metric condition is not satisfied since Eq. (20) is exact

Little group Number of GMs Ground states

U(4)×U(4) 0 |Ψ4,0
0 〉

U(1)×U(3)×U(4) 3 |Ψ1,0
−3〉, |Ψ

3,0
−1〉

U(2)×U(2)×U(4) 4 |Ψ2,0
−2〉

U(1)×U(3)×U(1)×U(3) 6 |Ψ1,1
−2〉, |Ψ

3,1
0 〉

U(2)×U(2)×U(1)×U(3) 7 |Ψ2,1
−1〉

U(2)×U(2)×U(2)×U(2) 8 |Ψ2,2
0 〉

TABLE I. The little groups (remaining symmetry subgroups)
and the number of Goldstone modes (denoted by GMs in the
table) of the ground states |Ψν+,ν−

ν 〉 in the (first) chiral-flat
U(4)×U(4) limit. Only ν ≤ 0 states are tabulated since the
symmetry and Goldstone modes of ν > 0 states are same as
the ν < 0 states since they are related by the many-body
charge-conjugation operator (App. A 2 c) [109]. Only states
with ν+ ≥ ν− are tabulated since |Ψν+,ν−

ν 〉 and |Ψν−,ν+
ν 〉 have

the equivalent little groups upon interchanging of the two
U(4)s, and thus have the same number of Goldstone modes.

Little group Number of GMs Ground states
U(1)×U(3) 3 |Ψ−2〉, |Ψ2〉
U(2)×U(2) 4 |Ψ0〉

TABLE II. The little groups (remaining symmetry subgroups)
and the number of Goldstone modes (GMs) of the ground
states |Ψν〉 in the nonchiral-flat U(4) limit.

for ν = 0. The exact charge neutral excitations at dif-
ferent fillings without imposing the flat metric condition
Eq. (11) are given in Figs. 7 and 8 in App. D 4.

It is worth noting that, in the Figs. 2, 7 and 8 we just
plot the eigenvalues of the scattering matrix Eq. (26),
which does not assume any information of the occupied
valley-spin flavors in the ground state. In practice, for a
given ground state |Ψ〉, the spectrum branch annihilating
(creating) electrons in empty (occupied) states does not
exist.

B. Goldstone modes

Solving Eq. (26) provides us with the expression for the
neutral excitations at momentum p on top of the TBG
ground states, including the Goldstone mode, whose dis-
persion relation can be obtained in terms of the quantum
geometry factors of the TBG. In general, the scattering
matrix is not guaranteed to be positive semi-definite, and
negative energy would imply instability of the ground
states. However, in a large (physical) range of param-
eters (App. A) of TBG at the twist angle θ = 1.05◦,
we find that, as shown in Figs. 2, 7 and 8, the energies
of charge neutral excitations of the exact ground states
|Ψν〉 in Eq. (8) in the nonchiral-flat limit and |Ψν+,ν−

ν 〉
in Eq. (10) in the chiral-flat limit are non-negative, im-
plying these are indeed stable ground states. As shown
in Figs. 5 and 7 and discussed in Apps. C 4 and D 4,
strong (first) chiral symmetry breaking may lead to an
instability to a metallic phase.

In Tables I and II we have tabulated the little group
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(defined as the remaining symmetry subgroup of the
state) and the number of Goldstone modes for each
ground state in Eqs. (8) and (10). As examples, here
we only derive the little groups and number of Gold-
stone modes for |Ψ1,1

−2〉 (10) and |Ψ−2〉 (8). The little
groups and Goldstone modes for other states can be
obtained by the same method. First we consider the
ground state |Ψ1,1

−2〉 in the (first) chiral-flat U(4)×U(4)
limit, which has vanishing total Chern number. Recall
that the U(4)×U(4) irrep of |Ψ1,1

−2〉 is ([N1
M ]4, [N

1
M ]4).

In each of the eY = ±1 sectors, only one U(4) spin-
valley flavor is occupied. Hence the little group of the
state |Ψ1,1

−2〉 in each eY sector is U(1)×U(3), where the
U(1) is the phase rotation in the occupied flavor and
the U(3) is the unitary rotations within the 3 empty

flavors. Thus, the total little group of the state |Ψ1,1
−2〉

is U(1)×U(3)×U(1)×U(3), which has the rank (number
of independent generators) 20. Since the Hamiltonian
has a symmetry group U(4)×U(4) which has rank 32, we
find the number of broken symmetry generators to be
32-20=12. On the other hand, since all the Goldstone
modes we derived are quadratic (similar to the SU(2)
ferromagnets, see Eq. (30)), it is known that [117] the
number of Goldstone modes is equal to 1/2 of the number
of broken generators, namely, 12/2 = 6. This is because
a quadratic Goldstone mode is always a complex boson,
which is equivalent to two real boson degrees of freedom
corresponding to 2 broken generators.

Next, we consider the ground state |Ψ−2〉 in the
nonchiral-flat U(4) limit. Since the U(4) irrep of |Ψ−2〉
is [2NM ]4, only one U(4) spin-valley flavor is occupied.
Thus the little group of |Ψ−2〉 is U(1)×U(3), where
the U(1) is within the occupied flavor and the U(3) is
within the 3 empty flavors. Hence the number of bro-
ken generators is 16 − 10 = 6, where 16 and 10 are the
ranks of U(4)×U(4) and U(1)×U(3), and the number of
(quadratic) Goldstone modes is 6/2=3.

In the above paragraph we have shown that state
|Ψ1,1
−2〉 in the chiral-flat limit has three more Goldstone

modes than |Ψ−2〉 in the nonchiral-flat limit, although
their wavefunctions are identical. This is because, if
we slightly go away from the (first) chiral-flat limit to-
wards the nonchiral-flat limit, i.e., take the parameter
0 < w0 � w1, some branches of the Goldstone modes
will be gapped by a finite w0, as shown in Figs. 2, 7
and 8.

The number of Goldstone modes can also be ob-
tained by examining the scattering matrix in Eq.
(26). Here we take |Ψ1,1

−2〉 as an example. As dis-
cussed in Section IV C, in the first chiral limit, the

state d†k+p,eY 2,η2,s2
dk,eY 1,η1,s1 |Ψ

1,1
−2〉 will be scattered to

d†k′+p,eY 2,η2,s2
dk′,eY 1,η1,s1 |Ψ

1,1
−2〉 through the scattering

matrix SeY 2,eY 1
(k′,k;p), which does not depend on

η1, s1, η2, s2, and SeY 2,eY 1
(k′,k;0) has an exact zero state

for eY 2 = eY 1 (App. D 3). Now we count the number of

Goldstone modes on top of |Ψ1,1
−2〉 using this property of

scattering matrix.

Suppose the occupied flavors in |Ψ1,1
−2〉 are

{eY , η, s} = {+1,+, ↑}, {−1,+, ↑}. Then, for the

state d†k+p,eY 1,η2,s2
dk,eY 1,η1,s1 |Ψ

1,1
−2〉 to be non-vanishing,

{eY1
, η1, s1} can only take the values in the two eY -

valley-spin flavors {+1,+, ↑}, {−1,+, ↑}, and {η2, s2}
can only take values in the other three valley-spin flavors
in each eY sector. There are in total 6 non-vanishing
channels. Since each channel has an zero mode given
by the zero of SeY 1,eY 1

(k′,k;0), there are 6 Goldstone
modes, consistent with the group theory analysis in
Table I.

C. Exact Goldstone mode and its stiffness in the
(first) chiral-flat U(4)×U(4) limit

In the first chiral limit, we are able to obtain the
Goldstone modes analytically. We pick the basis as

d†k+p,eY 2,η2,s2
dk,eY 1,η1,s1 |Ψ

ν+,ν−
ν 〉, where the valley-spin

flavor {η1, s1} with Chern band basis eY 1 is fully occu-
pied and the valley-spin flavor {η2, s2} and Chern band
basis eY 2 is fully empty. The PSDH scatters the basis to∑

k′

SeY 2,eY 1
(k′,k;p)d†k′+p,eY 2,η2,s2

dk′,eY 1,η1,s1 |Ψν+,ν−
ν 〉,

(27)
where the scattering matrix S does not depend on η1, η2,
s1, s2. The simple commutators between O−q,−GOq,G

and fermion creation and annihilation operators in the
chiral limit (Eq. (15)) lead to a simple scattering matrix.
We here focus on the eY 1 = eY 2, p = 0 channel. For
generic ν = 0 states and the ν = ±1,±2,±3 states with
flat metric condition (Eq. (11)), we have

SeY ;eY (k + q,k; 0) =

2δq,0
∑
G,q′

V (G + q′)[α0(k,q′ + G)2 + α2(k,q′ + G)2]

− 2
∑
G

V (G + q)[α0(k,q + G)2 + α2(k,q + G)2]. (28)

The general expression of SeY 2;eY 1
(k + q,k;p) for all

channels without imposing the flat metric condition is
given in App. D 2. We first show the presence of an exact
zero eigenstate of Eq. (28) by remarking that the scat-
tering matrix SeY ;eY (k+q,k;0) satisfies (irrespective of
η1,2, s1,2): ∑

q

SeY ;eY (k + q,k;0) = 0. (29)

This guarantees that the rank of the scattering matrix
is not maximal, and that there is at least one exact zero
energy eigenstate, with equal amplitude on every state

in the Hilbert space:
∑

k d
†
k,eY ,η2,s2

dk,eY ,η1,s1 |Ψ
ν+,ν−
ν 〉.

More details are given in Apps. D 3 and D 3 a. The U(4)×
U(4) multiplet of this state is also at zero energy. More-
over, the scattering matrix SeY ;eY (k + q,k;0) is positive
semi-definite. The details of this proof can be found in
App. D 3 a.
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FIG. 3. The eigenvalues of the mass tensor of the Goldstone
mode in the first chiral limit (31). Here w1 is in units of meV.

Since the p = 0 state has zero energy, for small p, by
continuity, there will be low-energy states in the neutral
continuum. By performing a k·p perturbation in the p =
0 states in Eq. (D11), one can compute the dispersion of
the low-lying states. Full details are given in App. D 3 b.
In the chiral limit, and imposing the flat metric condition
Eq. (11) we find, by using αa(k,q+G) = αa(−k,−q−G)
for a = 0, 2 and as expected for the Goldstone of a FM,
the linear term in p vanishes and

EGoldstone(p) =
1

2

∑
ij=x,y

mijpipj , (30)

to second order in p. We find the Goldstone stiffness

mij =
1

2Ωtot

∑
k,q,G

V (G + q)
[
α0(k,q + G)∂ki

∂kj
α0(k,q + G)+

α2(k,q + G)∂ki
∂kj

α2(k,q + G) + 2∂ki
α0(k,q + G)∂kj

α0(k,q + G)

+ 2∂ki
α2(k,q + G)∂kj

α2(k,q + G)
]
. (31)

Since C3z symmetry is unbroken in the ground states in
Eq. (10), an isotropic mass tensor mij ∝ δij is expected.
The eigenvalues of mij with different values of w1 are
plotted in Fig. 3.

V. Charge ±2 excitations

A. Method to obtain ±2 excitations

We now derive the charge ±2 excitations. We
choose a basis for the charge +2 excitations as

c†k+p,m2,η2,s2
c†−k,m1,η1,s1

|Ψ〉 where |Ψ〉 is any of the ex-

act ground states and or eigenstates in Eqs. (8) and (10)
(for which (Oq,G − AGNMδq,0)|Ψ〉 = 0) and p is the
momentum of the excited state. Hence {η1, s1}, {η2, s2}
belong to the valley-spin flavors which are not occupied.
The details of the commutators of the Hamiltonian and

the basis are given in App. E. We find[
HI − µN, c†k+p,m2,η2,s2

c†−k,m1,η1,s1

]
|Ψ〉

=
1

2Ωtot

∑
m,m′,q

T
(η2,η1)
m,m′;m2,m1

(k + q,k;p)

× c†k+q+p,m,η2,s2
c†−k−q,m′,η1,s1 |Ψ〉, (32)

T
(η2,η1)

m,m′;m2,m1
(k + q,k; p) (33)

=δq,0(δm,m2R
η1
mm1

(−k) + δm,m1R
η2
mm2

(k + p))

+2
∑
G

V (G + q)M (η2)
mm2

(k + p,q + G)M
(η1)

m′m1
(−k,−q−G) ,

where Rηmn(k) are the charge +1 excitation matrices in
Eq. (19). We see that the charge +2 excitation energy is
a sum of the two single-particle energies plus an interac-
tion energy. By the translational invariance, scattering
preserves the momentum (p) of the excited state. The
spectrum of the excitations at a given p is a diagonaliza-
tion problem of a matrix of the dimension 4NM × 4NM .

The scattering matrix T̃ of the charge −2 excitations is
derived in App. E 4. It has the same form as T here ex-
cept that the charge +1 excitation matrix Rη is replaced

by charge −1 excitation matrix R̃η and the M matrix is
replaced by the complex conjugation of M .

The spectrum of charge ±2 excitations with the flat
metric condition Eq. (11) imposed is shown in Fig. 4. By
imposing the flat metric condition, we can replace the Rη

matrix (Eq. (19)) in Eq. (33) by the simplified Eq. (20).
Since Eq. (20) does not depend on ν, the obtained charge
+2 excitation dispersion also do not depend on ν. Fig. 4
is exact for ν = 0 even when the flat metric condition
is not satisfied since Eq. (20) is exact for ν = 0. Due
to the many-body charge-conjugation symmetry at ν =
0 [109], the charge −2 excitations are degenerate with
the charge +2 excitations. Exact charge ±2 excitations
without imposing the flat metric condition Eq. (11) at
different fillings are given in Figs. 9 and 10 in App. E 5.

B. Absence of Cooper pairing in the projected
Coulomb Hamiltonian

The exact expression of the 2-particle excitation spec-
trum (Eq. (33)) allows for the determination of the
Cooper pair binding energy (if any). We notice the scat-
tering matrix Eq. (33), T (η2,η1)(k + q,k;p), differs by a
sign from the neutral charge energy Eq. (26): It is the
sum of energies of two charge +1 excitations at momenta
k + p,−k plus an interaction matrix, while Eq. (26) is
the sum of charge +1 and −1 excitations minus an in-
teraction matrix. This allows us to use the Richardson
criterion [112–115] for the existence of Cooper pairing by
examining the binding energy as follows:

∆(N + 2) = E(N + 2) + E(N)− 2E(N + 1) < 0 (34)



10

E
ne

rg
y 

(m
eV

)

100

0

20

40

60

80

�MKM MM KM

w0/w1=0 w0/w1=0.4 w0/w1=0.8

�MKM MM KM �MKM MM KM

120

FIG. 4. Exact charge ±2 excitations with the flat metric con-
dition being imposed for three different w0/w1 at the twist an-
gle θ = 1.05◦. Here we change w0 while keeping w1 = 110meV
fixed. Other parameters are defined in App. A. These excita-
tions are exact at charge neutrality point (ν = 0) for generic
states and are exact at finite integer fillings if the flat met-
ric condition is satisfied. The charge +2 and −2 excitations
are degenerate. The exact charge ±2 excitations at different
fillings without imposing the flat metric condition are given
in Figs. 9 and 10 in App. E 5. Note bound states above but
not below the two-particle continuum, confirming our ana-
lytic proof and showing the lack of Cooper pairing in TBG
projected Coulomb Hamiltonians

where E(N) is the energy of the lowest state at N -
particles. We now assume that the lowest state of the
charge +2 excitation continuum obtained by diagonaliz-
ing the matrices Eq. (33) is the lowest energy state at
two particles above the ground state, which is confirmed
by numerical calculations for a range of parameters [111].
We note that Eq. (19) is the charge +1 excitation. The
lowest energy of the non-interacting 2-particle spectrum
is 2 min(R), where min(R) is the smallest eigenvalue of
Rη(k) over k ∈ MBZ and valley flavors η = ±.

Hence we can write the binding energy as min(T ) −
2 min(R), where min(T ) represents the minimal eigen-
values of T (η2,η1)(k + q,k;p) over momenta p ∈ MBZ
and different valley flavors η2, η1. For later convenience,
we denote the sum of the first two terms of Eq. (33) as

T
(η2,η1)′
m,m′;m2,m1

(k + q,k;p)

=δq,0(δm,m2
Rη1mm1

(−k) + δm,m1
Rη2mm2

(k + p)) (35)

and the last term of Eq. (33) as

T
(η2,η1)′′
m,m′;m2,m1

(k + q,k;p) = 2
∑
G

V (G + q)

×M (η2)
mm2

(k + p,q + G)M
(−η1)∗
m′m1

(k,q + G) . (36)

We therefore have T = T ′ + T ′′ in short nota-
tions. Here we have used the time-reversal symmetry:

M
(η1)
m′m1

(−k,−q−G) = M
(−η1)∗
m′m1

(k,q + G), as explained
in App. E 3. We use Weyl’s inequalities to find suf-
ficient conditions for the presence and absence of su-
perconductivity. In particular, for given p, η2, η1, the
smallest eigenvalue of T (η2,η1)(k+q,k;p) is smaller than

the smallest eigenvalue of T (η2,η1)′(k + q,k;p) plus the
largest eigenvalue of T (η2,η1)′′(k+q,k;p). Hence we have
min(T ) ≤ min(T ′) + max(T ′′) = 2 min(R) + max(T ′′).

Therefore, a sufficient criterion for the presence of
Cooper pairing binding energy is that T (η2,η1)′′(k +
q,k;p) has all eigenvalues negative:

∀η1, η2,p, Eig[T
(η2,η1)′′
mm′;m2m1

(k + q,k;p)] < 0. (37)

On the other hand, for given p, η2, η1, the smallest eigen-
value of T (η2,η1)(k+q,k;p) is larger than the the small-
est eigenvalue of T (η2,η1)′(k + q,k;p) plus the small-
est eigenvalue of T (η2,η1)′′(k + q,k;p). Hence we have
min(T ) ≥ min(T ′) + min(T ′′) = 2 min(R) + min(T ′′).
Therefore, a sufficient criterion for the absence of Cooper
pairing binding energy is that T (η2,η1)′′(k+q,k;p) is pos-
itive semi-definite:

∀η1, η2,p, Eig[T
(η2,η1)′′
mm′;m2m1

(k + q,k;p)] ≥ 0. (38)

From the charge +2 excitation spectra in Figs. 4, 9
and 10 we can see that the the spectrum of T consists of
two parts: the two-particle continuum, which is given by
the sums of two charge +1 excitations, and a set of charge
+2 collective modes above the the two-particle contin-
uum. Thus it seems that T ′′ are always non-negative
positive.

In App. E 3 we proved that, for the projected Coulomb
Hamiltonian with the time-reversal symmetry, the ma-
trix T (η,−η)′′(k + q,k;p), which corresponds to excita-
tions of two particles from different valley, is positive
semi-definite. Thus there is no inter-valley pairing su-
perconductivity of the PSDH HI at the integer fillings ν
of the ground states in Eqs. (8) and (10). We expect this
property to hold slightly away from integer fillings. Since
TBG shows superconductivity at ν = 2 or slightly away
from integer fillings, our results show that either kinetic
energy or phonons are responsible for pairing.

Here we briefly sketch the proof. We consider the ex-
pectation value of T (η,−η)′′(k + q,k;p) on an arbitrary
complex function φm2,m1(k):

〈T ′′〉ηφ(p) =
∑
k1,k2

∑
mm′m2m2

T (η,−η)′′(k2,k1;p)

× φ∗mm′(k2)φm2,m1
(k1). (39)

As detailed in App. E 3, substituting the definition of
the M matrix (Eq. (4)) into Eq. (36), we can rewrite the
expectation value as

〈T ′′〉ηφ(p) =
2

NG

∑
k1k2G1G2

Tr[W †(k2 + G2)W (k1 + G1)]

× V (k2 + G2 − k1 −G1), (40)

where

W (k+G) =
∑

m2,m1,G

um2,η(k+p+G)φm2,m1(k)u†m1,η(k+G).

(41)
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Here um2,η(k+G) is the 2NQ×1 vector uQ−G,α;m2,η(k)
and W (k + G) is a 2NQ × 2NQ matrix, with NQ being
the Q lattice size (see App. A 1 for definition of the Q
lattice). For simplicity, we use a and b to represent the
composite indices (Q, α). Then 〈T ′′〉ηφ(p) can be written

as
∑
abW

†
abVWab, where now Wab is viewed as an NM×1

vector and V an NM × NM matrix. Since V is positive
semi-definite, for each pair of a, b, the summation over
k1,k2,G1,G2 is non-negative. Thus T ′′ is positive semi-
definite since 〈T ′′〉ηφ(p) ≥ 0 for arbitrary φ.

In App. E 3 we also proved that, for η2 = η1 = η,
T (η,η)′′(k+q,k;p) is also positive semi-definite due to the
symmetry PC2zT , with P being the unitary single-body
PH symmetry of TBG [43, 108]. Therefore, neither the
inter-valley pairing nor the intra-valley Cooper pair has
binding energy in the projected Coulomb Hamiltonian
for any integer fillings ν in the chiral-flat limit, and for
any even fillings ν = 0,±2,±4 in the nonchiral-flat limit.

VI. Conclusions

In this paper, we have calculated the excitation spectra
of a series positive semi-definite Hamiltonians (PSDHs)
initially introduced by Kang and Vafek [71] that gener-
ically appear [109] in projected Coulomb Hamiltonians
to bands with nonzero Berry phases and which exhibit
ferromagnetic states as ground states, under weak as-
sumptions [109, 110] . These assumptions were also used
by Kang and Vafek [71] to find the ν = 2 ground states
in TBG. In this paper, we show that not only the ground
states, but a large number of low-energy excited states
can be obtained in PSDHs. We obtain the general the-
ory for the charge ±1,±2 and neutral excitations ener-
gies and eigenstates and particularize it to the case of
TBG insulating states. We find that charge +1 excita-
tions are gapped, with the smallest gap at the Γ point.
In both the (first) chiral-flat limit and the nonchiral-flat
limit, we find the Goldstone stiffness of the ferromagnetic
state, as well as the Cooper pairing binding at integer
fillings. In particular, we proved by the Richardson cri-

terion [112–115] that Cooper pairing is not favored at
integer fillings (even fillings when nonchiral) in the flat
band limit. Since superconductivity has been observed
in experiments with screened Coulomb potentials [7–9]
(such as at ν = 2), we conjecture the origin of supercon-
ductivity in TBG is not Coulomb, but is contributed by
other mechanisms, e.g., the electron-phonon interaction
[59, 60, 85], or due to kinetic terms. In particular, our
theorem shows that the Luttinger-Kohn mechanism of
creating attractive interactions out of repulsive Coulomb
forces is ineffective for flat bands. A similar statement
can be made for the super-exchange interaction. A finite
kinetic energy is hence required for these mechanisms.

In future work, the charge excitation energies of these
Hamiltonians will be obtained in perturbation theory
with the kinetic terms. A further question, of whether
there are other further eigenstates of the PSDHs, remains
unsolved.
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of strongly interacting z2 flatbands: a toy model in-
spired by twisted bilayer graphene,” arXiv preprint
arXiv:2004.10363 (2020).

[96] Yixuan Huang, Pavan Hosur, and Hridis K Pal,
“Deconstructing magic-angle physics in twisted bilayer
graphene with a two-leg ladder model,” arXiv preprint
arXiv:2004.10325 (2020).

[97] Tongyun Huang, Lufeng Zhang, and Tianxing Ma,
“Antiferromagnetically ordered mott insulator and d+
id superconductivity in twisted bilayer graphene: A
quantum monte carlo study,” Science Bulletin 64, 310–
314 (2019).

[98] Huaiming Guo, Xingchuan Zhu, Shiping Feng, and
Richard T Scalettar, “Pairing symmetry of interacting
fermions on a twisted bilayer graphene superlattice,”
Physical Review B 97, 235453 (2018).

[99] Patrick J. Ledwith, Grigory Tarnopolsky, Eslam Kha-
laf, and Ashvin Vishwanath, “Fractional chern insu-
lator states in twisted bilayer graphene: An analytical
approach,” Phys. Rev. Research 2, 023237 (2020).

[100] Cécile Repellin, Zhihuan Dong, Ya-Hui Zhang, and
T. Senthil, “Ferromagnetism in narrow bands of moiré
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A. Review of notation: single particle and interacting Hamiltonians

For completeness, we here briefly review the notations used for the single-particle and interacting Hamiltonians.
Their properties and (explicit and hidden) symmetries of both the single particle and the interacting problems are
detailed at length in our recent papers [107–110].
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1. Single particle Hamiltonian: short review of notation

The single-particle Hamiltonian, symmetries, and properties of the wavefunctions have been discussed at length in
Ref. [43, 107, 108]. For completeness of notation, we give its expression here, for completeness, but we skip all details.
The total single particle Hamiltonian is

Ĥ0 =
∑

k∈MBZ

∑
ηαβs

∑
QQ′

[
h

(η)
QQ′ (k)

]
αβ
c†k,Q,η,αsck,Q′,η,βs. (A1)

where c†k,Q,η,αs is the creation operator at momentum k (in the moiré BZ - MBZ) in valley η (±), sublattice α (1,2),

spin s (↑↓), and moiré momentum lattice Q. The Hamiltonians in the two valleys are

h
(+)
QQ′ (k) = δQ,Q′vF (k−Q) · σ +

3∑
j=1

(
δQ−Q′,qj

+ δQ′−Q,qj

)
Tj

h
(−)
QQ′ (k) = δQ,Q′vF (k−Q) · σ∗ +

3∑
j=1

(
δQ−Q′,qj

+ δQ′−Q,qj

)
σxTjσx, (A2)

where σ = (σx, σy), σ∗ = (−σx, σy) are Pauli matrices, Tj = w0σ0 + w1(cos 2π
3 (j − 1)σx + sin 2π

3 (j − 1)σy), and

qj = kθC
j−1
3z (0, 1)T (j = 1, 2, 3) with kθ = 2|K| sin θ

2 being the distance of the Graphene K momenta from the top
layer and bottom layer, θ the twist angle, w0 the interlayer AA-hopping, and w1 the interlayer AB-hopping. Q belongs
to a hexagonal momentum space lattice, Q ∈ Q±, where Q± = Q0 ± q1. The eigenstates of Eq. (A1) take the form

c†knηs =
∑
Qα

uQα;nη (k) c†k,Q,η,αs. (A3)

where c†k+G,Q,ηαs = c†k,Q−G,ηαs, for any moiré reciprocal wavevector G, and hence

uQα;nη (k + G) = uQ−G,α;nη (k) (A4)

such that c†k+G,nηs = c†knηs. This is the MBZ periodic gauge.

In the numerical calculations, we take the parameters θ = 1.05◦, |K| = 1.703Å−1, vF = 5.944eV · Å, w1 = 110meV.
The projected kinetic Hamiltonian in the flat bands will be denoted by H0 (without hat), which is given in Eq. (1).

2. Interaction Hamiltonian: short review of notation

The many-body Hamiltonian, symmetries, and properties of the wavefunctions, as well as the derivations, have been
discussed at length in Refs. [109, 110]. For completeness of notation, we give its expression here, for completeness,
but we skip all details. The Hamiltonian before projection was derived to be (denoted by a hat) [109, 110]:

ĤI =
1

2Ωtot

∑
G

∑
q∈MBZ

V (G + q) δρ−G−qδρG+q; V (r) =
1

Ωtot

∑
G

∑
q∈MBZ

e−i(q+G)·rV (q + G) (A5)

where

δρq+G =
∑

η,α,s,k,Q

(c†k+q,Q−G,η,α,sck,Q,η,α,s −
1

2
δq,0δG,0) (A6)

is the total electron density at momentum q + G relative to the charge neutral point. Ωtot is the total area of the
moiré lattice, G sums over moiré reciprocal lattice, and q sums over momenta in MBZ zone.

For the analytic derivations in the current paper, we keep V (r) generic. For the numerical plots of the energy
dispersion and other properties, we use twisted bilayer graphene Coulomb interactions screened by the electrons in

the two planar conducting gates [71, 118]: V (r) = Uξ
∑∞
n=−∞ (−1)

n
/

√
(r/ξ)

2
+ n2 with ξ = 10nm being the distance

between the two gates, Uξ = e2/ (εξ) = 26meV (in Gauss units), ε ≈ 6 the dielectric constant of boron nitride. The
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derivation of this interaction was explained at length in Ref. [109, 110]. It was also showed that the interaction has
non-vanishing Fourier component only for intra-valley scattering to give

V (q) =
(
πξ2Uξ

) tanh (ξq/2)

ξq/2
. (A7)

For the given values of the parameters, V (q) was plotted in Ref. [108] and is a slowly decreasing function of |q| in
the BZ, reaching (around the magic angle) about half of its maximal value as |q| spans the whole MBZ around.

a. Gauge fixing and the projected interaction

We define for our many-body Hamiltonian the form-factors, also called the overlap matrix of a set of bands m,n as

M (η)
m,n (k,q + G) =

∑
α

∑
Q

u∗Q−G,α;mη (k + q)uQ,α;nη (k) , (A8)

In terms of which the projected density operator interaction and Hamiltonian to a set of bands denoted by m,n can
be written as

HI =
1

2Ωtot

∑
G

∑
q∈MBZ

V (G + q) δρ−G−qδρG+q

δρG+q =
∑
ηs

∑
mn∈proj

∑
k

Mη
m,n(k,q + G)

(
c†k+q,m,η,sck,n,η,s −

1

2
δq,0δmn

)
.

For our working convenience, we then define the operator

Oq,G =
√
V (q + G)δρG+q. (A9)

This allows us to rewrite the projected interaction Hamiltonian HI into the form of Eqs. (2) and (3). While most
of the projected Hamiltonian properties are valid for any number of projected bands that respect the symmetries
of the system (including PH), in TBG at the first magic angle we usually are interested in the projection of the
Hamiltonian onto the lowest two flat bands per spin per valley of TBG (8 bands in total). An important step in
any calculations - especially numerical - is the gauge-fixing procedure. Different gauges for the wavefunctions, that
make different symmetries of the form factors Eq. (A8) more explicit, can be chosen. This is explained at length
in our manuscript Ref. [109], but for completeness we briefly mention them here. We consider only 2 active bands,
the general gauge-fixing mechanism for projection in more than 2 bands is found in Ref. [109]. To fix the gauge of

the Bloch wavefunctions in Eq. (A3), |ψk,n,η,s〉 =
∑

Q,α uQ,α;mη(k)c†k,Q,η,α,s|0〉, where uQ,α;mη(k) is the solution of

the single-particle Hamiltonian h
(η)
QQ′(k), in each η = ±, s =↑↓ sector, we label the higher energy band by m = +

and the lower band by m = −. Due to the spin-SU(2) symmetry, we set the real space wavefunctions for s =↑↓ to
be identical and omit the index s for the single-particle states. For a symmetry operation g, the sewing matrices
Bgn′η′,nη(k) = 〈ψgk,n′,η′ |g|ψk,n,η〉, which relate states at momentum k with states at the transformed momentum gk
can be consistently chosen to be

BC2zT (k) = ζ0τ0, BC2z (k) = ζ0τx, BP (k) = iζyτz, BC2zP (k) = ζyτy (A10)

for the C2zT , C2z, P symmetries of TBG where ζa, τa (a = 0, x, y, z) are Pauli-matrices acting on the band and valley
indices, respectively [109]. Here P is a unitary single-body PH symmetry that transforms k to −k [43, 108]. We leave
the other sewing matrices - for C3z, C2x - unfixed. With these sewing matrices, once we obtain, by diagonalizing the
single particle Hamiltonian, the wavefunctions in the valley η = + for band m = +, then we first fix the C2zT (in
TBG, this is done at the detriment of the wavefunction being continuous), then we use of the PH to generate the
m = − band, while finally, using C2z symmetry to generate the wavefunctions in the valley η = −. In Ref. [109],
we use the above gauge to determine the most generic form of the M matrix coefficient (Eq. (A8)). We found that -
away from the point w1 = 0 in parameter space which we call “second chiral limit” - we can decompose the M matrix
into four terms: [108, 109]

M(k,q + G) = ζ0τ0α0(k,q + G) + ζxτzα1(k,q + G) + iζyτ0α2(k,q + G) + ζzτzα3(k,q + G). (A11)
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where α0,1,2,3 are real functions which satisfy the following symmetry conditions.

αa(k,q + G) = αa(k + q,−q−G) for a = 0, 1, 3, α2(k,q + G) = −α2(k + q,−q−G), (A12)

αa(k,q + G) = αa(−k,−q−G) for a = 0, 2, αa(k,q + G) = −αa(−k,−q−G) for a = 1, 3. (A13)

In particular, the combination of Eqs. (A12) and (A13) implies that at q = 0, we have

α0(k,G) = α0(−k,G) , αj(k,G) = −αj(−k,G), (j = 1, 2, 3). (A14)

Note that the same gauge fixing can be found with projection in a larger number of bands [109].
A further simplification occurs in the first chiral limit w0 = 0 of the single-particle Hamiltonian due to the presence

of an extra symmetry [72, 108, 109]. (A similar simplification takes place in the second chiral limit w1 = 0, found
in Refs. [108, 109]). In this limit there is another (chiral) symmetry C of the one-body first-quantized Hamiltonian
hQQ′(k), which in band space is defined by its sewing matrix:

BCmη′,nη(k) = 〈ψk,m,η′ |C|ψk,n,η〉 ∝ δm,−nδη′,η. (A15)

A gauge choice in which BCmη′,nη(k) is k independent is possible

BC(k) = ζyτz. (A16)

This allows us to find the wavefunction of the − band at k from the + band at k, in the same valley. In Ref. [109] we
prove that the M matrix in the interaction satisfies the chiral symmetry, BC†M(k,q + G)BC = M(k,q + G). Thus
with the chiral symmetry, M takes the form

M(k,q + G) = ζ0τ0α0(k,q + G) + iζyτ0α2(k,q + G). (A17)

b. Chern band basis

In Ref. [108] we have shown that the two flat bands can be recombined as two Chern bands:

d†k,eY ,η,s =
1√
2

(c†k,+,η,s + ieY c
†
k,−,η,s). (A18)

Their corresponding Berry curvatures are continuous in the MBZ and yield Chern numbers eY = ±1, respectively.

We fixed the ambiguities by requiring that the Berry’s curvature of each Chern band basis d†k,eY ,η,s is continuous, or,
equivalently,

lim
q→0
|〈u′k+q,eY ,η,s|u

′
k,e′Y ,η,s

〉| = δeY ,e′Y , (A19)

where |u′k,eY ,η,s〉 is the periodic part of the Bloch wavefunction for the operator d†k,eY ,η,s. In this gauge the band

d†k,eY ,η,s has nonzero Chern number CeY ,η,s = eY [74, 108]. The Chern numbers of d†k,eY ,−,s equals to the Chern

numbers of d†k,eY ,+,s, because they are related by C2z rotation.
The M matrix in the Chern band basis becomes

M (η)
eY ,eY (k,q + G) = MeY (k,q + G) = α0(k,q + G) + ieY α2(k,q + G), (A20)

M
(η)
−eY ,eY (k,q + G) = ηFeY (k,q + G), FeY (k,q + G) = α1(k,q + G) + ieY α3(k,q + G). (A21)

For later convenience, we have introduced the factors MeY (k,q + G) and FeY (k,q + G) to represent the diagonal
element and off-diagonal element in the Chern band basis, respectively. In the first chiral limit, where α1 = α3 = 0,
we have FeY = 0.
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c. Many-body charge-conjugation symmetry of the projected interaction and kinetic Hamiltonian

In Ref. [109], we showed that the full projected HamiltonianH0+HI has a many-body charge-conjugation symmetry,
Pc defined as the single-particle transformation C2zTP followed by an interchange between electron annihilation

operators c and creation operators c†: Pcc†k,n,η,sP−1
c = c−k,m,η′,sB

C2zTP
mη′,nη(k):

PcH0P−1
c = H0 + const. PcδρG+qP−1

c = −δρG+q. (A22)

The interaction has the charge-conjugation symmetry, and the many-body physics is PH symmetric in this limit.

d. The U(4) symmetry of the projected Hamiltonian in the flat-band limit

Using the unitary PH symmetry P introduced in Ref. [43], we demonstrated in Ref. [109] that the projected TBG
Hamiltonian has a U(4) symmetry if the kinetic energy is set to zero (flat band limit), for any number of projected
bands. This generalizes the U(4) symmetry introduced in Ref. [72] for the two active bands. Using the continuous
symmetry operator notation

[eiγabS
ab

, HI ] = 0, ∀γab ∈ R; Sab =
∑

k,m,m′,η,η′,s,s′

c†k,m,η,ss
ab
m,η,s;m′,η′,s′ck,m′,η′,s′ , (A23)

we can generate a full set of U(4) generators given by [109]

sab = {ζ0τ0sb, ζyτxsb, ζyτysb, ζ0τzsb}, (a, b = 0, x, y, z) . (A24)

where the Pauli matrices ζa, τa, sa with a = 0, x, y, z are identity and x, y, z Pauli matrices in band, valley and spin-
space respectively. For 2N1, N1 ∈ Z projected bands, the generators would be identical, with the ζ representing the
+ = {1, . . . , N1} and − = {N1 + 1, . . . , 2N1} bands.

The kinetic plus the projected interaction term exhibit the Cartan symmetry U(2) × U(2) subgroup of the U(4)
symmetry group of the projected interaction, which can be most naturally chosen as the valley spin and charge:
Cartan: ζ0τ0s0, ζ0τ0sz, ζ0τzs0, ζ0τzsz.

e. Enhanced U(4)×U(4) symmetries in the first chiral limit w0 = 0

In Ref. [109] we demonstrated in detail the presence of two enhanced unitary U(4)×U(4) symmetry in two limits
of the single-particle parameter space the first and second chiral limits w0 = 0 < w1 and w1 = 0 < w0. For the first
chiral limit w0 = 0, this symmetry was presented in Ref. [72] for the case of two projected bands, but we find that it
is maintained, in both chiral limits, for a projection in any number of bands. For the matrix elements in Eq. (A17),
the interaction commutes with the following matrices, which form the U(4)×U(4) generators [109]:

ζ0τasb, ζyτasb, (a, b = 0, x, y, z). (A25)

The Cartan subalgebra of the chiral U(4)×U(4) is the Cartan subalgebra of the U(2)non−chiral × U(2)nonchiral ×
U(2)chiral × U(2)chiral: ζ

0τ0s0, ζ0τ0sz, ζ0τzs0, ζ0τzsz, ζyτ0s0, ζyτ0sz, ζyτzs0, ζyτzsz. The U(4) im-
plied by C2zP (Eq. (A24)) is a subgroup of this U(4)×U(4), but not one of the U(4) factors [109].

In Ref. [108] we found that there exists a further more convenient gauge choice for the wavefunctions in the chiral
limit w0 = 0, called the Chern basis, (an extension to many bands of the Chern basis in Ref. [72] to many-bands), in
which we choose the single-particle representations of U(4)×U(4) generators as

sab+ =
1

2
(ζ0 + ζy)τasb, sab− =

1

2
(ζ0 − ζy)τasb, (a, b = 0, x, y, z), (A26)

which correspond to the first U(4) and second U(4), respectively.
Adding the kinetic term in the chiral limit breaks the U(4)×U(4) symmetry of the projected interaction, to a U(4)

subset ζ0τasb, (a, b = 0, x, y, z).
We note that the nonchiral-flat U(4) symmetry and the first chiral-flat U(4)×U(4) symmetry are first identified by

[72]. A similar U(4) symmetry is proposed in [71], the difference and similarity between which and the symmetries
reviewed here is studied in [109].
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f. U(4) irrep of electrons in the nonchiral-flat case and the Chern basis in the U(4)×U(4) chiral limit

In Ref. [109], we showed that the 8 single-particle basis of the nonchiral-flat U(4) symmetry generators given
in Eq. (A24) can be decomposed into two 4-dimensional fundamental irreps of the U(4) group, which have ζy
eigenvalues eY = ±1, respectively, for each momentum k (Eq. (A18)). The U(4) generators in the Chern band basis
are sab(eY ) = eY τ

xsa, eY τ
ysa, τ0sa, τzsa, respectively. We also showed [109] that the eY = +1 irrep and the

eY = −1 irrep are the same - and not conjugate - irrep: the 4-dimensional fundamental U(4) irrep represented by a
one-box Young tableau labeled by [1]4. We presented a detailed review of the U(4) representations related to TBG in
Ref. [109], but for the purpose of the current paper, the notation adopted for irreps is the standard Young tableau,
conveniently denoted by [λ1, λ2, · · · ]N , where λi is the number of boxes in row i (λi ≥ λi+1). The number of boxes
in the i-th row is no smaller than that in the (i+ 1)-th row. The Hook rule then provides the dimensions of each of
these irreps. In particular, [1N ]N is an SU(N) singlet state.

In the first chiral limit w0 = 0, d†k,eY ,η,s defined in Eq. (A18) gives the single-particle basis irrep U(4)×U(4) of Eq.

(A26). We proved in Ref. [109] that d†k,+1,η,s generates the ([1]4, [0]4) irrep of U(4)×U(4), while d†k,−1,η,s generates

the ([0]4, [1]4) irrep of U(4)×U(4) with generators
sab± = 1

2 (1± eY )τasb, respectively. A similar discussion is provided for the second chiral limit w1 = 0 in Ref. [109].

In the chiral-nonflat case, the generators U(4) symmetry is given by generators ζ0τasb and either the original band

basis c†k,m,η,s for a fixed band index m(= ±) or the Chern basis d†k,eY ,η,s with a fixed eY (= ±1) form a fundamental

of U(4).

3. Exact ground states in different limits: review of notation

In Ref. [110] we have examined in detail the exact ground states in the nonchiral-flat U(4) symmetric limit and
in the chiral-flat U(4)×U(4) symmetric limit. For completeness we briefly review the results. In Ref. [71] Kang and
Vafek first introduced a type of Hamiltonians which have, under some conditions, exact ground states. We have found
[110] that any translationally invariant interaction Hamiltonian projected to some active bands can be written in a
form of Ref. [71], and that, under some conditions, exact eigenstates and ground states can be found. The key idea of
Kang and Vafek for obtaining exact ground states is to rewrite the interacting Hamiltonian into a non-negative form.
A state with eigenvalue zero is then ensured to be the ground state.

In Ref. [109], we proved that the projected Coulomb Hamiltonian can be written as

HI =
1

2Ωtot

∑
G

∑
q

Oq,GO−q,−G =
1

2

ˆ
r∈Ωtot

d2rO(r)2 , O(r) =
1

Ωtot

∑
G

∑
q

Oq,Ge
i(q+G)·r, (A27)

which is non-negative, with

Oq,G =
∑

k,m,n,η,s

√
V (G + q)M (η)

m,n (k,q + G)

(
ρηk,q,m,n,s −

1

2
δq,0δm,n

)
, O†q,G = O−q,−G (A28)

where ρηk,q,m,n,s = c†k+q,m,η,sck,n,η,s is the density operator in band basis. Note that O(r) and O(r′) generically do
not commute and hence the Hamiltonian is not solvable. The interaction can in general be rewritten as

HI =
1

2Ωtot

∑
G

[∑
q

(Oq,G −AGNMδq,0)(O−q,−G −A−GNMδ−q,0) + 2A−GNMO0,G −A−GAGN
2
M

]
, (A29)

where NM is the number of moiré unit cells, and AG is some arbitrarily chosen G dependent coefficient satisfying
AG = A∗−G. Note that the first term in Eq. (A29) is nonnegative.

In Ref. [110] we found an important condition which can show that eigenstates of HI are in fact ground states of

HI . If the q = 0 component of the matrix element in Eq. (A8) M
(η)
m,n (k,G) is not dependent on k for all G’s, i.e.,

Flat Metric Condition: M (η)
m,n (k,G) = ξ(G)δm,n (A30)

then much more information about Eq. (A27) can be obtained. This condition is always true for G = 0, for which

M
(η)
m,n (k, 0) = δmn from wavefunction normalization. In Ref. [107] we have showed that, around the first magic angle,

M
(η)
m,n (k,G) ≈ 0 for, |G| >

√
3kθ for i = 1, 2. Hence, the condition Eq. (A30) is valid for all G with the exception of G
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for which |G| =
√

3kθ. Hence, the condition is largely valid, and the numerical analysis [111] confirms its validity for
a large part of the MBZ. In the below, we will always specify when the condition Eq. (A30) is used. If the Eq. (A30)
is satisfied, one has O0,G proportional to the total electron number N and the second term in Eq. (A29) is simply a
chemical potential term

µ =
1

NMΩM

∑
G

A−G
√
V (G)

∑
k

M
(η)
+1,+1 (k,G) =

∑
G

A−G
√
V (G)ξ(G)/ΩM , (A31)

where ΩM = Ωtot/NM is the area of moiré unit cell. For a fixed total number of electrons, N =∑
k,m,η,s c

†
k,m,η,sck,m,η,s = (ν + 4)NM is a constant, where ν is the filling fraction (number of doped electrons per

moiré unit cell) relative to the charge neutrality point, thus the ground state at finite filling is solely determined by
the first term which is non-negative.

a. Exact ground states in the first chiral-flat U(4)×U(4) limit

To build the excitations around a ground state, we review the ground states found in Ref. [110] of the projected
Hamiltonian Eq. (A27). We proved that in the Chern basis of Eq. (A20) and Eq. (A18), diagonal in the valley index
η, spin index s and Chern band index eY , the projected Hamiltonian Eq. (A27) has as eigenstates at integer filling ν
the filled band wavefunctions (without assuming condition Eq. (A30)):

|Ψν+,ν−
ν 〉 =

∏
k

 ν+∏
j1=1

d†k,+1,ηj1 ,sj1

ν−∏
j2=1

d†k,−1,ηj2 ,sj2

 |0〉, (A32)

HI |Ψν+,ν−
ν 〉 =

1

2Ωtot

∑
q,G

O−q,−GOq,G|Ψν+,ν−
ν 〉 =

ν2

2Ωtot

∑
G

V (G)
(∑

k

α0(k,G)
)2

|Ψν+,ν−
ν 〉, (A33)

where ν+ − ν− = νC is the total Chern number of the state, and ν+ + ν− = ν + 4 is the total number of electrons per
moiré unit cell in the projected bands, with 0 ≤ ν± ≤ 4, k running over the entire MBZ. The occupied spin/valley
indices {ηj1 , sj1} and {ηj2 , sj2} can be arbitrarily chosen. These eigenstates of Eq. (A27) are moreover eigenstates of
the Oq,G operator in Eq. (A28) [110]:

Oq,G|Ψν+,ν−
ν 〉 = δq,0AGNM |Ψν+,ν−

ν 〉; AG =

√
V (G)

NM

∑
k

να0(k,G); (A34)

In Ref. [110], we found that the U(4)×U(4) irrep of this multiplet is labeled by
(
[N

ν+
M ]4, [N

ν−
M ]4

)
. For a fixed filling

factor ν, from Eq. (A33) we found [110] that the states with different Chern number νC are all degenerate.
At charge neutrality ν = 0, the U(4)×U(4) multiplet of eigenstate state |Ψν+,ν−

0 〉 with Chern number νC = ν+−ν− =
0,±2,±4 has exactly zero energy and hence are exact degenerate ground states. At nonzero fillings ν, we cannot
guarantee that the ν 6= 0 eigenstates are ground states (without condition Eq. (A30)).

Assuming the flat metric condition Eq. (A30), we showed [110] that we can rewrite the interaction into the form of

Eq. (A29), with the coefficient AG = ν
√
V (G)ξ(G) in Eq. (A34). By Eq. (A34), we showed that (Oq,G−AGNMδq,0)

annihilates |Ψν+,ν−
ν 〉 for any νC = ν+−ν− and thus all the eigenstates |Ψν+,ν−

ν 〉 with any Chern number νC = ν+−ν−
are degenerate ground states at filling ν [110].

b. Exact ground states in the nonchiral-flat U(4) limit

Without chiral symmetry, with U(4) symmetry Eq. (A24), Oq,G is no longer diagonal in any band basis (such
as the Chern basis). Nevertheless, Oq,G is still diagonal in η and s and hence filling both m = ± bands, of any
valley/spin is still an exact, Chern number 0 eigenstates [110]:

|Ψν〉 =
∏
k

(ν+4)/2∏
j=1

c†k,+,ηj ,sjc
†
k,−,ηj ,sj

 |0〉 =
∏
k

(ν+4)/2∏
j=1

d†k,+1,ηj ,sj
d†k,−1,ηj ,sj

 |0〉 , (A35)
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for even fillings ν = 0,±2,±4, where {ηj , sj} are distinct valley-spin flavors which are fully occupied. With

M
(η)
m,n (k,q + G) in Eq. (A11), we have the same eigenvalue expression as in Eq. (A34), Oq,G|Ψν〉 =

ν
√
V (G)δq,0

∑
k,m,η,s α0 (k,G) |Ψν〉. Along with any U(4) rotation, it is an eigenstate of HI , without using con-

dition Eq. (A30). Moreover, for ν = 0, the state (A35) is always a ground state with or without condition Eq.

(A30) [110]. Furthermore if the condition Eq. (A30) is satisfied, by choosing AG = ν
√
V (G)ξ(G) we have showed in

Ref. [110] that the states in Eq. (A35) are Chern number zero exact ground states. The multiplet of states forms a
U(4) irrep [(2NM )(ν+4)/2]4 [110].

B. Charge commutation relations

In order to compute the charge 0, ±1, ±2 excitations, a series of commutators are needed. We provide their
expressions here.

1. The non-chiral case

In the non-chiral case of Eq. (A11) we have:

[Oq,G, c
†
k,n,η,s] =

∑
k′,m,n′,η′,s′

√
V (G + q)M

(η)
m,n′ (k

′,q + G) [ρη
′

k′,q,m,n′,s′ , c
†
k,n,η,s]

=
∑

k′,m,n′,η′,s′

√
V (G + q)M

(η)
m,n′ (k

′,q + G) c†k′+q,m,η′,s′{ck′,n′,η′,s′ , c
†
k,n,η,s}

=
∑
m

√
V (G + q)M (η)

m,n (k,q + G) c†k+q,m,η,s .

(B1)

and

[Oq,G, ck,n,η,s] =
∑

k′,m,n′,η′,s′

√
V (G + q)M

(η)
m,n′ (k

′,q + G) [ρη
′

k′,q,m,n′,s′ , ck,n,η,s]

=−
∑

k′,m,n′,η′,s′

√
V (G + q)M

(η)
m,n′ (k

′,q + G) {c†k′+q,m,η′,s′ , ck,n,η,s}ck′,n′,η′,s′

=−
∑
m

√
V (G + q)M (η)

n,m (k− q,q + G) ck−q,m,η,s

=−
∑
m

√
V (G + q)M (η)∗

m,n (k,−q−G) ck−q,m,η,s .

(B2)

where we have used the property [109] M
(η)∗
m,n (k,−q−G) = M

(η)
n,m (k− q,q + G). From these basic equations, we

further find

[O−q,−GOq,G, c
†
k,n,η,s] = O−q,−G[Oq,G, c

†
k,n,η,s] + [O−q,−G, c

†
k,n,η,s]Oq,G

=O−q,−G
∑
m

√
V (G + q)M (η)

m,n (k,q + G) c†k+q,m,η,s +
∑
m

√
V (G + q)M (η)

m,n (k,−q−G) c†k−q,m,η,sOq,G

=
∑
m′,m

V (G + q)M
(η)
m′,m (k + q,−q−G)M (η)

m,n (k,q + G) c†k,m′,η,s

+
∑
m

√
V (G + q)M (η)

m,n (k,q + G) c†k+q,m,η,sO−q,−G +
∑
m

√
V (G + q)M (η)

m,n (k,−q−G) c†k−q,m,η,sOq,G .

(B3)

and

[O−q,−GOq,G, ck,n,η,s] = O−q,−G[Oq,G, ck,n,η,s] + [O−q,−G, ck,n,η,s]Oq,G

=−O−q,−G
∑
m

√
V (G + q)M (η)∗

m,n (k,−q +−G) ck+q,m,η,s −
∑
m

√
V (G + q)M (η)

m,n (k,q + G) ck+q,m,η,sOq,G

=
∑
m′,m

V (G + q)M
(η)∗
m′,m (k− q,q + G)M (η)∗

m,n (k,−q−G) ck,m′,η,s

−
∑
m

√
V (G + q)M (η)∗

m,n (k,−q−G) ck−q,m,η,sO−q,−G −
∑
m

√
V (G + q)M (η)∗

m,n (k,q + G) ck+q,m,η,sOq,G .

(B4)
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Using M
(η)
m′,m (k + q,−q−G) = M

(η)∗
m,m′ (k,q + G) and M

(η)∗
m′,m (k− q,+q + G) = M

(η)
m,m′ (k,−q−G), we have

[O−q,−GOq,G, c
†
k,n,η,s] =

∑
m

P (η)
mn (k,q + G) c†k,m,η,s +

∑
m

√
V (G + q)M (η)

m,n (k,q + G) c†k+q,m,η,sO−q,−G

+
∑
m

√
V (G + q)M (η)

m,n (k,−q−G) c†k−q,m,η,sOq,G

[O−q,−GOq,G, ck,n,η,s] =
∑
m

P (η)∗
mn (k,q + G) ck,m,η,s −

∑
m

√
V (G + q)M (η)∗

m,n (k,−q−G) ck−q,m,η,sO−q,−G

−
∑
m

√
V (G + q)M (η)∗

m,n (k,+q + G) ck+q,m,η,sOq,G .

(B5)

where we define the new matrix element P = VM†M , the convolution of the Coulomb potential and the form factor
matrices

P (η)
mn (k,q + G) =

∑
m′

V (G + q)M
(η)∗
m′,m (k,q + G)M

(η)
m′,n (k,q + G) = V (G + q)(M (η)†M (η))mn (k,q + G) (B6)

These are the commutators needed to obtain the wavefunctions and energies of the excitations in the non-chiral limit.

2. The first chiral limit

In the first chiral limit, we can use the Chern band basis Eq. (A20), where the Oq,G is diagonal in the Chern basis.
Its form factors do not depend on the valley η, and spin s:

Oq,G =
∑
k

∑
eY =±

√
V (G + q)MeY (k,q + G)

∑
η,s

(d†k+q,eY ,η,s
dk,eY ,η,s −

1

2
δq,0) (B7)

In this limit, the commutators between Oq,G and the Chern number eY = ±1 band creation operators become simpler

[Oq,G, d
†
k,eY ,η,s

] =
√
V (G + q)MeY (k,q + G)d†k+q,eY ,η,s

. (B8)

and

[Oq,G, dk,eY ,η,s] = −
√
V (G + q)M∗eY (k,−q−G)dk−q,eY ,η,s. (B9)

leading to the commutators

[O−q,−GOq,G, d
†
k,eY ,η,s

]

=PeY (k,q + G) d†k,m,η,s +
√
V (G + q)(MeY (k,q + G) d†k+q,eY ,η,s

O−q,−G +MeY (k,−q−G) d†k−q,eY ,η,sOq,G)

[O−q,−GOq,G, dk,eY ,η,s]

=P ∗eY (k,q + G) dk,eY ,η,s −
√
V (G + q)(M∗eY (k,−q−G) dk−q,eY ,η,sO−q,−G +M∗eY (k,q + G) dk+q,eY ,η,sOq,G) .

(B10)

where P = VM†M , the convolution of the Coulomb potential and the form factor matrices, takes the chiral limit
form

PeY (k,q + G) = V (G + q)|MeY (k,q + G) |2 = V (G + q)(α2
0(k,q + G) + α2

2(k,q + G) = P (k,q + G)), (B11)

where α0(k,q + G), α2(k,q + G) are the decomposition of the form factors in Eq. (A20). Notice in the Chern basis,
PeY (k,q + G) does not depend on eY , so we just denote it as P (k,q + G). These are the commutators needed to
obtain the wavefunctions and energies of the excitations in the first chiral limit.
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C. Charge ±1 excitations of the exact ground states

Remarkably, the existence of exact ground states and/or eigenstates Eqs. (A32) and (A35) allows for the presence
of more eigenstates. In fact, a part of the low energy spectrum can be computed with polynomial efficiency. In this
appendix, we give the exact charge ±1 excitations on top of the exact (ground) states given in Ref. [110] and reviewed
in App. A 3.

1. Exact charge +1 excitations in the nonchiral-flat U(4) limit

To look for the charge one excitations (adding an electron into the system), we sum the commutators in Eqs. (B3)
and (B10) over q,G and use the shifted Hamiltonian in Eq. (A29). For a generic exact eigenstate |Ψ〉 at chemical
potential µ satisfying (Oq,G −AGNMδq,0)|Ψ〉 = 0 for some coefficient AG, we find[

HI − µN, c†k,n,η,s
]
|Ψ〉 =

1

2Ωtot

∑
m

Rηmn(k)c†k,m,η,s|Ψ〉 , (C1)

where N is the electron number operator, and the matrix

Rηmn(k) =
∑
G

∑
q,m′

V (G + q)M
(η)∗
m′,m (k,q + G)M

(η)
m′,n (k,q + G)

+ 2NMA−G
√
V (G)M (η)

m,n (k,G)

− µδmn
=

1

2Ωtot

∑
G

[(∑
q

P (η)
mn (k,q + G)

)
+ 2NMA−G

√
V (G)M (η)

m,n (k,G)

]
− µδmn . (C2)

We hence see that , if |Ψ〉 is one of the |Ψν+,ν−
ν 〉 (Eq. (A32)) or |Ψν〉 (Eq. (A35)) eigenstates of HI , then c†k,m,η,s|Ψ〉

is also an eigenstate of HI with eigenvalues obtained by diagonalizing the 2× 2 matrix Rηmn(k). In the case of TBG,
this is a 2× 2 matrix, hence the diagonalization can be done by hand, providing a band of excitations. We note that,

the expression c†k,n,η,s|Ψ〉 = 0 may vanish and give no charge excitation, for instance, if valley η and spin s is fully

occupied. We now delve more into the energies and eigenstates c†k,m,η,s|Ψ〉.
Due to the symmetry C2zP (Eq. (A10)), the M matrix (Eq. (A11)) satisfies M

(η)
m,n(k,q+G) = mnM

(−η)
−m,−n(k,q+G).

Correspondingly, the R matrix satisfies

Rηm,n(k) = mnR−η−m,−n(k). (C3)

Since R+(k) and R−(k) are related by a unitary transformation, they must have the same spectrum.

a. Band of charge 1 excitation in the nonchiral-flat U(4) limit

In the nonchiral limit, the eigenstates |Ψν〉 we found in Ref. [110] (and re-written in Eq. (A35)) have only fully
occupied or fully empty valley η and spin s flavors. For TBG, this means that both active bands m = ± are either
full or empty for each valley η and spin s. In this case we can only obtain exact charge +1 excitation at even fillings,

i.e., ν = 0,±2. We can consider two charge +1 states c†k,n,η,s|Ψ〉 (n = ±) at a fixed k in a fully empty valley η and

spin s. These two states then form a closed subspace with a 2× 2 subspace Hamiltonian Rη(k) defined by Eq. (C2).
Diagonalizing the matrix Rη(k) then gives the excitation eigenstates and excitation energies. It is worth noting that,
due to Eq. (C3), the spectrum of Rη(k) does not depend on η. Since the U(4) irrep of the ground state is |Ψν〉 is
[(2NM )(ν+4)/2]4, the U(4) irrep of the charge 1 excited state is given by [(2NM )(ν+4)/2, 1]4. Furthermore, at ν = 0,

the state |Ψν=0〉 in Eq. (A35) is the ground state of the interaction Hamiltonian HI and hence c†k,n,η,s|Ψν=0〉 is the

charge excitation above the ground state. Note that this does not assume the “flat metric condition” (A30) and is
hence fully generic.

If we further assume the flat band condition Eq. (A30), the eigenstates |Ψν〉 become exact ground states, and the
chemical potential is given by Eq. (A31). In this case, the 2 × 2 excitation sub-Hamiltonian Rη(k) takes a simpler
form:

Rηmn(k) =
∑
q,G

P (η)
mn (k,q + G) =

∑
G,q,m′

V (G + q)M
(η)∗
m′,m (k,q + G)M

(η)
m′,n (k,q + G) , (C4)
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which can be diagonalized to give the band excitation eigenstates and energies above the ground state at each
momentum k.

b. Spectrum properties of a generic charge 1 excitation in the nonchiral-flat U(4) limit

The spectrum at every k is obtained from diagonalizing the matrix Rη(k) =
∑

G,q V (G +

q)M (η)† (k,q + G)M (η) (k,q + G), which depends (up to a convolution with the Coulomb potential), only on the
projected band wavefunctions. This is clearly a sum (over q,G) of positive semidefinite matrices (remember that
V (G+q) > 0). Hence Rη(k) is a positive semidefinite matrix, whose eigenvalues are non-negative (expected, since we
proved that these are excitations above the ground state). We now find conditions that these excitations are gapped,
i.e., that the matrix Rη(k) is positive definite at each k. We now show this by re-writing the Rη(k) as

Rηmn(k) = (M (η)†(k)VM (η)(k))mn, (C5)

where now M (η)(k) is a matrix of (2NM ·NG)× 2 matrix (with 2 because we are projecting into the two active TBG
bands), where NM is number of moiré unit cells, NG is the number of plane waves (MBZs) taken into consideration.
In Ref. [107] we have showed that the number of plane waves needed is very small: the matrix elements fall off

exponentially with |G| and any contribution above |G| =
√

3kθ is negligible. The matrix elements readM
(η)
{mqG},n(k) =

M
(η)
m,n (k,q + G). V is a 2NM ·NG×2NM ·NG diagonal matrix with elements V{mqG},{m′q′G′} = δm,m′δq,q′δG,G′V (q+

G). Since V (q + G) ≥ 0 and diagonal, we can re-write Rη(k) = (
√
VMη(k))†

√
VMη(k), and its rank is equal to

Rank(
√
VMη(k)) ≤ 2. We show the rank has to be 2 (or in general the number of occupied bands), by the simple

argument

Rηmn(k) =
∑
m

V (0)M
(η)
m′,m (k, 0)M (η)

m,n (k, 0) +
∑

{q,G}6={0,0}

∑
p,p′=1,2

M
(η)†
{pqG},m(k)V{pqG},{p′q′G′}M

(η)
{p′q′G′},n(k)

= V (0)δmn +
∑

{q,G}6={0,0}

∑
p,p′=1,2

M
(η)†
{pqG},m(k)V{pqG},{p′q′G′}M

(η)
{p′q′G′},n(k). (C6)

The second term is still a positive semidefinite matrix, while the first term is diagonal and has eigenvalues V (0)/2Ωtot.
Hence by Weyl’s theorem, the energies of the excited states are ≥ V (0)/2Ωtot. In general, our discussion shows that

the states c†k,n,η,s|Ψ〉 are not degenerate to the ground state |Ψ〉 (note that we did not prove these are the unique

ground states). However, we cannot exclude a gapless excitation.

c. Spectrum relation to the quantum distance and generic argument for the existence of a charge gap

In general, however, it seems that this method gives rise to finite gap charge 1 excitations. The largest gap happens
in the atomic limit or a material, where 〈umk+q|unk〉 = δmn, for which Rmn = δmn

∑
q,G V (q+G) = δmnΩtotV (r = 0).

Since we know that TBG is far away from an atomic limit - the bands being topological, we expect a reduction in this
gap. However, we argue that this type of charge excitation is always gapped. We perform a different decomposition
of the matrix Rηmn:

Rηmn(k) =
∑
q

∑
p,p′=1,2

M
(η)†
{pq0},m(k)V{pq0},{p′q′0}M

(η)
{p′q′0},n(k)

+
∑

{q,G}6={0,0}

∑
p,p′=1,2

M
(η)†
{pqG},m(k)V{pqG},{p′q′G′}M

(η)
{p′q′G′},n(k) . (C7)

Since the second term is still a semi positive definite matrix by construction, the eigenvalues of Rη(k) will be greater
or larger than the eigenvalues of the first term. In fact, due to [107], we know that the eigenvalues of the second term
are negligible for |G| ≥ 2|bM1|. Hence, using the math notation of A ≥ B for A−B positive semidefinite, we have

Rηmn(k) ≥
∑
q

∑
p,p′=1,2

M
(η)†
{pq0},m(k)V{pq0},{p′q′0}M

(η)
{p′q′0},n(k)

=
∑
q

V (q)M
(η)∗
m′,m (k,q)M

(η)
m′,n (k,q) =

∑
q

V (q)(δmn −Gmnη (k,q)) . (C8)
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We call Gmn(k,q) the generalized “quantum geometric tensor”, whose trace is the generalized Fubini-Study Metric.
The property of the generalized quantum geometric tensor/Fubini Study metric is that they become the conventional
quantum geometric tensor/Fubini Study metric for small transfer momentum q. The tensor quantifies the distance
between two eigenstates in momentum space. The conventional quantum geometric tensor is defined as:

Gmnij (k) =

N∑
a,b=1

∂kiu
∗
a,m(k)

(
δa,b −

noccupied∑
l

ua,l(k)u∗b,l(k)

)
∂kjub,n(k) , (C9)

in which m,n are energy band indices and i, j are spatial direction indices of noccupied orthonormal vectors um(k) in
a N dimensional Hilbert space, where k is some parameter. We can show that:

M
(η)∗
m′,m (k,q) = δmn −Gmnη (k,q) = M

(η)
m′,n (k,q) = δmn − qiqjGmnij (k) +O(q2) . (C10)

Generically, we expect [77] that the overlap between two functions at k and k + q to fall off as q increases, leaving a
finite term in Rηmn(k), the electron gap, at every k.

2. Exact charge +1 excitations in the (first) chiral-flat U(4)×U(4) limit

For an eigenstate |Ψν+,ν−
ν 〉 defined by Eq. (A32) in the (first) chiral-flat U(4)×U(4) limit, one has the coefficients

M(k,q+G) = ζ0τ0α0(k,q+G)+ iζyτ0α2(k,q+G). Without condition Eq. (A30), the eigenstate |Ψν+,ν−
ν 〉 (which is

not necessarily the ground state) satisfies Eq. (A34), which is equivalent to choosing NMAG = ν
√
V (G)

∑
k α0(k,G)

for Eq. (C2). Using the relation (A12), we can simplify the matrix Rηmn(k) defined in Eq. (C2) as

Rη(k) = R0(k)ζ0 , (C11)

where

R0(k) =
∑
G

[(∑
q

V (G + q)[α0(k,q + G)2 + α2(k,q + G)2]

)
+ 2NMA−G

√
V (G)α0(k,G)

]
− µ . (C12)

Therefore, Rη(k) is proportional to the identity matrix. Since the state |Ψν+,ν−
ν 〉 is written in the Chern band basis

defined in Eq. (A18), it is more convenient to work in the Chern band basis. We then find the charge excitation
eigenstates with the corresponding excitation energy Rη0(k) given by

d†k,eY ,η,s|Ψ
ν+,ν−
ν 〉 ,

[
HI − µN, d†k,eY ,η,s

]
|Ψ〉 =

1

2Ωtot
R0(k)d†k,eY ,η,s|Ψ〉 , (C13)

provided the Chern band eY (= ±1) at valley η and spin s is fully empty. With condition Eq. (A30) assumed, the
states |Ψν+,ν−

ν 〉 become ground states. At the same time, with the chemical potential is given by Eq. (A31), we can
simplify the excitation energy R0(k) into

R0(k) =
∑
G,q

V (G + q)[α0(k,q + G)2 + α2(k,q + G)2] =
∑
G,q

P (k,q + G) . (C14)

independent on η, and with P (k,q + G) defined in Eq. (B11). Since the U(4)× U(4) irrep of the ground state
is
(
[N

ν+
M ]4, [N

ν−
M ]4

)
, the U(4)×U(4) irrep of the charge 1 excited states with eY = 1 and eY = −1 are given by(

[N
ν+
M , 1]4, [N

ν−
M ]4

)
and

(
[N

ν+
M ]4, [N

ν−
M , 1]4

)
, respectively.

3. Charge -1 excitations

The charge −1 excitations are obtained in a similar manner as the charge +1 excitations. Charge -1 excitations can
be obtained by considering states ck,n,η,s|Ψ〉 (n = ±) at a fixed k in a fully filled valley η and spin s. By Hermitian
conjugate of Eq. (B3), we find similar to the charge 1 excitation,

[HI − µN, ck,n,η,s] |Ψ〉 =
1

2Ωtot

∑
m

R̃ηmn(k)ck,m,η,s|Ψ〉 , (C15)
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FIG. 5. Exact charge +1 (blue) and −1 (red) excitations at θ = 1.05◦. The flat metric condition is not imposed. In this plot

we have used the parameters defined in App. A: vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV, Uξ = 26meV, ξ = 10nm.
Note that the excitation gap is largely reduced from the flat-condition limit.

where N is the electron number operator, and the matrix

R̃ηmn(k) =
∑
G

∑
q,m′

V (G + q)M
(η)∗
m′,m (k,q + G)M

(η)
m′,n (k,q + G)

∗ − 2NMA−G
√
V (G)M (η)∗

m,n (k,G)

+ µδmn

=
∑
G

[(∑
q

P (η)
nm (k,q + G)

)
− 2NMA−G

√
V (G)M (η)∗

m,n (k,G)

]
+ µδmn . (C16)

Note that R̃ηmn(k) differs from Eq. (C2) by a sign in the last two terms as well as by the complex conjugation of the

first term. Diagonalizing R̃ηmn(k) gives the charge −1 (hole) excitations. The chemical potential is the one given in

Eq. (A31). In the (first) chiral limit, R̃mn
η becomes a two-by-two identity at each k and independent with η, i.e.,

R̃ηmn = R̃0(k)δmn. The R0(k) function is given by

R̃0(k) =
∑
G

[(∑
q

V (G + q)[α0(k,q + G)2 + α2(k,q + G)2]

)
− 2NMA−G

√
V (G)α0(k,G)

]
+ µ . (C17)

If condition Eq. (A30) is satisfied, and µ is given in Eq. (A31), the charge −1 excitations have identical dispersion
as that of the charge +1 excitations (Eq. (C2)). If condition Eq. (A30) is not satisfied and ν 6= 0, the charge +1
and −1 excitations will have different dispersions. The dispersions will also depend on filling ν, since AG defined in
Eq. (A34) depends on ν.

Since U(4) irrep of the ground state |Ψν〉 is [(2NM )(ν+4)/2]4, in the non-chiral limit, the U(4) irrep of the charge −1
excited state is given by [(2NM )(ν+2)/2, 2NM−1]4. Since the U(4)× U(4) irrep of the ground state is

(
[N

ν+
M ]4, [N

ν−
M ]4

)
,

the U(4)×U(4) irrep of the charge -1 excited states with eY = 1 and eY = −1 are given by
(

[N
ν+−1
M , NM − 1]4, [N

ν−
M ]4

)
and

(
[N

ν+
M ]4, [N

ν−−1
M , NM − 1]4

)
, respectively.

The computed charge gaps for the TBG Hamiltonian are of order 10meV.

4. Charge ±1 excitation spectra for different parameters

Before we present the numerical results, let us first explain how we choose the chemical potential in the cases
without assuming flat-metric-condition. First, the sum of the lowest charge +1 (∆+) and charge -1 (∆−) gaps do not
depend on the chemical potential since upon adding a −δµN term the two gaps change by −δµ and δµ, respectively.
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FIG. 6. Exact charge +1 (blue) and −1 (red) excitations at θ = 1.05◦. The flat metric condition is not imposed. In this plot
we set the screening length as ξ = 20nm and accordingly the interaction strength as Uξ = 13meV. The other parameters are

same as in App. A: vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV.

Then we choose the chemical potential such that ∆+ = ∆−. In a band structure picture, ∆+ is the lowest conduction
band energy and −∆− is the highest valence band energy. The condition ∆+ = ∆− simply means that the chemical
potential locates at the middle of conduction and valence bands.

In Figs. 5 and 6 the charge ±1 excitations are plotted at different fillings and w0/w1’s for two different screening
lengths of the Coulomb interaction (Eq. (A7)), i.e., ξ=10nm, 20nm, respectively. The corresponding interaction
strengths are U10nm =26meV, U20nm=13meV. We have used w1=110meV in all the calculations and w0/w1 =0, 0.4,
0.8 for ν = 0,−2 and w0/w1 = 0 for ν = −1,−3.

For ν = 0 and ξ =10nm, 20nm, the charge ±1 gaps are at the ΓM momentum and are always larger than 10meV for
different w0/w1’s. For ν = −2 and ξ =20nm, the charge ±1 gaps are always larger than 5meV for different w0/w1’s.
For ν = −2 and ξ =10nm, the charge ±1 gaps are finite for w0/w1 = 0, 0.4 but become negative at w0/w1 = 0.8
(Fig. 5c). We find that the gaps close around w0/w1 ≈ 0.75, implying that, with ξ=10nm and the other parameters
we have used, the ground states in Eq. (8) become unstable for w0/w1 ≈ 0.75.

The instability shown in Fig. 5c will lead to a metallic phase at ν = −2 in the nonchiral-flat limit with strong
chiral symmetry breaking (w0/w1 = 0.8). In the band structure picture, we can understand the charge +1 excitation
as the conduction band and the charge -1 excitation as the reverted valence band. The negativities of both imply
that the energy of conduction band overlaps with the energy of valence band. Since we have chosen to fully occupy
the valence bands, the ground state energy is not minimized in this case: One can move one particle from the top
of valence band to bottom of conduction band to lower the energy. The ground state energy will be minimized by
redistributing electrons to occupy the bands below the chemical potential. Due to the overlap between conduction and
valence bands, the redistributed band structure will have electron and hole pockets and hence is a metallic state. In
the resulted metallic phase at ν = −2, there are two fully empty valley-spin sectors and two partially filled valley-spin
sectors. The partially filled sectors contribute to the electron and hole pockets. This state is still invariant under a
U(2) subgroup within the fully empty valley-spin sectors. Since U(4) and U(2) have 16 and 4 parameters, there will
be 16−4

2 = 6 Goldstone modes.

D. Charge neutral excitations and the Goldstone stiffness

While the charge ±1 excitations can be obtained by diagonalizing a 2× 2 matrix, we can obtain the charge neutral,
2-body excitations above the ground state. These can be obtained by diagonalizing a 2NM × 2NM matrix, or a
one-body problem, despite the state having a thermodynamic number of particles. Due to the fact that we know the
exact eigenstates (or ground states) of the system, building excitations of the Hamiltonian on top of these eigenstates
(or ground states) becomes a problem of diagonalizing a basis formed only from the excitations. We now obtain the
charge neutral excitations, show that they exhibit Goldstone modes with quadratic dispersion - as required by U(4)
(or U(4) × U(4)) ferromagnetism, and obtain the stiffness of the Goldstone dispersion in the first chiral limit.
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1. Exact charge neutral excitations in the nonchiral-flat U(4) limit

We choose a basis for the neutral excitations

c†k2,m2,η2,s2
ck1,m1,η1,s1 |Ψ〉 (D1)

where |Ψ〉 is any of the exact ground states and/or eigenstates in Eqs. (A32) and (A35). The scattering matrix of this
basis can be solved as easily as a one-body problem, despite the fact that Eqs. (A32) and (A35) hold a thermodynamic
number of particles. We first have to compute the commutators:

[O−q,−GOq,G, c
†
k2,m2,η2,s2

ck1,m1,η1,s1 ]

=[O−q,−GOq,G, c
†
k2,m2,η2,s2

]ck1,m1,η1,s1 + c†k2,m2,η2,s2
[O−q,−GOq,G, ck1,m1,η1,s1 ], (D2)

which, in detail reads:

[O−q,−GOq,G, c
†
k2,m2,η2,s2

ck1,m1,η1,s1 ]

=
∑
m

P (η2)
mm2

(k2,q + G) c†k2,m,η2,s2
ck1,m1,η1,s1 +

∑
m

P (η1)
m1m (k1,−q−G) c†k2,m2,η2,s2

ck1,m,η1,s1

+
√
V (G + q)

∑
m

(
M (η2)
m,m2

(k2,q + G) c†k2+q,m,η2,s2
ck1,m1,η1,s1O−q,−G + (q,G↔ −q,−G)

)
−
√
V (G + q)

∑
m

(
M (η1)∗
m,m1

(k1,−q−G) c†k2,m2,η2,s2
ck1−q,m,η1,s1O−q,−G + (q,G↔ −q,−G)

)
− V (G + q)

∑
m,m′

(
M (η2)
m,m2

(k2,q + G)M
(η1)∗
m′,m1

(k1,q + G) c†k2+q,m,η2,s2
ck1+q,m′,η1,s1 + (q,G↔ −q,−G)

)
(D3)

By rewriting k2 = k + p and k1 = k, we can write the scattering equation as[
HI − µN, c†k+p,m2,η2,s2

ck,m1,η1,s1

]
|Ψ〉 =

1

2Ωtot

∑
m,m′

∑
q

S
(η2,η1)
mm′;m2m1

(k+q,k;p)c†k+p+q,m,η2,s2
ck+q,m′,η1,s1 |Ψ〉 . (D4)

The |Ψ〉 are the states |Ψν〉 in Eq. (A35), and hence η1, s1 belong to the valley-spin flavor/s which are fully occupied,
while η2, s2 belong to the valley/spin flavor which are not occupied.

For a generic exact eigenstate |Ψ〉 at chemical potential µ satisfying (Oq,G−AGNMδq,0)|Ψ〉 = 0 for some coefficient
AG, we find that the scattering matrix reads

S
(η2,η1)
m,m′;m2,m1

(k + q,k;p) =δq,0(δm,m2R̃
η1
m′m1

(k) + δm′,m1R
η2
mm2

(k + p))

− 2
∑
G

V (G + q)M (η2)
m,m2

(k + p,q + G)M
(η1)∗
m′,m1

(k,q + G) ,

where Rηmn(k), R̃ηmn(k) are the ±1-excitation matrices in Eqs. (C2) and (C16). We see that the neutral energy is a
sum of the two single-particle energies (first row of Eq. (D5)) plus an interaction energy (second row of Eq. (D5)).

The exact expression of the PH excitation spectrum allows for the determination of the Goldstone stiffness. The
Goldstone of the U(4) and U(4)×U(4) ferromagnetic ground states is part of the spectrum of the neutral excitation
Eq. (D4), and is the state at small momentum p = k1 − k2. We will solve this in the simpler, chiral limit, but it can
be obtained in the general, non-chiral limit Eq. (D4).

2. Exact charge neutral excitations in the (first) chiral-flat U(4)×U(4) limit

We now consider the charge neutral excited states reachable by creating one electron-hole pair with total momentum
p on the chiral-flat limit eigenstate |Ψν+,ν−

ν 〉. Assume the valley-spin flavor {η1, s1} has Chern band basis eY 1 fully
occupied and the valley-spin flavor {η2, s2} Chern band basis eY 2 fully empty. We consider the Hilbert space of the
following sets of states of momentum quantum number p

|k + p,k, eY 1, eY 2, η2, η1, s2, s1,Ψ
ν+,ν−
ν 〉 = d†k+p,eY 2,η2,s2

dk,eY 1,η1,s1 |Ψν+,ν−
ν 〉 , (D5)
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The Oq,G operators in the chiral limit have the simple, diagonal expression of Eq. (B7), which leads to the scattering
equation.

[
HI − µN, d†k+p,eY 2,η2,s2

dk,eY 1,η1,s1

]
|Ψ〉 =

1

2Ωtot

∑
q

SeY 2;eY 1
(k + q,k;p)d†k+p+q,eY 2,η2,s2

dk+q,eY 1,η1,s1 |Ψ〉 . (D6)

The |Ψ〉 are the states |Ψν+,ν−
ν 〉 in Eq. (A32), and hence eY 1, η1, s1 belong to the valley-spin flavor/s which are fully

occupied, while eY 2, η2, s2 belong to the valley/spin flavor which are not occupied. The scattering matrix in the chiral
limit does not depend on η1, η2:

SeY 2;eY 1
(k + q,k;p) = δq,0(R0(k + p) + R̃0(k))− 2

∑
G V (G + q)MeY 2

(k + p,q + G)M∗eY 1
(k,q + G) , (D7)

where MeY (k,q + G) is given in Eq. (A20) and Rη0(k) is given in Eq. (C12).
If condition Eq. (A30) is satisfied, the eigenstates |Ψν+,ν−

ν 〉 are the ground states, and hence the states Eq. (D6)
are the neutral excitations on top of the ground states. Without the condition Eq. (A30), only ν = 0 states are
guaranteed to be the ground states, although the others are still eigenstates. With condition Eq. (A30), we have

SeY 2;eY 1
(k + q,k;p) = δq,0

∑
G,q′

V (G + q′)[α0(k,q′ + G)2 + α2(k,q′ + G)2 + α0(k + p,q′ + G)2 + α2(k + p,q′ + G)2]

− 2
∑
G

V (G + q)(α0(k + p,q + G) + ieY 2α2(k + p,q + G))(α0(k,q + G)− ieY 1α2(k,q + G)) (D8)

Solving Eq. (D6) provides us with the expression for the neutral excitations at momentum p on top of the TBG
ground states.

3. Goldstone mode in the first chiral limit and the Goldstone stiffness

We show that the Goldstone mode of the ferromagnetic ground states are included in the neutral excitations of
Eq. (D6) and we obtain their dispersion relation, in terms of the quantum geometry factors of the TBG. We are able
to analytically obtain the Goldstone mode if the condition Eq. (A30) holds. We first show the presence of an exact
zero eigenstate of Eq. (D6).

a. Exact zero energy neutral mode Eigenstate

We now show that Eq. (D6) has an exact zero energy eigenstate. In order to see this, we remark that the p =
0, eY 1 = eY 2 state Eq. (D8) has a scattering matrix

SeY ;eY (k + q,k;0) = 2δq,0
∑
G,q′

V (G + q′)[α0(k,q′ + G)2 + α2(k,q′ + G)2]

− 2
∑
G

V (G + q)(α0(k,q + G)2 + α2(k,q + G)2) (D9)

whose elements in every row sums to zero (irrespective of η1,2, s1,2):∑
q

SeY ;eY (k + q,k;0) = 0 . (D10)

This guarantees that the rank of the scattering matrix is not maximal, and that there is at least one zero energy
eigenstate, with equal amplitude on every |k,k, eY , eY , η2, η1, s2, s1,Ψ

ν+,ν−
ν 〉

|eY , eY , η2, η1, s2, s1〉 =
∑
q

d†k+q,eY ,η2,s2
dk+q,eY ,η1,s1 |Ψν+,ν−

ν 〉 , (HI − µN)|eY , eY , η2, η1, s2, s1〉 = 0 (D11)

A U(4)×U(4) multiplet of this state is also at zero energy. Moreover, the scattering matrix SeY ;eY (k + q,k; 0) is
positive semidefinite (as it should, since these eigenvalues are energies of excitations on top of the ground states).
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For the matrix SeY ;eY (k + q,k; 0), we prove that its negative, −SeY ;eY (k + q,k; 0), has only non-positive eigenvalues,
and hence SeY ;eY (k + q,k; 0) has only non-negative eigenvalues. For −SeY ;eY (k + q,k; 0), the diagonal elements
−SeY ;eY (k,k; 0) are non-positive, while the off-diagonal elements−SeY ;eY (k + q,k; 0) (q 6= 0) are non-negative. Hence
by the Gershgorin circle theorem, all eigenvalues lie in at least one of the Gershgorin disks (which, due to the fact
that the matrix is Hermitian, are intervals) centered at −SeY ;eY (k,k; 0) and with radius −

∑
q 6=0 SeY ;eY (k + q,k; 0).

These intervals are:

[−SeY ;eY (k,k; 0) +
∑
q6=0

SeY ;eY (k + q,k; 0),−SeY ;eY (k,k; 0)−
∑
q6=0

SeY ;eY (k + q,k; 0)] =

= [2
∑
q6=0

SeY ;eY (k + q,k; 0), 0]. (D12)

Since
∑

q 6=0 SeY ;eY (k + q,k; 0) ≤ 0, ∀k, all eigenvalues of −SeY ;eY (k + q,k; 0) are non-positive, and hence all

eigenvalues of SeY ;eY (k + q,k; 0) are non-negative.

b. Goldstone stiffness

Since the p = 0 state has zero energy, for small p, there will be low-energy states in the neutral continuum. By
using the p = 0 states in Eq. (D11), one can compute their dispersion. First, we write the Hamiltonian matrix
elements acting on the two particle states

〈k′ + p,k′, e′Y 1, e
′
Y 2, η

′
2, η
′
1, s
′
2, s
′
1,Ψ

ν+,ν−
ν |HI |k + p,k, eY 1, eY 2, η2, η1, s2, s1,Ψ

ν+,ν−
ν 〉

= δe′Y 1,e
′
Y 2,η

′
2,η
′
1,s
′
2,s1;eY 1,eY 2,η2,η1,s2,s1

1

2Ωtot
(δk′,kSeY 2;eY 1

(k,k;p))− SeY 2;eY 1
(k′,k;p)) . (D13)

Hence, for small p, the energy of the Goldstone mode is given by the expectation value

EGoldstone(p) =
∑
k,k′

〈k′ + p,k′, eY , eY , η2, η1, s2, s1,Ψ
ν+,ν−
ν |HI |k + p,k, eY , eY , η1, η1, s2, s1,Ψ

ν+,ν−
ν 〉

=
1

2Ωtot

∑
k

(
SeY ;eY (k,k;p)−

∑
q

SeY ;eY (k + q,k;p)

)
. (D14)

As expected for the Goldstone of a ferromagnet, the linear term in p vanishes; by using αa(k,q+G) = αa(−k,−q−
G) for a = 0, 2 of Eq. (A13), we find can prove that the linear terms vanish exactly. To second order in p, we find
the Goldtone stiffness

EGoldstone(p) =
1

2
mijpipj , (D15)

mij =
1

2Ωtot

∑
k,q,G

V (G + q)[α0(k,q + G)∂ki∂kjα0(k,q + G) + α2(k,q + G)∂ki∂kjα2(k,q + G)

+ 2∂kiα0(k,q + G)∂kjα0(k,q + G) + 2∂kiα2(k,q + G)∂kjα2(k,q + G)] . (D16)

4. Charge neutral excitation spectra for different parameters

In Figs. 7 and 8 the charge neutral excitations are plotted at different fillings and w0/w1’s for two different screening
lengths of the Coulomb interaction (Eq. (A7)), i.e., ξ=10nm, 20nm, respectively. The corresponding interaction
strengths are U10nm =26meV, U20nm=13meV. We have used w1=110meV in all the calculations and w0/w1 =0, 0.4,
0.8 for ν = 0,−2 and w0/w1 = 0 for ν = −1,−3.

For the parameters we used, the ν = 0 states with w0/w1 = 0, 0.4, 0.8 and ν = −1,−3 states with w0 = 0
have non-negative excitations and hence are stable. The ν = −2 states with w0/w1 = 0, 0.4, 0.8 are also stable for
ξ =20nm. However, the ν = −2 states for ξ =10nm become unstable at w0/w1 = 0.8 (Fig. 7c). The instability can
be understood from the instability of the charge ±1 excitations shown in Fig. 5c. From Fig. 5c we can see that the
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FIG. 7. Exact charge neutral excitations with θ = 1.05◦. The flat metric condition is not imposed. In this plot we have used
the parameters defined in App. A: vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV, Uξ = 26meV, ξ = 10nm.
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FIG. 8. Exact charge neutral excitations with θ = 1.05◦. The flat metric condition is not imposed. In this plot we use the
screening length ξ=20nm and Uξ = 13meV accordingly. The other parameters are same as in App. A, i.e., vF = 5.944eV · Å,

|K| = 1.703Å−1, w1 = 110meV.

charge +1 excitation is negative at some momenta between ΓM and KM and the charge -1 excitation is negative
at ΓM . Combining a pair of these negative particle and hole one obtains a negative charge neutral excitation. As
discussed in the end of App. C 4, this instability will lead to a metallic phase.

For the stable ground states, where the spectrum is non-negative, the charge neutral spectrum consists of a particle-
hole continuum (the blue area in Figs. 7 and 8) and a set of gapped collective modes. In Figs. 7 and 8 we only plot
the eigenvalues of the scattering matrix. In practice, the existence and degeneracy of an excitation mode also depend
on the occupied U(4) flavors (and U(4)×U(4) flavors in the first chiral limit) of the ground state, as discussed in
Section III A. In particular, the number of Goldstone modes for different ground states are given in Tables I and II.
In general, the states |Ψν+,ν−

ν 〉 (Eq. (10)) in the (first) chiral-flat U(4)×U(4) limit with ν = 0,±2 and ν+ = ν− = ν+4
2
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(such that it has vanishing Chern number) has more Goldstone modes than the state |Ψν〉 (Eq. (8)) with the same
filling ν. From w0/w1 = 0.4 to w0/w1 = 0 for the states at ν = 0,−2 we can clearly see in Figs. 7 and 8 that a
collective mode is soften and become Goldstone mode, consistent with the theoretical analysis.

E. Charge ±2 excitations and conditions on Cooper pair instability

The charge ±1 excitations can be obtained by diagonalizing a 2 × 2 matrix; the charge neutral above the ground
state can be obtained by diagonalizing a 2NM × 2NM matrix, or a one-body problem, despite the state having a
thermodynamic number of particles, due to the fact that we know the exact eigenstates (or ground states) of the
system. We now show that the charge +2 excitations can also be obtained by diagonalizing a 2NM × 2NM matrix.
The conditions for which Cooper pairing occurs are also obtained.

1. Charge +2 excitations in the nonchiral-flat U(4) limit

We choose a basis for the neutral excitations

c†k2,m2,η2,s2
c†k1,m1,η1,s1

|Ψ〉 (E1)

where |ψ〉 is any of the exact ground states/eigenstates Eqs. (A32) and (A35). The scattering matrix of these basis
can be solved as easily as a one-body problem. We first have to compute the commutators:

[O−q,−GOq,G, c
†
k2,m2,η2,s2

c†k1,m1,η1,s1
]

=[O−q,−GOq,G, c
†
k2,m2,η2,s2

]c†k1,m1,η1,s1
+ c†k2,m2,η2,s2

[O−q,−GOq,G, c
†
k1,m1,η1,s1

] , (E2)

which, in detail reads:

[O−q,−GOq,G, c
†
k2,m2,η2,s2

c†k1,m1,η1,s1
]

=
∑
m

P (η2)
mm2

(k2,q + G) c†k2,m,η2,s2
c†k1,m1,η1,s1

+
∑
m

P (η1)
mm1

(k1,q + G) c†k2,m2,η2,s2
c†k1,m,η1,s1

+
√
V (G + q)

∑
m

(
M (η2)
m,m2

(k2,q + G) c†k2+q,m,η2,s2
c†k1,m1,η1,s1

O−q,−G + (q,G↔ −q,−G)
)

+
√
V (G + q)

∑
m

(
M (η1)
m,m1

(k1,q + G) c†k2,m2,η2,s2
c†k1+q,m,η1,s1

O−q,−G + (q,G↔ −q,−G)
)

+ V (G + q)
∑
m,m′

(
M (η2)
m,m2

(k2,q + G)M
(η1)
m′,m1

(k1,−q−G) c†k2+q,m,η2,s2
c†k1−q,m′,η1,s1 + (q,G↔ −q,−G)

)
(E3)

By rewriting k2 = k + p and k1 = −k, we can write the scattering equation as[
HI − µN, c†k+p,m2,η2,s2

c†−k,m1,η1,s1

]
|Ψ〉 =

1

2Ωtot

∑
m,m′

∑
q

T
(η2,η1)
mm′;m2m1

(k + q,k;p)c†k+p+q,m,η2,s2
c†−k−q,m′,η1,s1 |Ψ〉 ,

(E4)
The |Ψ〉 are the states |Ψν〉 in Eq. (A35), and hence η1, s1, η2, s2 belong to the valley/spin flavor which are not
occupied. For a generic exact eigenstate |Ψ〉 at chemical potential µ satisfying (Oq,G − AGNMδq,0)|Ψ〉 = 0 for some

coefficient AG, we find that the T
(η2,η1)
m2,m;m1m′

(k1,k2;q) matrix reads

T
(η2,η1)
mm′;m2m1

(k + q,k;p) =δq,0(δm,m2
Rη1m′m1

(−k) + δm′,m1
Rη2mm2

(k + p))+

+ 2
∑
G

V (G + q)M (η2)
m,m2

(k + p,q + G)M
(η1)
m′,m1

(−k,−q−G) , (E5)

where Rηmn(k), Rηmn(k) are the +1 excitation matrices in Eqs. (C2) and (C16). We see that the charge +2 energy is
a sum of the two single-particle energies (first row of Eq. (D5)) plus an interaction energy (second row of Eq. (D5)).

The exact expression of the charge +2 excitation spectrum allows for the determination of the Cooper pair binding
energy (if any).
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2. Charge +2 excitations in the (first) chiral-flat U(4)×U(4) limit

We now consider the charge +2 excited states reachable by creating two electron pair with total momentum p
on the chiral-flat limit eigenstate |Ψν+,ν−

ν 〉. Assume the valley-spin flavor {η1,2, s1,2} has Chern band basis eY 1, eY 2

fully empty. We consider the Hilbert space of the following sets of states of momentum quantum number p (k2 =
−k1 + p, k1 = k):

|k + p,−k, eY 1, eY 2, η2, η1, s2, s1,Ψ
ν+,ν−
ν 〉 = d†k+p,eY 2,η2,s2

d†−k,eY 1,η1,s1
|Ψν+,ν−
ν 〉 , (E6)

The Oq,G operators in the chiral limit have the simple, diagonal expression of Eq. (B7), which leads to the scattering
equation.

[
HI − µN, d†k+p,eY 2,η2,s2

d†−k,eY 1,η1,s1

]
|Ψ〉 =

1

2Ωtot

∑
q

TeY 2;eY 1
(k + q,k;p)d†k+p+q,eY 2,η2,s2

d†−k−q,eY 1,η1,s1
|Ψ〉 . (E7)

The |Ψ〉 are the states |Ψν+,ν−
ν 〉 in Eq. (A32), and hence eY 1, η1, s1, eY 2, η2, s2 belong to the valley/spin flavor which

are not occupied. The scattering matrix in the first chiral limit does not depend on η1, η2

TeY 2;eY 1
(k + q,k;p) = δq,0(R0(k + p) +R0(−k)) + 2

∑
G

V (G + q)MeY 2
(k + p,q + G)MeY 1

(−k,−q−G) , (E8)

where MeY (k,q + G) is given in Eq. (A20) and Rη0(k) is given in Eq. (C12).
If condition Eq. (A30) is satisfied, the eigenstates |Ψν+,ν−

ν 〉 are the ground states, and hence the states Eq. (E7) are
the neutral excitations on top of the ground states. Without Eq. (A30), only ν = 0 states are guaranteed to be the
ground states, although the others are still eigenstates. With condition Eq. (A30), we have

TeY 2;eY 1
(k + q,k;p) = δq,0

∑
G,q

V (G + q)[α0(k,q + G)2 + α2(k,q + G)2 + α0(k + p,q + G)2 + α2(k + p,q + G)2]

+ 2
∑
G

V (G + q)(α0(k + p,q + G) + ieY 2α2(k + p,q + G))(α0(k,q + G) + ieY 1α2(k,q + G)) , (E9)

where we have used the α0,2(k,q+G) = α0,2(−k,−q−G). Solving Eq. (E7) provides us with the expression for the
charge +2 excitations at momentum p on top of the TBG ground states.

3. Absence of Cooper pairing in the projected Coulomb Hamiltonian

In Section V B, we have derived the sufficient conditions for the existence (Eq. (37)) and absence (Eq. (38)) of Cooper
pairing binding energies. Now we prove that, in the projected Coulomb Hamiltonian with time-reversal symmetry

T and the combined symmetry PC2zT , where P is the unitary PH symmetry [43, 108], T
(η2,η1)′′
m,m′;m2,m1

(k + q,k;p) is

guaranteed to be positive semi-definite. Thus the condition Eq. (38) for the absence of Cooper pairing binding energy

is always satisfied. We write T
(η2,η1)′′
m,m′;m2,m1

(k + q,k;p), which is defined as the third term in Eq. (E5), as

T
(η2,η1)′′
m,m′;m2,m1

(k + q,k;p) = 2
∑
G

V (G + q)M (η2)
mm2

(k + p,q + G)M
(η1)
m′m1

(−k,−q−G) . (E10)

We first consider the case η2 = −η1 = η. Due to the time-reversal symmetry T |un,η(−k)〉 = |un,−η(k)〉 in the gauge
Eq. (A10) [109], where |un,η(k)〉 is the 2NQ × 1 vector uQ,α;nη(k) in Eq. (A3), and the definition of the M matrix
(Eq. (A8)), we have

M (η)
mn(k,q + G) = 〈um,η(k + q + G)|un,η(k)〉 = 〈Tum,−η(−k− q−G)|Tun,−η(−k)〉

=〈un,−η(−k)|um,−η(−k− q−G)〉 = 〈um,−η(−k− q−G)|un,−η(−k)〉∗ = M (−η)
mn (−k,−q−G). (E11)

Thus we can rewrite T
(η,−η)′′
m,m′;m2,m1

(k + q,k;p) as

T
(η,−η)′′
m,m′;m2,m1

(k + q,k;p) = 2
∑
G

V (G + q)M (η)
mm2

(k + p,q + G)M
(η)∗
m′m1

(k,q + G) . (E12)
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We consider the expectation value of T (η,−η)′′(k + q,k;p) on a complex function φm2,m1
(k):

〈T ′′〉ηφ(p) =
∑
k1,k2

∑
mm′m2m2

φ∗mm′(k2)T (η,−η)′′(k2,k1;p)φm2,m1(k1)

=2
∑

k1,k2,G

V (k2 + G− k1)φ∗mm′(k2)〈umη(k2 + p + G)|um2η(k1 + p)〉φm2,m1(k1)〈um1(k1)|um′η(k2 + G)〉. (E13)

Using Eq. (A4), we have 〈um1(k)|um′η(k + q + G)〉 = 〈um1(k + G′)|um′η(k + q + G + G′)〉 and hence

〈T ′′〉ηφ(p) =
2

NG

∑
k1,k2,G1,G2

∑
mm′m2m1

V (k2 + G2 − k1 −G1)

× φ∗mm′(k2)〈umη(k2 + p + G2)|um2η(k1 + p + G1)〉φm2,m1(k1)〈um1(k1 + G1)|um′η(k2 + G2)〉. (E14)

We then define the matrix

W (k1 + G1) =
∑
m2m1

|um2η(k1 + p + G1)〉φm2,m1
(k1)〈um1

(k1 + G1)| (E15)

such that 〈T ′′〉ηφ(p) can be written as

〈T ′′〉ηφ(p) =
2

NG

∑
k1,k2,G1,G2

Tr[W †(k2 + G2)W (k1 + G1)]V (k2 + G2 − k1 −G1)

=
2

NG

∑
ab

∑
k1,k2,G1,G2

W ∗ab(k2 + G2)Wab(k1 + G1)V (k2 + G2 − k1 −G1), (E16)

where a, b are the indices of the matrix W (k + G). For each term with given a, b in Eq. (E16), we can view the

summation over k1,k2,G1,G2 as W †abVWab, where now Wab(k + G) is viewed as a vector with the index k + G.

Since V (k2+G2−k1−G1) is a positive semi-definite matrix, W †abVWab must be non-negative, and hence 〈T ′′〉ηφ(p) ≥ 0

for arbitrary φ. Therefore T
(η,−η)′′
m,m′;m2,m1

(k + q,k;p) is positive semi-definite at every p.

Then we prove that T
(η2,η1)′′
m,m′;m2,m1

(k + q,k;p) with η2 = η1 = η is also positive semi-definite. Due to the symmetry

PC2zT |un,η(k)〉 = n|u−n,η(−k)〉 in the gauge Eq. (A10) [109] and the definition of the M matrix (Eq. (A8)), we have

M (η)
mn(k,q + G) = 〈um,η(k + q + G)|un,η(k)〉 = nm〈PC2zTu−m,η(−k− q−G)|PC2zTu−n,η(−k)〉

=nm〈u−n,η(−k)|u−m,η(−k− q−G)〉 = nmM
(η)∗
−m,−n(−k,−q−G). (E17)

Thus we can rewrite T
(η,η)′′
m,m′;m2,m1

(k + q,k;p) as

T
(η,η)′′
m,m′;m2,m1

(k + q,k;p) = 2
∑
G

V (G + q)M (η)
mm2

(k + p,q + G)m′m1M
(η)∗
−m′,−m1

(k,q + G) . (E18)

Repeating the calculations starting from Eq. (E13), one can show that T
(η,η)′′
m,m′;m2,m1

(k + q,k;p) must be positive
semi-definite. The only difference with the above proof is that the definition of the W matrix becomes

W (k1 + G1) =
∑
m2m1

|um2η(k1 + p + G1)〉φm2,m1(k1)〈u−m1(k1 + G1)|m1. (E19)

4. Charge −2 excitations

Based on the above, the charge −2 excitations are trivial to obtain. We do not give the details, but just the
expression for the scattering elements

[HI − µN, ck+p,m2,η2,s2c−k,m1,η1,s1 ] |Ψ〉 =
1

2Ωtot

∑
m,m′

∑
q

T̃
(η2,η1)
mm′;m2m1

(k + q,k;p)ck+p+q,m,η2,s2c−k−q,m′,η1,s1 |Ψ〉 ,

(E20)
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FIG. 9. Exact charge +2 (blue) and −2 (red) excitations at θ = 1.05◦. The flat metric condition is not imposed. In this plot

we have used the parameters defined in App. A: vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV, Uξ = 26meV, ξ = 10nm.

The |Ψ〉 are the states |Ψν〉 in Eq. (A35), and hence η1, s1, η2, s2 belong to the valley/spin flavor which are not
occupied. For a generic exact eigenstate |Ψ〉 at chemical potential µ satisfying (Oq,G − AGNMδq,0)|Ψ〉 = 0 for some

coefficient AG, we find that the T̃
(η2,η1)
m2,m;m1m′

(k1,k2;q) matrix reads

T̃
(η2,η1)
mm′;m2m1

(k + q,k;p) =δq,0(δm,m2
R̃η1m′m1

(−k) + δm′,m1
R̃η2mm2

(k + p))

+ 2
∑
G

V (G + q)M (η2)∗
m,m2

(k + p,q + G)M
(η1)∗
m′,m1

(−k,−q−G) , (E21)

where R̃ηmn(k) are the −1 excitation matrices in Eq. (C16). We see that the charge −2 energy is a sum of the two
single-particle energies (first row of Eq. (E21)) plus an interaction energy (second row of Eq. (E21)). In particular,
for the chiral limit, the scattering matrix elements are identical to those of charge +2, i.e., Eq. (E9).
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FIG. 10. Exact charge +2 (blue) and −2 (red) excitations at θ = 1.05◦. The flat metric condition is not imposed. In this plot
we use the screening length ξ =20nm and the interaction strength Uξ=13meV accordingly. The other parameters are same as

in App. A: vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV.

5. Charge ±2 excitation spectra for different parameters

In Figs. 9 and 10 the charge ±2 excitations are plotted at different fillings and w0/w1’s for two different screening
lengths of the Coulomb interaction (Eq. (A7)), i.e., ξ=10nm, 20nm, respectively. The corresponding interaction
strengths are U10nm =26meV, U20nm=13meV. We have used w1=110meV in all the calculations and w0/w1 =0, 0.4,
0.8 for ν = 0,−2 and w0/w1 = 0 for ν = −1,−3.

The charge +2 (−2) spectrum consists of a two-particle (two-hole) continuum (the blue (red) area in Figs. 9 and 10)
and a set of gapped charge +2 (−2) collective modes. The energies in the two-particle (hole) continuum are just sums
of two charge +1 (−1) excitation energies. Note that all the charge +2 (−2) collective modes appear above the
two-particle (two-hole) continuum, implying the absence of Cooper pairing binding energy, as proved in Section V B.
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F. Approximate charge ±1 and neutral exitations at odd fillings in the nonchiral-flat U(4) limit

1. Approximate charge +1 excitations at odd fillings in the nonchiral-flat U(4) limit

In the nonchiral-flat limit the states |Ψν+,ν−
ν 〉 at odd fillings ν = ±1,±3 are no longer exact eigenstates of the

Hamiltonian. However, in Ref. [110] we have shown that the states |Ψ1,0
−3〉 (or its U(4) rotations) and |Ψ2,1

−1〉 (or its
U(4) rotations) are the lowest states at fillings ν = −3,−1 to first order perturbation of the (first) chiral symmetry
breaking. In this subsection, we derive the approximate charge 1 excitations above these perturbative lowest states.

Since these states have fully occupied Chern bands, it is convenient to work in the Chern band basis. We write the
Oq,G operator as a sum of a (first) chiral preserving term

O0
q,G =

∑
k,eY ,η,s

√
V (q + G)M (η)

eY ,eY (k,q + G)(d†k+q,eY ,η,s
dk,eY ,η,s −

1

2
δq,0)

=
∑

k,eY ,η,s

√
V (q + G)MeY (k,q + G)(d†k+q,eY ,η,s

dk,eY ,η,s −
1

2
δq,0), (F1)

and a chiral breaking term

O1
q,G =

∑
k,eY ,η,s

√
V (q + G)M

(η)
−eY ,eY (k,q + G)d†k+q,−eY ,η,sdk,eY ,η,s,

=
∑

k,eY ,η,s

√
V (q + G)ηFeY (k,q + G)d†k+q,−eY ,η,sdk,eY ,η,s, (F2)

where the M matrix M
(η)
e′Y ,eY

and the factors MeY and FeY are defined in Eqs. (A20) and (A21). We as-

sume the initial state as d†k,eY ,η,s|Ψ
ν+,ν−
ν 〉. Acting the Hamiltonian on the initial state, we obtain two terms:

[HI −µN, d†k,eY ,η,s]|Ψ
ν+,ν−
ν 〉 and d†k,eY ,η,s(HI −µN)|Ψν+,ν−

ν 〉. In the (first) chiral-flat limit, the second term is simply

E0d
†
k,eY ,η,s

|Ψν+,ν−
ν 〉 with E0 being the ground state energy. However, the second term also involve excited states when

the (first) chiral symmetry is broken. To be specific, we have

d†k,eY ,η,sHI |Ψν+,ν−
ν 〉 =

1

2Ωtot

∑
q,G

d†k,eY ,η,s(O
0
−q,−G +O1

−q,−G)(O0
q,G +O1

q,G)|Ψν+,ν−
ν 〉

=
1

2Ωtot

∑
q,G

d†k,eY ,η,s(δq,0A−GAGN
2
M +O1

−q,−GO
0
q,G +O0

−q,−GO
1
q,G +O1

−q,−GO
1
q,G)|Ψν+,ν−

ν 〉.

(F3)

The first term on the right hand side will give the unperturbed ground state energy E0, whereas the other three terms
yield excited states. Now we approximate it by projecting it into the Hilbert space with a single particle excitation.

Notice that d†k,eY ,η,s generates a particle in an empty Chern band and the O1 operator, by definition, generates

particles in the empty Chern bands and holes in occupied Chern bands. Thus the terms d†k,eY ,η,sO
1
−q,−GO

0
q,G and

d†k,eY ,η,sO
0
−q,−GO

1
q,G will at least generate two particles plus one hole. Hence they do not contribute to the projected

equation. Now we consider the term d†k,eY ,η,sO
1
−q,−GO

1
q,G

d†k,eY ,η,sO
1
−q,−GO

1
q,G =

∑
k1,k2

∑
eY 1,eY 2

∑
η1s1η2s2

V (q + G)η1F
(η1)
eY 1

(k1,−q−G)η2F
(η2)
eY 2

(k2,q + G)

× d†k,eY ,η,sd
†
k1−q,−eY 1,η1,s1

dk1,eY 1,η1,s1d
†
k2+q,−eY 2,η2,s2

dk2,eY 2,η2,s2 . (F4)

According to the Wick’s theorem, we have

d†k,eY ,η,sd
†
k1−q,−eY 1,η1,s1

dk1,eY 1,η1,s1d
†
k2+q,−eY 2,η2,s2

dk2,eY 2,η2,s2

= : d†k,eY ,η,sd
†
k1−q,−eY 1,η1,s1

dk1,eY 1,η1,s1d
†
k2+q,−eY 2,η2,s2

dk2,eY 2,η2,s2 : + · · ·

+ 〈Ψν+,ν−
ν |d†k,eY ,η,sdk1,eY 1,η1,s1 |Ψν+,ν−

ν 〉〈Ψν+,ν−
ν |d†k1−q,−eY 1,η1,s1

dk2,eY 2,η2,s2 |Ψν+,ν−
ν 〉d†k2+q,−eY 2,η2,s2

− 〈Ψν+,ν−
ν |d†k,eY ,η,sdk2,eY 2,η2,s2 |Ψν+,ν−

ν 〉〈Ψν+,ν−
ν |dk1,eY 1,η1,s1d

†
k2+q,−eY 2,η2,s2

|Ψν+,ν−
ν 〉d†k1−q,−eY 1,η1,s1
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+ 〈Ψν+,ν−
ν |d†k1−q,−eY 1,η1,s1

dk2,eY 2,η2,s2 |Ψν+,ν−
ν 〉〈Ψν+,ν−

ν |dk1,eY 1,η1,s1d
†
k2+q,−eY 2,η2,s2

|Ψν+,ν−
ν 〉d†k,eY ,η,s . (F5)

Here : A := A represents the normal ordered form of the operator A with respect to |Ψν+,ν−
ν 〉, where the operators that

annihilate |Ψν+,ν−
ν 〉 is ordered on the right hand side of the operators that do not. The second term (“· · · ”) represent

the normal ordered terms with one contraction. The first (second) term either annihilate |Ψν+,ν−
ν 〉 or generate three

(two) particles plus two (one) holes. We hence will omit them. The third and fourth terms must vanish since we

require the flavor {eY , η, s} to be empty and hence 〈Ψν+,ν−
ν |d†k,eY ,η,s = 0. The last term is the Fock energy correction

to the ground state energy. Therefore, we conclude

d†k,eY ,η,sHI |Ψν+,ν−
ν 〉 ≈ (E0 + ∆E0)d†k,eY ,η,s|Ψ

ν+,ν−
ν 〉, (F6)

where E0 is the unperturbed ground state energy and ∆E0 is the Fock energy correct.

The excitation energy is hence given by the spectrum of [HI − µN, d†k,eY ,η,s]. Following the calculation in App. B,
we obtain

[O−q,−GOq,G, d
†
k,eY ,η,s

] = V (q + G)P ηe′Y ,eY
(k,q + G)d†k,e′Y ,η,s

+
√
V (G + q)(M

(η)
e′Y ,eY

(k,q + G) d†k+q,e′Y ,η,s
O−q,−G +M

(η)
e′Y ,eY

(k,−q−G) d†k−q,e′Y ,η,s
Oq,G), (F7)

where

P ηe′Y ,eY
(k,q + G) =

∑
e′′Y

M
(η)∗
e′′Y ,e

′
Y

(k,q + G)M
(η)
e′′Y ,eY

(k,q + G) . (F8)

Acting the commutator of the interaction Hamiltonian and d†k,eY ,η,s on the state |Ψν+,ν−
ν 〉, we have

[HI − µN, d†k,eY ,η,s]|Ψ
ν+,ν−
ν 〉 =

1

2Ωtot

∑
q,G,e′Y

(
V (q + G)P ηe′Y ,eY

(k,q + G)d†k,e′Y ,η,s

+ 2
√
V (G + q)M

(η)
e′Y ,eY

(k,q + G) d†k+q,e′Y ,η,s
O−q,−G

)
|Ψν+,ν−
ν 〉 − µd†k,eY ,η,s|Ψ

ν+,ν−
ν 〉. (F9)

In the (first) chiral limit, where O−q,−G|Ψν+,ν−
ν 〉 = δq,0A−GNM |Ψν+,ν−

ν 〉, the right hand side of the above equation

only has one particle excitations. However, when the (first) chiral symmetry is broken, d†k,eY ,η,sO−q,−G|Ψ
ν+,ν−
ν 〉 will

yield excitations with two particles plus one hole

d†k+q,e′Y ,η,s
O−q,−G|Ψν+,ν−

ν 〉 = d†k+q,e′Y ,η,s
(O0
−q,−G +O1

−q,−G)|Ψν+,ν−
ν 〉 = δq,0A−GNMd

†
k,e′Y ,η,s

|Ψν+,ν−
ν 〉

+
∑

k′,e′′Y ,η
′,s′

√
V (q + G)η′Fe′′Y (k′,−q−G)d†k+q,e′Y ,η,s

d†k′−q,−e′′Y ,η′,s′
dk′,e′′Y ,η′,s′ |Ψ

ν+,ν−
ν 〉 (F10)

We now approximate the right hand side by projecting it into the one particle Hilbert space: We only keep the term
satisfying k′ = k + q, e′′Y = e′Y , η′ = η, s′ = s

d†k+q,e′Y ,η,s
O−q,−G|Ψν+,ν−

ν 〉 ≈ δq,0A−GNMd†k,e′Y ,η,s|Ψ
ν+,ν−
ν 〉

−
√
V (q + G)ηFe′Y (k + q,−q−G)ne′Y ,η,sd

†
k,−e′Y ,η,s

|Ψν+,ν−
ν 〉, (F11)

where ne′Y ,η,s equals to 1 if the flavor {e′Y , η, s} is occupied and equals to 0 otherwise. If e′Y in the second term

equals to eY , then there must be ne′Y ,η,s = 0 because we require {eY , η, s} to be empty such that d†k,eY ,η,s|Ψ
ν+,ν−
ν 〉 is

non-vanishing. Hence we only need to keep the e′Y = −eY in the second term. Then we can rewrite the second term
in Eq. (F9) as∑

e′Y

M
(η)
e′Y ,eY

(k,q + G) d†k+q,e′Y ,η,s
O−q,−G|Ψν+,ν−

ν 〉 ≈
∑
e′Y

δq,0A−GNMM
(η)
e′Y ,eY

(k,G)d†k,e′Y ,η,s
|Ψν+,ν−
ν 〉

−
√
V (q + G)Mη

−eY ,eY (k,q + G)ηF−eY (k + q,−q−G)n−eY ,η,sd
†
k,eY ,η,s

|Ψν+,ν−
ν 〉

≈
∑
e′Y

δq,0A−GNMM
(η)
e′Y ,eY

(k,G)d†k,e′Y ,η,s
|Ψν+,ν−
ν 〉 − n−eY ,η,s

√
V (q + G)|FeY (k,q + G)|2d†eY ,η,s|Ψ

ν+,ν−
ν 〉. (F12)
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FIG. 11. Approximate charge +1 (blue) and −1 (red) excitations at θ = 1.05◦ at odd fillings in the nonchiral-flat limit. The
dashed bands are the excitations in the half-filled valley-spin sectors. The solid blue (red) bands are the +1 (−1) excitations
in the fully empty (occupied) valley-spin sectors. The flat metric condition is not imposed. In this plot we set the screening
length as ξ = 10nm and accordingly the interaction strength as Uξ = 13meV. The other parameters are same as in App. A:

vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV.

Here we have made use of Eq. (A21) and Eq. (A12). With the above approximation, we can write the excitation
equation as

[HI − µN, d†k,eY ,η,s]|Ψ
ν+,ν−
ν 〉 ≈

∑
e′Y

Rη,se′Y ,eY
d†k,e′Y ,η,s

|Ψν+,ν−
ν 〉, (F13)

where

Rη,se′Y ,eY
=

1

2Ωtot

∑
q,G

(
V (q + G)P ηe′Y ,eY

(k,q + G) + 2δq,0
√
V (G)A−GNMM

(η)
e′Y ,eY

(k,G)

− 2δe′Y ,eY n−eY ,η,sV (q + G)|FeY (k,q + G)|2
)
− µδe′Y ,eY . (F14)

Notice that both eY and e′Y are limited to empty Chern bands in the valley-spin flavor η, s.
Let us first consider the charge +1 excitation at ν = −3. Without loss of generality, we assume the occupied flavor

is {+1, ↑,+1}. For the excitation in the half-filled valley-spin sector ({+1, ↑}), the eY and e′Y indices in Rη,se′Y ,eY
are

limited for the empty Chern band (−1). In this case the R matrix is one-by-one with n−eY ,η,s = 1. For the excitation
in the other (fully empty) valley-spin sectors, the eY and e′Y indices can be either 1 or −1. Hence the R matrix is
a two-by-two matrix with n−eY ,η,s = 0. The calculation for ν = −1 is similar. Due to Ref. [110], the perturbative

ground state in the nonchiral-flat limit at ν = −1 is |Ψ2,1
−1〉 (or its U(4) rotations). There is a fully occupied valley-spin

sector and a half-filled valley-spin sector. In the half-filled valley-spin sector R is one-by-one with n−eY ,η,s = 1 and in
the empty valley-spin sectors R is two-by-two with n−eY ,η,s = 0. The approximate charge +1 excitations are shown
in Fig. 11.

2. Approximate charge -1 excitations at odd fillings in the nonchiral-flat limit

In the nonchiral-flat limit the states |Ψν+,ν−
ν 〉 at odd fillings ν = ±1,±3 are no longer exact eigenstates of the

Hamiltonian. However, in Ref. [110] we have shown that the states |Ψ1,0
−3〉 (or its U(4) rotations) and |Ψ2,1

−1〉 (or its
U(4) rotations) are the lowest states at fillings ν = −3,−1 to first order perturbation of the (first) chiral symmetry
breaking. Using the same method as in App. F 1, in this subsection, we derive the approximate charge -1 excitations
above these perturbative lowest states.

For the same reason in App. F 1, the spectrum of excitation is given by the eigenvalues of [HI − µN, dk,eY ,η,s].
Following the calculation in App. F 1, we have

[HI − µN, dk,eY ,η,s]|Ψν+,ν−
ν 〉 =

1

2Ωtot

∑
q,G,e′Y

(
V (q + G)P η∗e′Y ,eY

(k,q + G)dk,e′Y ,η,s

− 2
√
V (G + q)M

(η)∗
e′Y ,eY

(k,q + G) dk+q,e′Y ,η,s
Oq,G

)
|Ψν+,ν−
ν 〉+ µdk,eY ,η,s|Ψν+,ν−

ν 〉, (F15)
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where P η is defined in Eq. (F8). When the (first) chiral symmetry is broken, the term dk+q,e′Y ,η,s
Oq,G|Ψν+,ν−

ν 〉 yields
excitations with two holes plus one particle

dk+q,e′Y ,η,s
Oq,G|Ψν+,ν−

ν 〉 = dk+q,e′Y ,η,s
(O0

q,G +O1
q,G)|Ψν+,ν−

ν 〉

=δq,0AGNMdk,e′Y ,η,s|Ψ
ν+,ν−
ν 〉+

∑
k′,e′′Y ,η

′,s′

√
V (q + G)η′Fe′′Y (k′,q + G)dk+q,e′Y ,η,s

d†k′+q,−e′′Y ,η′,s′
dk′,e′′Y ,η′,s′ |Ψ

ν+,ν−
ν 〉

(F16)

We now approximate the right hand side by projecting it into the one hole Hilbert space: We only keep the term
satisfying k′ = k, e′′Y = −e′Y , η′ = η, s′ = s

dk+q,e′Y ,η,s
Oq,G|Ψν+,ν−

ν 〉 = dk+q,e′Y ,η,s
(O0

q,G +O1
q,G)|Ψν+,ν−

ν 〉

=δq,0AGNMdk,e′Y ,η,s|Ψ
ν+,ν−
ν 〉+

√
V (q + G)ηF−e′Y (k,q + G)(1− ne′Y ,η,s)dk,−e′Y ,η,s|Ψ

ν+,ν−
ν 〉 , (F17)

where ne′Y ,η,s equals to 1 if the flavor {e′Y , η, s} is occupied and equals to 0 otherwise. If e′Y in the second term equals

to eY , then there must be ne′Y ,η,s = 1 because we require {eY , η, s} to be occupied such that dk,eY ,η,s|Ψ
ν+,ν−
ν 〉 is

non-vanishing. Hence we only need to keep the e′Y = −eY in the second term. Then we can rewrite the second term
in Eq. (F15) as∑

e′Y

M
(η)∗
e′Y ,eY

(k,q + G)dk+q,e′Y ,η,s
Oq,G

)
|Ψν+,ν−
ν 〉

=
∑
e′Y

δq,0AGNMM
(η)∗
e′Y ,eY

(k,G)dk,e′Y ,η,s|Ψ
ν+,ν−
ν 〉+ (1− n−eY ,η,s)

√
V (q + G)|FeY (k,q + G)|2dk,eY ,η,s|Ψν+,ν−

ν 〉 .

(F18)

Here we have made use of Eqs. (A12) and (A21). With the above approximation, we can write the excitation equation
as

[HI − µN, dk,eY ,η,s]|Ψν+,ν−
ν 〉 ≈

∑
e′Y

R̃η,se′Y ,eY
dk,e′Y ,η,s|Ψ

ν+,ν−
ν 〉, (F19)

where

R̃η,se′Y ,eY
=

1

2Ωtot

∑
q,G

(
V (q + G)P η∗e′Y ,eY

(k,q + G)− 2δq,0
√
V (G)AGNMM

(η)∗
e′Y ,eY

(k,G)

− 2δe′Y ,eY (1− n−eY ,η,s)V (q + G)|FeY (k,q + G)|2
)

+ µδe′Y ,eY . (F20)

Notice that both eY and e′Y are limited to fully filled Chern bands in the valley-spin flavor η, s.
Let us first consider the charge -1 excitation at ν = −3. Without loss of generality, we assume the occupied flavor

is {+1, ↑,+1}. For the excitation in the half-filled valley-spin sector ({+1, ↑}), the eY and e′Y indices in R̃η,se′Y ,eY
are

limited for the occupied Chern band (+1). In this case the R̃ matrix is one-by-one with n−eY ,η,s = 0. And there is
no hole excitation in the other (fully empty) valley-spin sectors. The calculation for ν = −1 is similar. Due to Ref.

[110], the perturbative ground state in the nonchiral-flat limit at ν = −1 is |Ψ2,1
−1〉 (or its U(4) rotations). There is a

fully occupied valley-spin sector and a half-filled valley-spin sector. In the half-filled valley-spin sector R̃ is one-by-one

with n−eY ,η,s = 0 and in the fully occupied valley-spin sector R̃ is two-by-two with n−eY ,η,s = 1. The approximate
charge −1 excitations are shown in Fig. 11.

3. Approximate charge neutral excitations at odd fillings in the nonchiral-flat U(4) limit

In the nonchiral-flat limit the states |Ψν+,ν−
ν 〉 at odd fillings ν = ±1,±3 are no longer exact eigenstates of the

Hamiltonian. However, in Ref. [110] we have shown that the states |Ψ1,0
−3〉 (or its U(4) rotations) and |Ψ2,1

−1〉 (or its
U(4) rotations) are the lowest states at fillings ν = −3,−1 to first order perturbation of the (first) chiral symmetry
breaking. In this subsection, we derive the approximate charge neutral excitations above these perturbative lowest
states.
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Since these states have fully occupied Chern bands, it is convenient to work in the Chern band basis. Following the
calculations in App. D 1, we have

[HI − µN, d†k+p,eY 2,η2,s2
dk,eY 1,η1,s1 ]|Ψν+,ν−

ν 〉

=
1

2Ωtot

∑
q,G

(∑
eY

P η2eY ,eY 2
(k + p,q + G)d†k+p,eY ,η2,s2

dk,eY 1,η1,s1 +
∑
e′Y

P η1∗e′Y ,eY 1
(k,q + G)d†k+p,eY 2,η2,s2

dk,e′Y ,η1,s1

+ 2
√
V (G + q)

∑
eY

M (η2)
eY ,eY 2

(k + p,q + G) d†k+p+q,eY ,η2,s2
dk,eY 1,η1,s1O−q,−G

− 2
√
V (G + q)

∑
e′Y

M
(η1)∗
e′Y ,eY 1

(k,−q−G) d†k+p,eY 2,η2,s2
dk−q,e′Y ,η1,s1O−q,−G

− 2V (G + q)
∑
eY ,e′Y

M (η2)
eY ,eY 2

(k + p,q + G)M
(η1)∗
e′Y ,eY 1

(k,q + G) d†k+p+q,eY ,η2,s2
dk+q,e′Y ,η1,s1

)
|Ψν+,ν−
ν 〉 . (F21)

In the (first) chiral limit, where O−q,−G|Ψν+,ν−
ν 〉 = δq,0A−GNM |Ψν+,ν−

ν 〉, the right hand side of the above equation
only involve excitations with one pair of particle and hole. However, when the (first) chiral symmetry is broken,
O−q,−G|Ψν+,ν−

ν 〉 will yield additional particle-hole excitations:

d†k+p+q,eY ,η2,s2
dk,eY 1,η1,s1O−q,−G|Ψν+,ν−

ν 〉 = d†k+p+q,eY ,η2,s2
dk,m1,η1,s1(O0

−q,−G +O1
−q,−G)|Ψν+,ν−

ν 〉

=δq,0A−GNMd
†
k+p,eY ,η2,s2

dk,eY 1,η1,s1 |Ψν+,ν−
ν 〉+

∑
k′′,e′′Y ,η

′′,s′′

√
V (q + G)η′′Fe′′Y (k′′,−q−G)

× d†k+p+q,eY ,η2,s2
dk,eY 1,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

dk′′,e′′Y ,η′′,s′′ |Ψ
ν+,ν−
ν 〉 . (F22)

We approximate the above equation by projecting it into the Hilbert space of excitations with only one pair of particle
and hole. According to the Wick’s theorem, we have

d†k+p+q,eY ,η2,s2
dk,eY 1,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

dk′′,e′′Y ,η′′,s′′ =: d†k+p+q,eY ,η2,s2
dk,eY 1,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

dk′′,e′′Y ,η′′,s′′ :

+ 〈Ψν+,ν−
ν |d†k+p+q,eY ,η2,s2

dk,eY 1,η1,s1 |Ψν+,ν−
ν 〉d†k′′−q,−e′′Y ,η′′,s′′dk′′,e′′Y ,η′′,s′′

+ 〈Ψν+,ν−
ν |d†k+p+q,eY ,η2,s2

dk′′,e′′Y ,η′′,s′′ |Ψ
ν+,ν−
ν 〉dk,eY 1,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

+ 〈Ψν+,ν−
ν |dk,eY 1,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

|Ψν+,ν−
ν 〉d†k+p+q,eY ,η2,s2

dk′′,e′′Y ,η′′,s′′

− 〈Ψν+,ν−
ν |dk,eY 1,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

|Ψν+,ν−
ν 〉〈Ψν+,ν−

ν |d†k+p+q,eY ,η2,s2
dk′′,e′′Y ,η′′,s′′ |Ψ

ν+,ν−
ν 〉 (F23)

Here : A : represents the normal ordered form of the operator A with respect to |Ψν+,ν−
ν 〉, where all the creation

operators of occupied states and annihilation operators of empty states are on the right hand side of the creation
operators of empty states and annihilation operators of occupied states. The first (normal ordered) term is non-
vanishing when acted on |Ψν+,ν−

ν 〉 if the two creation operators are of empty states and the two annihilation operators
are of occupied states. However, we will omit this term because it yields two particle-hole pairs. Since we require
dk,eY 1,η1,s1 to be occupied such that the initial state is non-vanishing, there must be 〈Ψν+,ν−

ν |dk,eY 1,η1,s1 = 0 and
hence the last two terms in the above equation vanish. Then we obtain

d†k+p+q,eY ,η2,s2
dk,eY 1,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

dk′′,e′′Y ,η′′,s′′

≈δp+q,0δeY ,eY 1
δη2,η1δs2,s1d

†
k′′−q,−e′′Y ,η′′,s′′

dk′′,e′′Y ,η′′,s′′

− δk+p+q,k′′δeY ,e′′Y δη2,η′′δs2,s′′neY ,η2,s2d
†
k+p,−eY ,η,sdk,eY 1,η1,s1 , (F24)

where neY ,η,s equals to 1 if the flavor {eY , η, s} is occupied and equals to 0 otherwise. Here we have made use of

{d†k+p,−eY ,η,s, dk,eY 1,η1,s1} = 0, which is because {eY 1, η1, s1} is required to be occupied and {−eY , η, s} is required

to be empty and hence {eY 1, η1, s1} 6= {−eY , η, s}. Then we obtain

d†k+p+q,eY ,η2,s2
dk,eY 1,η1,s1O−q,−G|Ψν+,ν−

ν 〉 ≈ δq,0A−GNMd†k+p,eY ,η2,s2
dk,eY 1,η1,s1 |Ψν+,ν−

ν 〉

−
√
V (q + G)η2FeY (k + p + q,−q−G)neY ,η2,s2d

†
k+p,−eY ,η,sdk,eY 1,η1,s1
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+ δp+q,0δeY ,eY 1
δη2,η1δs2,s1

∑
k′′,e′′Y ,η

′′,s′′

√
V (q + G)η′′Fe′′Y (k′′,−q−G)d†k′′−q,−e′′Y ,η′′,s′′

dk′′,e′′Y ,η′′,s′′ . (F25)

Similarly, we have

d†k+p,eY 2,η2,s2
dk−q,e′Y ,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

dk′′,e′′Y ,η′′,s′′

≈〈Ψν+,ν−
ν |d†k+p,eY 2,η2,s2

dk−q,e′Y ,η1,s1 |Ψ
ν+,ν−
ν 〉d†k′′−q,−e′′Y ,η′′,s′′dk′′,e′′Y ,η′′,s′′

+ 〈Ψν+,ν−
ν |d†k+p,eY 2,η2,s2

dk′′,e′′Y ,η′′,s′′ |Ψ
ν+,ν−
ν 〉dk−q,e′Y ,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

+ 〈Ψν+,ν−
ν |dk−q,e′Y ,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

|Ψν+,ν−
ν 〉d†k+p,eY 2,η2,s2

dk′′,e′′Y ,η′′,s′′

− 〈Ψν+,ν−
ν |dk−q,e′Y ,η1,s1d

†
k′′−q,−e′′Y ,η′′,s′′

|Ψν+,ν−
ν 〉〈Ψν+,ν−

ν |d†k+p,eY 2,η2,s2
dk′′,e′′Y ,η′′,s′′ |Ψ

ν+,ν−
ν 〉.

≈δk,k′′δe′Y ,−e′′Y δη1,η′′δs1,s′′(1− ne′Y ,η1,s1)d†k+p,eY 2,η2,s2
dk′′,e′′Y ,η′′,s′′ , (F26)

where we have made use of 〈Ψν+,ν−
ν |d†k+p,eY 2,η2,s2

= 0, and hence

d†k+p,eY 2,η2,s2
dk−q,e′Y ,η1,s1O−q,−G|Ψ

ν+,ν−
ν 〉 ≈ δq,0A−GNMd†k+p,eY ,η2,s2

dk,eY 1,η1,s1 |Ψν+,ν−
ν 〉

+
√
V (q + G)η1F−eY 1

(k,−q−G)(1− ne′Y ,η1,s1)d†k+p,eY 2,η,s
dk,−e′Y ,η1,s1 . (F27)

Substituting Eqs. (F25) and (F27) into Eq. (F21), we obtain

[HI − µN, d†k+p,eY 2,η2,s2
dk,eY 1,η1,s1 ]|Ψν+,ν−

ν 〉

≈
(∑

eY

Rη2,s2eY ,eY 2
(k + p)d†k+p,eY ,η2,s2

dk,eY 1,η1,s1 +
∑
e′
Y

R̃η1,s1∗
e′
Y
,eY 1

(k)d†k+p,eY 2,η2,s2
dk,e′

Y
,η1,s1

)
|Ψν+,ν−
ν 〉

− 1

Ωtot

∑
q,G

V (G + q)
∑
eY ,e

′
Y

M (η2)
eY ,eY 2

(k + p,q + G)M
(η1)∗
e′
Y
,eY 1

(k,q + G) d†k+p+q,eY ,η2,s2
dk+q,e′

Y
,η1,s1 |Ψ

ν+,ν−
ν 〉

+
δη2η1δs2,s1

Ωtot

∑
G

∑
k′′e′′

Y
η′′s′′

V (−p + G)M (η2)
eY 1,eY 2

(k + p,−p + G)η′′Fe′′
Y

(k′′,p−G)d†
k′′+p,−e′′

Y
,η′′,s′′dk′′,e′′Y ,η′′,s′′ |Ψ

ν+,ν−
ν 〉 ,

(F28)

where Rη2,s2 and R̃η1,s1 are given by Eqs. (F14) and (F20), respectively. The last term is nonzero only if {eY 1, η1, s1}
is occupied and {eY 2, η2, s2} is empty, which, provided η2 = η1 and s2 = s1, also implies eY 1 must equal to −eY 2.
Thus we can rewrite the last term as

δeY 2,−eY 1δη2η1δs2,s1
Ωtot

∑
G

∑
k′′eY ηs

V (−p + G)η2FeY 2(k + p,−p + G)ηF−eY (k′′,p−G)d†k′′+p,eY ,η,s
dk′′,−eY ,η,s|Ψ

ν+,ν−
ν 〉

=
δeY 2,−eY 1δη2η1δs2,s1

Ωtot

∑
G

∑
k′′eY ηs

V (−p + G)η2FeY 2(k,p−G)ηF ∗eY (k′′,p−G)d†k′′+p,eY ,η,s
dk′′,−eY ,η,s|Ψ

ν+,ν−
ν 〉 , (F29)

where we have made use of Eqs. (A12) and (A21). Therefore, we can write the scattering equation as

[HI − µN, d†k+p,eY 2,η2,s2
dk,eY 1,η1,s1 ]|Ψν+,ν−

ν 〉

≈
∑

η,s,η′,s′

∑
eY ,e′Y

∑
q

Sη,s,η
′,s′;η2,s2,η1,s1

eY ,e′Y ;eY 2,eY 1
(k + q,k;p)d†k+q+p,eY ,η,s

dk+q,e′Y ,η
′,s′ |Ψν+,ν−

ν 〉 , (F30)

where the scattering matrix is

Sη,s,η
′,s′;η2,s2,η1,s1

eY ,e′Y ;eY 2,eY 1
(k + q,k;p) = δη,η2δs,s2δη′,η1δs′,s1

(
δq,0

(
Rη2,s2eY ,eY 2

(k + p)δe′Y ,eY 1
+ δeY ,eY 2

R̃η1,s1e′Y ,eY 1
(k)
)

− 1

Ωtot

∑
G

V (G + q)M (η2)
eY ,eY 2

(k + p,q + G)M
(η1)∗
e′Y ,eY 1

(k,q + G)

)
+ δeY 2,−eY 1

δη2η1δs2,s1δeY ,−e′Y δηη′δss′
1

Ωtot

∑
G

V (−p + G)ηF ∗eY (k + q,p−G)η2FeY 2
(k,p−G) . (F31)
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FIG. 12. Approximate charge neutral excitations at θ = 1.05◦ at odd fillings in the nonchiral-flat limit. The flat metric
condition is not imposed. Blue, red, black, and green bands are in the empty-half, half-half, empty-filled, half-filled sectors,
respectively. (See the text for the definition of sectors.) In this plot we set the screening length as ξ = 10nm and accordingly

the interaction strength as Uξ = 13meV. The other parameters are same as in App. A: vF = 5.944eV · Å, |K| = 1.703Å−1,
w1 = 110meV.

The last term is nonzero if both the {η2, s2} and {η, s} valley-spin flavors are halfly filled. It couples all the halfly
filled valley-spin flavors, which are independent in the (first) chiral-flat limit, to each other.

According to [110], in the nonchiral-flat limit the state Ψ1,0
−3 (or its U(4) rotations) is still the perturbative ground

state at ν = −3. Without loss of generality, we assume the occupied flavor is {+1, ↑,+1}. Then we can divide the
neutral excitations into the following sectors:

1. The half-half sector, where η2 = η1 = +1, s2 = s1 =↑. The delta functions in the first term of Eq. (F31) require
η = η′ = +1, s = s′ =↑. The delta functions in the second term requires η = η′ and s = s′. Since d†η,s,eY and
dη′,s′,e′Y must belong to empty and occupied bands, there must also be η = η′ = +1, s = s′ =↑ in the second

term. Then it follows that eY = eY 2 = −1, e′Y = eY 1 = +1. At given k,p,q, the S matrix is a one-by-one
matrix.

2. The empty-half sector, where {η2, s2} is an empty valley-spin sector and {η1, s1} is a half-filled valley-spin sector.
The second term of Eq. (F31) vanish due to the delta function δη2η1δs2s1 . The delta functions in the first term
requires η = η2, s = s2, η′ = η1, s′ = s1. It follows that e′Y = eY 1 = +1 and eY , eY 2 take values in ±1. At given
k,p,q, the S matrix is a two-by-two matrix.

According to [110], in the nonchiral-flat limit the state Ψ2,1
−1 (or its U(4) rotations) is still the perturbative ground

state at ν = −1. There is a fully occupied valley-spin sector and a half filled valley-spin sector. Without loss of
generality, we assume the occupied flavors as {+1, ↑,+1}, {+1, ↑,−1}, {+1, ↓,+1}. Then we can divide the neutral
excitations into the following sectors:

1. The half-half sector, where η2 = η1 = +1, s2 = s1 =↓. The delta functions in the first term of Eq. (F31) require
η = η′ = +1, s = s′ =↓. The delta functions in the second term requires η = η′ and s = s′. Since d†η,s,eY and
dη′,s′,e′Y must belong to empty and occupied bands, there must also be η = η′ = +1, s = s′ =↓ (the half filled

valley-spin sector) in the second term. Then it follows that eY = eY 2 = −1, e′Y = eY 1 = +1. At given k,p,q,
the S matrix is a one-by-one matrix.

2. The empty-half sector, where {η2, s2} is an empty valley-spin sector and {η1, s1} is a half-filled valley-spin sector.
The second term of Eq. (F31) vanish due to the delta function δη2η1δs2s1 . The delta functions in the first term
requires η = η2, s = s2, η′ = η1, s′ = s1. It follows that e′Y = eY 1 = +1 and eY , eY 2 take values in ±1. At given
k,p,q, the S matrix is a two-by-two matrix.

3. The half-occupied sector, where {η2, s2} is the half filled valley-spin sector {+1, ↓} and {η1, s1} is the fully
occupied valley-spin sector {+1, ↑}. The second term of Eq. (F31) vanish due to the delta function δη2η1δs2s1 .
The delta functions in the first term requires η = η2, s = s2, η′ = η1, s′ = s1. It follows that e′Y , eY 1 take values
in ±1 and eY = eY 2 = −1. At given k,p,q, the S matrix is a two-by-two matrix.

4. The empty-occupied sector, where {η2, s2} is an empty valley-spin sector and {η1, s1} is the fully occupied
valley-spin sector {+1, ↑}. The second term of Eq. (F31) vanish due to the delta function δη2η1δs2s1 . The delta
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functions in the first term requires η = η2, s = s2, η′ = η1, s′ = s1. It follows that e′Y , eY 1, eY , eY 2 all take
values in ±1. At given k,p,q, the S matrix is a four-by-four matrix.

The numerical results are shown in Fig. 12.
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