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We show that the entire continuous model of twisted bilayer graphene (TBG) (and not just the
two active bands) with particle-hole symmetry is anomalous and hence incompatible with lattice
models. Previous works, e.g., [Song et al., Phys. Rev. Lett. 123, 036401 (2019)], [Ahn et al., Phys.
Rev. X 9, 021013 (2019)], [Po et al., Phys. Rev. B 99, 195455 (2019)], and others [Kang et al. Phys.
Rev. X 8, 031088 (2018), Koshino et al., Phys. Rev. X 8, 031087 (2018), Liu et al., Phys. Rev.
B 99, 155415 (2019), Zou et al., Phys. Rev. B 98, 085435 (2018)] found that the two flat bands in
TBG possess a fragile topology protected by the C2zT symmetry. [Song et al., Phys. Rev. Lett.
123, 036401 (2019)] also pointed out an approximate particle-hole symmetry (P) in the continuous
model of TBG. In this work, we numerically confirm that P is indeed a good approximation for
TBG and show that the fragile topology of the two flat bands is enhanced to a P-protected stable
topology. This stable topology implies 4l + 2 (l ∈ N) Dirac points between the middle two bands.
The P-protected stable topology is robust against arbitrary gap closings between the middle two
bands the other bands. We further show that, remarkably, this P-protected stable topology, as well
as the corresponding 4l + 2 Dirac points, cannot be realized in lattice models that preserve both
C2zT and P symmetries. In other words, the continuous model of TBG is anomalous and cannot be
realized on lattices. Two other topology related topics, with consequences for the interacting TBG
problem, i.e., the choice of Chern band basis in the two flat bands and the perfect metal phase of
TBG in the so-called second chiral limit, are also discussed.

I. Introduction

TBG at the first magic angle (θ ≈ 1.05◦) exhibits a
group of two almost exactly flat bands [1]. Due to the
interesting interaction insulating and conducting states
[2–32], superconductor states [33–51], and single-particle
topology [19, 52–65] in the flat bands, TBG represents
one of the most versatile physical systems of recent years
[1–17, 19–31, 33–63, 65–114]. Refs. [54, 56] showed that
the C2zT symmetry of TBG protects a fragile topology
[80, 115–119] of the two flat bands, which is character-
ized by a Z-valued winding number. The fragile topol-
ogy manifests itself as a topological obstruction for ex-
ponentially decaying Wannier functions satisfying C2zT
symmetry for the two flat bands. However, the Wannier
obstruction can be removed by adding trivial bands into
the consideration [80, 115, 116]. For example, Ref. [55]
showed explicitly that symmetric Wannier functions can
be constructed if certain additional orbitals are coupled
the fragile topological band protected by C2zT . How-
ever, the papers arguing for a trivialization of the bands
[54, 55] neglected one (approximate) symmetry of the
TBG model [1].

The Bistritzer MacDonald (BM) model [1] of TBG has
an approximate particle-hole symmetry P first pointed
out in Ref. [56]. It was already pointed out in Ref. [56]
that with this approximate symmetry, there seems to be
a further, stable topology in TBG, but this result was
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not further expanded. We here numerically confirm that
the error - on the wavefunctions - of the P symmetry
(defined in Section II B) in the BM model of TBG is ex-
tremely small (< 0.01). Thus we count P symmetry as a
good approximation for the low energy physics in TBG.
We prove that if the C2zT protected winding number of
the two flat bands is odd (true in TBG), then the two
flat bands have a stable topology protected by P, which is
characterized by a Z2 invariant δ. In contrast to the frag-
ile topological bands, which can be trivialized by being
coupled to certain trivial bands, the Z2 topology, as well
as the Wannier obstruction implied by the Z2 invariant,
is stable against adding trivial bands that preserve the
P symmetry. We further proved that, in the presence
of C2zT and P, the Z2 invariant δ of 2M particle-hole
symmetric bands ε−M (k) · · · ε−1(k), ε1(k) · · · εM (k) is re-
lated to the number of Dirac points ND between ε−1(k)
and ε1(k) in the first Brillouin zone (BZ) as δ = ND

2 mod
2, provided that the 2M bands are gapped from higher
and lower bands. Here εn(k) (ε−n(k)) is the n-th posi-
tive (negative) band. Therefore, as long as 4l+ 2 (l ∈ N)
Dirac points exist between ε−1(k) and ε1(k) we find that
2M, ∀M ∈ N particle-hole symmetric bands (separate in
energy from the M+1,M+2 . . . and . . . ,−M−2,−M−1
bands) have δ = 1 and hence are topologically nontrivial.
The feature of TBG that arbitrary 2M bands are topo-
logical is inconsistent with lattice models with C2zT and
P symmetry. In a lattice model, if 2M is large enough,
e.g., equals to the number of orbitals in the model, the
2M bands have to be topologically trivial because they
span the Hilbert space of the local orbitals. Therefore,
the Z2 topology, and the 4l+ 2 Dirac points accordingly,
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cannot be realized in lattice models with finite number of
orbitals. We hence call the Z2 topology an anomaly of the
C2zT and P symmetries. We further note that this im-
plies that the many-body U(4) and U(4) × U(4) symme-
tries [111–113] are incompatible with a lattice model and
hence anomalous. It also implies that the lattice models
build to model TBG [19, 52, 53, 55] have to break the P
symmetry or the C2zT symmetry of the TBG model.

This paper is organized as follows. In Section II, we
present a review of the BM model of TBG and sum-
marize its symmetries. The error of the approximate
particle-hole symmetry P is defined and is confirmed as
being small (< 0.01). In Section III, we prove that the P
symmetry protects a stable Z2 topological state. In Sec-
tion IV, a no-go theorem of the Z2 topology is proved for
lattice models with the C2zT and P symmetries. The re-
lation between the Z2 invariant and the number of Dirac
points is also established in this section. In Section V, we
show that, when the two flat bands are gapped from the
other bands, there is natural choice of Chern band ba-
sis (with opposite Chern numbers) in the two flat bands.
The Chern band basis is used in our interacting works
[111–114] on TBG. In Section VI, we show that, in the
so-called second chiral limit, defined in [111] as the sec-
ond limit having an interacting extended U(4) × U(4)
symmetry, the symmetry anomaly of TBG manifests as
a perfect metal phase, where all the bands are connected
to each other. A brief summary of this work is given in
Section VII.

II. The BM model of twisted bilayer graphene and
its symmetries

We first present a short review of the BM model. A
more detailed account can be found in supplementary
material of Ref. [56].

A. A brief review of the BM model

TBG is an engineered material of two graphene layers
twisted by a small angle θ from each other. The band
structure of each of the two layers exhibits two Dirac
points at the K and K ′ momenta in the single layer Bril-
louin zone (BZ), respectively; the two Dirac points are
related by time-reversal T . Thus the band structure of
TBG exhibits four Dirac points: two from the top layer
and the other two from the bottom layer. When θ is small
such that the interlayer coupling is smooth in real space -
with a length scale much larger than the atom distances
- the graphene valley (K and K ′) is a good quantum
number of low energy states of TBG [1]. In this case, the
states around K (K ′) in the top layer only couple to the
states around K (K ′) in the bottom layer. Therefore, the
low energy band structure of TBG decomposes into two
independent graphene valleys, and each valley has two
Dirac points originated from the two layers, respectively.

In this work, we will focus on the valley K. The bands in
the other valley K ′ can be obtained by acting T on the
bands in the valley K.

We assume the top single graphene layer is rotated
from the x-direction by an angle θ

2 (rotation axis is z).
Thus the Dirac Hamiltonian around K in the top layer is
−ivF∂x(cos θ2σx − sin θ

2σy)− ivF∂y(cos θ2σy + sin θ
2σx) ≈

−ivF∂r ·σ+i θ2vF∂r×σ, where vF is the Fermi-velocity of
single-layer graphene and σ = (σx, σy) are Pauli matrices
representing the A/B sublattices of graphene. The bot-
tom layer is rotated from the x-direction by an angle − θ2 .
Correspondingly, the Dirac Hamiltonian around K in the
bottom layer is −ivF∂r · σ − iθvF∂r × σ. The interlayer
coupling is encoded in a position dependent matrix T (r),
where r = (x, y), such that the Hamiltonian of TBG, to
linear order of θ, can be written as

H(r) = −ivF
(
τ0∂r · σ −

θ

2
τz∂r × σ

)
+

(
0 T (r)

T †(r) 0

)
.

(1)
Here τ0 and τz are the two-by-two identity matrix and
the third Pauli matrix for the layer degree of freedom,
respectively. According to Ref. [1], when θ is small (∼
1◦), T (r) forms a smooth moirépotential:

T (r) =

3∑
i=1

e−iqi·rTi, (2)

where qi’s are q1 = kD(0,−1), q2 = kD(
√
3
2 ,

1
2 ), q3 =

kD(−
√
3
2 ,

1
2 ), with kD = 2|K| sin θ

2 being the distance be-
tween K momenta in the two layers, and Ti’s are

Ti =w0σ0 + w1

[
σx cos

2π(i− 1)

3
+ σy sin

2π(i− 1)

3

]
,

(3)
where w0 and w1 are two constant parameters. Since the
w0 term contributes to the diagonal elements, it repre-
sents the interlayer coupling between the A(B) sublattice
of the top layer and the A(B) sublattice of the bottom
layer. Similarly, the w1 term only contributes to the off-
diagonal elements, it is thus associated to the interlayer
coupling between A(B) sublattice of the top layer and
B(A) sublattice of the bottom layer.

The moirépotential (Eq. (2)) is invariant (up to a
gauge transformation) under the translations aM1 =
2π
kD

( 1√
3
, 13 ), aM2 = 2π

kD
(− 1√

3
, 13 ). The translation sym-

metry of the moirépotential is manifest in real space
(Fig. 1a). The corresponding reciprocal lattice bases are
bM1 = q2 − q1, bM2 = q3 − q1 (Fig. 1b). The unit cell
spanned by aM1 and aM2 is referred to as the moiréunit
cell. Each moiréunit cell has one AA region, one AB re-
gion, and one BA region. In the AA region, the A(B)
sublattice of the top layer sit on top of the A(B) sublat-
tice of the bottom layer; in the AB region, the A and B
sublattices of the top layer sit on top of the B sublattices
and the empty hexagon centers of the bottom layer, re-
spectively; in the BA region, the B and A sublattices of
the upper layer sit on top of the A sublattices and the
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FIG. 1. The lattice, symmetry anomaly, band structures, and Wilson loop bands of TBG. (a) The moiréunit cell, where the
blue sheet and the red sheet represent the top and bottom layers, respectively. In the AA, AB, BA regions, the A sublattice of
the top layer are located above the A sublattice, the B sublattice, and the hexagon center of the bottom layer, respectively. (b)
The moiréBrillouin zone. Left: The grey and yellow hexagons represent the moiréBrillouin zone for the graphene valleys K and
K′, respectively. Right: The reciprocal lattices and the high symmetry momenta of the moiréBrillouin zone in graphene valley
K. (c) 4l+2 (l ∈ N) Dirac points cannot be realized in lattice models with C2zT and P symmetries. (d-e) The band structure
and Wilson loop bands of the middle two bands (shaded) at θ = 1.05◦. The crossings in Wilson loop bands are protected by
C2zT and/or the approximate P. Each Wilson loop operator is integrated along bM2 and the spectrum is plotted along bM1.
(f-g) The band structure and Wilson loop bands of the middle ten bands (shaded) at θ = 0.7◦. The crossings at λ = 0, π in the
Wilson loop bands are protected by C2zT and/or by the approximate P; the double degeneracies with λ 6= 0, π at k1 = 0, π are
protected by the approximate P. These double-degeneracies guarantee Wilson loop flow for any bands with 4n+ 2 Dirac nodes
at zero energy. In fact, we have kept the P-breaking term iθvF τz∂r×σ (Eq. (1)) in the calculations used to generate this plot,
which would split the double degeneracies in principle. However, the splittings are almost invisible by eye in the plot, implying
that the P symmetry is a good approximation. The degeneracies are exact when P is exact. The parameters of Hamiltonian
used in (d-g) are vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV, w0 = 0.7w1.

empty hexagon centers of the lower layer, respectively.
First principle calculations show that the two layers are
corrugated in the z-direction [120–123]. The distance be-
tween the two layers in the AA region is larger than the
distance in the AB and BA regions. Since w0 and w1

are mainly dominated by the couplings in the AA and
AB/BA regions [1], respectively, this implies that, in the
realistic model, w0 is smaller than w1 [53]. In Figs. 1d
and 1f, we show the the band structures for two differ-
ent twist angles θ = 1.05◦, 0.7◦. The parameters are set
as vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV,
w0 = 0.7w1.

B. Symmetries of the BM model

The model Eq. (1) has several point group symme-
tries: (i) C2zT = σxK, where K is the complex conju-

gation, (ii) C3z = ei
2π
3 σz , (iii) C2x = τxσx. One can ver-

ify that the Hamiltonian is invariant under these sym-
metries. Notice that the single-graphene-valley Hamil-
tonian does not have the C2z rotation and the time-
reversal T symmetries since they map one graphene val-
ley to the other. The three crystalline symmetries and

the moirétranslations generate the magnetic space group
P6′2′2 (#177.151 in the BNS setting [124]) [56].

We define a unitary particle-hole operation P = iτy,
which transforms the position as r→ −r [56]. Here τx,y,z
are Pauli matrices representing the layer degree of free-
dom. Under P the Hamiltonian transforms as

PH(r)P † = −H(−r) + iθvF τz∂r × σ. (4)

The second term on the right hand side is in linear order
of θ. It approaches zero when θ → 0. While the other
terms in H(r) do not vanish in the θ → 0 limit. Thus
it is safe to ignore this term in the small angle limit. To
be specific, when θ ∼ 1◦, this term is of order 0.018vF kD
and hence is much smaller than the energy scale of the
low energy physics, which is of order vF kD. Therefore, P
is an emergent anticommuting symmetry when θ is small.
It satisfies the algebra [56]:

[C2zT, P ] = [C3z, P ] = 0, {C2x, P} = 0, P 2 = −1. (5)

For later convenience, we define an anti-unitary particle
operation P = PC2zT = iτyσxK, which is local in real
space and satisfies P2 = −1. It acts on the Hamiltonian
as

PH(r)P−1 = −H(r) + iθvF τz∂r × σ. (6)
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As discussed in details in Appendix B, the k-dependence
in the interlayer coupling may also cause a breaking of
the emergent P symmetry. We can also define a chiral
operation C = σz, which is local in real space. [58].
Under C the Hamiltonian transforms as

CH(r)C† = −H(r) + 2w0τxσ0

3∑
i=1

e−iqi·r. (7)

In the so-called chiral limit [58], i.e., w0 = 0, the second
term on the right hand of side vanishes and hence C be-
come an emergent anticommuting symmetry. The chiral
symmetry satisfies the algebra

{C2zT,C} = {C2x, C} = 0, [C3z, C] = [P,C] = 0, C2 = 1.
(8)

We numerically checked how much P and C are broken
in the wavefunctions of the model Eq. (1). To be specific,
we define the errors of the two symmetries in the two flat
bands as

error(P) = 1− 1

ΩM

ˆ
d2k|〈u1,−k|P|u−1,k〉|2, (9)

error(C) = 1− 1

ΩM

ˆ
d2k|〈u1,k|C|u−1,k〉|2, (10)

respectively, where |u−1,k〉 and |u1,k〉 are the periodic
parts of the Bloch states of the highest occupied band
and the lowest empty band at charge neutrality, respec-

tively, and ΩM = |bM1 × bM2| = 3
√
3

2 k2D is the area of
the Moire Brillouin zone. When the two symmetries are
exact, we have |〈u1,−k|P|u−1,k〉| = |〈u1,k|C|u−1,k〉| = 1
and hence the errors are zero. Using the parameters
vF = 5.933eV · Å, |K| = 1.703Å−1, w1 = 110meV, we
plot error(P) and error(C) as functions of w0/w1 (with
fixed w1) for a few twist angles in Fig. 2. For θ = 1.05◦,
error(P) is small (< 0.01) for w0 ≤ 0.82w1, thus the P
symmetry is a good approximation for TBG, while the C
symmetry only starts being good (with error< 0.01) for
w0 ≤ 0.07w1.

III. Stable topology protected by particle-hole
symmetry P

A. The Wilson loop Z2 invariant protected by P

We denote the Hamiltonian in momentum space as
H(k). We assume the emergent anti-unitary particle-hole
symmetry, i.e., PH(k)P−1 = −H(−k), and P2 = −1.
As detailed in Section II B, P = PC2zT is anti-unitary
and squares to -1, and is the product of the unitary P of
Ref. [56] and C2zT . We denote the energy and the peri-
odic part of Bloch state of the n-th band above (below)
the zero energy as εn(k) (ε−n(k)) and |un(k)〉 (|u−n(k)〉),
respectively. As explained in Appendix A and in Ref.
[56], |un(k)〉 satisfies the periodicity |un(k + G)〉 =
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FIG. 2. Errors of the approximate symmetries P (a) and C
(b) on the wavefunctions (as defined in Eqs. 9 and 10) in TBG
as functions of w0/w1. Here we change w0 while keeping w1

fixed (110meV). The errors are shown for different values of
the twist angle θ = 1.05◦, 1.5◦, 2◦.

V G|un(k)〉, with G being a reciprocal lattice and V G

a unitary matrix referred to as the embedding matrix.
Since P anti-commutes with the Hamiltonian and flips
the momentum, we have εn(k) = −ε−n(−k). The state
P|un(k)〉 must have the momentum −k and the energy
ε−n(−k). In general, P|un(k)〉 is spanned by Bloch states
at −k as

P|un(k)〉 =
∑
n′

|un′(−k)〉B(P)
n′n(k), (11)

where the summation over n′ is limited to those satisfy-

ing εn′(k) = −εn(−k), and B
(P)
n′n(k) is a unitary matrix

referred to as the sewing matrix of P. B(P)(k) is peri-
odic in momentum space, i.e., B(P)(k + G) = B(P)(k)
[125, 126]. Since P2 = −1, it should satisfy

B(P)(−k)B(P)∗(k) = −1. (12)

Multiplying B(P)T (k) on the right hand side of the above
equation, we obtain

B(P)(−k) = −B(P)T (k). (13)

We now prove that the P symmetry protects a Z2 in-
variant for 2M particle-hole symmetric separate bands,
i.e., bands ε−M (k), ε−M+1(k) · · · εM (k), gapped from
higher and lower bands. This proof is not limited
to TBG but applies to any system having our anti-
unitary P symmetry. We introduce the matrix U(k) =
(|u−M (k)〉, |u−M+1(k)〉 · · · |uM (k)〉). We parameterize k
as k1b1+k2b2, where b1 and b2 are the reciprocal lattice
basis vectors. Then we define the Wilson loop operator
of the 2M bands for a given k1 as

W (k1) = lim
N→∞

N−1∏
j=0

U†(k1, j
2π

N
)U(k1, (j + 1)

2π

N
). (14)

The order of the matrices in the product is given by
j: matrices with larger k2 (= j 2πN ) always appear on
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FIG. 3. Comparison of Wilson loop windings protected by
P and C2zT . (a-c) The Wilson loop bands with P. The
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Z2 invariant (a) equals to 1 if the Wilson loop bands form a
zigzag connection between k1 = 0 and k1 = π and (b) equals
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adding trivial bands: Coupling the nontrivial Wilson loop
bands (a) to a trivial Wilson loop bands (b) yields a nontrivial
Wilson loop bands (c). (d-f) The Wilson loop bands with
C2zT . The crossings at λ = 0, π are protected by C2zT . For
a two-band system, the topology is nontrivial if the Wilson
loop bands winds (d) and is trivial otherwise (e). The C2zT -
protected topology is fragile: Coupling the nontrivial Wilson
loop bands (d) to a trivial Wilson loop bands (f) yields a
trivial Wilson loop bands (f).

the right hand side of matrices with smaller k2. Due
to the periodicity of Bloch states, W (k1) is periodic..
Since W (k1) is unitary, its eigenvalues are phase factors
eiλn(kx) (n = 1 · · · 2M), where λn(k1) ranges from −π to
π. {λn(k1)} are called as the Wilson loop bands. Topol-
ogy is usually a result of Wilson loop flow, which in turn
is a result of unavoidable crossings between Wilson loop
bands.

We now prove that the Wilson loop bands are doubly
degenerate at k1 = 0 and k1 = π, as shown in Fig. 3a-
c. In fact, we should heuristically expect this, since the
Wilson loop respects P as it contains all bands related
by the particule-hole symmetry. Since P is anti-unitary
and squares to −1 is hence acts as spinful time-reversal,
which we already know to enforce Kramers doublets in
the Wilson loop spectrum [127, 128]. Due to Eq. (11),
we have

〈un(k)|un′(k′)〉 = 〈Pun′(k′)|Pun(k)〉

=
∑
mm′

B
(P)∗
m′n′(k

′)〈um′(−k′)|um(−k)〉B(P)
mn (k). (15)

In the above equation we have made use of a property of
anti-unitary symmetries: for any two states |φ〉, |ψ〉 and
an arbitrary anti-unitary operator O, we have 〈φ|ψ〉 =
〈Oψ|Oφ〉. Substituting this relation into Eq. (14) and
using the periodicity relations B(P)(k + G) = B(P)(k)
and |un(k + G)〉 = V G|un(k)〉, we obtain

W (k1) = B(P)T (k1, 0)WT (−k1)B(P)∗(k1, 0). (16)

Since W (k1) is periodic at k1, W (k1) with k1 = 0, π are
invariant under the particle-hole operation:

W (k1) = B(P)T (k1, 0)WT (k1)B(P)∗(k1, 0), (k1 = 0, π).
(17)

It is this invariance that protects degeneracies of Wilson
loop bands at k1 = 0, π. To see this, we parameter-
ize the unitary matrix W (k1) as eiH(k1) with H(k1) be-
ing a hermitian matrix periodic in k1, called the Wilson
Hamiltonian. The eigenvalues of H(k1) form the Wilson
loop bands. We can define the particle-hole operator for
H(k1) as P̃(k1) = B(P)(k1, 0)K such that Eq. (16) can be

written as H(k1) = P̃(−k1)H(−k1)P̃−1(−k1). We have

P̃(k1)P̃(−k1) = −1 due to Eq. (12). It is worth noting
that unlike the Hamiltonian H(k) which anti-commutes

with P, H(k1) commutes with P̃. Because P̃2(k1) = −1

and [P̃,H(k1)] = 0 for k1 = 0, π, the Wilson loop bands -
the eigenstates of the Wilson Hamiltonian - at k1 = 0, π
form doublets due to the Kramers theorem.

The Z2 invariant δ is defined such that δ = 1 if the
Wilson loop bands form a zigzag flow between k1 = 0
and k1 = π - equivalent to a Quantum Spin Hall flow of
Kramers paired Wannier centers, and δ = 0 otherwise.
Examples of δ = 1 and δ = 0 with only P symmetry are
shown in Figs. 3a and 3b, respectively. Fig. 3a does not
contain the C2zT symmetry and is meant to depict the
possible cases with only our anti-unitary P symmetry.
Because the degeneracies at k1 = 0, π are protected by P,
a zigzag flow is stable against adding P-preserving bands
as long as these bands are topologically trivial (they do
not exhibit Wilson loop flow themselves) that do not close
the gaps between the 2M bands and the higher/lower
bands (Fig. 3a-c).

In Figs. 1e and 1g, we plot the Wilson loop bands of
the middle two bands (ε−1(k), ε1(k)) of TBG with θ =
1.05◦ and the Wilson loop bands of the middle ten bands
(ε−5(k) · · · ε5(k)) of TBG with θ = 0.7◦, respectively.
Both have the zigzag flow and hence have δ = 1. We do
not plot the Wilson loop bands of the middle ten bands of
TBG with θ = 1.05◦ because they have touching points
with higher/lower bands at generic momenta (away from
high symmetry lines).

B. Comparison of the P-protected topology and
C2zT -protected topology

In Ref. [56], some of the authors of the present work
proved that the C2zT symmetry protects the Wilson loop
flow for two bands, as shown in Fig. 3d, where the cross-
ings at λ = 0, π are protected by C2zT . The Wilson
loop flow is characterized by an integer-valued invariant
e2: the winding number of a smooth branch of the Wil-
son loop bands. There is a gauge ambiguity for the sign
of e2. For example, the Wilson loop bands in Fig. 3d
has e2 = 1 if we choose the branch going up to define the
winding number and e2 = −1 if we choose the branch go-
ing down. e2 is also referred to as the Euler’s class [54], as
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will be briefly introduced in Section V. With only C2zT
symmetry, the flow can be broken by adding two trivial
(flat) Wilson loop bands, as shown in Fig. 3d-f, since the
crossings at generic positions - different from λ = 0, π-
in the Wilson loop spectrum are not protected by C2zT .
After the Wilson loop bands are gapped, one can still
define a C2zT -protected Z2 invariant through the nested
Wilson loop [54, 56]. Nevertheless, this C2zT -protected
Z2 invariant does not correspond to Wannier obstruc-
tion [54, 55]. Therefore, the topology protected only by
C2zT is fragile. Ref. [56] showed that, by adding the
unitary particle-hole symmetry P , one cannot render the
Stiefel–Whitney class [54] trivial by adding more bands;
however, nontrivial Stiefel-Whitney index does not imply
non-Wannierizable bands, and hence [56] called the index
“stable”, between quotation marks; this paper removes
the quotation marks by proving non-wannieralizability.

On the contrary, with the P symmetry, we cannot
break the zigzag flow by adding trivial (non-winding)
Wilson loop bands, just like in the Quantum Spin Hall
problem. First, due to the Kramers degeneracy guaran-
teed by P, a trivial state must have at least two Wil-
son loop bands - corresponding to the fact that, with
particle-hole symmetry, we must add to the nontrivial
bands, generically, two bands - of some energy ±E. The
two Wilson loop bands are separated at generic k1 but
degenerate at k1 = 0, π, as shown in Fig. 3b. If we couple
such a two-band trivial state to the topological state, the
total Wilson loop bands are still gapless (Fig. 3c) since
the degeneracies at k1 = 0, π are protected. Therefore,
the topology protected by P is stable.

If a two-band system has both C2zT and P symme-
tries, the Z2 invariant protected by P is given by the
parity of e2, i.e., δ = e2 mod 2. For example, the Wilson
loop bands in Fig. 1e has e2 = 1 and δ = 1. There is
stable topology from P, in systems with an even number
of bands. TBG has even number of bands (as it has to,
since P = C2zTP implies even number of bands: nonzero
energy E 6= 0 states come in pairs ±E, while zero energy
states have Kramers degeneracy since P2 = −1); fur-
thermore, these bands exhibit 4l+ 2 (l ∈ N) Dirac nodes
at zero energy (proved in Section IV), which will show
that TBG is in the topologically nontrivial class of this
symmetry.

C. An alternative expression of the Z2 invariant

We have mentioned that the zigzag flow of the Wil-
son loop bands protected by P is same as the zigzag
flow of Wilson loop bands protected by the time-reversal
symmetry in 2D Quantum Spin Hall topological insula-
tor [127]. Now we show that they are indeed equiva-
lent. Suppose H(k) have the P (P2 = −1) symmetry,
i.e., H(k) = −PH(−k)P−1, then we define the squared
Hamiltonian as H2(k) = H(k) ·H(k) such that it com-
mutes with P, i.e., H2(k) = PH2(−k)P−1. We can
regard P as a “time-reversal symmetry” of H2(k). An

eigenstate of H(k) with the energy εn(k) is still an eigen-
state of H2(k) but has the squared energy ε2n(k). States
of the 2M particle-hole-symmetric bands used to define
the Wilson loop (Eq. (14)), i.e., |u−M (k)〉 · · · |uM (k)〉,
form the lowest 2M bands of the squared Hamiltonian
H2(k). Thus the Wilson loop operator of the 2M
particle-hole symmetric bands of H(k) is same as the
Wilson loop operator of the 2M lowest bands of H2(k).
The zigzag flow of the Wilson loop can be equivalently
thought as protected by the “time-reversal symmetry” of
H2(k).

The time-reversal-protected Z2 invariant can be alter-
natively expressed as a topological obstruction [129, 130].
Consider 2M bands {|uIn(k)〉, |uIIn (k)〉 |n = 1 · · ·M} in
a time-reversal (T ) symmetric system that satisfy the
gauge condition |uIIn (−k)〉 = T |uIn(k)〉, |uIn(−k)〉 =
−T |uIIn (k)〉, then the corresponding Z2 invariant is given
by

δ =
1

2π

(‰
∂B
dk ·A(k)−

ˆ
B
d2kΩ(k)

)
mod 2, (18)

where B is half of the BZ whose boundary ∂B is P-
invariant,

A(k) = i

M∑
n=1

∑
a=I,II

〈uan(k)|∂kuan(k)〉 (19)

is the Berry’s connection of the considered bands, and
Ω(k) = ∂k ×A(k) is the Berry’s curvature. An example
of B is shown in Fig. 4. We regard |u−M (k)〉 · · · |uM (k)〉
as the lowest 2M bands of H2(k) and P the “time-
reversal symmetry” of H2(k). If we impose the gauge
|u−n(−k)〉 = P|un(k)〉 (n = 1 · · ·M), i.e., choose

the sewing matrix defined in Eq. (11) as B
(P)
n′,n(k) =

δn′,−nsgn(n), then we can regard |un(k)〉 and |u−n(k)〉
as |uIn(k)〉 and |uIIn (k)〉, respectively. Thus the Z2 invari-
ant of the 2M bands of H(k) protected by P is given by
Eq. (18). This expression will be used for one of the ways
to prove the symmetry anomaly of 4l+ 2 Dirac points in
systems with C2zT and P symmetries (See Section IV).

IV. A no-go theorem of two Dirac fermions on
lattices with C2zT and P symmetries

In this section, we will prove that if there are 4l + 2
(l ∈ N) Dirac fermions at zero energy (chemical poten-
tial) in a system with C2zT and P symmetries, then the
Z2 invariant of the 2M bands (arbitrary M) above and
below the chemical potential, i.e., ε−M (k) · · · εM (k), is
guaranteed to be 1, provided that the 2M bands are
gapped from other bands. As a consequence, for arbi-
trary M , the 2M particle-hole symmetric bands are not
Wannierizable. That means the 4l+ 2 Dirac fermions do
not have a lattice support.

Before going into a mathematical proof, we first give
an intuitive proof that the Wilson loop of a C2zT and P
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FIG. 4. The path used to define the Z2 invariant protected
by P. B = [−π, π] ⊗ [−π, 0] is half of the Brillouin zone. Its
boundary ∂B is invariant under the particle-hole symmetry P
(k → −k). With the C2zT symmetry, one Dirac point in B
contributes to a π Berry’s phase along ∂B.

system with 4l + 2 Dirac fermions at zero energy needs
to wind. We first assume that we have 2 bands sep-
arate from other bands close to charge neutrality. In
[44, 54] it was shown that the number of Dirac points in
half BZ mod 2 equals the winding of the Wilson loop.
For 4l + 2 Dirac nodes in between these two bands, the
winding would be odd, as in Fig. 1e. Adding non-zero
trivial or nontrivial energy bands to this system would
happen in pairs; introducing a set (trivial, due to C2zT ,
which renders Chern numbers to be zero and hence makes
any single band topologically trivial) bands at non-zero
energy would have its P conjugate and appear in num-
bers 2n. Introducing nontrivial bands at nonzero energy
would mean introducing 2 × 2n bands into the system,
as any possible nontrivial set of bands at a given energy
comes as a multiple of 2. These bands can introduce only
a multiple of 4 number of Dirac fermions into the system:
each set of two separate bands has to have a multiple of
2 Dirac fermions. From our Quantum Spin Hall (QSH)
experience, whatever number of bands we introduce on
top of our nontrivial bands with 4l + 2 Dirac fermions
cannot change the Wilson loop winding, as we are ei-
ther adding trivial bands or pairs of nontrivial bands to
a QSH system. Hence the winding (of the 4n + 2 Dirac
fermion band) is stable to the addition of any bands re-
specting C2zT and P. The only way the winding can be
interrupted is by the addition of one set of 2 bands with
Wilson loop winding to the already existent Wilson loop
winding 2-bands. However, since with C2zT the number
of Dirac nodes mod 4 is equal to twice times the wind-
ing, this additional one set of 2-bands would bring about
another 4l′+2 Dirac points so the full system would have
a number of Dirac fermions divisible by 4. Hence a sys-
tem with 4l + 2 Dirac fermions and C2zT and P has to
exhibit Wilson loop winding.

Now, by making use of Eq. (18), we give another proof
that 2M bands (gapped from other bands) with C2zT
and P symmetries that have 4l+ 2 Dirac points between
ε−1(k) and ε1(k) must have a nontrivial topology. Due

to the C2zT symmetry, the Bloch states satisfy

C2zT |un(k)〉 =
∑
n′

|un′(k)〉B(C2zT )
n′n (k), (20)

where B
(C2zT )
n′n (k) is unitary and called the C2zT sewing

matrix. The summation over n′ is limited to values sat-
isfying εn′(k) = εn(k). Substituting this constraint into
the definition of the Berry’s curvature Ω(k), we find that
Ω(k) = 0 [44, 54, 80]. Thus we only need to evaluate the
first term on the right hand side of Eq. (18). We define

A′(k) = i
∑M
n=1〈un(k)|∂kun(k)〉 for the positive bands

and A′′(k) = i
∑M
n=1〈u−n(k)|∂ku−n(k)〉 for the negative

bands. The total Berry’s connection is A = A′ + A′′.
By imposing the gauge condition |u−n(−k)〉 = P|un(k)〉
(n = 1 · · ·M) required by Eq. (18), we find

A′′(k) = i

M∑
n=1

〈u−n(k)|∂ku−n(k)〉

=i
M∑

n=1

〈∂kPu−n(k)|Pu−n(k)〉 = i

M∑
n=1

〈∂kun(−k)|un(−k)〉

=− i
M∑

n=1

〈un(−k)|∂kun(−k)〉 = A′(−k), (21)

where we have applied the property of anti-unitary sym-
metry introduced below Eq. (15). Since the boundary
∂B (Fig. 4) is invariant under k → −k, the integrals of
A′(k) and A′′(k) are equal, i.e.,

‰
∂B
dk ·A′′(k) =

‰
∂B
dk ·A′(k). (22)

The C2zT symmetry stabilizes 2D Dirac points [131], and
each Dirac point between the positive bands and the
negative bands contribute to a π or −π Berry’s phase
of A′(k) (Fig. 4). Due to the P symmetry ε−n(−k) =
−εn(k), the Dirac points must be equally distributed in
B and its complementary set BZ - B. Hence if there are
4l + 2 Dirac points in the BZ, there will be 2l + 1 Dirac
points in B and we have

¸
∂B dk ·A

′(k) = (2l + 1)π mod
2π. According to Eq. (22), we have

‰
∂B
dk · (A′(k) + A′′(k)) = (4l + 2)π mod 4π. (23)

Substituting this equation into Eq. (18) and using the
fact that Ω(k) = 0, we obtain δ = 1. Thus the pres-
ence of 4l+ 2 Dirac points in a system with C2zT and P
symmetries implies a nontrivial topology. In contrast to
lattice models whose whole bands are trivial, this non-
trivial topology is guaranteed by the Dirac points be-
tween ε1(k) and ε−1(k) and hence cannot be trivialized
by adding higher and lower energy bands (preserving P).
Therefore, no matter how many high energy bands are
included, as long as they respect C2zT and P, the con-
sidered bands must have have nontrivial topology. As
will be shown in next paragraph, in a lattice model with
a finite number of orbitals per unit cell, the Wilson loop
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bands of the whole bands must be trivial. Therefore,
4l + 2 Dirac points cannot be realized in lattice models
because the corresponding band structure, no matter how
many high and low energy bands are considered, must be
topologically nontrivial.

Here we show that the whole bands of a lattice
model must be trivial. Let the lattice model has
N orbitals, then the U(k) matrix entering the Wil-
son loop operator (Eq. (14)) of the whole bands is
U(k) = (|u1(k)〉 · · · |uN (k)〉). By the completeness of
all the Bloch states we have U(k)U†(k) = 1. Thus
the Wilson loop operator in Eq. (14) is W (k1) =
U†(k1, 0)U(k1, 2π) = U†(k1, 0)V (0,2π)U(k1, 0), where
V (0,2π) is the embedding matrix defined in Appendix A
(with G = 2πb2). Since U(k1, 0) is an N × N unitary
matrix, the eigenvalues of W (k1) are same as eigenvalues
of V (0,2π) and hence do not change with k1 and do not
wind.

It is worth noting that, in TBG, the symmetry
anomaly does not depend on the parameters of the
Hamiltonian Eq. (1). In the weak coupling limit (w0 �
vF kD, w1 � vF kD), we have two Dirac points at KM and
K ′M in the moiréBZ. If the 2M bands ε−M (k) · · · εM (k)
are gapped from the other bands, the 2M bands must
be topological due to correspondence between the num-
ber of Dirac points and the Z2 invariant δ. Tuning the
parameters of TBG may couple the 2M bands to higher
bands εM+1(k) · · · εM ′(k) (M ′ > M) and lower bands
ε−M ′(k) · · · ε−M−1(k), which are assumed be gapped
from εM ′+1(k) and ε−M ′−1(k) as we tune the parame-
ters. In the weak coupling limit, the additional 2M ′−2M
bands must have δ = 0 since they do not have Dirac
points between ε−M−1(k) and εM+1(k). Therefore, after
we couple the 2M bands to the 2M ′−2M bands, the 2M ′

bands as a whole will have δ = 1+0 = 1. As we tune the
parameters, additional Dirac points between ε1(k) and
ε−1(k) may be created due to gap closing and reopening
between ε1(k) and ε−1(k). However, the total number
of Dirac points between ε1(k) and ε−1(k) must equal to
2 mod 4, i.e., 4l + 2 (l ∈ N), because the topological
invariant of the 2M ′ bands is guaranteed to be δ = 1.

In Fig. 5, we show the evolution of Dirac points with
the twisting angle changing from 0.7◦ to 1.1◦. For
θ ∈ [0.9◦, 1.1◦], there are only two Dirac points in the
moiréBrillouin zone and they locate at KM and K ′M ,
respectively. When θ decreases to 0.8◦, two additional
Dirac points are generated along the high symmetry line
KMΓM . Due to the C3z and P symmetries, there are
twelve Dirac points generated along the equivalent paths
of KMΓM . Thus for θ ∈ [0.7◦, 0.8◦], there are in total
fourteen Dirac points in the Brillouin zone. Therefore, we
always have 4l+2 (l ∈ N) Dirac points: for θ ∈ [0.9◦, 1.1◦]
l = 0 and for θ ∈ [0.7◦, 0.8◦] l = 3.

V. The Chern band basis

In this section we show that, if the two bands ε−1(k)
and ε1(k) are gapped from other bands, we can recombine
them as two Chern bands with Chern numbers e2 and
−e2, with e2 being the Euler’s class [54, 132–134] (or,
equivalently, the Wilson loop winding number protected
by C2zT [44]). (In TBG, the Chern numbers given by±e2
are also equal to the eY = ±1 index defined in Ref. [111],
which, in a certain gauge, represents the eigenvalue of the
Pauli y matrix in the 2-dimensional space of n = ±1 band
indices.)

In order to introduce the Chern band basis, we first
introduce the definition of Euler’s class e2. (We refer the
readers to Refs. [54, 132, 44] for more details.) Sup-
pose the two bands ε1(k) and ε−1(k) are gapped from
other bands. Then, at k away from Dirac points between
the two bands, the C2zT operator leaves each band un-
changed up to a phase factor. In other words, the C2zT
sewing matrix (Eq. (20)) is diagonal at these k. Hence
in general, the C2zT symmetry acts on the Bloch states
as C2zT |un(k)〉 = |un(k)〉eiθn(k) (n = ±1), with θn(k)
being the phase factors. According to Ref. [54], it fol-
lows that the non-Abelian Berry’s connection of the two
bands at k away from Dirac points takes the form

Ann′(k) = i〈un(k)|∂kun′(k)〉

=

(
− 1

2∂kθ1(k) −ia(k)ei
θ1(k)−θ−1(k)

2

ia(k)ei
θ−1(k)−θ1(k)

2 − 1
2∂kθ−1(k)

)
nn′

. (24)

a(k) is a gauge invariant quantity up to a global ambi-
guity of ± sign. The Euler’s class is given by

e2 =
1

2π

∑
i

‰
∂Di

dk · a(k) =
1

2π

ˆ
BZ′

d2k f(k) ∈ Z. (25)

Here i indexes the Dirac points in the BZ, Di is a
sufficiently small region covering the i-th Dirac point,
BZ′ = BZ−

∑
iDi, and f(k) = ∂k × a(k).

In the above we have assumed that the |un(k)〉 is
smooth over the Brillouin zone except at the Dirac points.
Eq. (24) is valid only in this gauge. In this gauge θn(k)
is necessarily k-dependent if there exist Dirac points be-
tween the nth band and other bands. Since each Dirac
point contributes to a π Berry’s phase, there must be
2
�
∂Di

dk · Ann(k) =
�
∂Di

dk · ∂kθn(k) = 2π mod 4π.

Thus θn(k) must wind odd times around a Dirac point.
We introduce the two Chern band basis as

|v±(k)〉 =
1√
2

(ei
θ1(k)

2 |u1(k)〉 ± iei
θ−1(k)

2 |u−1(k)〉). (26)

There are two ambiguities in the above equation: (i)
There is an ambiguity of the two branches of θn

2 , i.e.,
θn
2 and θn

2 + π. (ii) At the Dirac points, where the two
bands are degenerate, there is an ambiguity of choosing
u1(k) and u−1(k). Replacing θ1(k)/2 by θ1(k)/2 + π
or replacing θ−1(k)/2 by θ−1(k)/2 + π will interchange
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FIG. 5. The distribution of Dirac points in the Moire Brillouin zone at different twisting angles. (a) The gap between the
middle two bands in the Moire Brillouin zone at θ = 0.7◦, 0.8◦, 0.9◦, 1.0◦, 1.1◦, where the Dirac points along KMΓM are marked
by the white circles. (b) The corresponding band structures at these twisting angles, where the Dirac points are marked by
the red circles. For θ ≥ 0.9◦, there are two Dirac points locating at KM and K′M , respectively, in the moiréBrillouin zone. For
θ ≤ 0.8◦, there are 14 Dirac points in the moiréBrillouin zone.

|v+(k)〉 with |v−(k)〉. Similarly, interchanging |u1(k)〉
and |u−1(k)〉 at the Dirac points will also interchange
|v+(k)〉 with |v−(k)〉 at the Dirac points. To solve these
ambiguities, as detailed in Appendix C, we require that
the Berry’s curvatures of |v+(k)〉 and |v−(k)〉 to be con-
tinuous, or, equivalently,

lim
q→0
|〈vm′(k + q)|vm(k)〉| = δm′m, (27)

where m,m′ = ±. Using Eqs. (24) and (26), we can
calculate the non-Abelian Berry’s connection on the basis
|v±(k)〉 at k away from the Dirac points. We obtain

A′mm′(k) = i〈vm(k)|∂kvm′(k)〉 =

(
a(k) 0

0 −a(k)

)
mm′

,

(28)
and hence

F ′mm′ = −[∂kx−A
′
x, ∂ky−A

′
y]mm′ =

(
f(k) 0

0 −f(k)

)
mm′

,

(29)
for k not at the Dirac points. Therefore, if the Berry’s
curvature does not diverge at Dirac points, which is true
as shown in next paragraph, the Chern numbers of the
states |v±(k)〉 are

C± = ± 1

2π

ˆ
d2k f(k) = ±e2. (30)

To conclude this section, we show that in the chiral
limit w0 = 0 the Chern band basis can be chosen as the
eigenstates of the chiral symmetry C (Eq. (7)). We define
the sewing matrix of C as

C|un(k)〉 =
∑
n′

|un′(k)〉B(C)
n′n(k), (31)

where the summation over n′ satisfies εn′(k) = −εn(k).
For the TBG Hamiltonian Eq. (1), the C2zT and C op-
erators are σxK and σz, respectively. Thus we have the
algebra C2 = 1 and {C,C2zT} = 0 and hence

[B(C)(k)]2 = 1, (32)

B(C2zT )(k)B(C)∗(k) +B(C)(k)B(C2zT )(k) = 0. (33)

As discussed at the beginning of this section, at k not

at the Dirac points, we have B
(C2zT )
n′n (k) = δn′ne

iθn(k).

Then the solution of B(C)(k) is

B(C)(k) = ±

(
0 −iei

θ1(k)−θ−1(k)

2

iei
θ−1(k)−θ1(k)

2 0

)
. (34)

The ± sign cannot be determined by solving Eqs. (32)
and (33). In practice, one should evaluate Eq. (31) to
determine the ± sign for given |u±1(k)〉. We find that
the Chern band basis Eq. (26) diagonalizes B(C)(k). Be-
low Eq. (26) we have discussed the ambiguity of choos-
ing |v±(k)〉 and we have imposed Eq. (27) to fix this
ambiguity. This ambiguity of Eq. (26) can be alterna-
tively solved by choosing |v±(k)〉 as the eigenstates of C
with the eigenvalues ±1, respectively. This choice auto-
matically satisfies Eq. (27) since the states with different
chiral eigenvalues are orthogonal, i.e., 〈v−(k)|v+(k′)〉 =
〈v−(k)|C†C|v+(k′)〉 = −〈v−(k)|v+(k′)〉 = 0 for arbi-
trary k and k′.

The Chern band basis in Eq. (26) can also be equiva-
lently defined through the Wilson loop method [29, 86].
Besides, in the chiral limit, the Chern band basis we de-
fined is equivalent to that defined in [19].
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FIG. 6. Perfect metal phase of twisted bilayer graphene in the
second chiral limit (w1 = 0). (a) The band structure at θ =

1.05◦ with the parameters vF = 5.944eV · Å, |K| = 1.703Å−1,
w1 = 0, w0 = 77meV. (b) The Brillouin zone of the twisted
bilayer graphene. The solid black lines represent the C2x-
axis and its conjugations under C3z, the dashed black lines
represent the effective mirror symmetry Mx = C2xI and its
conjugations under C3z. The red dots represent Dirac points
in the mirror lines. The blue dots represent Dirac points at
generic momenta.

VI. Perfect metal phase of twisted bilayer
graphene in the second chiral limit

In our article Ref. [111], we consider the opposite limit
of the usual chiral limit: Instead of letting w0 = 0, we
take w1 to be zero. When w1 = 0, the model Eq. (1) has
another chiral symmetry C ′ = τzσz acting on the Hamil-
tonian as C ′H(r)C ′† = −H(r). Thus we call this limit as
the second chiral limit. As discussed in Section II A, w0

and w1 are the interlayer couplings contributed mainly
by the AA and AB/BA regions, respectively; thus the
second chiral limit can be (approximately) realized if the
layer distance in the AA region is smaller than the layer
distance in the AB and BA regions (shorter distance
means stronger coupling). Such a configuration would
be different from the corrugation predicted by the first
principle calculations [120–123], where the distance in
the AA region is larger. Nevertheless, the second chiral
limit might could potentially be engineered by putting
the TBG on certain substrate, and it represents an inter-
esting interacting limit [111]. We are mainly interested in
the novel electronic band structure of TBG in the second
chiral limit and hence we leave the material realization
of the second chiral limit for future study.

We find that, in the second chiral limit, the n-th posi-
tive (negative) band is always connected to the (n+1)-th
positive (negative) band. As the first positive band and
the first negative band are connected through the Dirac
points, the whole bands are all connected, as shown in
Fig. 6a. The phase with all bands connected is referred
to as the perfect metal [135] in trilayer systems, where
the number of Dirac nodes is odd. In the current case,
we also find this “perfect metal” in even number of Dirac
node systems with the special chiral symmetry of the
second chiral limit.

The perfect metal phase is protected by C2zT , P , and

C ′. The new chiral symmetry C ′ has a strange group
algebra as it anticommutes with T and with P [112]. We
define the product of P and C ′ as an effective inversion
symmetry I = PC ′ = τxσz. It commutes with the Hamil-
tonian, i.e., H(−r) = IH(r)I† and H(−k) = IH(k)I†

accordingly. The effective inversion operator satisfies the
algebra

{C2zT, I} = 0, {P, I} = 0, I2 = 1. (35)

We first show that C2zT and I protect double degenera-
cies at I-invariant momenta. (In TBG, the I-invariant
momenta are ΓM and the three equivalent MM .) Since
the Hamiltonian at an I-invariant momentum commutes
with I, the Bloch states at this momentum must form
eigenstates of I. Suppose |u〉 is such an eigenstate with I
eigenvalue 1, then we can show that C2zT |u〉 must have
the opposite I eigenvalue -1 due to the anti-commutation
between C2zT and I. Therefore |u〉 and C2zT |u〉 form a
doublet that has opposite I eigenvalues. This explains
the double degeneracies at ΓM and MM shown in Fig. 6a.

Next we prove that, for arbitrary even M , the M -th
positive band is connected to the (M + 1)-th positive
bands through 4l + 2 (l ∈ N) Dirac points. (For odd
M , we know by counting - see Fig. 6 - that the M -th
band is connected to the (M + 1)-th band through the
double degeneracies at the I-invariant momenta.) We
only need to prove for the situation where the four bands
εM−1(k), εM (k), εM+1(k), εM+2(k) do not form four-fold
degeneracies at high symmetry momenta since otherwise
εM (k) is already connected to εM+1(k). (As shown in
Fig. 6a, we also do not observe four-fold degeneracies
at high symmetry momenta.) We assume there are in
total nD Dirac points between the first M positive bands
ε1(k) · · · εM (k) and the other bands. The nD Dirac points
can appear above the M -th band, i.e., between εM (k)
and εM+1(k), or below the first band, i.e., between ε1(k)
and ε−1(k). According to the I symmetry, half of the BZ
(B) must have nD/2 Dirac points. (The choice of B is not
unique. An example is shown in Fig. 4.) With the C2zT
symmetry, the number of Dirac points in B is related to
the Berry’s phase surrounding B as [131]

nD
2

=
1

π

‰
∂B
dk ·A′(k) mod 2, (36)

where A′(k) =
∑M
n=1 i〈un(k)|∂kun(k)〉 is the Berry’s

connection of the first M positive bands. In presence
of the effective inversion symmetry I, the right hand side
of the above equation is determined by the I eigenvalues
as [128, 136–138]

exp

(
i

‰
∂B
dk ·A′(k)

)
=
∏
K

M∏
n=1

ξK,n, (37)

where K indexes the four I-invariant momenta, and ξK,n
is the I eigenvalue of the n-th positive band at the mo-
mentum K. As discussed in the last paragraph, each dou-
blet at an I-invariant momentum has opposite I eigen-
values. Thus, there are equal number of I eigenvalues
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1 and −1 at the I-invariant momenta; since the total
number of states at the four I-invariant momenta is 4M ,
there are 2M eigenvalues with I = +1 and 2M eigenval-
ues with I = −1. Hence the right hand side of Eq. (37)
is 1 and we have

�
∂B dk · A

′(k) = 0 mod 2π. Accord-
ing to Eq. (36), the total number of Dirac points is a
multiple of 4, i.e., nD = 0 mod 4. As we have proved in
Section IV, there must be 4l′+2 (l′ ∈ N) Dirac points be-
tween ε1(k) and ε−1(k), then the number of Dirac points
between εM (k) and εM+1(k) is nD−4l′−2 = 4l+2 with
l = nD/4− l′−1 ∈ N. Thus the M -th positive band is al-
ways connected to the (M + 1)-th positive band through
4l + 2 Dirac points. According to the particle-hole sym-
metry P , the M -th negative band is also connected to the
(M + 1)-th negative band through 4l + 2 Dirac points.
Therefore, the whole set of bands in the system will be
connected.

In general, the 4l + 2 Dirac points between the M -th
band the (M+1)-th band can be located anywhere in the
BZ. However, with the C3z and the C2x symmetries of
TBG, at least some of the 4l+2 Dirac points must locate
at high symmetry point or along high symmetry lines of
the BZ. We prove this statement by contradiction. The
unitary point group of TBG is generated by C3z, C2x, and
the effective inversion I and hence is isomorphic to the
point group D3d, which has 12 elements in total. If all the
Dirac points between the M -th band the (M+1)-th band
are located at generic momenta, then the number of Dirac
points would be a multiple of 12, as represented by the
blue dots in Fig. 6b, leading to a contradictory with the
4l+ 2 Dirac points. Therefore, there must be 2 (modulo
4) Dirac points at the high symmetry points or along
the high symmetry lines. As a consequence, the entire
set of bands of TBG in the second chiral limit must be
connected along the high symmetry lines. For example,
as shown in Fig. 6a, there is a crossing between the 2nd
and 3rd bands in the high symmetry line ΓM−KM . (This
crossing is protected by the effective mirror symmetry
Mx = C2xI.) Under the actions of C2x and C3z, there
are in total six symmetry counterparts of this crossing
point (including itself). Thus the number of Dirac points
is consistent with 4l + 2 with l = 1.

VII. Conclusions

In this work, we showed that even the simple, well stud-
ied BM TBG model still has several surprises related to
the deep physics that it describes. We have proved that
the band structure in a single graphene valley of TBG
is anomalous, i.e., does not have lattice support that re-
spects the C2zT and P symmetries. The anomaly man-
ifests as (i) a Z2 nontrivial topology protected P of the
2M bands ε−M (k) · · · εM (k) for arbitrary M , provided
that the 2M bands are gapped from other bands, (ii)
4l + 2 (l ∈ N) Dirac points between ε−1(k) and ε1(k).
In the second chiral limit (w1 = 0), the anomaly man-
ifests as (iii) a perfect metal phase where all the bands
are connected.

As a consequence of the symmetry anomaly, a faith-
ful description of TBG that respects all the symme-
tries of TBG, including P, is forced to adopt a mo-
mentum space formalism. Any tight-binding description
[19, 52, 53, 55, 65] of TBG with finite number of orbitals
must break at least one of the C2zT and P symmetries
(or the valley symmetry if the tight-binding model mix
the two graphene valleys of TBG). In the other works of
our series on TBG [110–114], the interacting physics is
studied using a momentum space formalism.
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A. Hamiltonian of twisted bilayer graphene in
momentum space

1. The Hamiltonian

Here we briefly introduce the momentum space Hamil-
tonian H(k) corresponding to Eq. (1). Readers may re-
fer to the supplementary materials of Ref. [56] for more
details. The basis of H(k) is |φQ,α(k)〉, where k is a
momentum in the moiréBZ, Q is a point in the lattice
shown in Fig. 7, and α = 1, 2 is the sublattice index of
graphene. There are two types of Q lattices: the blue
lattice QT and the red lattice QB . For Q ∈ QT , the
basis |φQ,α(k)〉 is a plane-wave state from the top layer

|φQ,α(k)〉 =
1√
N

∑
R

ei(R+tα)·(k−Q)|R + tα〉, (A1)

where N is the number of lattices in the top layer
graphene, R indexes all the lattices of the top layer
graphene, tα is the sublattice vector of the top layer
graphene, |R + tα〉 is the atomic orbital at R + tα. For
Q ∈ QB , the basis |φQ,α(k)〉 is a plane-wave state from
the bottom layer

|φQ,α(k)〉 =
1√
N

∑
R′

ei(R
′+t′α)·(k−Q)|R′ + t′α〉, (A2)

where N is the number of lattices in the bottom layer
graphene (same as the one in top layer), R′ indexes all the
lattices of the bottom layer graphene, t′α is the sublattice
vector of the top layer graphene, |R′ + t′α〉 is the atomic
orbital at R′ + t′α. The Hamiltonian (Eq. (1)) on the
basis |φQ,α(k)〉 is given by

HQ,Q′(k) =vF δQ,Q′(k−Q) · σ − θ

2
ζQδQ,Q′(k−Q)× σ

+

3∑
j=1

(δQ′−Q,qj + δQ−Q′,qj )Tj , (A3)

where σ = (σx, σy) and Tj (j = 1, 2, 3) are two-by-two
matrices in the sublattice space, ζQ = 1 for Q ∈ QT and
ζQ = −1 for Q ∈ QB .

2. The periodicity of Bloch states

An eigenstate of Eq. (1) at a given momentum k can
be written as linear combination of the Bloch basis as
|ψn(k)〉 =

∑
Q,α |φQ,α(k)〉uQα,n(k). Here n is the band

index. It should be noticed that the basis states in
Eqs. (A1) and (A2) are not periodic in the moiréBZ
since |φQ,α(k + G)〉 = |ψQ−G,α(k)〉 by definition. In
order for the Bloch state |ψn(k)〉 to be periodic in the
moiréBZ, i.e., |ψn(k + G)〉 = |ψn(k)〉, uQ,α(k) should
satisfy uQ,α(k + G) = uQ−G,α(k). We introduce the
embedding matrix

V G
Q,Q′ = δQ−G,Q′ (A4)

� q1

q2

q3

K

K'

(a)

q1

q2q3

�M

KM

MM

(b)

FIG. 7. The Q-lattice for the momentum space Hamiltonian
of twisted bilayer graphene. (a) The blue and red hexagons
represent the Brillouin zones of the top layer and the bottom
layer, respectively. The blue and red dots represent the posi-
tions of Dirac points of the two layers in the graphene valley
K, respectively. (b) The Q lattice formed by adding q1,2,3

iteratively. At each blue dot a plane-wave state from the top
layer is assigned, and at each red dot a plane-wave state from
the bottom layer is assigned.

such that we can write the periodicity of Bloch states as

|un(k + G)〉 = V G|un(k)〉, (A5)

where |un(k)〉 = (uQ1,1,n(k), uQ1,2,n(k), uQ2,1,n(k) · · · )T .
While exact Bloch periodicity requires that the cutoff in
the lattice Q be large, we have showed - around the first
magic angle - [110] that we can obtain machine precision
accuracy in the first moiréBZ by taking a small cutoff in
Q

3. Symmetry operators in the momentum space

The crystalline symmetry group of the single val-
ley Hamiltonian is the magnetic space group P6′2′2
(#177.151 in the BNS setting [124]). The generators of
this group are: The C3z symmetry

H (C3zk) = D (C3z)H (C3zk)D† (C3z) (A6)

where DQ′,Q (C3z) = ei
2π
3 σzδQ′,C3zQ. The C2x symmetry

H (C2xk) = D (C2x)H (C2xk)D† (C2x) (A7)

where DQ′,Q (C2x) = σxδQ′,C2xQ, and C2xq1 = −q1.
The C2zT symmetry

H (k) = D (C2zT )H∗Q,Q′ (k)DT (C2zT ) (A8)

where DQ′,Q (C2zT ) = σxδQ′,Q. It should be noticed
that all rotations of momenta here are with respect to
the ΓM point of the moiréBZ.

When the second term in Eq. (A3) is negligible, H(k)
has an emergent unitary particle-hole symmetry

H (−k) = −D (P )H (k)D† (P ) (A9)
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where DQ′,Q (P ) = δQ′,−QζQ, and ζQ = 1 for Q ∈ QT
and ζQ = −1 for Q ∈ QB . The anti-unitary particle-hole
symmetry P = PC2zT in momentum space is

H (−k) = −D(P)H∗(−k)DT (P), (A10)

where DQ,Q′(P) = σxδQ′,−QζQ. When w0 = 0, H(k)
has an emergent chiral symmetry

H (k) = −D†(C)H(k)D(C), (A11)

where DQ,Q′(C) = σzδQ,Q′ . When w1 = 0, H(k) has
an another emergent chiral symmetry (the second chiral
symmetry)

H (k) = −D†(C ′)H(k)D(C ′), (A12)

where DQ,Q′(C
′) = σzδQ,Q′ζQ.

The embedding matrix transform under the unitary
operators (g = C3z, C2x, P, C,C

′) as

D(g)V GD†(g) = V gG. (A13)

For the unitary operator C2zT , we have

D(C2zT )V G∗DT (C2zT ) = V G. (A14)

One can verify that the two identities by explicitly acting
the symmetry operators on the embedding matrix.

4. The sewing matrices of symmetry operators

For the unitary crystalline symmetries, e.g., g =
C3z, C2x, P, C,C

′, we define the sewing matrices as

B
(g)
n′n(k) = 〈un′(gk)|D(g)|un(k)〉. (A15)

For the anti-unitary symmetries, e.g., g = C2zT,P, we
define the sewing matrices as

B
(g)
n′n(k) = 〈un′(gk)|D(g)|u∗n(k)〉. (A16)

Using the identities Eqs. (A13) and (A14), we obtain that
the sewing matrices are periodic in momentum space,
i.e., B(g)(k + G) = B(g)(k) for arbitrary reciprocal lat-
tice G. The explicit expression for the sewing matrices
depend on different basis, and will be give in Ref. [111]
for the cases needed for our interacting problem.

B. More discussions on the particle-hole symmetry

1. Effect of in-plane lattice relaxation

We first show that the in-plane relaxation does not
directly lead to the particle-hole symmetry breaking. In
Ref. [139], Koshino et al. obtained the relaxed lattice
structure of TBG by minimizing the elastic energy. The

in-plane displacement of atoms in the two layers can be
approximated as

s(l)(r) =

{
s(r), l = T

−s(r), l = B
(B1)

where l is the layer index and

s(r) =
i

2

∑
G

sG eiG·r . (B2)

sG is an odd function of G and is dominated by the com-
ponents on the shortest G vectors [140]. For example, for
|G| = |bM,1|, sG takes the form [140]

sG =
s0
|bM1|

(−Gy, Gx) , (|G| = |bM1|), (B3)

where s0 is the length of the displacement vectors. The
in-plane displacement leads to two new terms in the
Hamiltonian of TBG: (i) the correction of the intralayer
hopping, which has a form of pseudo vector potential,
(ii) the correction to the interlayer hopping. The pseudo
vector potential has the form A

Ax(r) = γ[sxx(r)− syy(r)], Ay(r) = −2γsxy(r) (B4)

with sij = 1
2 (∂ivj + ∂jvi) being the strain tensor and γ

the coupling constant. Since sG is real and odd in G,
A(r) is real and even in r. The pseudo vector potential
enters the TBG Hamiltonian as

− ivF∂r · σ → vF (−i∂r +A(r)τz) · σ . (B5)

The τz factor in the pseudo vector potential term comes
from the fact s(T ) = −s(B) = s(r) (Eq. (B1)). We find
that the pseudo vector potential term respects all the
symmetries. In particular, it respects the C2zT = σxK
and the P = iτyσxK symmetries, which protect the sta-
ble topology.

With the in-plane displacement fields, the interlayer
coupling changes to [140]

T (r)→ T̃ (r) =

3∑
i=1

e−iKi·s(r)−iqi·r · Ti , (B6)

where K1 is the K vector shown in Fig. 7, K2 = C3zK1,
K3 = C3zK2, and Ti are given in Eq. (3). The corre-
sponding Hamiltonian matrix can be written as(

0 T̃ (r)

T̃ †(r) 0

)
=
∑
i

(fi(r)τx ⊗ Ti + gi(r)τy ⊗ Ti) ,

(B7)
with fi(r) and gi(r) being the real part and imaginary
part of e−iKi·s(r)−iqi·r, respectively. Since s(r) is odd in
r, there is fi(r) = fi(−r) and gi(r) = −gi(r). One can
find that the interlayer coupling respects both C2zT =
σxK and P = iτyσxK.

Therefore, the in-plane relaxation does not directly
lead to particle-hole symmetry breaking. This is also
numerically shown in Refs. [140] and [141].
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FIG. 8. Significant particle-hole asymmetry in the energy
spectrum when the k-dependence of the interlayer coupling
is considered. The parameters of Hamiltonian used in (d-

g) are vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV,
w0 = 0.7w1, λ = 250meV, θ = 1.05◦.

2. k-dependence in the interlayer hopping

The continuous models of TBG discussed in the rest
of this work have made an approximation on the in-
terlayer coupling: We have neglected the k-dependence
of the Fourier transformation of the interlayer hopping.
Refs. [140] and [141] have shown that keeping the k-
dependence in t(q) will lead to a particle-hole asymmetry
in the energy spectrum. Ref. [141] shows that keeping
linear order of k in the k-dependence is a good approxi-
mation. Here we derive the linear k-dependence explic-
itly. Following Eq. (14) of the supplementary material of
Ref. [56], we have the intervalley coupling on the basis
Eqs. (A1) and (A2)

HQ,Q′(k) =

3∑
j=1

tKj+k−QδQ,Q′−qj · T̄j (Q ∈ QT ,Q
′ ∈ QB)

(B8)

where tq = t0 exp(−α(|q|d⊥)γ) is the Fourier transforma-
tion of the interlayer coupling with d⊥ being the distance
between the two layers, and

T̄i = σ0 +
[
σx cos

2π(i− 1)

3
+ σy sin

2π(i− 1)

3

]
. (B9)

Here K1 is the K vector shown in Fig. 7, K2 = C3zK1,
K3 = C3zK2. The parameters in tq have been fitted as
α = 0.13, γ = 1.25, , For simplicity here we assume d⊥
is uniform in real space.

We expand tKj+k−Q to leading order of k−Q as

tKj+k−Q ≈ tKj

(
1− αγ(d⊥|Kj |)γ

Kj · (k−Q)

|Kj |2

)
(B10)

Then we obtain the correction to the continuous model

as

δHQ,Q′(k) = −λ
3∑

j=1

δQ,Q′−qj ·
Kj · (k−Q)

|Kj |2
· T̄j (B11)

for Q ∈ QT ,Q′ ∈ QB , and

δHQ,Q′(k) = −λ
3∑

j=1

δQ,Q′+qj ·
Kj · (k−Q′)

|Kj |2
· T̄j (B12)

for Q ∈ QB ,Q′ ∈ QT . Here λ = tKαγ(d⊥|K|)γ . Since
δHQ,Q′(k) still consists of σ0, σx, σy, it respects the
C2zT symmetry. However, it breaks the unitary particle-
hole symmetry P (Eq. (4)) and hence the anti-unitary
particle-hole symmetry P = P · C2zT . We use the pa-
rameter λ = 180meV to make a significant particle-hole
asymmetry in the band structure: the lower band at ΓM
has the energy −1.34meV and the upper band has the en-
ergy 5.16meV (Fig. 8). However, we find that the error
of the particle-hole symmetry for the Bloch wavefunc-
tions (Eq. (9)) as error(P) = 0.07, which is still weak. A
more realistic model should include both the in-plane re-
laxation and the k-dependence of the interlayer hopping
[140, 141]. As discussed in the last subsection, without
the k-dependence, the in-plane relaxation will not lead
to P-breaking. Hence we claim that the error of the P
symmetry in this more realistic model will have the same
order as 0.13.

C. The gauge of Chern band basis

In Section V we have explained that the choice of
Chern band basis due to the C2zT gauge fixing (Eq. (26))
has two ambiguities: (i) the choice of the two branches

of θn(k)
2 , i.e., θn(k)

2 and θn(k)
2 + π, and (ii) the choice of

|u1(k)〉 and |u−1(k)〉 at Dirac points where the two bands
are degenerate. Both ambiguities lead to an ambiguity

when choosing |v±(k)〉. If we replace θ1(k)
2 by θ1(k)

2 + π
in Eq. (26), then the two Chern band states in the new
gauge |v′±(k)〉 are related to the Chern band states in the
previous gauge as

|v′±(k)〉 =
1√
2

(−ei
θ1(k)

2 |u1(k)〉 ± iei
θ−1(k)

2 |u−1(k)〉)

=− |v∓(k)〉. (C1)

Therefore, changing the branch of θ1(k)
2 at k will in-

terchange the two states |v±(k)〉 at k. One can show

that changing the branch of θ−1(k)
2 will also interchange

the two states |v±(k)〉 for the same reason. We then
consider to interchange |u±1(k)〉 at a Dirac point kD.
The Chern band states |v′′±(kD)〉 defined with the inter-
changed |u±1(kD)〉 become

|v′′±(kD)〉 =
1√
2

(ei
θ−1(kD)

2 |u−1(kD)〉 ± iei
θ1(kD)

2 |u1(kD)〉)

=± i|v∓(k)〉. (C2)
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Thus interchanging |u±1(k)〉 at Dirac points will inter-
change |v±(k)〉 at the Dirac points.

Due to the ambiguities discussed above, at each k point
we only have two choices for |v±(k)〉 (up to phase fac-
tors). Starting with |v±(k0)〉 at a given momentum k0,
the condition Eq. (27) will uniquely determine the two
branches of |v±(k)〉 over the whole BZ. To be specific, we
consider the choice of |v±(k0 + q)〉 for q being a small
momentum. Suppose |v′±(k0+q)〉 is returned by Eq. (26)
without considering Eq. (27). Then if they satisfy
|〈vm(k0)|v′m′(k0 +q)〉| ≈ δmm′ , we choose |v±(k0 +q)〉 =
|v′±(k0 + q)〉; otherwise, i.e., |〈vm(k0)|v′m′(k0 + q)〉| ≈
1 − δmm′ , we choose |v±(k0 + q)〉 = |v′∓(k0 + q)〉. Re-
peating this procedure over the whole BZ iteratively will
uniquely determined the two branches of |v±(k)〉.

We now explain that the obtained two branches by the
method introduced above must be Chern bands. We first
consider k not at the Dirac points. Due to the discus-

sion in Section V, if a smooth branch of θn(k)
2 is chosen,

the states |v±(k)〉 will have smooth Berry’s curvatures

±f(k). On the other hand, if the branch of θn(k)2 changes
at k?, then there is limq→0 |〈v+(k?)|v+(k? + q)〉| =
|〈v+(k?)|v−(k?)〉| = 0 and hence the Berry’s curvatures
of |v±(k)〉 will be discontinuous at k?. Therefore, choos-

ing a smooth branch of θn(k)
2 is equivalent to choos-

ing |v±(k)〉 such that they have continuous Berry’s cur-
vatures. Thus Eq. (27), which guarantees continuous
Berry’s curvatures, also enforces that |v±(k)〉 must have
the Berry’s curvatures ±f(k). We then consider the
Dirac points. Since there is a finite number of Dirac
points in the BZ, the integral of Berry’s curvature in the
(infinite small) neighborhoods of the Dirac points ap-
proaches zero as long as Eq. (27) holds such that the
Berry’s curvature is non-divergent. Therefore, the inte-
gral of Berry’s curvatures of |v±(k)〉 subject to the con-
dition Eq. (27) are ± 1

2π

´
d2kf(k) = ±e2.

Now we explicitly show why the Berry’s curvatures of
Eq. (26) are not divergent at the Dirac points if Eq. (27)
holds. We consider a linearized k·p model around a single
Dirac point H = kxσx + kyσy, where the C2zT operator
is σxK. Since Berry’s curvature is gauge-invariant, we
take the particular gauge θ1(k) = θ−1(k) = 0 in the
calculation. The Bloch states in this gauge are

|u1(k)〉 =
1√
2

(
e−i

φ(k)
2

ei
φ(k)

2

)
, |u−1(k)〉 =

1√
2

(
−ie−i

φ(k)
2

iei
φ(k)

2

)
,

(C3)

where φ(k) = arccos kx√
k2x+k

2
y

. Then the recombined

Chern basis are |v+(k)〉 = (e−i
φ(k)

2 , 0)T , |v−(k)〉 =

(0, ei
φ(k)

2 )T . They satisfy Eq. (27) and have vanishing
Berry’s curvatures in the neighbourhood of the Dirac
point.
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