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We investigate the Twisted Bilayer Graphene (TBG) model of Bistritzer and MacDonald (BM)
[Bistritzer and MacDonald, PNAS 108, 12233 (2011)] to obtain an analytic understanding of its
energetics and wavefunctions needed for many-body calculations. We provide an approximation
scheme for the wavefunctions of the BM model, which first elucidates why the BMKM -point centered
original calculation containing only 4 plane-waves provides a good analytical value for the first magic
angle (θM ≈ 1◦). The approximation scheme also elucidates why most of the many-body matrix
elements in the Coulomb Hamiltonian projected to the active bands can be neglected. By applying
our approximation scheme at the first magic angle to a ΓM -point centered model of 6 plane-waves,
we analytically understand the reason for the small ΓM -point gap between the active and passive
bands in the isotropic limit w0 = w1. Furthermore, we analytically calculate the group velocities
of the passive bands in the isotropic limit, and show that they are almost doubly degenerate, even
away from the ΓM -point, where no symmetry forces them to be. Furthermore, moving away from
the ΓM and KM points, we provide an explicit analytical perturbative understanding as to why
the TBG bands are flat at the first magic angle, despite the first magic angle is defined by only
requiring a vanishing KM -point Dirac velocity. We derive analytically a connected “magic manifold”
w1 = 2

√
1 + w2

0 −
√

2 + 3w2
0, on which the bands remain extremely flat as w0 is tuned between

the isotropic (w0 = w1) and chiral (w0 = 0) limits. We analytically show why going away from
the isotropic limit by making w0 less (but not larger) than w1 increases the ΓM - point gap between
the active and the passive bands. Finally, by perturbation theory, we provide an analytic ΓM point
k · p 2-band model that reproduces the TBG band structure and eigenstates within a certain w0, w1

parameter range. Further refinement of this model are discussed, which suggest a possible faithful
representation of the TBG bands by a 2-band ΓM point k · p model in the full w0, w1 parameter
range.

I. Introduction

The interacting phases in twisted bilayer graphene
(TBG) are one of the most important new discoveries of
the last few years in condensed matter physics [1–111].
The theoretical prediction that interacting phases would
appear in this system was made based on the appearance
of flat bands in the non-interacting Bistritzer-Macdonald
(BM) Hamiltonian [1]. This Hamiltonian is at the start-
ing point of the understanding of every aspect of strongly
correlated TBG (and other moiré systems) physics [2–
27]. Remarkably, it even predicts quite accurately the
so-called “magic angles” at which the bands become flat,
and is versatile enough to accommodate the presence of
different hoppings in between the AA and the AB stack-
ing regions of the moiré lattice. The BM Hamiltonian is
in fact a large class of k · p models, which we will call
BM-like models, where translational symmetry emerges
at small twist angle even though the actual sample does
not have an exact lattice commensuration.

This paper is the first of a series of six papers on TBG
[107–111], for which we present a short summary here.
In this paper, we investigate the spectra and matrix el-
ements of the single-particle BM model by studying the
k·p expansion of BM model at ΓM point of the moiré Bril-
louin zone. In TBG II [107], we prove that the BM model

with the particle-hole (PH) symmetry defined in Ref. [43]
is always stable topological, rather than fragile topological
as revealed without PH symmetry [43–45, 76]. We fur-
ther study TBG with Coulomb interactions in Refs. [108–
111]. In TBG III [108], we show that the TBG interac-
tion Hamiltonian projected into any number of bands
is always a Kang-Vafek type [71] positive semi-definite
Hamiltonian (PSDH), and generically exhibit an enlarged
U(4) symmetry in the flat band limit due to the PH sym-
metry. This U(4) symmetry for the lowest 8 bands (2 per
spin-valley) was previously shown in Ref. [72]. We fur-
ther reveal two chiral-flat limits, in both of which the
symmetry is further enhanced into U(4)×U(4) for any
number of flat bands. The U(4)×U(4) symmetry for the
lowest 8 flat bands in the first chiral limit was first dis-
covered in Ref. [72]. With kinetic energy, the symmetry
in the chiral limits will be lowered into U(4). TBG in
the second chiral limit is also proved in TBG II [107] to
be a perfect metal without single-particle gaps [112]. In
TBG IV [109], under a condition called flat metric con-
dition (FMC) which is defined in this paper (Eq. 20),
we derive a series of exact insulator ground/low-energy
states of the TBG PSDH within the lowest 8 bands at
integer fillings in the first chiral-flat limit and even fill-
ings in nonchiral-flat limit, which can be understood as
U(4)×U(4) or U(4) ferromagnets. We also examine their
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perturbations away from these limits. In the first chiral-
flat limit, we find exactly degenerate ground states of
Chern numbers νC = 4−|ν|, 2−|ν|, · · · , |ν|−4 at integer
filling ν relative to the charge neutrality. Away from the
chiral limit, we find the Chern number 0 (±1) state is fa-
vored at even (odd) fillings. With kinetic energy further
turned on, up to 2nd order perturbations, these states are
intervalley coherent if their Chern number |νC | < 4−|ν|,
and are valley polarized if |νC | = 4−|ν|. At even fillings,
this agrees with the K-IVC state proposed in Ref. [72].
At fillings ν = ±1,±2, we also predict a first order phase
transition from the lowest to the highest Chern number
states in magnetic field, which is supported by evidences
in recent experiments [14–16, 24–27]. In TBG V [110], we
further derive a series of exact charge 0,±1,±2 excited
states in the (first) chiral-flat and nonchiral-flat limits. In
particular, the exact charge neutral excitations include
the Goldstone modes (which are quadratic). This allows
us to predict the charge gaps and Goldstone stiffness. In
the last paper of our series TBG VI [111], we present
a full Hilbert space exact diagonalization (ED) study at
fillings ν = −3,−2,−1 of the projected TBG Hamilto-
nian in the lowest 8 bands. In the (first) chiral-flat and
nonchiral-flat limits, our ED calculation with FMC ver-
ified that the exact ground states we derived in TBG
IV [109] are the only ground states at nonzero integer
fillings. We further show that in the (first) chiral-flat
limit, the exact charge ±1 excitations we found in TBG
V [110] are the lowest excitations for almost all nonzero
integer fillings. In the nonchiral case with kinetic energy,
we find the ν = −3 ground state to be Chern number
±1 insulators at small w0/w1 (ratio of AA and AB inter-
layer hoppings, see Eq. 4), while undergo a phase transi-
tion to other phases at large w0/w1, in agreement with
the recent density matrix renormalization group studies
[80, 81]. For ν = −2, while we are restricted within the
fully valley polarized sectors, we find the ground state
prefers ferromagnetic (spin singlet) in the nonchiral-flat
(chiral-nonflat) limit, in agreement with the perturbation
analysis in Refs. [72, 109].

To date, most of our understanding of the BM-like
models comes from numerical calculations of the flat
bands, which can be performed in a momentum lattice
of many moiré Brillouin zones, with a cutoff on their
number. The finer details of the band structure so far
seem to be peculiarities that vary with different twisting
angles. However, with the advent of interacting calcula-
tions, where the Coulomb interaction is projected into the
active, flat bands of TBG, a deeper, analytic understand-
ing of the flat bands in TBG is needed. In particular,
there is a clear need for an understanding of what quan-
titative and qualitative properties are not band-structure
details. So far, the analytic methods have produced the
following results: by solving a model with only 4 plane
waves (momentum space lattice sites, on which the BM is
defined), Bistritzer and MacDonald [1] found a value for
the twist angle for which the Dirac velocity at the KM

moiré point vanishes. This is called the magic angle. In

FIG. 1. Several quantitative characteristics of the Bistritzer
MacDonald model that require explanation. In particular, an
analytic understanding of the active band flatness is available
only in the chiral limit w0 = 0. However, the band is very flat
far away from the chiral limit. Several other features of the
bands are pointed out.

fact, the full band away from the KM point is flat, a fact
which is not analytically understood. A further analytic
result is the discovery that, in a limit of vanishing AA-
hopping, there are angles for which the band is exactly
flat. This limit, called the chiral limit [37], has an extra
chiral symmetry. However, it is not analytically known
why the bands remain flat in the whole range of AA cou-
pling between the isotropic limit (AA=AB coupling) and
the chiral limit. We note that the realistic magic angle
TBG is in between these two limits due to lattice re-
laxations [113–116]. A last analytical result is the proof
that, when particle-hole symmetry is maintained in the
BM model [43], the graphene active bands are topological
[42–47, 76, 117, 118].

This leaves a large series of un-answered questions.
Rather than listing them in writing, we find it more in-
tuitive to visualize the questions in a plot of the band-
structure of TBG in the isotropic limit at the magic angle
and away from it, towards the chiral limit. In Fig. 1, we
plot the TBG low-energy band structure in the moiré
Brillouin zone, and the questions that will be answered
in the current paper. To distinguish with the high sym-
metry points (Γ,M,K,K ′) of the monolayer graphene
Brillouin zone (BZ), we use a subindex M to denote the
high symmetry points (ΓM ,MM ,KM ,K

′
M ) of the moiré

BZ (MBZ). Some salient feature of this band structure
are: (1) In the isotropic limit, around the first magic an-
gle, it is hard to obtain two separate flat bands; it is hard
to stabilize the gap to passive bands over a wide range
of angles smaller than the first magic angle. In fact,
Ref. [43] computes the active bands separated regions as
a function of twist angle, and finds a large region of gap-
less phases aroung the first magic angle. (2) The passive
bands in the isotropic limit are almost doubly degenerate,
even away from the ΓM -point, where no symmetry forces
them to be. Moreover, their group velocities seem very
high, i.e. they are very dispersive. (3) While the analytic
calculation of the magic angle [1] shows that the Dirac
velocity vanishes in the isotropic limit at AA-coupling
w0 = 1/

√
3 (in the appropriate units, see below), it does
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FIG. 2. Matrix elements needed for the interacting prob-

lem. Specifically, the form factors M
(η)
m,n (k,q + G) =∑

α

∑
Q∈Q± u

∗
Q−G,α;mη (k + q)uQ,α;nη (k) , of the Coulomb

interaction are needed. They correspond to the overlap of
the Bloch state at momentum k, on the momentum lattice
Q, uQ,α;nη (k) with the Bloch state at momentum q + k on
the momentum lattice Q + G, u∗Q−G,α;mη (k + q). Here m,n
are band indices, α = A,B is the graphene sublattice index,
η is the valley index, G is a reciprocal momentum, and Q
is the honeycomb momentum lattice generated by the moiré
reciprocal vectors shown in this figure.

not explain why the band is so flat even away from the
Dirac point, for example on the KM − ΓM −MM −KM

line. (4) Away from the isotropic limit, while keeping

w1 = 1/
√

3, the gap between the active and passive bands
increases immediately, while the bandwidth of the active
bands does not increase. (5) The flat bands remain flat,

over the wide range of w0 ∈ [0, 1/
√

3], from chiral to the
isotropic limit. Also, our observation (6) in Fig. 1 shows
that since the gap between the active and passive bands
is large in the chiral limit compared to the bandwidth of
active bands, a possible k · p Hamiltonian for the active
bands might be possible.

A further motivation for the analytic investigation of
the TBG Bistritzer-MacDonald model is to understand
the behavior of the matrix elements M

(η)
m,n (k,q + G) =∑

α

∑
Q∈Q± u

∗
Q−G,α;mη (k + q)uQ,α;nη (k) as a function

of G, which we call the form factor (or overlap matrix ).
These are the overlaps of different Bloch states in the
TBG momentum space lattice (see Fig. 2) and their be-
havior is important for the form factors of the interacting
problem [108, 109]. These will be of crucial importance
for the many-body matrix elements [107, 111] as well as
for justifying the approximations made in obtaining ex-
act analytic expressions for the many-body ground-states
[109] and their excitations [110].

We provide an analytic answer to all the above ques-
tions and observations. We will focus on the vicinity of
the first magic angle. We first provide an analytic pertur-
bative framework in which to understand the BM model,
and show that for the two flat bands around the first

magic angle, only a very small number of momentum
shells is needed. We justify our framework analytically,
and check it numerically. This perturbative framework

also shows that M
(η)
m,n (k,q + G) is negligible for G more

than 2-times the moiré BZ (MBZ) momentum - at the
first magic angle, irrespective of k,q. We then provide
two approximate models involving a very small number
of momentum lattice sites, the Tripod model (KM cen-
tered, also discussed in Ref. [1]), and a new, ΓM centered
model. The Tripod model captures the physics around
the KM point (but not around the ΓM point), and we

show that the Dirac velocity vanishes when w1 = 1/
√

3
irrespective of w0. The ΓM centered model captures the
physics around the ΓM point extremely well, as well as
the physics around the KM point. Moreover, an ap-
proximation of the ΓM centered model with only 6 plane
waves, which we call the Hexagon model, has an analytic
6-fold exact degeneracy at the ΓM point in the isotropic
limit w1 = w0 = 1/

√
3, which is the reason for feature (1)

in Fig. 1. By performing a further perturbation theory
in these 6 degenerate bands away from the ΓM point,
we obtain a model with an exact flatband at zero en-
ergy on the ΓM −KM line, and almost flat bands on the
ΓM −MM line, answering (3) in Fig. 1. In the same per-
turbative model, the velocity of the dispersive bands -
which can be shown to be degenerate - can be computed
and found to be the same with the bare Dirac veloc-
ity (with some directional dependence), answering (2) in
Fig. 1. Away from the isotropic limit, our perturbative
model, which we still show to be valid for w0 ≤ w1 (but
not for w0 >> w1) allows for finding the analytic energy
expressions at the ΓM point, and seeing a strong depen-
dence on w0 answering (3) in Fig. 1. At the same time,
one can obtain all the eigenstates of the Hexagon model
at the ΓM point after tedious algebra, which can serve as
the starting point of a perturbative k ·p expansion of the
2-active band Hamiltonians. With this, we provide an ap-
proximate 2-band continuum model of the active bands,
and find the manifold w1(w0) = 2

√
1 + w2

0 −
√

2 + 3w2
0

with w0 ∈ [0, 1/
√

3], where the bandwidth of the active
bands is the smallest, in this approximation. The radius
of convergence for the k · p expansion is great around the
ΓM -point but is not particularly good around the KM

point for all w0, w1 parameters, but can be improved by
adding more shells perturbatively, which we leave for fur-
ther work. A series of useful matrix element conventions
are also provided.

II. New Perturbation Theory Framework for Low
Energy States in k · p Continuum Models

In this section, we provide a general perturbation the-
ory for the k ·p BM-type Hamiltonians that exist in moiré
lattices. We exemplify it in the TBG BM model, but the
general characteristics of this model allow this perturba-
tion theory to be generalizable to other moiré system.
The TBG BM Hamiltonian is defined on a momentum
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FIG. 3. (a) The Brillouin Zones of two Graphene layers. The
grey solid line and red dots represent the BZ and Dirac cones
of top layer, and the grey dashed line and blue dots repre-
sent the BZ and Dirac cones of the bottom layer. (b) The
lattice formed by adding q1,2,3 iteratively. Red and blue
circles represent Q+ and Q−, respectively. (c) Relation of
graphene BZ and moiré BZ in commensurate case. Here we
take the graphene BZ reciprocal vectors b1 = 3bM1 + 2bM2,
b2 = −2bM1 + 5bM2.

lattice of plane waves. Its symmetries and expressions
have been extensively exposed in the literature (includ-
ing in our paper [107]), and we only briefly mention them
here for consitency. We first define kθ = 2|K| sin(θ/2) as
the momentum difference between K point of the lower
layer and K point of the upper layer of TBG, and denote
the Dirac Fermi velocity of monolayer graphene as vF .
To make the TBG BM model dimensionless, we measure
all the energies in units of vF kθ, and measure all the
momentum in units of kθ. Namely, any quantity E (k)
with the dimension of energy (momentum) is redefined
as dimensionless parameters

E → E/(vF kθ) , k→ k/kθ . (1)

We will then work with the dimensionless single particle
Hamiltonian for the valley η = +, which in the second
quantized form reads [1, 43, 107]

Ĥ
(+)
0 =

∑
k∈MBZ

∑
sαβ

∑
QQ′∈Q±

HQα,Q′β (k) c†k,Q,+,αsck,Q′,+,βs,

(2)
where MBZ stands for moiré BZ, the momentum k is
measured from the center (ΓM as shown in Fig. 3) point
of the MBZ, s =↑, ↓ is spin, and α, β denotes the 2 in-
dices of A,B sublattices. Here the dimensionless first
quantized Hamiltonian HQα,Q′β (k) is given by

HQα,Q′β (k) = δQ,Q′ ((k−Q) · σ)αβ

+

3∑
j=1

(
δQ−Q′,qj

+ δQ′−Q,qj

)
(Tj)αβ ,

(3)

where

Tj = w0σ0 + w1(cos
2π

3
(j − 1)σx + sin

2π

3
(j − 1)σy), (4)

with w0 being the interlayer AA-hopping and w1 the in-
terlayer AB-hopping, σ = (σx, σy), and σ0,x,y,z stand
for the identity and Pauli matrices in the 2-dimensional
sublattice space. k takes value in MBZ, and k = 0 cor-
responds to the ΓM point in the moiré BZ. We define
q1 as the difference between the K momentum of the
lower layer of graphene and the rotated K of the upper
layer, and q2 and q3 as the C3z and C−1

3z rotations of q1

(see Fig. 3). The moiré reciprocal lattice Q0 is then gen-
erated by the moiré reciprocal vectors bM1 = q3 − q1

and bM2 = q3 − q2, which contains the origin. We
also define Q+ = q1 + Q0 and Q− = −q1 + Q0 as the
moiré reciprocal lattices shifted by q1 and −q1 respec-
tively. Q ∈ Q± is then in the combined momentum lat-
tice Q+ ⊕Q−, which is a honeycomb lattice. For valley

η = +, the fermion degrees of freedom c†k,Q,+,αs with
Q ∈ Q+ and Q ∈ Q− are from layers 1 and 2, re-
spectively. Since energy and momentum are measured
in units of vFkθ and kθ, we have that |qi| = 1, and both
w0 and w1 are dimensionless energies. It should be no-
ticed that, for infinite cutoff in the lattice Q, we have

c†k+bMi,Q,ηαs
= c†k,Q−bMi,ηαs

6= c†k,Q,ηαs, as proved in

Refs. [43, 107]. In practice, we always choose a finite
cutoff ΛQ for Q (ΛQ denotes the set of Q sites kept).

We note that in the Hamiltonian (3), we have adopted
the zero angle approximation [1, 107], namely, we have
approximated the Dirac kinetic energy k · σ±θ/2 (± for
layers 1 and 2, respectively) as k · σ, where σ±θ/2 are
the Pauli matrices σ rotated as a vector by angle ±θ/2
about the z axis. With the zero angle approximation, the
Hamiltonian (3) acquires a unitary particle-hole symme-
try [43], which is studied in details in another paper of
us [107]. In the absence of the zero angle approximation,
the particle-hole symmetry is only broken up to 1% [107]
near the first magic angle, and is exact in the (first) chiral
limit w0 = 0 [106]. We also note that different variants
of the TBG BM model exist in the literature, which fur-
ther include nonlocal tunnelings, interlayer strains or k
dependent tunnelings [119–122]. However, we shall only
focus on the BM model in Eq. (3) in this paper.

It is the cutoff ΛQ that we are after : we need to quan-
tize what is the proper cutoff Q ∈ ΛQ in order to obtain a
fast convergence of the Hamiltonian. We devise a pertur-
bation theory which gives us the error of taking a given
cutoff in the diagonalization of Hamiltonian in Eq. 3. For
the first magic angle, we will see that this cutoff is par-
ticularly small, allowing for analytic results.

A. Setting Up the Shell Numbering of the
Momentum Lattice and Hamiltonian

We now consider the question of what momentum shell
cutoff ΛQ should we keep in performing a perturbation
theory of the BM model. In effect, considering an infi-
nite cutoff for the Q lattice, we can build the BM model
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centered around any point k0 in the MBZ, by sending

k→ k− k0 , Q→ Q− k0 (5)

in Eq. 3; however, it makes sense to pick k0 as a high-
symmetry point in the MBZ, and try to impose a finite
cutoff ΛQ in the shifted lattice Q. Two important shifted
lattices k0 can be envisioned, see Fig. 4. These lattices
will be developed and analyzed in Sec. III; here we only
focus on the perturbative framework of Eq. 3, which is
the same for either of these two lattices (and in fact, on
a lattice with any k0 center).

We introduce a numbering of the “shells” in momen-
tum space Q on this lattice. In the KM -centered lattice
(Fig. 4b) which is a set of Hexagonal lattices but cen-
tered at one of the “sites” (the KM point, corresponding
to the choice k0 = −q1), the sites of shells n are denoted
Ani, with n− 1 being the minimal graph distance (mini-
mal number of bonds travelled on the honeycomb lattice
from one site to another) from the center A11, while i
goes to the number of Q sites with the same graph dis-
tance n− 1. The truncation in Q corresponds to a trun-
cation in the graph distance n − 1. In particular, with
lattice Q centered at the KM point, the momentum hop-
ping Ti in the BM Hamiltonian Eq. 3 then only happens
between sites in two different shells n ↔ n + 1 but not
between sites in the same shell. The simplest version of
this model, with a truncation at n = 2, with sites A11

and A21, A22, A23 was used by Bistritzer and MacDon-
ald to show the presence of a “magic angle”- defined as
the angle for which the Dirac velocity vanishes. We call
this the Tripod model. This truncated model (the Tri-
pod model) does not respect the exact C2x symmetry,
although it becomes asymptotically good as more shells
are added. The magic angle also does not explain ana-
lytically the flatness of bands, since it only considers the
velocity vanishing at one point, KM . However, the value
obtained by BM [1] for the first magic angle is impres-
sive: despite considering only two shells (4 sites), and
despite obtaining this angle from the vanishing velocity
of bands at only one point (KM in the BZ), the bands
do not change much after adding more shells. Moreover
they are flat throughout the whole BZ, not only around
the KM point. The Dirac velocity also does not change
considerably upon introducing more shells.

We now introduced a yet unsolved lattice, the ΓM -
centered model in Fig. 4a, which corresponds to the
choice k0 = 0 in Eq. (5). This model, which we call
ΓM -centered was not solved by BM, perhaps because of
the larger Hilbert space dimension than the KM -centered
one. It however respects all the symmetries of the TBG
(except Bloch periodicity, which is only fully recovered in
the large cutoff ΛQ limit) at any finite number of shells
and not only in the large shell number limit. While not
relevant for the perturbation theory described here, we
find it useful to partition one shell n in the ΓM centered
lattice into two sub-shells An and Bn, each of which has
6n sites. The first shell is A1 given by the 6 corners
of the first MBZ; then we define An as the shell with a

FIG. 4. Lattices centered around momentum k0 on which one
can calculate the TBG Hamiltonian.. a) The hexagon cen-
tered model (ΓM -centered model, in which we build “shells”
by graph distance from the hexagon centered at the ΓM point.
The circles denote the different shells, although going to larger
graph distance will make the circles into hexagons. There are
two different types of sub-shells in each shell, the A and the
B sub-shells in this model. The A shells connect to the B
shells, but the A sites within a shells also contain hoppings
within themselves. The B sites hop only to A sites. b) The
triangle centered at the KM - point model, in which we build
“shells” by graph distance from the KM -point centered at the
origin. The circles denote the different shells, although going
to larger graph distance will make the circles into triangles.
There are only one type of shells, the A shells in this model.
The A sites within a shell do not hop to other sites within
each shell.

minimal graph distance 2(n− 1) to shell A1, and Bn as
the shell with a minimal graph distance 2n − 1 to shell
A1. Ani and Bni where i = 1, . . . , 6n is the index of
sites in the sub-shell An or Bn. The partitioning in sub-
shells is useful when we realize that the hopping Ti in the
BM Hamiltonian Eq. 3 can only happen between An and
Bn shells, between Bn and An+ 1 shells, and within an
An shell, but not within the same Bn shell. In App. A
we provide an explicit efficient way of implementing the
scattering matrix elements of the BM Hamiltonian Eq. 3,
and provide a block matrix form of the BM Hamiltonian
in the shell basis defined here. Written compactly, the
expanded matrix elements in App .A read:

(HAn,An)Q1,Q2
=

{
Tj if Q1 −Q2 = ±qj
0 otherwise

(6)

for the hopping terms, and similarly for HAn,Bn where
Q1,Q2 are the initial and final momenta in their respec-
tive shells. Finally for k−dependent dispersion we take
a linearized model:

(Hk,An/Bn)Q1Q2 = (k−Q1) · σδQ1Q2 . (7)

which is accurate in the small-angle low-energy approx-
imations we make. Recall that the momentum is mea-
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sured in units of kθ = 2|K| sin(θ/2) with θ the twist an-
gle, while the energy (and Hamiltonian matrix elements)
are in units of vF kθ. We may now write the dimensionless
BM Hamiltonian H(k) in Eq. 3 in block form as

H =


HkA1 +HA1,A1 HA1,B1 0 · · ·

H†A1,B1 HkB1 HB1,A2 · · ·

0 H†B1,A2 HkA2 +HA2,A2
. . .

... 0
. . .

. . .



≡



M1 N1 0 0 . . . 0 0

N†1 M2 N2 0 . . . 0 0

0 N†2 M3 N3 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . ML−1 NL−1

0 0 0 0 . . . N†L−1 ML

 (8)

where L is the shell cutoff that we choose. In the
above equation, the M,N block form of the matrix is
a schematic, in the sense that both the ΓM -centered
model Fig. 4a and the KM -centered model Fig. 4b can
be written in this form, albeit with different Mn, Nn,
n = 1, . . . L. Also, each Mn depends on k, which for
space purposes was not explicitly written in Eq. 8.

B. General Hamiltonian Perturbation for Bands
Close to Zero Energy with Ramp-Up Term

In general, Eq. 8, with generic matrices Mi, Ni repre-
sents any Hamiltonian with short range hopping (here
on a momentum lattice), and not much progress can be
made. However, for our BM-Hamiltonians, we know sev-
eral facts which render them special:

• The Hamiltonian in Eq. 3 has very flat bands, at
close to zero energy |E| ≤ 0.02vF kθ. Numerically,
the energy of the flat bands� w1 and w0, since nu-

merically we know that the first magic angle hap-
pens at w1 (or w0) around 1/

√
3.

• The block-diagonal terms Mn contain a ramping
up diagonal term Eq. 7, of eigenvalue |k−Q|. The
k momentum runs in the first MBZ, which means
that |k| ≤ 1. Since Q for the n’th shell is pro-
portional to n, higher order shells contribute larger
terms to the diagonal of the BM Hamiltonian.

We now show that, despite the higher shell diagonal
terms being the largest in the BM Hamiltonian, they
contribute exponentially little to the physics of the low
energy (flat) bands. This should be a generic property of
the moiré systems.

The Mn, Nn Block Hamiltonian Eq. 8 acts on the
spinor wavefunction (ψ1, ψ2, ψ3, . . . , ψL−1, ψL) where the
Ψn’s are the components of the wavefunction on the shells
n = 1, 2, 3, . . . , L− 1, L, and L is the cutoff shell. Notice
that they likely have different dimensions: in the ΓM -
centered model, ψ1 is a 12-dimensional spinor (6 ver-
tices of the first Hexagon momentum Q - for sub-shell
A1i, i = 1 . . . 6- times 2 for the αβ indices ) ψ2 is also
a 12-dimensional spinor (6 legs coming out of the ver-
tices of the first Hexagon momentum Q - for sub-shell
B1i, i = 1 . . . 6- times 2 for the αβ indices), ψ3 is a 24-
dimensional spinor (12 vertices of the momentum Q - for
sub-shell A2i, i = 1 . . . 12- times 2 for the αβ indices) and
ψ4 is also a 24-dimensional spinor (12 legs coming out of
the vertices of the previous momentum shell Q -for sub-
shell B2i, i = 1 . . . 12 times 2 for the αβ indices), etc...
To diagonalize H we write down the action of H in Eq. 8
on the wavefunction ψ = (ψ1, ψ2, . . . , ψL):

M1ψ1 +N1ψ2 = Eψ1

. . .

N†n−1ψn−1 +Mnψn +Nnψn+1 = Eψn

. . .

N†L−1ψL−1 +MLψL = EψL (9)

and solve iteratively for ψ1 starting from the last shell.
We find that

ψL = (E −ML)−1N†L−1ψL−1

ψL−1 = (E −ML−1 −NL−1(E −ML)−1N†L−1)−1N†L−2ψL−2

ψL−2 = (E −ML−2 −NL−2(E −ML−1 −NL−1(E −ML)−1N†L−1)−1N†L−2)−1N†L−3ψL−3

. . . (10)

We notice three main properties:

• Mn ≈ n for large shells n � 1, is generically an
invertable matrix with eigenvalues of the order ±n
for the n-th shell. This is because Mn is just the

ramp-up term, block diagonal with the diagonal be-
ing (k−Q) ·σ for Q in the n’th sub-shell of B type;
if the sub-shell is of A type, then the matrix is still
generically invertible, as it contains the diagonal



7

term (k − Q) · σ plus the small (since w0, w1 ≈
1/
√

3) hopping Hamiltonian HAn,An (see App. A).
Nonetheless, because the magnitude of the momen-
tum term increases linearly with |k − Q| � 1 for
momenta Q outside the first two shells n > 2, while
the hopping term has constant magnitude, HkAn

dominates the BM Hamiltonian.

• Since we are interested in the flat bands E ≈ 0
(E ≈ 0.02 in vF kθ), we can expand in E/Mn terms,
especially after the first n > 2 shells, and keep only
the zeroth and first order terms. We use

(E −M)−1 ≈ −M−1 −M−1EM−1 (11)

if the eigenvalues of E are smaller than those of M
E �M .

• For the first magic angle, the off-diagonal terms
are also smaller than the diagonal terms, for the
first magic angle, and for |Q| ≥ 2, we have that

Nn−1M
−1
n N†n−1 � 1 for n ≥ 2 and for w0, w1 ≈

1/
√

3 (more details on this will be given later).

With these approximations, we obtain that the general
solution is

ψn = (EPn −Mn +Rn)
−1
N†n−1ψn−1 (12)

where Pn is defined recursively as

PL−n = NL−nM
−1
L−n+1PL−n+1M

−1
L−n+1N

†
L−n + 1 (13)

subject to PL = 1 and Rn is

RL−n =NL−nM
−1
L−n+1RL−n+1M

−1
L−n+1N

†
L−n

+NL−nM
−1
L−n+1N

†
L−n (14)

with RL = 0, RL−1 = NL−1M
−1
L N†L−1, PL = 1. This

continues until the first shell, where we have

ψ2 = [EP2 −M2 +R2]−1N†1ψ1 (15)

C. Form Factors and Overlaps from the General
Perturbation Framework

Notice that the wavefunction for the E ≈ 0 bands de-
cays exponentially (ψn ≈ 1

nψn−1) over the momentum
space Q as we go to larger and larger shells. This is due
to the inverses in the linear ramp-up term Mn ∝ n of
Eq. 12 (a consequence of the Q term in Eq. 7, This has
immediate implications for the form factors. For exam-
ple, in Refs. [108–110] we have to compute

M (η)
m,n (k,q + G) =

∑
α

∑
Q∈Q±

u∗Q−G,α;mη (k + q)uQ,α;nη (k)

(16)

for m,n the indices of the active bands, and for different
G ∈ Q0. Notice that almost all |G| ≤ |Q| change the
shells (with the exception of |G| = 1): if Q is in the

subshell An/Bn, while G is of order |G| ≥ 2|b̃1| with

b̃1 the moire reciprocal vector, then Q − G is not in
the subshell An/Bn. Hence, considering |Q −G| > |Q|
without loss of generality, we have, for 2|b̃1| ≤ |G| ≤ |Q|:

u∗Q−G,α;mη (k + q) ≤ |Q|!
|(Q−G)|!

u∗Q,α;nη (k + q) (17)

for any m,n. Since the wavefunctions of the active flat
bands at (or close to) zero energy exponentially decay
with the shell distance from the center we can approxi-
mate

M
(η)
m,n (k,q + G) ≈

∑
α

∑
Q or Q−G∈An, Bn, n≤n0

u∗Q−G,α;mη (k + q)uQ,α;nη (k) (18)

with n0 a cutoff. For any k,q, the (maximum of any com-
ponents of the) wavefunctions on the subshells A2, B2 are
of order 1/3!, 2!/4! times the components of the wavefunc-
tions on the subshells A1, B1. Hence we can restrict to
small shell cutoff in the calculation of form factor matri-
ces n0 = 1 (meaning only the subshells A1, B1 are taken
into account), while paying at most a 15% error. Con-
servatively, we can keep n0 = 2 and pay a much smaller
error < 3%.

Next, we ask for which G momenta are the function

M
(η)
m,n (k,q + G) considerably small. Employing Eq. 17,

we see that M
(η)
m,n (k,q + G) falls off exponentially with

increasing G, and certainly for |G| > 2|b̃1| they are neg-
ligible. The largest contributions are for G = 0 and for

|G| = |b̃1|, i.e. for G being one of the fundamental recip-
rocal lattice vectors. We hence make the approximation:

M
(η)
m,n (k,q + G) ≈

∑
α

∑
Q or Q−G∈A1, B1

u∗Q−G,α;mη (k + q)uQ,α;nη (k) (δG,0 + δ|G|,|b̃1|) (19)

This is one of the most important results of our per-
turbative scheme. In Refs. [108–111] we employ heavily
an approximation called the “flat metric condition” (see
[110] for the link between this condition and the quan-
tum metric tensor) to show that some exact eigenstates
of the interacting Hamiltonian are in fact, ground-states.
The flat metric condition requires that

Flat Metric Condition: M (η)
m,n (k,G) = ξ(G)δm,n (20)

In light of our findings on the matrix elements Eq. 19,
we see that the flat metric condition is satisfied for |G| ≥
2|b̃1|, as the matrix element vanishes M

(η)
m,n (k,G) ≈ 0→

ξ(G) ≈ 0 for |G| ≥ 2|b̃1|. For G = 0, the condition
Eq. 20 is always satisfied, even without any approxima-
tion Eq. 19, as it represents the block wavefunction or-
thonormality. Hence, the flat metric condition Eq. 20 is
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FIG. 5. The magnitude of the form factor (overlap ma-

trix) M (η=+)(k,q + G), calculated for w0 = 0.4745 and
w1 = 0.5931. (a) The colored dots are the G vec-

tors we consider in M (η=+)(k,q + G). Different colors
represent different length of G. (b) The eigenvalues of

M (η=+)†(k,q + G)M (η=+)(k,q + G) as functions of k. In
the left and right panels we choose q = 0 and q = 1

2
kM , re-

spectively, where kM is the MM momentum in the moiré BZ.

almost always satisfied, with one exception: the only re-

quirement in the flat metric condition is M
(η)
m,n (k,G) =

ξ(G)δm,n for |G| = |b̃1|. There are 6 G vectors that sat-

isfy this condition, namely G = ±b̃1,±b̃2,±(b̃2 − b̃1).
The overlaps are all related by symmetry.

In Fig. 5a we plot the eigenvalues at q = 0 of the
M†M matrix. We see clearly that these eigenvalues are
virtually negligible for |G| ≥ 2b̃i, and that for |G| = |b̃i|
they are at most 1/3 of the value for |G| = 0.

D. Further Application of General Perturbation
Framework to TBG

While Eqs. 12 to 14 represent the general perturbation
theory of Hamiltonians with a linear (growing) ramping
term for almost zero energy bands, we need further sim-
plifications to practically apply them to the TBG prob-
lem. However, the form of the (k−Q)·σ+HAn,An, which
is not nicely invertible (although it can be inverted), and
the form of HBn−1,An (see App. A for the notation of
these matrix elements), which is not diagonal, makes the
matrix manipulations difficult, and un-feasible analyti-
cally for more than 2 shells. Hence further approxima-
tions are necessary in order to make analytic progress.

First, we want to estimate the order of magnitudes of
PL−n and RL−n terms in Eqs. 13 and 14. Recall that
our energy is measured in units of vF kθ, which for angle
of 1◦ is around 180meV. We note the following facts:

• The diagonal terms HkAn are of order |n − |k||,
while the HkBn are of order |n + 1 − |k|| with k
in the first Brillouin zone (|k| < 1). Therefore,
HkB1 ≥ 1, HkA2 > 1, and all the otherHkAn, HkBn

are considerably larger. This shows that Mn+1 in
Eq. (8) is of order n, due to the dominance of the
momentum term in relation to the hopping terms.

• HAnBn and HBn−1An are proportional to Tj , so
they are of order α = w1/(vF kθ). Near the first

magic angle (θ ≈ 1◦, or w1 ≈ 1/
√

3 in units of
vF kθ), α ≈ 0.6/θ with the angle in degrees (hence
smaller angles have larger α). By Eq. (8), this
means the matrices Nn ∼ HBnAn+1 are of order α.

These facts allow us to estimate Pn in Eq. (13):

Pn ∝ |Nn|2|Mn+1|−2|Pn+1|+ 1

∝ (vF kθ)
2α2(vF kθn)−2|Pn+1|+ 1

= α2n−2|Pn+1|+ 1 (21)

For n ≥ 2 therefore Pn = 1 up to a correction term no
more than α2n−2 < 0.1. Therefore we are justified (up to
a 10% error) of neglecting all Pn, n ≥ 2 terms. Similarly,
using these estimates and substituting into Rn in Eq. 14,
we see that

|Rn| ≤
α2

(n+ 1)2
|Rn+1|+

(vF kθ)α
2

(n+ 1)

≤ 0.04|Rn+1|+ 0.09(vF kθ) (22)

when n ≥ 2 at the first magic angle α ≈ 0.6. Again this
will allow us to neglect the Rn term for n ≥ 2.

This means that shells after the first one can be ne-
glected at the first magic angle. More generally, only the
first N shells will be needed for understanding the N th

magic angle.

In order to see the validty of the above approxima-
tions more concretely, it is instructive to write down the
2-shell (A1, B1, A2, B2) Hamiltonian explicitly, and esti-
mate the contribution of the second shell. A1 and B1
are 12-dimensional Hilbert spaces while A2 and B2 are
24-dimensional Hilbert spaces, see App. A. Further shells
are only a generalization of the ones below. We write the
eigenvalue equation:

(HkA1 +HA1,A1)ψA1 +HA1,B1ψB1 = EψA1

H†A1,B1ψA1 +HkB1ψB1 +HB1,A2ψA2 = EψB1

H†B1,A2ψB1 + (HkA2 +HA2,A2)ψA2 +HA2,B2ψB2 = EψA2

HA2,B2ψA2 +HkB2ψB2 = EψB2 (23)
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We integrate out from the outer shell to the first, to obtain the equations:

(HkA1 +HA1,A1)ψA1 +HA1,B1ψB1 = EψA1,

H†A1,B1ψA1 + (HkB1 +HB1,A2(E − (HkA2 +HA2,A2)−HA2,B2(E −HkB2)−1H†A2,B2)−1H†B1,A2)ψB1 = EψB1(24)

and to finally obtain:

EψA1 = [HkA1 +HA1,A1+

HA1,B1(E −HkB1 −HB1,A2(E − (HkA2 +HA2,A2)−HA2,B2(E −HkB2)−1H†A2,B2)−1H†B1,A2)−1H†A1,B1]ψA1.
(25)

Solving the above equation would give us the eigenstate
energies, as well as the reduced eigenstate wavefunctions
ψA1. However, even for two shells above, this is not ana-
lytically solvable, hence further approximations are nec-
essary. We implement our approximations here.

• First, focusing on the first magic angle of 1◦, from
numerical calculations we know that the energy of
the active bands |E| < 60meV ≈ 0.3vF kθ. Hence
EH−1

kB1 < 0.3 and furthermore EH−1
kBn, EH

−1
kAn <

0.3n−1 for n ≥ 2. This justifies the approximation
around the first magic angle:

(E −HkB1)−1 = −H−1
kB1 − EH

−2
kB1, (26)

and

(E −Hk(A,B)n)−1 = −H−1
k(A,B)n − EH

−2
k(A,B)n (27)

for n ≥ 2. Region of validity of this approximation:
this approximation is independent on w0, w1, the
inter-layer tunneling. It however, depends on θ as
well as on the energy range of the bands we are
trying to approximate. For example, for θ = 0.3◦,
an energy range |E| ≤ 60meV would mean that
|E/vF kθ| ≤ 1. This gives |EH−1

kBn|, |EH
−1
kAn| <

n−1 and hence we would only be able to neglect
shells larger than n = 3. In particular, in or-
der to obtain convergence for bands of energy E
at angle θ, we can neglect the shells at distance
n = 2 + [E/vF kθ] (where x means the integer part
of x). Hence, as the twist angle is decreased, and if
we are interested in obtaining convergent results
for bands at a fixed energy, we will need to in-
crease our shell cutoff to obtain a faithful represen-
tation of the energy bands. If we keep the number
of shells fixed, we will obtain faithful (meaning in
good agreement with the infinite cutoff limit) ener-
gies only for bands in a smaller energy window as
we decrease the twist angle. Notice that this ap-
proximation does not depend on w0, w1 and hence
it is not an approximation in the inter-layer cou-
pling.

• The second approximation is regarding w0, w1: be-
cause α = w1/vF kθ ≈ 0.6 at the first magic angle,

we can do a perturbation expansion in the pow-
ers of α. We remark that Hk,Bn, Hk,An ∼ n � α
for n ≥ 2 and θ = 1◦. We also remark that
H−1

k,B1α ≤ 0.6 for all k in the first BZ (the largest

value, H−1
KM ,B1α = 0.6 is reached for k at the KM

corner of the moiré BZ). As such, we find terms of
the following form scale as

HAnBnH
−1
kA,BnH

†
AnBn ∼ α

2n−1, (n ≥ 2)

HBn−1AnH
−1
kA,BnH

†
Bn−1An ∼ α

2n−1, (n ≥ 2)

HB1A1H
−1
kB1H

†
B1A1 ∼ α

2 . (28)

With Eqs. (26)-(28), one can see that in Eq.
(25), the leading order contributions of the terms
involving the second shell (A2, B2) are roughly ∼
|HA1,B1|2|HkB1|−2|HB1,A2|2|HkA2|−1 ∼ α4/2 ∼ 0.05. It
is hence a relatively good approximation to neglect shells
higher than n = 1 for angle θ = 1◦. For example, at the
KM point, neglecting the n = 2 shell will induce a less
than 10% percent error . Region of validity of this ap-
proximation: Notice that as the twist angle is decreased,
α increases. In general, the relative error of the n-th shell

is roughly HBn−1AnH
−2
kAnH

†
Bn−1An ∼ α2/n2, so we can

neglect the shells for which n � α where � should be
considered twice the value of α. Hence, for an angle of
0.5◦ (α = 1.2) we can neglect all shells greater than 3,
etc. For angle 1/n of the first magic angle we can neglect
all shells above n+ 1.

All the above remarks, which were made for the ΓM
centered model, can also be extended to the KM -centered
model in Fig. 4b. In particular, the Tripod model in
Fig. 8b, containing only the A1, A2 shells, is a good ap-
proximation to the infinite model around the Dirac point,
giving the correct first magic angle.

E. Further Approximation of the 1-Shell (A1, B1)
Hamiltonian in TBG

In the previous section we claimed that, remarkably,
a relatively good approximation of the low energy BM
model can be obtained by taking a cutoff of 1 shell, where
we only consider the first A sub-shell and the first B sub-
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shell. The eigenvalue equations are

(HkA1 +HA1,A1)ψA1 +HA1,B1ψB1 = EψA1

H†A1,B1ψA1 +HkB1ψB1 = EψB1, (29)

which can be solved for ψB1 to obtain

ψB1 = (E −HkB1)−1H†A1,B1ψA1. (30)

Eliminating ψB1 we find the eigenvalue equation for the
first A shell (which includes the coupling to the first B
shell):

(HkA1+HA1,A1+HA1,B1(E−HkB1)−1H†A1,B1)ψA1 = EψA1.

(31)
This is a 12 × 12 non-linear eigenvalue equation in E.
At this point we will make a few assumptions in order to
simplify the eigenvalue equation. In particular, we would
like to make this a linear matrix eigenvalue equation.
Since we are interested close to E = 0 we may assume
that E � HkB1. This allows us to treat the B shell
perturbatively, obtaining

(HkA1 +HA1,A1 −HA1,B1H
−1
kB1H

†
A1,B1)ψA1 = EψA1.

(32)
Our approximation Hamiltonian is

HApprox1(k) = HkA1 +HA1,A1 −HA1,B1H
−1
kB1H

†
A1,B1.

(33)
We note that HApprox1(k) is a further perturbative
Hamiltonian for the n = 1 shell (A1, B1). For k small,
around the ΓM -point, we expect this to be an excel-
lent approximation of the n = 1 shell Hamiltonian (and
since the n = 1 shell is a good approximation of the
infinite shell, then HApprox1(k) is expected to be an
excellent approximation of the full BM Hamiltonian
close to the ΓM point). The good approximation is ex-
pected to deteriorate as k gets closer to the boundary

of the MBZ, since HA1,B1H
−1
kB1H

†
A1,B1 increases as k ap-

proaches the MBZ boundary. This is because H−1
kB1 has

larger terms as k approaches the MBZ boundary. How-
ever, we expect still moderate qualitative agreement with
the BM Hamiltonian. We also predict that taking 2 shells
(A1, B1, A2, B2) would give an extremely good approxi-
mation to the infinite shell BM model.

F. Numerical Confirmation of Our Perturbation
Scheme

The series of approximations performed in Secs. II D
and II E are thoroughly numerically verified at length in
App. B. We here present only a small part of the high-
lights. In Fig. 6 we present the n = 1, 2, 3 shells (one shell
is made out of A,B sub=shells) results of the BM Hamil-
tonian in Eq. 3, for two values of w0, w1. We virtually
see no change between 2 and 3 shells (see also App .B)
we verify this for higher shells and for many more values

FIG. 6. Comparison of the different cutoff shells of the BM
model in Eq. 3, for two values of w0, w1. (more data available
in App. B). We clearly see that n = 2 has reached the infinite
cutoff limit (the band structure does not change from n = 2
and n = 3, while n = 1 (only one shell, A1, B1 subshells)
shows excellent agreement around the ΓM point, and good
agreement even away from the ΓM -point (for example see
the second row).

of w0, w1, around - and away from, within some man-
ifolds (w0, w1) explained in Sec. III - the magic angle.
Hence our perturbation framework works well, and con-
firms the irrelevance of the n > 2 shells. The n = 1 shell
band structure in Fig. 6, while in excellent agreement
to the n = 2 shells around the ΓM point, contains some
quantitative differences from the n = 2 shell (equal to the
infinite cutoff) away from the ΓM point. However, the
generic aspects of the band structure - low bandwidth,
almost exact degeneracy (at n = 1, becoming exact with
machine precision in the n > 2) at the KM point are
still present even in the n = 1 case, as our perturbative
framework predicts in Secs. II D and II E.

Our approximations of the n = 1 shell Hamiltonain in
Sec. II E have brought us to the perturbative HApprox1(k)
in Eq. 33. Around the first magic angle, we claim that
this Hamiltonian is a good approximation to the band
structure of the n = 1 shell, especially away from MBZ
boundary. The n = 1 shell is only a 15% difference on the
n = 2 shell and that the n = 1 shell is within 5% of the
thermodynamic limit, we then make the approximation
that HApprox1 explains the band structure of TBG within
about 20%. The approximations are visually presented
in Fig. 8a, and the band structure of the approxima-
tion HApprox1 to the 1-shell Hamiltonian is presented in
Fig. 7. We see that around the ΓM -point, the Hamilto-
nian HApprox1(k) in Eq. 33 has very good match to the
BM Hamiltonian Eq. 3, while away from the ΓM point
the qualitative agreement - small bandwidth, crossing at
(close to) KM (the crossing is at KM for the infinite shell
cutoff by symmetry, but can deviate slightly from KM for
finite cutoff).

In App. B we present many different tests which con-
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FIG. 7. Band structure of the approximation HApprox1(k)
to the 1-shell Hamiltonian, versus the infinite limit approxi-
mation, for the w0 = w1 = 1/

√
3 magic point. The n = 1-

shell Hamiltonian band structure is undistinguishable from
HApprox1(k), and is plotted in the App. B.

FIG. 8. The two types of approximate models used for
analytics. (a) The shell 1 (A1, B1) model which we have the-
oretically argued and numerically substantiated to represent
a good approximation for values w0, w1 ≤ 1/

√
3. Analyt-

ically, we will first solve it by perturbation theory around
the Hexagon model, which involves only the A1 sites. The
shell B1 will be added perturbatively to obtain HApprox1(k)
in Eq. 33. (A second way to solve for this Hamiltonian will
be presented later) (b) The Tripod model, which involves the
two shells A1 (also known as the KM point) and A2. Due to
the same considerations as for the ΓM -centered model, this
should be a good approximation for the infinite shell model
for w0, w1 ≤ 1/

√
3. This is the same model as solved by

Bistritzer and MacDonald [1]. We find that the “magic an-
gle” at which the Dirac velocity vanishes at the KM point is
given by w1 = 1/

√
3, ∀w0.

firm all aspects of our perturbative framework, differ-
ent twist angles and AA, AB coupling. We test the
n = 1, 2, 3, 4, . . . shells, and also further test the valid-
ity of the approximation HApprox1(k) to the n = 1 shell
Hamiltonian in Sec. II E.

III. Analytic Calculations on the BM Model: Story
of Two Lattices

We will now analytically study the approximate Hamil-
tonian in Eq. 33. While in Secs. II D and II E we
have focused on the ΓM -centered lattice, the same ap-
proximations can be made in the KM centered lattice,
where the HApprox1(k) changes to HApprox1(k) = HkA1 +

HA1,A2H
−1
kA2H

†
A1,A2. The two types of approximations

are schematically in Fig. 8 in the ΓM and KM -centered
lattice. First, we start with the Tripod model Fig. 8b, to
extend the Bistritzer-Macdonald calculation of the magic
angle in the isotropic limit and find a “first magic man-
ifold”, where the Dirac velocity vanishes in the Tripod
model (and is very close to vanishing in the infinite shell
BM model. We then solve the 1-shell ΓM -centered model
Fig. 8a, defined by Eq. 33 which is supposed to faithfully
describe TBG at and above the magic angle, as proved
in Sec. II. This is a 12× 12 Hamiltonian, with no known
analytic solutions, formed by shell 1: A1, B1, where the
B part of the first shell, B1 is taken into account pertur-

batively, as HA1,B1H
−1
kB1H

†
A1,B1.

A. The KM -centered “Tripod Model” and the First
Magic Manifold

For completeness we solve for the magic angle in the
model in the KM -centered Model of Fig. 4 by taking only
4-sites, one in shell A1 and 3 in shell A2. We call this
approximation, depicted in Fig. 8b, the Tripod model.
This model is identical to the one solved by Bistritzer
and Macdonald in the isotropic limit. However, we will
solve for the Dirac velocity away from the isotropic limit,
to find a manifold w1(w0) where the Dirac velocity van-
ishes. The tripod Hamiltonian HTri(k, w0, w1), with k
measured from the KM point, reads

HTri(k, w0, w1) = (34) k · σ T1(w0, w1) T2(w0, w1) T3(w0, w1)
T1(w0, w1) (k− q1) · σ 0 0
T2(w0, w1) 0 (k− q2) · σ 0
T3(w0, w1) 0 0 (k− q3) · σ



The Schrodinger equation in the basis
(ψA11

, ψA21
, ψA22

, ψA23
) reads:

k · σψA11
+
∑
i=1,2,3 Ti(w0, w1)ψA2i

= EψA11
(35)

TiψA11
+ (k− qi) · σψA2i

= EψA2i
, i = 1, 2, 3. (36)
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from the second equation we find ψA2i
= (E − (k− qi) ·

σi)
−1TiψA11

and plug it into the first equation to obtain:

EψA11
= k · σψA11

+

3∑
i=1

Ti
E + (k− qi) · σ
E2 − (k− qi)2

TiψA2i

≈ k · σψA11
−

3∑
i=1

Ti(E + (k− qi) · σ)(1 + 2k · qi)TiψA2i

(37)

where we neglect E2 as small and expand the denomi-
nator to first order in k to focus on momenta near the
KM Dirac point. Keeping only first order terms in E,k
(not their product as they are both similarly small), and
using that |qi| = 1, ∀i = 1, 2, 3, we find

(1− 3w2
1)k · σψA11

= (1 + 3(w2
0 + w2

1))EψA11
. (38)

and hence we find that the Dirac velocity vanishes on a
manifold of w0, w1 given by w1 = 1√

3
and ∀w0, which

we call the first magic manifold. The angle for which
the Dirac velocity vanishes at the KM point is hence
not a magic angle but a magic manifold. However, a
further restriction needs to be imposed: w0 cannot be too
large, since from our approximation scheme in Secs. II D
and II E, if w0 � 1/

√
3, the Tripod model would not

be a good approximation for the BM model with a large
number of shells; hence we restrict to w0 ≤ 1/

√
3, and

define

First Magic Manifold: w0 ≤ w1 =
1√
3
. (39)

The Tripod model, Fig. 4b, in which we found the first
magic manifold, does not respect the exact C2x symmetry
of the lattice, although it becomes asymptotically accu-
rate as the number of shells increases. The magic angle
also does not explain analytically the flatness of bands,
since it only considers the velocity vanishing at one point.
However, the value obtained by BM for the magic angle
is impressive; despite considering only four sites and the
KM point, the bands do not change much after adding
more shells, and they are flat throughout the whole Bril-
louin zone, not only around the KM point. Why is the
entire band so flat at this value? We answer this question
by examining the ΓM -centered model below.

B. The ΓM -centered Hexagon Model and the
Second Magic Manifold

In Sec. II E, we introduced a yet unsolved approximate
model HApprox1(k) in Eq. 33, the ΓM -centered model in
Fig. 4a. This model respects all the symmetries of TBG,
and we have showed in App. B that it represents a good
approximation to the infinite cutoff limit. As we can see
in Fig. 15, the band dispersions of the n = 1 shell model
is very similar to that of n = 2. After n = 2 shells
the difference to the infinite cutoff band structure is not
visible by eye.

An analytic solution for the 12 × 12 Hamiltonian
HApprox1(k) in Eq. 33 is not possible at every k. We hence
separate the Hamiltonian into HHex(k, w0, w1) = HkA1 +

HA1,A1, then treat the smaller part HA1,B1H
−1
kB1H

†
A1,B1

perturbatively, for w0, w1 ≤
√

3. We will try to solve the
first (largest) part of HApprox1(k): the A1 shell model-
HHex(k, w0, w1) = HkA1 + HA1,A1- which we call the
Hexagon model:

HHex(k, w0, w1) =


(k− q1) · σ T2(w0, w1) 0 0 0 T3(w0, w1)
T2(w0, w1) (k + q3) · σ T1(w0, w1) 0 0 0

0 T1(w0, w1) (k− q2) · σ T3(w0, w1) 0 0
0 0 T3(w0, w1) (k + q1) · σ T2(w0, w1) 0
0 0 0 T2(w0, w1) (k− q3) · σ T1(w0, w1)

T3(w0, w1) 0 0 0 T1(w0, w1) (k + q2) · σ

 (40)

This is still a 12×12 Hamiltonian and its eigenstates can-
not be analytically obtained at general k. In particular,
it is also not illuminating to focus on a 12 × 12 Hamil-
tonian when we want to focus on the physics of the 2
active bands and the low-energy physics of the dispersive
passive bands. As such we make a series of approxima-
tions, which also elucidate some of the questions posed
in Fig. 1. We first analytically find a set of bands which
can act as a perturbation theory treatment.

1. Energies of the Hexagon Model at k = 0 for arbitrary
w0, w1

The only momentum where the Hexagon model
HHex(k, w0, w1) can be solved is the ΓM point. This is
fortunate, as this point preserves all the symmetries of
TBG, and is a good starting point for a perturbative the-
ory. We find the 12 eigenenergies of HHex(k = 0, w0, w1)
given in Tab. I.

By analyzing these energies as a function of w0, w1,
we can answer the question (1) in Fig. 1 and give argu-
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Band Energy at k = 0 for any w0, w1 w0 = w1 = 1√
3

dege.

E1 2w1 −
√

1 + w2
0 0 1

E2 −2w1 +
√

1 + w2
0 0 1

E3,4 − 1
2
(
√

4 + w2
0 −

√
9w2

0 + 4w2
1) 0 2

E5,6
1
2
(
√

4 + w2
0 −

√
9w2

0 + 4w2
1) 0 2

E7,8 − 1
2
(
√

4 + w2
0 +

√
9w2

0 + 4w2
1) −

√
13/3 2

E9,10
1
2
(
√

4 + w2
0 +

√
9w2

0 + 4w2
1)

√
13/3 2

E11 −2w1 −
√

1 + w2
0 −4/

√
3 1

E12 2w1 +
√

1 + w2
0 4/

√
3 1

TABLE I. Eigenvalues of the Hexagon model in Eq. (40) at
ΓM point (k = 0). The values for general w0, w1 and for
w0 = w1 = 1√

3
are given, and dege. is short for degeneracy.

ments for question (3) in Fig. 1. Numerically, at (and
around) the first magic angle - which as per the Tripod

model is defined as w1 = 1/
√

3 - and in the isotropic
limit w0 = w1, the system exhibits very flat active 2-
bands, not only around the KM point but everywhere
in the MBZ. It also exhibits a very small gap (some-
times non-existent) between the active bands and the

passive bands, around the values w0 = w1 = 1/
√

3. The
Hexagon model HHex(k, w0, w1) explains both these ob-
servations. We find that the eigenenergies of HHex(k =

0, w0 = 1/
√

3, w1 = 1/
√

3) - in the isotropic limit - are
given in the third column of Tab. I. Remarkably, in the
isotropic limit w0 = w1, and at the first magic angle
w1 = 1/

√
3, the bands at the ΓM point are 6-fold degen-

erate at energy 0. The two active bands are degenerate
with the two passive bands above them and the two pas-

sive bands below them. This degeneracy is fine-tuned,
but the degeneracy breaking terms in the next shells
(sub-shells B1, A2, B2, . . . etc) are perturbative. Hence
the gap between the active and the passive bands will
remain small in the isotropic limit, answering question
(1) in Fig. 1.

From the Tripod model, the two active bands have
energy zero at the KM point, and vanishing velocity
at w1 = 1√

3
. Moreover, they also have energy zero at

the ΓM point in the Hexagon model (a good approx-
imation for the infinite case at the ΓM point). This
now gives us two points (ΓM ,KM ) in the MBZ where
the bands have zero energy; at one of those points, the
band velocity vanishes. This gives us more analytic argu-
ments that the band structure remains flat than just the
KM point velocity, i.e. point (3) in Fig. 1. We further
try to establish band properties away from the ΓM ,KM

points by performing a further perturbative treatment of
HHex(k, w0, w1) using the eigenstates at ΓM .

2. k 6= 0 Six-Band approximation of the Hexagon Model In
the Isotropic Limit

In the isotropic limit at w0 = w1 = 1/
√

3, the 6-fold
degeneracy point of the Hexagon model HHex(k, w0, w1)
at ΓM prevents the development of a Hamiltonian for the
two active bands. However, since the gap (=

√
13/3) be-

tween the 6 zero modes E1...6(k = 0, w0 = 1√
3
, w1 = 1√

3
)

in Tab. I and the rest of the bands E7...12(k = 0, w0 =
1√
3
, w1 = 1√

3
) is large at ΓM , we can build a 6-band k · p

Hamiltonian away from the ΓM point:

H6 band
ij (k) = 〈ψEi

|HHex(k, w0 = w1 = 1√
3
)−HHex(k = 0, w0 = w1 = 1√

3
)|ψEj

〉 = 〈ψEi
|I6×6 ⊗ k · ~σ|ψEj

〉 , (41)

where |ψEj
〉 with j = 1, . . . 6 are the zero energy eigen-

states of HHex(k = 0, w0 = w1 = 1√
3
). We find these

eigenstates in App. C, where we place them in C3, C2x

eigenvalue multiplets. The 6×6 Hamiltonian is the small-
est effective Hamiltonian at the isotropic point, due to
the 6-fold degeneracy of bands at ΓM .

The explicit form of the Hamiltonain H6 band(k) is
given in App. C, Eq. C7. Due to the large gap between
the 6-bands (degenerate at ΓM ) and the rest of the bands,
it should present a good approximation of the Hexagon
model at finite k for w0 = w1 =

√
3. The approximate

H6 band(k) is still not generically diagonalizable (solv-
able) analytically. However, we can obtain several im-
portant properties analytically. First, the characteristic
polynomial

Det[E −H6 band(k)] = 0 =⇒
(13E2 − 12(k2

x + k2
y)E + kx(k2

x − 3k2
y))2 = 0 (42)

Or, parametrizing (kx, ky) = k(cos θ, sin θ), where |k| =
k, we have

(13E3 − 12k2E + k3 cos(3θ))2 = 0 . (43)

The characteristic polynomial reveals several properties
of the 6-band approximation to the Hexagon model:

• The exponent of 2 in the characteristic polyno-
mial reveals that all bands of this approximation
to the Hexagon model are exactly doubly degen-
erate. This explains the almost degeneracy of the
flat bands (point (3) in Fig. 1), but furthermore
it explains why the passive bands, even though
highly dispersive, are almost degenerate for a large
momentum range around the ΓM -point in the full
model (see Fig. 14): they are exactly degenerate in
the 6-band approximation to Hexagon model; cor-
rections to this approximation come from the re-
maining 6 bands of the Hexagon model, which re-
side extremely far (energy

√
13/3), or from the B1
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shell, which we established is at most 20% in the
MBZ - and smaller around the ΓM point. Thus,
the almost double degeneracy of the passive bands
pointed out in (2) of Fig. 1 is explained.

• Along the ΓM − KM line we have kx = 0, ky = k
and hence the characteristic polynomial becomes

ΓM −KM : (13E3 − 12k2
yE)2 = 0 (44)

This implies two further properties: (1) The “ac-
tive” bands of the approximation of the Hexagon
mode are exactly flat at E = 0 for the whole
ΓM −KM line, thereby explaining their flatness for
a range of momenta; notice that our prior deriva-
tions found that the active bands have zero energy
at KM , ΓM and vanishing Dirac velocity at KM

for w0 = w1 =
√

3; our current derivation shows
that the approximately flat bands along the whole
ΓM −KM line originate from the doubly degener-
ate zero energy bands of the Hexagon model. (2)
The dispersive (doubly degenerate) passive bands,

for w0 = w1 =
√

3, have a linear dispersion

E = ±
√

12/13k (45)

along ΓM−KM , with velocity 2
√

3/13 = 0.960769,
close to the Dirac velocity. This explains property
(2) in Fig. 1. Note that the velocity is equal to

2/(E9,10(k = 0, w0 = 1/
√

3, w1 = 1/
√

3)) or two
over the gap to the first excited state. This ap-
proximation is visually shown in Fig. 9.

• Remarkably, the eigenstates along along the ΓM −
KM line can also be obtained (See App. D). Along
this line, the eigenstates of all bands of the H6 band

Hamiltonian approximation to the Hexagon model
are ky independent! (see App. D)

• Along the ΓM − MM line (kx = k, ky = 0) the
characteristic polynomial becomes

ΓM −MM : (k + E)2(k2 − 13kE + 13E2)2 = 0. (46)

Hence the energies are: E = −k, a highly disper-
sive (doubly degenerate) hole branch passive band
of velocity −1; E = 1

2 (1 + 3√
13

)k (≈ 0.916025k),

another highly dispersive doubly degenerate elec-
tron branch passive band. This explains prop-
erty (2) in Fig. 1. Notice that this velocity is
1
2 (1 + 1

E9,10(k=0,w0=1/
√

3,w1=1/
√

3)
). The third dis-

persion is E = 1
2 (1 − 3√

13
)k (≈ 0.0839749k), a

weakly dispersive doubly degenerate active bands.
This explains the very weak, but nonzero disper-
sion of the bands on ΓM −MM . The eigenstates
along this line can also be obtained (See App. D).
The approximation is visually shown in Fig. 9.

• Along the ΓM −MM , the eigenstates of all bands
of the H6 band Hamiltonian approximation to the
Hexagon model are kx independent! (see App. D)

FIG. 9. Band structure of the 6-band approximationH6 band

to the Hexagon model for the w0 = w1 = 1/
√

3 magic point.
(a) The 6 zero energy eigenstates at ΓM marked by the red
circle are used to obtain a perturbative Hamiltonian for the 6
lowest bands across all the BZ. As the 6 bands are very well
separated from the other 6, we expect a good approximation
over a large part of the BZ. The active and passive bands
in the dashed square are almost doubly degenerate. In the
right panel, the 6 lowest bands of the hexagon model, for a
smaller energy range, are shown. Notice the passive bands
are undistinguishably 2-fold degenerate by eye (not an exact
degeneracy, they split close to KM see left plot) Note the
Dirac feature of the passive bands. The active bands split at
KM in the hexagon model, but the B1 shell addition makes
them degenerate. (b) The first order approximation to the
Hexagon model using the 6 zero energy bands at the ΓM point
gives exactly doubly degenerate bands over the whole BZ. It
gives the correct velocity of the Dirac Nodes, zero dispersion
of active bands on ΓM −KM and a small dispersion of active
bands on ΓM−MM , with known velocities. Along these lines,
all eigenstates are k-independent.

• In the 6-band model, eigenstates are independent
of k on the manifold kx = ky.

3. Energies of the Hexagon Model at k = 0 Away From the
Isotropic Limit and the Second Magic Manifold.

In the isotropic limit (which coincides with the magic

angle of the Tripod model), w0 = w1 = 1/
√

3, due to
the 6-fold degeneracy of the ΓM point, it is impossible to
obtain an approximate Hamiltonian that is less than a
6× 6 matrix. Moving away from the isotropic limit, and
staying in the range of approximations w0, w1 ≤ 1√

3
, the

Hexagon model is a good starting point for a perturbative
expansion. We now ask what values of w1, w0 might have
a “simple”expression for their energies.

We see that if w1 =

√
1+w2

0

2 , the 6-fold degeneracy at

the ΓM point at zero energy for w1 = 1/
√

3 splits into a
2(enforced)+2(accidental)+2(enforced)-fold degeneracy.
There is an accidental 2-fold degeneracy of the active
bands at zero energy, and a gap to the passive bands
which have an symmetry enforced degeneracy. The 2-fold
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accidental degeneracy at zero energy along w1 =

√
1+w2

0

2
is the important property of this manifold in parameter
space. The eigenvalues of the Hexagon model in this case
are given in Tab. II.

Band Energy at k = 0 at w1 =

√
1+w2

0
2

dege.
E1,2 0 2

E3,4

√
10w2

0+1−
√
w2

0+4

2
2

E5,6 −
√

10w2
0+1−

√
w2

0+4

2
2

E7,8 −
√

10w2
0+1+

√
w2

0+4

2
2

E9,10

√
10w2

0+1+
√
w2

0+4

2
2

E11 −2
√

1 + w2
0 1

E12 2
√

1 + w2
0 1

TABLE II. Eigenvalues of the Hexagon model in Eq. (40)
at ΓM point (k = 0) at the Second Magic Manifold w1 =√

1+w2
0

2
. The notation dege. is short for degeneracy.

Although the perturbative addition of the B1 shell will

split the ΓM point E1,2(k = 0, w0, w1 =

√
1+w2

0

2 ) =
0 degeneracy, we find that this zero energy doublet
of the Hexagon model is particularly useful to calcu-
late a k · p perturbation theory of the active bands,
as many perturbative terms cancel. In particular, we
see that the gap between the active band zero energy
doublet and the passive bands (E3,4(k = 0, w0, w1 =√

1+w2
0

2 )) of the Hexagon model becomes large in the chi-

ral limit(E3,4(k = 0, w0 = 0, w1 =

√
1+w2

0

2 = 1/2) =
−1/2). We note that this explains property (4) of Fig. 1:
from the Hexagon model, the gap between the active and
the passive bands is, in effect, proportional to w1 − w0.
Since the bandwidth of the TBG model is known to be
smaller than this gap, we will use the ΓM point doublet

of states E1,2(k = 0, w0, w1 =

√
1+w2

0

2 ) = 0 to perform a
perturbative expansion. We define this paramter mani-
fold as the “Second Magic Manifold”:

Second Magic Manifold: w1 =

√
1+w2

0

2 , w0 ≤ 1/
√

3.

IV. Two-Band Approximations on The Magic
Manifolds

1. Differences between the First and Second Magic
Manifolds

We have defined two manifolds in parameter space
where the two active bands of the Hexagon model are
separated from the passive bands. Hence, we can do a
perturbative expansion in the inverse of the gap from the
passive to the active bands. We first briefly review the
differences between the two Magic Manifolds

First Magic Manifold: w0 ≤ w1 = 1/
√

3 :

FIG. 10. Plots of the active bands band structure on the first
magic manifold, w1 = 1/

√
3, w0 ≤

√
3, for a large number of

shells. In the second row, the gap to the passive bands is
large and outside the range. The Dirac velocity is small for
all values of w0/w1 (it vanishes in the Tripod model, but has
a finite value once further shells are included), and the bands
are extremely flat. The ratio of active bands bandwidth to the
active-passive band gap decreases upon decreasing w0/w1.

• For these values of w0, w1, the Dirac velocity at
KM vanishes in the Tripod model, which is a good
approximation to the infinite cutoff model. Hence
the velocity at the KM point in the infinite model
should be small. The Dirac node is at E = 0.

• One end of the first magic manifold, the isotropic
point w0 = w1 = 1/

√
3 is also the end-point of the

second magic manifold, and exhibits the 6-fold de-
generacy at E = 0 at the ΓM point in the Hexagon
model.

• Away from the isotropic point, on the first magic
manifold, a gap opens everywhere between the 6
states of the Hexagon model. At the ΓM point, the
6-fold degenerate bands at the isotropic limit split
when going away from this limit, into a 2 (symme-
try enfroced) -1-1-2 (symmetry enforced) degener-
acy configuration. Hence the two active bands, in
the Hexagon model, split from each other in the
first magic manifold.

• The splitting of the active bands in the Hexagon
model in the first magic manifold is corrected
by the addition of the B1 shell as the term

HA1,B1H
−1
kB1H

†
A1,B1 in Eq. 33.

• The active bands, when computed with the full
Hamiltonian without approximation, are very flat
on the first magic manifold (much flatter than on
the second magic manifold), and there is a full,
large gap to the passive bands (see Fig. 10).

Second Magic Manifold: w1 =

√
1+w2

0

2 , w0 ≤
1/
√

3 :

• The Hexagon model exhibits a doublet of zero en-
ergy active bands at ΓM along the entire second
magic manifold.
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• One end of the second magic manifold, the isotropic
point w1 = w0 = 1/

√
3 is also the end-point of the

first magic manifold, and exhibits a 6-fold degen-
eracy at E = 0 at the ΓM point in the Hexagon
model and a vanishing Dirac velocity in the Tripod
model.

• Away from the isotropic point, on this manifold,
the bands do not have a vanishing velocity at the
Dirac point.

• The eigenstates of the active bands are simple (sim-
pler than on the first magic manifold) on this man-
ifold, with simple matrix elements (as proved be-
low). A perturbation theory can be performed
away from the ΓM point and away from this mani-
fold to obtain a general Hamiltonian for k, w0, w1.
The B1 shell can then also be included perturba-

tively as the term HA1,B1H
−1
kB1H

†
A1,B1 in Eq. 33.

• The active bands are not the flattest on this mani-
fold. They are much less flat than on the first magic
manifold, due to the fact that the Dirac velocity
does not vanish (is not small) at the KM point on
the second magic manifold.

A. Two-Band Approximation for the Active Bands
of the Hexagon Model on the Second Magic

Manifold

We now try to obtain a 2-band model on the manifold
w1 =

√
1 + w2

0/2, ∀w0 ≤ 1/
√

3, for which we use the

ΓM -point HHex(k = 0, w0, w1 =

√
1+w2

0

2 ) as zeroth order
Hamiltonian and perform a k · p expansion away from
the ΓM point.

Fig. 10 shows that away from the isotropic limit, the
gap that opens at the ΓM point between the formerly
6-fold degenerate bands can be much larger than the
bandwidth of the active bands even for modest devia-
tions from the isotropic limit. We have explained this
from the behavior of the 6-band approximation to the
Hexagon model, and from knowing the analytic form of
the ΓM -point energy levels in the Hexagon model. We
have also obtained the eigenstates of all the ΓM -energy
levels in App. E 2. It is then sufficiently accurate to treat
the manifold of the two ΓM -point zero energy states at

w1 =
√

1+w02

2 ,∀w0 ≤ 1/
√

3 as the bases of the perturba-
tion theory.

To perform a 2-band model approximation to the
Hexagon model, we take the unperturbed Hamiltonian
to be HHex(k = 0, w0, w1 =

√
1 + w2

0/2) (the Hexagon
model on the second magic manifold) in Eq. 40. For this
Hamiltonian we are able to obtain all the eigenstates an-
alytically in App. E 2. The perturbation Hamiltonian, on

the second magic maifold is

Hperturb(k, w0) = HHex(k, w0, w1 =

√
1+w2

0

2 )−

−HHex(k = 0, w0, w1 =

√
1+w2

0

2 ) = I6×6 ⊗ k · ~σ.(47)

The manifold of states which are kept as “important” are
the two zero energy eigenstates of HHex(k = 0, w0, w1 =√

1 + w2
0/2), given in Eq. E7. This manifold will be de-

noted as ψ with a band index m ∈ {1, 2}. The manifold
of “excited” states, that will be integrated out, is made
up of the eigenstates Eqs. E8, E9, E10 and E11, each
doubly degenerate and Eqs. E12 and E13, each nonde-
generate. This manifold will be denoted as ψ with a band
index l ∈ {3, 4, · · · , 12}. We now give the expressions for
the perturbation theory up to the fifth order. We here
give only the final results, for the expression of the matrix
elements computed in perturbation theory, see App. F 2.

We first note that the first order (linear in k) perturba-

tion term is H
(1)
mm′(k, w0) = 〈ψm|Hperturb(k, w0)|ψm′〉 =

0. This is a particular feature of the second magic man-
ifold and renders the perturbation theory simple. Fur-
thermore, it implies that, on the second magic manifold,
the active bands of the Hexagon model have a quadratic
touching at the ΓM point, as confirmed numerically. Due
to the vanishing of these matrix elements, one can per-
form quite a large order perturbative expansion.

It can be shown that the n-th order perturbation is pro-
portional to 1/(3w2

0 − 1)n−1, with symmetry-preserving
functions of k (see App. F 2). Up to the 5-th order, the
full 2-band approximation to the Hexagon Hamiltonian
can be expressed as:

HHex
2band(k, w0, w1 =

√
1 + w2

0

2
) =

= d0(k, w0)σ0 + d1(k, w0)(σy +
√

3σx),

where

d0(k, w0) =
4w0

9
√
w2

0 + 1 (1− 3w2
0)

2

[ (
w2

0 − 3
)
−

4
(
29w6

0 − 223w4
0 − 357w2

0 − 9
)

9 (1− 3w2
0)

2
(w2

0 + 1)

(
k2
x + k2

y

) ]
kx
(
k2
x − 3k2

y

)
,

(48)

and

d1(k, w0) =
4w2

0

3
√
w2

0 + 1 (3w2
0 − 1)

×
[
− 1 +

2(35w4
0 + 68w2

0 + 9)
(
k2
x + k2

y

)
9 (w2

0 + 1) (3w2
0 − 1)

2

] (
k2
x + k2

y

)
,

(49)

while the Pauli matrices σj here are in the basis defined in
App. E 2 a (rather than the basis of graphene sublattice).
In particular, we note that the eigenstates of the k · p
model HHex

2band(k, w0, w1 =

√
1+w2

0

2 ) are independent of k
up to the fifth order perturbation within the hexagon
model.
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B. Away from the Second Magic Manifold:
2-Band Active Bands Approximation of the

Hexagon Model

We now want to perform calculations away from the
second magic manifold, and possibly connect the pertur-
bation theory with the first magic manifold. There are
two ways of doing this, while still using the ΓM -point
wave-functions as a basis (we cannot solve the Hexagon
model exactly at any other k-point). One way is to solve
for the wave-functions at the ΓM -point for all w0, w1, and
use these states to build a perturbation theory that way.
However, away from the special first and second magic-
manifolds, the expression of the ground-states is compli-
cated. The second way, is to use the eigenstates already

obtained for the second magic manifold w1 =

√
1+w2

0

2
and obtain a perturbation away from the second magic
manifold. In this section we choose the latter.

We take the unperturbed Hamiltonian to be HHex(k =

0, w0, w1 =
√

1 + w2
0/2) (the Hexagon model on the sec-

ond magic manifold) in Eq. 40. For this Hamiltonian
we are able to obtain all the eigenstates analytically in
App. E 2. The perturbation Hamiltonian, away the sec-
ond magic manifold is

Hperturb(k, w0, w1) = HHex(k, w0, w1)−

−HHex(k = 0, w0, w1 =

√
1+w2

0

2 ) =

= I6×6 ⊗ k · ~σ +HHex(k = 0, 0, w1 −
√

1+w2
0

2 ) (50)

We now give the expressions for the perturbation theory
up to the fourth order. We here give only the final results,
for the expression of the matrix elements computed in
perturbation theory, see Apps. F 2 and F 3.

We first note that the first order Hamiltonian is

H
(1)
mm′(k, w0, w1) = (

√
w2

0 + 1

2
− w1)(σy +

√
3σx) (51)

Hence we find there is now a linear order term in the
Hamiltonian - as it should since the two states degener-
ate at ΓM on the second magic manifold are no longer
degenerate away from it. Because of this, many other
terms in the further degree perturbation theory become
nonzero, and the perturbation theory has a more compli-
cated form. We present all details in App. F 3 and here
show only the final result, up to fourth order. We can
label the two band Hamiltonian as:

HHex
2band(k,w0, w1) = d0(k, w0, w1)σ0

+ d1(k, w0, w1)(σy +
√

3σx) ,
(52)

where the expressions of d0(k, w0, w1) and d1(k, w0, w1)
are given in Eqs. (F35) and (F36) in App. F 3. The
perturbation is made on the zero energy eigenstates of

HHex(k = 0, w0, w1 =

√
1+w2

0

2 ). If w1 =

√
1+w2

0

2 , then the
expressions reduce to our previous Hamiltonian Eq. F20.
Notice that so far, remarkably the eigenstates are not k-
dependent, they are just the eigenstates of (σy +

√
3σx).

C. 2-active Bands Approximation of the n = 1 Shell
Model HApprox1(k) on the Second Magic

Manifold

In Sec. IV A we have obtained an effective model for
the two active bands of the Hexagon model on the second

magic manifold w1 =
√

1+w02

2 , ∀w0 ≤ 1/
√

3 using the

ΓM -point HHex(k = 0, w0, w1 =

√
1+w2

0

2 ) as zeroth order
Hamiltonian. We expect this to be valid around the ΓM
point. We know that a good approximation of the TBG
involves at least n = 1 shells: the A1 sub-shell, which is
the Hexagon model, and the B1 sub-shell, which is taken
into account perturbatively in HApprox1(k) of Eq. 33. Af-
ter detailed calculations given in App. F 4, we find the
first order perturbation Hamiltonian given by

H(B1)(k, w0,w1) =
1∏

i=1,2,3 |k − 2qi|2|k + 2qi|2

×
∑

µ=0,x,y,z

d̃µ(k, w0, w1)σµ ,
(53)

where d̃µ(k, w0, w1) are given in Eqs. (F39)-(F42) of
App. F 4. This represents the first order HApprox1(k) pro-
jected into the zero energy bands of the Hexagon model
on the second magic manifold. We note that the B1
shell perturbation expressions can only be obtained to
first order. Second and higher orders are particularly te-
dious and not illuminating. Note that, to first order in
perturbation theory on the second magic manifold, only

the term HA1,B1H
−1
kB1H

†
A1,B1 contributes to the approx-

imate 2-band Hamiltonian. Also we obtained the per-

turbation of HA1,B1H
−1
kB1H

†
A1,B1 for generic w0, w1 pro-

jected into the second magic manifold ΓM point bands of
the Hexagon model.

D. 2-Band Approximation for the Active Bands of
the n = 1 Shell Model HApprox1(k) in Eq. 33 for

any w0, w1 ≤ 1√
3

We are now in a position to describe the 2 active bands
of the approximate Hamiltonain of the 1-shell model in

Eq. 33, HApprox1 = HkA1 +HA1,A1−HA1,B1H
−1
kB1H

†
A1,B1

by addingH(B1)(k, w0, w1) of Eq. 53 toHHex
2band(k, w0, w1)

of Eq. 52. We note that this is still perturbation theory
performed by using the ΓM -point HHex(k = 0, w0, w1 =√

1+w2
0

2 ) as zeroth order Hamiltonian:

H2band(k, w0, w1) = HHex
2band(k, w0, w1)+H(B1)(k, w0, w1)

(54)
We now find some of the predictions of this Hamiltonian.

1. ΓM point energetics of the two band model

The energies of the two bands of the Eq. 54 at ΓM
point are
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FIG. 11. Plots of the ratio of the bandwidth of the active
bands for the large number of shells to the analytic band-
width ∆ in Eq. 56, for different values of w0, w1, including
the two magic manifolds. In the regime of validity of our ap-
proximations, we can see that this ratio is substantially above
90%.

E±(w0, w1) = ±(
−4
√
w2

0 + 1w1 + w2
0 + w2

1 + 2

2
√
w2

0 + 1
) (55)

over the full range of w0, w1 ≤ 1/
√

3. Remarkably, we
find an amazing agreement between the energy of the
bands at ΓM point and the numerics. We find that the
bandwidth of the flat band at ΓM point is

∆(w0, w1) = 2|E±(w0, w1)| (56)

This matches incredibly well with the actual values. In
Fig. 11 we plot the ratio of actual active bandwidth at
ΓM point from the large number of shell model to ∆
in Eq. 56, for values w0 < 1/

√
3, w0 < w1 < 1/

√
3.

Note that even though we are sometimes going far from
the second magic manifold values w0, w1 =

√
1 + w2

0/2
where the perturbation theory is valid, the ratio holds
up well, and is actually never smaller than 0.8 or larger
than 1. We are using w0 < w1 because the perturbation
theory is around the manifold w0, w1 =

√
1 + w2

0/2 ≤ 1√
3

for which w0 < w1. For w1 < w0 the approximation
becomes worse, but is outside of the validity regime.

For the two magic manifolds, also shown in Figs. 11
and 12, the agreement is very good. We point out sev-
eral consistency checks. First, remarkably, the set of ap-
proximations that led us to finding a 2-band Hamiltonian
becomes exact at some points

• The ΓM point Bandwidth at w0 = w1 = 1/
√

3 van-
ishes ∆( 1√

3
, 1√

3
) = 0. This degeneracy reproduces

the exact result, in the 1-shell model (See n = 1
in Fig. 14, the 6-fold degeneracy at the ΓM point).
The approximate model of the 1-shell, HApprox1 of
Eq. 33 also has an exact 6-fold degeneracy at the
ΓM point at w0 = w1 = 1/

√
3 (the two bands

here being part of the 6-fold manifold). It is re-
markable that our 2-band projection perturbation

FIG. 12. ΓM point bandwidth of the active bands (large
number of shells) on the manifold ∆(w0, w1) = 0 (w1 =

2
√

1 + w2
0 −

√
2 + 3w2

0) of zero analytic bandwidth (Eq. 56)
divided by the bandwidth of the active bands in the chiral
limit ((w0, w1) = (0, 1√

3
). Note that this number is extremely

small away from w0 = w1 = 1√
3
, showing that our analytic

manifold of smallest bandwidth (∆(w0, w1) = 0) also exhibits
small bandwidth in the large cell number. Inset: the curve
w1 = 2

√
1 + w2

0 −
√

2 + 3w2
0 for which ∆(w0, w1) = 0 for

0 ≤ w0 ≤ 1√
3
. Note that w1 changes extremely little 1%

(stays within 1% of 1√
3
) during the entire sweeping of w0.

approximation reproduces this degeneracy exactly,
especially since it is supposed not to work close to
w0 = w1 = 1/

√
3 - where the gap to the active

bands is 0 and the ΓM point becomes 6-fold degen-
erate.

• At w0 = w1 = 0, the bandwidth at ΓM is ∆(0, 0) =
2. This is again, an exact result for the infinite
shell model. Indeed, at the ΓM point, the BM
Hamiltonian with zero interlayer coupling has a gap
= 2|q1| = 2.

• We now ask: what is the w0, w1 manifold, under
this approximation, for which the ΓM point band-
width is zero? This is easily solved to give:

2-band model with zero bandwidth at ΓM :

w1 = 2
√
w2

0 + 1−
√

3w2
0 + 2, w0 ∈ [0,

1√
3

].

(57)

Fig. 12 plots the ratio of the bandwidth of the full
BM model on this manifold to the bandwidth at at
the chiral limit w0 = 0, w1 = 1√

3
(which is already

really small!). We can see that, for most of the w0 ∈
(0, 1/

√
3) this ratio is below 0.1, showing us that

we have identified an extremely small bandwidth
manifold.

• What are the values of w1 on this manifold?
Remarkably, as can be seen in Fig. 12, w1 =



19

2
√
w2

0 + 1 −
√

3w2
0 + 2 is an almost fully constant

over the interval w0 ∈ (0, 1/
√

3): it changes by
around 1% only. Moreover, its values (0.578-586)

are very close to 1/
√

3 ≈ 0.57735. Hence our ap-
proximation explains the flatness of the bands over
the emph first magic manifold, 0 ≤ w0 ≤ 1√

3
, w1 =

1√
3
: This manifold is almost the same with the

one for which our analytical approximate calcula-
tion gives zero gap. Hence property (6) of Fig. 1 is
answered.

• At w0 = 0, one has w1 = 2
√
w2

0 + 1−
√

3w2
0 + 2 =

2−
√

2 in Eq. (57), for which the bandwidth is 0 in
our perturbative model. As we show in App. F 5,
this value of w1 coincides with the exact value for
which the ΓM bandwidth is zero in the approxima-
tion Hamiltonian HApprox1 of Eq. 33. Furthermore,

at w0 = 0, the value w1 = 2 −
√

2 also coincides
with the exact value of zero ΓM bandwidth in the
no-approximation Hamiltonian of the n = 1 shell
Hamiltonian (of A1, B1 subshells) (see App. F 5).

• At w0 = 0, the value w1 = 2
√
w2

0 + 1−
√

3w2
0 + 2 =

2−
√

2 for which the bandwidth of our approximate
2-band model is projected to be zero is numerically
very close to the value of 0.586 quoted for the first
magic angle in the chiral limit [37]. In fact, at w0 =

0, w1 = 2 −
√

2 the bandwidth of the active bands
is half of that at w1 = 0.586.

E. Region of Validity of the 2-Band Model and
Further Fine-Tuning

The 2-band approximation to the n = 1 Shell Model
has a radius of convergence in k space in the first MBZ.
This radius of convergence is easily estimated from the
following argument. In Tab. II, the (maximum) gap, at
the ΓM point, between the active and the passive bands
in the Hexagon model (and in the region w0 ≤ 1/

√
3)

is at w0 = 0 and equals 1/2. The distance, in the MBZ
between ΓM and KM points equals to 1. Hence we expect
that our 2-band model will work for |k| � 1/2, as our
numerical results confirm. The form factor matrices can
be computed for this range of k analytically, by using
the full Hexagon Hamiltonian in Eq. 52 plus the B1
shell perturbation in Eq. 53. They will be presented in
a future publication.

The k = KM point is outside the range of validity of
the 2-band model, and hence this does not capture the
gapless Dirac point for all values of w0, w1. However,
with some physical intuition, we can obtain a 2-band
model that has a gap closing at the KM point. In Fig.
9 we see that the Hexagon model does not have a gap
closing between the active bands at the KM point. How-
ever, in Figs. 18, 19, 20 we see that HApprox1(k) in Eq.
33 has a gap closing close to, or almost at the KM -point.

FIG. 13. Comparison between (a) the active bands of the
BM model at the w0 = 0, w1 ≈ 0.588 point and (b)the bands
of the 2-band first order approximation to HApprox1(k) in Eq.
33. Notice that the bandwith at the ΓM point is virtually
identical, that the bands are flat, and that they close gap at
the KM point.

This means that one of the main roles of the B1 shell is
to close the KM gap, leading to the Dirac point.

Hence we can use the 2-band model of the first or-
der approximation to the Hexagon model, Eq. 51,

H
(1)
mm′(k, w0, w1) = (

√
w2

0+1

2 − w1)(σy +
√

3σx) along
with the 2-band model first order approximation for
the B1-shell H(B1)(k, w0, w1) to obtain a first order
2− band approximation Hamiltonian: H(1)(k, w0, w1) +
H(B1)(k, w0, w1). Note that H(1)(k, w0, w1), the 2-band
first order approximation to the Hexagon model, has two
flat k independent bands. We now impose the condition:
H(1)(k = KM , w0, w1) + H(B1)(k = KM , w0, w1) = 0 to
find the manifold (w1, w0) on which this condition hap-
pens. Notice that, a-priori, there is no guarantee that the
result of this condition will give a manifold that is any-
where near the values of w1, w0 considered in this paper,
for which our set of approximations is valid (i.e. w0, w1

not much larger than 1/
√

3). We find:

H(1)(k = KM , w0, w1) +H(B1)(k = KM , w0, w1) = 0

=⇒
2-band model degenerate at KM : (58)

w1 = 1
32

(
63
√
w2

0 + 1−
√

2977w2
0 + 1953

)
(59)

Remarkably, we note that as w0 is tuned from 1/
√

3

to 0, w1 only changes from (1/
√

3 = 0.57735 and
3
32

(
21−

√
217
)

= 0.587726!. Hence the isotropic point is
included in this manifold, and w1 changes by only about
2% as w0 is tuned from the isotropic point to the chiral
limit. We hence propose this model as a first, heuristic
k ·p model for the active bands on the w1(w0) manifold in
Eq. 58. Importantly, this model will have (A) flat bands
with small bandwidth; (B) identical gap between the ac-
tive bands at the ΓM point with the TBG BM model;
(C) gap closing at the KM point.
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V. Conclusions

In this paper we presented a series of analytically jus-
tified approximations to the physics of the BM model
[1]. These approximations allow for an analytic explana-
tion of several properties of the BM model such as (1)
the difficulty to stabilize the gap, in the isotropic limit
from active to passive bands over a wide range of an-
gles smaller than the first magic angle. (2) The almost
double degeneracy of the passive bands in the isotropic
limit, even away from the ΓM -point, where no symmetry
forces them to be. (3) The determination of the high
group velocities of the passive bands. (4) The flatness of
the active bands even away from the Dirac point, around
the magic angle which has w1 = 1/

√
3. (5) The large

gap, away from the isotropic limit, (with w1 = 1/
√

3),
between the active and passive bands, which increases
immediately with decreasing w0, while the bandwidth of
the active bands does not increase. (6) The flatness of

bands over the wide range of w0 ∈ [0, 1/
√

3], from chiral
to the isotropic limit. Also, we provided a 2 × 2 k · p
Hamiltonian for the active bands, which allowed for an
analytic manifold on which the bandwidth is extremely
small: w1 = 2

√
w2

0 + 1−
√

3w2
0 + 2, w0 ∈ [0, 1√

3
].

However, the most important feature uncovered in this
paper is the development of an analytic perturbation the-
ory which justifies neglecting most of the matrix elements
(form factors/overlap matrices, see Eq. 19), which will
appear in the Coulomb interaction [108]. The exponen-
tial decay of these matrix elements with momentum will
justify the use of the “flat metric condition” in Eq. 20 and
allow for the determination of exact Coulomb interaction
ground-states and excitations [108–111].

Future research in the BM model is likely to uncover
many surprises. Despite the apparent complexity of the
model and the need for numerical diagonalization, one
cannot help but think that there is a 2×2 k ·p model valid
over the whole area of the MBZ, for all w0, w1 around the
first magic angle. Our 2-band model is valid around the
ΓM point - for a large interval but not for the entire MBZ,
although we can fine tune to render the qualitative as-
pects valid at the KM point also. A future goal is to find
an approximate summation, based on our perturbative
expansion, where outer shells can be taken into account
more carefully and possibly summed together in a closed-
form series, thereby leading to a much more accurate k ·p
model. We leave this for future research.
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A. Matrix Elements of the ΓM -Centered Model

We introduce the shells in the ΓM -centered model. The Anj sites of the n’th A shell (see Fig. 4a) are situated at

QAnj = (n− 1)(q1 − q2) + (j − 1)(q2 − q3) + q1, j = 1 . . . n

QAnn+j
= C6QAnj

= (n− 1)(q1 − q3) + (j − 1)(q2 − q1)− q3, j = 1 . . . n

QAn2n+j
= C2

6QAnj
= (n− 1)(q2 − q3) + (j − 1)(q3 − q1) + q2, j = 1 . . . n

QAn3n+j
= C3

6QAnj
= (n− 1)(q2 − q1) + (j − 1)(q3 − q2)− q1, j = 1 . . . n

QAn4n+j
= C4

6QAnj
= (n− 1)(q3 − q1) + (j − 1)(q1 − q2) + q3, j = 1 . . . n

QAn5n+j
= C5

6QAnj
= (n− 1)(q3 − q2) + (j − 1)(q1 − q3)− q2, j = 1 . . . n (A1)

There are 6n A sites in the n’th shell. The Bnj sites of the n’th B shell (see Fig. 4a) are situated at

QBnj
= QAnj

+ q1, QBnn+j
= QAnn+j − q3, QBn2n+j

= QAn2n+j
+ q2,

QBn3n+j = QAn3n+j − q1, QBn4n+j = QAn4n+j + q2, QBn5n+j = QAn5n+j − q2, j = 1 . . . n (A2)

There are 6n B sites in the n’th shell. The basis we take for the BM Hamiltonian in Eq. 3 is then

(A1, B1, A2, B2, . . . AN,BN)

= (A11, A12, A13, A14, A15, A16, B11, B12, B13, B14, B15, B16, A21, A22, . . .) (A3)

where N is the cutoff in the number of shells that we take. Each shell n has 6n A sites and 6n B sites.

The separation of shell n = 1 . . .∞ into A and B is necessary in the ΓM -centered model is necessary due to the
structure of the matrix elements. Unlike in the KM -centered model, where different shells hop from one to another
but not within a given shell, in the ΓM -centered model, the A-shells hop between themselves too. Explicitly, the
nonzero matrix elements within the n’th A shell are called HAn,An:

HAn,An =

Ann ↔ Ann+1 : T2; An2n ↔ An2n+1 : T1; An3n ↔ An3n+1 : T3;

An4n ↔ An4n+1 : T2; An5n ↔ An5n+1 : T1; An6n ↔ An6n+1 : T3 (A4)

In the B shell, there are no matrix elements between different B sites, but there are matrix elements between the
A and B sites in the same shell n. They are called HAn,Bn and the nonzero elements are:

HAn,Bn =

Anj ↔ Bnj : T1; Ann+j ↔ Bnn+j : T3; An2n+j ↔ Bn2n+j : T2;

An3n+j ↔ Bn3n+j : T1; An4n+j ↔ Bn4n+j : T3; An5n+j ↔ Bn5n+j : T2;

j = 1 . . . n, n = 1 . . .∞ (A5)
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Last set of couplings are between the n − 1’th B shelll Bn − 1 and the n’th shell An are HBn−1,An with nonzero
matrix elements given by:

HBn−1,An =

Bn− 1j ↔ Anj : T2, j = 1 . . . n− 1; Bn− 1j−1 ↔ Anj : T3, j = 2 . . . n;

Bn− 1n+j ↔ Ann+j : T1, j = 1 . . . n− 1; Bn− 1n+j−1 ↔ Ann+j : T2, j = 2 . . . n;

Bn− 12n+j ↔ An2n+j : T3, j = 1 . . . n− 1; Bn− 12n+j−1 ↔ An2n+j : T1, j = 2 . . . n;

Bn− 13n+j ↔ An3n+j : T2, j = 1 . . . n− 1; Bn− 13n+j−1 ↔ An3n+j : T3, j = 2 . . . n;

Bn− 14n+j ↔ An4n+j : T1, j = 1 . . . n− 1; Bn− 14n+j−1 ↔ An4n+j : T2, j = 2 . . . n;

Bn− 15n+j ↔ An5n+j : T3, j = 1 . . . n− 1; Bn− 15n+j−1 ↔ An5n+j : T1, j = 2 . . . n;

(A6)

The diagonal matrix elements are (k−Q)σδQ,Q′ where the Q′, Q’s are given by the shell distance: We call these HkAn

or HkBn depending on whether the Q is on the A or B shell. Note that the Hamiltonian within the B shell is HkBn

while the Hamiltonian within the A shell is HkAn +HAn,An. We now have defined all the nonzero matrix elements of
the Hamiltonian. In block-matrix form, it takes the expression

H =



HkA1 +HA1,A1 HA1,B1 0 0 0 · · ·
H†A1,B1 HkB1 HB1,A2 0 0 · · ·

0 H†B1,A2 HkA2 +HA2,A2 HA2,B2 0 · · ·
0 0 H†A2,B2 HkB2 HB2,A3 · · ·
0 0 0 H†B2,A3 HkA3 +HA3,A3 · · ·
...

...
. . .

...



B. Numerical Confirmation of the Perturbative Framework

What our discussion in Secs. II D and II E shows is that (1) For the first magic angle, we can neglect all shells
greater than 2, while having a good approximation numerically. (2) For the next, smaller, magic angle, we need to
keep more shells in order to obtain a good approximation. We have tested that machine precision convergence can
be obtained for the active bands by choosing a cutoff of 5-6 shells. We test this next, along with other conclusions of
Secs. II D and II E In particular:

• We first confirm our analytic conclusion that shells above n > 2 do not change the spectrum for the first magic
angle (and for larger angles than the first magic angle). Figs. 14,15 and 16 show the spectrum for several values

of w0, w1 around (or larger than) the first magic angle characterized by w0 = 1/
√

3 for the KM -centered model

and by w0 = w1 = 1/
√

3 for the ΓM -centered model model in Sec. III). For the KM -centered model, the magic

angle does not depend on w1 but for the ΓM -centered model it does, see Sec. III. For either w0 or w1 ≤ 1/
√

3,
we see that the spectrum looks completely unchanged from n = 2 to n = 4 shells. From n = 2 to n = 4 shells,
the largest change is smaller than 1%, and invisible to the naked eye. Above n = 4 shells, the spectrum is
numerically the same within machine precision. We confirm our first conclusion: To obtain a faithful model for
TBG around the first magic angle, we can safely neglect all shells above n = 2. Keeping the n = 2 shells gives
us a Hamiltonian which contains the A1, B1, A2, B2 shells in Fig. 4a, giving a Hamiltonian that is a 72 × 72
matrix, too large for analytic tackling. Hence further approximations are necessary as per Secs. II D and II E,
which we further numerically confirm.

• We confirmed our perturbation theory predictions of Secs. II D and II E for angles smaller than the first magic
angle. In Fig. 17 we confirm the analytic prediction that at angle 1/n times the first magic angle, we can neglect
all the shells above n+ 1.

• We confirmed our perturbation theory predictions Secs. II D and II E that - for the first magic angle and below,
(w0, w1 ≤ 1/

√
3) - keeping only the first shell induces only a 20% error in the band structure. We have already

established that keeping up to n = 2 shells at the first magic angle gives the correct band structure within less
than 5%. Figs. 14,15 and 16 also contain the n = 1 shells band structure for a range of angles around and above
the first magic angle w0, w1 ≥ 1/

√
3. We see that the band structures differ little to very little, while keeping

the main characteristics, from n = 1 to n = 2. In particular, in the chiral limit of w0 = 0 and for w1 = 1/2
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FIG. 14. Plots of the band structure for different parameters around the first magic angle, and for different ranges of the
y-axis. Notice no change from n = 2 to n = 4, in agreement with the theoretical discussions

FIG. 15. Plots of the band structure for different parameters around the first magic angle, and for different ranges of the
y-axis. Notice no change from n = 2 to n = 4, in agreement with the theoretical discussions

(along what we call the Second Magic Manifold, see Sec. IV) the band structures do not visibly differ at all
(see Fig .15, lowest row) from n = 1 to n = 2. Hence for the first magic angle, to make analytic progress, we
will consider only the n = 1 shell, to a good approximation. This gives a 24 × 24 Hamiltonian, which is still
analytically unsolvable. Hence further approximations are necessary, such as HApprox1(k) in Eq. 33.

• We test the prediction that HApprox1(k) in Eq. 33 approximates well the band structure of TBG around (and

for angles larger than) the magic angle for a series of values of w0, w1 ≤ 1/
√

3. Figs. 18,19 and 20. We see
remarkable agreement between HApprox1(k) and the n = 1 Hamiltonian. We also see good agreement with the
large shell limit. For values of the parameters w0 = 0, w1 = 1

2 in the Second Magic Manifold, (see Sec. IV), the
HApprox1(k) and the n = 1, 2, 3 . . . shells give rise to bands undistinguishable by eye(see Fig19, last row). We
will hence use HApprox1(k) as our TBG hamiltonian. This is a 12×12 Hamiltonian that cannot be solved
analytically. Hence further analytic approximations are necessary.
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FIG. 16. Plots of the band structure for different parameters around the first magic angle, and for different ranges of the
y-axis. Notice no change from n = 2 to n = 4, in agreement with the theoretical discussions

C. Eigenstates of the Hexagon Model at the ΓM point

We provide the explicit expressions for the six band model approximation for the Hexagon model at w0 = w1 =
1/
√

3. The basis we choose is made of simultaneous eigenstates of C3z and H for the states |ψj(k = 0, w0 = w1 =
1√
3
)〉 = ψEj j = 1 . . . 6 in Eq. 41:

ψE1
=


ζ1

e−i(2π/3)σzη1

ei(2π/3)σzζ1
η1

e−i(2π/3)σzζ1
ei(2π/3)σzη1

 , ζ1 =
1

2
√

2

(
1
1

)
, η1 =

1√
3

(−2iσz − σy)ζ1 =
1

2
√

6

(
−i
i

)
, (C1)

ψE2
=


ζ2

e−i(2π/3)σzη2

ei(2π/3)σzζ2
η2

e−i(2π/3)σzζ2
ei(2π/3)σzη2

 , ζ2 =
1

2
√

6

(
1
−1

)
, η2 =

1√
3

(−2iσz − σy)ζ2 =
1

2
√

2

(
−i
−i

)
, (C2)
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FIG. 17. Plots of the band structure for different parameters far away from the first magic angle: at half, a third and a fourth
of the first magic angle. Notice that for and angle 1/n times the magic angle, we can neglect all shells above n + 1, which
confirms our perturbation theory result. For the first magic angle, above n = 2 shells the band structure goes not change. For
half the magic angle, the band structure above n = 3 shells does not change (but the band structure at n = 2 shells is changed
compared to the n = 3 band structure). For a third of the magic angle, the band structure above n = 4 shells does not change
(but the band structure at n = 2, 3 shells is changed compared to the n = 4 band structure. For a quarter of the magic angle,
the band structure above n = 5 shells does not change (but the band structure at n = 2, 3, 4 shells is changed – dramatically –
compared to the n = 6 band structure.

ψE3 =


ζ3

e−i(2π/3)(σz−σ0)η3

ei(2π/3)(σz−σ0)ζ3
η3

e−i(2π/3)(σz−σ0)ζ3
ei(2π/3)(σz−σ0)η3

 , ζ3 =
1√

26(5−
√

13)

(
2

3−
√

13

)
,

η3 =
1√
3

(
σy
2

+
3i

2
σx + iσz)ζ3 =

i√
78(5−

√
13)

(
5−
√

13

1 +
√

13

)
,

(C3)
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FIG. 18. Plots of the band structure of HApprox1 for different parameters around the first magic angle, and for different ranges
of the y-axis. For convenience, we also re-plot the n = 1, 2, 3 shells band structure. Notice the good agreement of HApprox1 with
the n = 1 shell Hamiltonian, and, further-on, the good approximation of the n = 2, 3 band structures by this Hamiltonian. For
the chiral limit w0 = 9/10

√
3, w1 =

√
1 + w2

0/2, the approximate HApprox1 is a remarkably good approximation of the n = 1
shell and a good approximation to the thermodynamic limit, albeit with the Dirac point slightly shifted.

ψE4 =


ζ4

e−i(2π/3)(σz−σ0)η4

ei(2π/3)(σz−σ0)ζ4
η4

e−i(2π/3)(σz−σ0)ζ4
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√
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√
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i√
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√
13)

(
5 +
√
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1−
√

13

)
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(C4)

ψE5
=


ζ5

e−i(2π/3)(σz+σ0)η5

ei(2π/3)(σz+σ0)ζ5
η5

e−i(2π/3)(σz+σ0)ζ5
ei(2π/3)(σz+σ0)η5

 , ζ5 =
1√

26(5−
√
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(
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√
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)
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−i√
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√
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√
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√

13

)
,

(C5)
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FIG. 19. Plots of the band structure of HApprox1 for different parameters around the first magic angle, and for different ranges
of the y-axis, which helps us focus on different bands. For convenience, we also re-plot the n = 1, 2, 3 shells band structure.
Notice the remarkable (almost undistinguishable by eye) agreement of HApprox1 with the n = 1 shell Hamiltonian, and the
further-on good approximation of the n = 2, 3 band structures by this Hamiltonian. For the chiral limit w0 = 0, w1 = 1/2, the
approximate HApprox1 is a remarkably good approximation of the thermodynamic limit - undistinguishable by eye -, while for

all other values it is a very good approximation. The Dirac point in the chiral limit w0 = 0, w1 =
√

1 + w2
0/2 is at KM even

for the HApprox1.

ψE6
=


ζ6

e−i(2π/3)(σz+σ0)η6

ei(2π/3)(σz+σ0)ζ6
η6

e−i(2π/3)(σz+σ0)ζ6
ei(2π/3)(σz+σ0)η6

 , ζ6 =
1√

26(5 +
√

13)

(
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√

13
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)
,

η6 =
1√
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σy
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+
3i

2
σx + iσz)ζ6 =

−i√
78(5 +

√
13)

(
1−
√

13

5 +
√

13

)
.

(C6)

The basis ψE1
, ψE2

has C3z = 1, the basis ψE3
, ψE4

has C3z = ei2π/3, and the basis ψE5
, ψE6

has C3z = e−i2π/3. The
6 by 6 Hamiltonian in Eq. 41 under these 6 basis takes the form

H6 band
ij (k, w0 = w1 =

1√
3

) =

 02 A1k− A†2k+

A†1k+ 02 A3k−
A2k− A†3k+ 02

 , (C7)
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FIG. 20. Plots of the band structure of HApprox1 for different parameters around the first magic angle, and for different ranges
of the y-axis, which helps us focus on different bands. For convenience, we also re-plot the n = 1, 2, 3 shells band structure.
Notice the remarkable (almost undistinguishable by eye) agreement of HApprox1 with the n = 1 shell Hamiltonian, and the
further-on good approximation of the n = 2, 3 band structures by this Hamiltonian. For the chiral limit w0 = 0, w1 = 1/

√
3,

the approximate HApprox1 is a remarkably good approximation of the n = 1 Hamiltonian, and a good approximation to the
thermodynamic limit. The Dirac point is slightly moved away from the KM point.

where k± = kx ± iky, 02 is the 2 by 2 zero matrix, and

A1 =

 2
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√
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)√√
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(C8)

We note that ψE1 , ψE2 also serves as the Gamma point basis of the 2-band approximation at w1 =
√

1 + w2
0/2 in

Sec. IV.

D. Eigenstates of Along the ΓM −KM line kx = 0 and on the ΓM −MM line ky = 0

1. Eigenstates of H6 band
ij (k = (0, ky), w0 = w1 = 1√

3
)

On the ΓM −KM line, the energies (already mentioned in the main text) are
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E6-band(k = (0, ky), w0 = w1 =
1√
3

) = (−2

√
3

13
ky,−2

√
3

13
ky, 2

√
3

13
ky, 2

√
3

13
ky, 0, 0) (D1)

The energies have eigenstates (not orthonormalized yet)

ψ1;6-band(k = (0, ky), w0 = w1 = 1√
3
) =

(− 1
200

√
1
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(
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√
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√
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√
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√
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√
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√
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√
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Fundamentally, what we notice is that the bands are ky independent!

2. Eigenstates of H6 band
ij (k = (kx, 0), w0 = w1 = 1√

3
)

On the ΓM −MM line, the energies (already mentioned in the main text) are

E6-band(k = (kx, 0), w0 = w1 = 1√
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) =
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The energies have eigenstates (not orthonormalized yet)

ψ1;6-band(k = (kx, 0), w0 = w1 = 1√
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Fundamentally, what we notice is that the bands are kx independent!

E. Solutions of Eigenstates for the Hexagon Model

We now solve the eigenvalue equation

HHex(k, w0, w1)ψ = Eψ (E1)

for the Hexagon model in Eq. 40 in the basis ψ(k, w0, w1) = (ψA11
, ψA12

, ψA13
, ψA14

, ψA15
, ψA16

)(k, w0, w1) where
each ψA1i

(k, w0, w1) is a 2-component spinor of Fig. 8, for different values of k, w0, w1.

1. Eigenstate solution at k = 0 for Arbitrary w0, w1

The eigenvalue equation cannot be solved for general k, w0, w1 and we hence concentrate on several cases. First,
we only can solve only the k = 0 point. Using |~qi · ~σ| = 1, we find:

ψ6 = E+q2·σ
E2−1 (T1ψ5 + T3ψ1)

ψ4 = E+q1·σ
E2−1 (T3ψ3 + T2ψ5)

ψ2 = E+q3·σ
E2−1 (T2ψ1 + T1ψ3)

[(E + q3 · σ)(E2 − 1)− E(T 2
2 + T 2

1 )− T2q1 · σT2 − T1q2 · σT1]ψ5 = T2(E + q1 · σ)T3ψ3 + T1(E + q2 · σ)T3ψ1

[(E + q2 · σ)(E2 − 1)− E(T 2
1 + T 2

3 )− T1q3 · σT1 − T3q1 · σT3]ψ3 = T1(E + q3 · σ)T2ψ1 + T3(E + q1 · σ)T2ψ5

[(E + q1 · σ)(E2 − 1)− E(T 2
2 + T 2

3 )− T2q3 · σT2 − T3q2 · σT3]ψ1 = T2(E + q3 · σ)T1ψ3 + T3(E + q2 · σ)T1ψ5 (E2)
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where shorthand notation Ti = Ti(w0, w1), ψi = ψA1i
(k = 0, w0, w1). Using the expressions of Ti from Eq. 4, we

re-write the last 3 equations above as:

[E(E2 − 1)σ0 + q3 · σ(E2 − 1 + w2
0 + 2w2

1)− E(2(w2
0 + w2

1)σ0 + w0w1(σx +
√

3σy)]ψ5
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√
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√
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√
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2 w2
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Plugging in the expressions for the energy E, we can obtain the relations between ψi. However, these are messy, and
we choose to find the eigenstates on several, simpler, manifolds in the w0, w1 parameter space.

2. Eigenstate solution at k = 0 for on the second magic manifold w1 =
√

1 + w2
0/2

We first solve for the two zero eigenstates E1,2(k = 0, w0, w1 =

√
1+w2

0

2 ) = 0 of Tab. I. Eq. E2 become:

(3w2
0 − 1)q3 · σψ5 =

(3w2
0−1)
2 (q1 · σψ3 + q2 · σψ1)

(3w2
0 − 1)q2 · σψ3 =

(3w2
0−1)
2 (q3 · σψ1 + q1 · σψ5)

(3w2
0 − 1)q1 · σψ1 =

(3w2
0−1)
2 (q3 · σψ3 + q2 · σψ5) (E4)

We now have two cases

a. Zero Energy eigenstate solution at k = 0 for on the second magic manifold w1 =
√

1 + w2
0/2, w0 6= 1/

√
3

In this case 3w2
0 − 1 6= 0 and Eq. E4 become:

q3 · σψ5 =
1

2
(q1 · σψ3 + q2 · σψ1); q2 · σψ3 =

1

2
(q3 · σψ1 + q1 · σψ5); q1 · σψ1 =

1

2
(q3 · σψ3 + q2 · σψ5) (E5)

with solutions (for the two zero energy eigenstates)

ψ1 = (q3 · σ)(q2 · σ)ψ3;

ψ5 = (q2 · σ)(q3 · σ)ψ3;

ψ4 = −q1 · σ(T3 + T2(q2 · σ)(q3 · σ))ψ3;

ψ2 = −q3 · σ(T1 + T2(q3 · σ)(q2 · σ))ψ3;

ψ6 = −q2 · σ(T3(q3 · σ)(q2 · σ) + T1(q2 · σ)(q3 · σ))ψ3; (E6)

The two independent zero energy eigenstates on the second magic manifold can be obtained by taking ψ3 = (1, 0)
and ψ3 = (0, 1), respectively. However, they are not orthonormal and a further Gram-Schmidt must be performed to
orthogonalize them. We obtain:
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b. Non-zero Energy Eigenstate solutions at k = 0 for on the second magic manifold w1 =
√

1 + w2
0/2, w0 6= 1/

√
3

We can adopt the same strategy to build the other, non-zero energy orthonormal eigenstates. It is tedious (analytic
diagonalization programs such as Mathematica fail to provide a result, hence the algebra must be performed by hand)
to write the details, but the final answer is, for the eigenstates of energies on the first magic manifold given in Tab. II:
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
w2

0 + 1 + 3
√
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√
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√
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√
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√
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√
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)
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(√
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)√
w4

0 + 5w2
0 + 4, 4w0

√
10w2

0 + 1 + 8i
√
w2

0 + 1) (E9)
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ψE7
(k = 0, w0, w1 =

√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
w2

0 + 1
)
, 4
√
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√
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√
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√
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√
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√
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√
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√

3w2
0 + i

√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
w2

0+1
, 1

12

(
−
√

3− 3i
)
, 1

12

(√
3 + 3i

)
, w0+i

2
√

3
√
w2

0+1
) (E12)

ψE12
(k = 0, w0, w1 =

√
1+w2

0

2 ) =

(
(
√

3−3i)(w0−i)

12
√
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√
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√
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√
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√
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√
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√
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√
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√
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c. Zero Energy eigenstate solution at k = 0 for on the second magic manifold w1 =
√

1 + w2
0/2 = w0 = 1/

√
3

There are 6 zero Energies in Tab. I at this point w1 =
√

1 + w2
0/2 = w0 = 1/

√
3. They have already been given in

App. C.

F. Perturbation Theory for H
(1)

mm′(k, w0) = 0, Em = 0 manifold

1. Review Of Perturbation Theory

We review the perturbation theory being performed in the main text. This formalism was first presented in
Ref. [123], but we go to higher order in current perturbation theory. We have a Hamiltonian H0 whose eigenstates we
know, and is hence purely diagonal in its eigenstate basis. We also have a perturbation Hamiltonian H ′, with both
diagonal and off-diagonal elements. Amongst the eigenstates of H0 we have a set of eigenstates separated by a large
gap from the others, which cannot be closed by the addition of H ′, and they represent the manifold we want to project
in. These states are indexed by m,m′,m′′,m′′′, . . . while the rest of the eigenstates are indexed by l, l′, l′′, l′′′, . . . .
These two form separate subspaces. We now want to find a Hamiltonian Hmm′ which incorporates the effects of H ′ up
to any desired order. We separate H ′ into a diagonal part H1 plus an off-diagonal part H2 between these manifolds:

H ′ = H1 +H2

(H1)mm′ = 〈ψm|H ′|ψm′〉; (H1)ll′ = 〈ψl|H ′|ψl′〉; (H2)ml = 〈ψm|H ′|ψl〉; (H2)mm′ = (H2)ll′ = (H1)ml = 0 (F1)

We also have

H|ψm〉 = Em|ψm〉, H|ψl〉 = El|ψl〉 (F2)

We look for a unitary transformation:

H̃ = e−S(H0 +H ′)eS (F3)

where S(= −S†) has only matrix elements that are off-diagonal between the subspaces, i.e. Sml = 0. The unitary

transformation is chosen such that the off-diagonal part of H̃ is zero to the desired order (Hml = 0). Since we know
S,H2 are off diagonal and H1 is diagonal, we find that S can be obtained from the condition

H̃“off-diagonal” =

∞∑
j=0

1

(2j + 1)!
[H0 +H1, S]2j+1 +

∞∑
j=0

1

(2j)!
[H2, S]2j = 0 (F4)

(the off-diagonal Hamiltonian is zero). Once S is found, the diagonal Hamiltonian is:

H̃“diagonal” =

∞∑
j=0

1

(2j)!
[H0 +H1, S]2j +

∞∑
j=0

1

(2j + 1)!
[H2, S]2j+1 (F5)

where [A,B]j = [[[[[A,B], B], B], . . .], B] where the number of B’s is equal to j.We then parametrize S = S1 + S2 +
S3 + . . ., where Sn is order n in perturbation theory, i.e. in H ′ (or equivalently, in H1 or H2.

The terms up to order 4 are derived in Winkler’s book [123], and for our simplified problem, they are presented
in the main text. We have numerically checked their correctness. We here also present the fifth order term: this
term is tedious, but we use a particularly nice property of our eigenstate space that (H1)mm′ = 〈ψm|H ′|ψm′〉 = 0,
Em = 0 for m = 1, 2 property is true only for H ′ = I6×6 ⊗ k · σ and for the zero energy eigenstates ψm, m = 1, 2 of

H0=HHex(k = 0, w0, w1 =
√

1 + w2
0/2). To the desired order, we find:

(S1)ml =
H′ml

El
, (S1)lm = −H

′
lm

El

(S2)ml = −
∑
l′
H′

ml′H
′
l′l

ElEl′
, (S2)lm =

∑
l′
H′

ll′H
′
l′m

ElEl′

(S3)ml =
∑
l′,l′′

H′
ml′Hl′l′′Hl′l
ElEl′El′′

− 1
3

∑
l′m′ H

′
ml′Hl′m′Hm′l(

3
E2

l El′
+ 1

E2
l′El

)

(S3)lm = −
∑
l′,l′′

H′
ll′Hl′l′′Hl′′m
ElEl′El′′

+ 1
3

∑
l′m′ H

′
lm′Hm′l′Hl′m( 3

E2
l El′

+ 1
E2

l′El
) (F6)
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Due to our property (H1)mm′ = 〈ψm|H ′|ψm′〉 = 0, Em = 0 on the second magic manifold, we find that the fourth
order S4 is not needed in order to obtain the 5’th order diagonal Hamiltonian, as terms in the expression of the
Hamiltonian that contain it cancel. We find that the 5’th order Hamiltonian is:

H̃
(5)
“diagonal” = −S2H

0S3 − S3H
0S2 − S1H1S3 − S3H1S1 − S2H2S2

− 1
6 (S1H

0S1S2S1 + S1H
0S2S

2
1 + S1H

0S2
1S2 + S2H

0S3
1 + S1H1S

3
1

+ S1S2S1H
0S1 + S2S

2
1H

0S1 + S2
1S2H

0S1 + S3
1H

0S2 + S3
1H1S1)

+ 1
6 (H2S2S

2
1 +H2S

2
1S2 +H2S1S2S1 + 3(S1S2H2S1 + S2S1H2S1 + S2

1H2S2)

− (S2S
2
1H2 + S2

1S2H2 + S1S2S1H2)− 3(S1H2S1S2 + S1H2S2S1 + S2H2S
2
1)) (F7)

The matrix elements of these terms give:

1
6 (H2S2S

2
1 +H2S

2
1S2 +H2S1S2S1 − (S2S

2
1H2 + S2

1S2H2 + S1S2S1H2))mm′

= − 1
6

∑
l,l′,l′′

∑
m′′

(H′mlH
′
ll′Hl′m′′Hm′′l′′Hl′′m′+Hm′l′′Hl′′m′′Hm′′l′Hl′lHlm

ElEl′El′′
( 1
El

+ 1
El′

+ 1
El′′

) (F8)

1
6 (3(S1S2H2S1 + S2S1H2S1 + S2

1H2S2)− 3(S1H2S1S2 + S1H2S2S1 + S2H2S
2
1))mm′

= − 1
2

∑
l,l′,l′′

∑
m′′

(H′mlH
′
ll′Hl′m′′Hm′′l′′Hl′′m′+Hm′l′′Hl′′m′′Hm′′l′Hl′lHlm

ElEl′El′′
( 1
El

+ 1
El′

+ 1
El′′

) (F9)

− 1
6 (S1H

0S1S2S1 + S1H
0S2S

2
1 + S1H

0S2
1S2 + S2H

0S3
1 + S1H1S

3
1 +

+ S1S2S1H
0S1 + S2S

2
1H

0S1 + S2
1S2H

0S1 + S3
1H

0S2 + S3
1H1S1)

= 1
6

∑
l,l′,l′′

∑
m′′

(H′mlH
′
ll′H

′
l′m′′H

′
m′′l′′H

′
l′′m′+H

′
m′l′′H

′
l′′m′′H

′
m′′l′H

′
l′lH

′
lm

ElEl′El′′
( 1
El

+ 1
El′

+ 1
El′′

)

(−S2H
0S3 − S3H

0S2 − S1H1S3 − S3H1S1 − S2H2S2)mm′ =
∑

l,l′,l′′,l′′′

H ′mlH
′
ll′H

′
l′l′′Hl′′l′′′Hl′′′m′

ElEl′El′′El′′′
(F10)

Hence

H̃
(5)
“diagonal” =

∑
l,l′,l′′,l′′′

H′mlH
′
ll′H

′
l′l′′Hl′′l′′′Hl′′′m′

ElEl′El′′El′′′

− 1
2

∑
l,l′,l′′

∑
m′′

(H′mlH
′
ll′Hl′m′′Hm′′l′′Hl′′m′+Hm′l′′Hl′′m′′Hm′′l′Hl′lHlm

ElEl′El′′
( 1
El

+ 1
El′

+ 1
El′′

) (F11)

2. Calculations of the Hamiltonian Matrix Elements When First Order Vanishes

Here we calculate explicitly the perturbations of Hperturb(k, w0) = I6×6 ⊗ k · ~σ in Eq. (47) up to the fifth order.

a. First order

The first order perturbation can be easily seen to be zero:

H
(1)
mm′(k, w0) = 〈ψm|Hperturb(k, w0)|ψm′〉 = 0 . (F12)

b. Second Order

H
(2)
mm′(k, w0) = −

∑
l=3...12

1
El
〈ψm|Hperturb(k, w0)|ψl〉〈ψl|Hperturb(k, w0)|ψm′〉

= −
4w2

0

(
k2
x + k2

y

)
3
√
w2

0 + 1 (3w2
0 − 1)

(σy +
√

3σx) (F13)
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c. Third Order

H
(3)
mm′(k, w0) =

∑
l,l′=3...12

1
ElEl′

〈ψm|Hperturb(k, w0)|ψl〉〈ψl|Hperturb(k, w0)|ψl′〉〈ψl′ |Hperturb(k, w0)|ψm′〉

=
4kxw0

(
w2

0 − 3
) (
k2
x − 3k2

y

)
9 (1− 3w2

0)
2√

w2
0 + 1

σ0 (F14)

d. Fourth Order

For the fourth order, there are two terms:

First,

H
(41)
mm′(k, w0) =

−
∑
l,l′,l′′=3...12

1
ElEl′El′′

〈ψm|Hperturb(k, w0)|ψl〉〈ψl|Hperturb(k, w0)|ψl′〉〈ψl′ |Hperturb(k, w0)|ψl′′〉〈ψl′′ |Hperturb(k, w0)|ψm′〉

=
8w2

0

(
w4

0 + 16w2
0 − 9

) (
k2
x + k2

y

)2
27 (w2

0 + 1)
3/2

(3w2
0 − 1)

3
(σy +

√
3σx) (F15)

Second,

H
(42)
mm′(k, w0) =∑

l,l′=3...12

∑
m′′=1,2

1
ElEl′

( 1
El

+ 1
El′

)〈ψm|Hperturb(k, w0)|ψl〉〈ψl|Hperturb(k, w0)|ψm′′〉〈ψm′′ |Hperturb(k, w0)|ψl′〉〈ψl′ |Hperturb(k, w0)|ψm′〉

=
16w2

0

(
17w2

0 + 9
) (
k2
x + k2

y

)2
27
√
w2

0 + 1 (3w2
0 − 1)

3 (σy +
√

3σx) (F16)

Notice that so far, the eigenstates are not k-dependent, they are just the eigenstates of (σy +
√

3σx).

e. Fifth Order

The fifth order perturbation theory is not available in any book. Hence we derived it in App. F, for the special case

for which the manifold m of states we project in has the first order Hamiltonian H
(1)
mm′(k, w0) = 0 and for which its

energies are Em = 0.

The fifth order also has two terms, just like the 4-th order (See App. F). We find:

∑
l,l′,l′′,l′′′

H′mlH
′
ll′H

′
l′l′′Hl′′l′′′Hl′′′m′

ElEl′El′′El′′′

=
32kx

(
w2

0 − 3
)2 (

2w2
0 − 1

)
w0

(
k2
x − 3k2

y

) (
k2
x + k2

y

)
81 (w2

0 + 1)
3/2

(3w2
0 − 1)

4
σ0 (F17)

and

− 1
2

∑
l,l′,l′′

∑
m′′

(H′mlH
′
ll′Hl′m′′Hm′′l′′Hl′′m′+Hm′l′′Hl′′m′′Hm′′l′Hl′lHlm

ElEl′El′′
( 1
El

+ 1
El′

+ 1
El′′

)

= −
16kx

(
11w4

0 − 94w2
0 − 9

)
w0

(
k2
x − 3k2

y

) (
k2
x + k2

y

)
27
(√

w2
0 + 1 (3w2

0 − 1)
4
) σ0 (F18)
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We can clearly see the structure of the order n Hamiltonian, as a perturbation in 1/(3w2
0 − 1)n−1, with symmetry-

preserving functions of k. The full 2-band approximation to the Hexagon Hamiltonian is, up to 5-th order, is

HHex
2band(k, w0, w1 =

√
1+w2

0

2 ) =
4w2

0

3
√
w2

0+1(3w2
0−1)

[
−1 +

2(35w4
0+68w2

0+9)(k2x+k2y)
9(w2

0+1)(3w2
0−1)

2

] (
k2
x + k2

y

)
(σy +

√
3σx)

+ 4w0

9
√
w2

0+1(1−3w2
0)

2 [
(
w2

0 − 3
)
− 4(29w6

0−223w4
0−357w2

0−9)
9(1−3w2

0)
2
(w2

0+1)

(
k2
x + k2

y

)
]kx
(
k2
x − 3k2

y

)
σ0 (F19)

better expressed as:

HHex
2band(k, w0, w1 =

√
1 + w2

0

2
) = d0(k, w0)σ0 + d1(k, w0)(σy +

√
3σx) (F20)

where

d0(k, w0) =
4w0

9
√
w2

0 + 1 (1− 3w2
0)

2 [
(
w2

0 − 3
)
−

4
(
29w6

0 − 223w4
0 − 357w2

0 − 9
)

9 (1− 3w2
0)

2
(w2

0 + 1)

(
k2
x + k2

y

)
]kx
(
k2
x − 3k2

y

)
(F21)

and

d1(k, w0) =

√
1 + w2

0

2
) =

4w2
0

3
√
w2

0 + 1 (3w2
0 − 1)

[
−1 +

2(35w4
0 + 68w2

0 + 9)
(
k2
x + k2

y

)
9 (w2

0 + 1) (3w2
0 − 1)

2

] (
k2
x + k2

y

)
(F22)

3. Calculations of the Hamiltonian Matrix Elements When First Order Does Not Vanish

We take the unperturbed Hamiltonian to be HHex(k = 0, w0, w1 =
√

1 + w2
0/2) (the Hexagon model on the second

magic manifold) in Eq. 40. For this Hamiltonian we are able to obtain all the eigenstates analytically in App. E 2.
The perturbation Hamiltonian, away the second magic manifold is

Hperturb(k, w0, w1) =

HHex(k, w0, w1)−HHex(k = 0, w0, w1 =

√
1+w2

0

2 ) = I6×6 ⊗ k · ~σ +HHex(k = 0, 0, w1 −
√

1+w2
0

2 ) (F23)

a. First Order

H
(1)
mm′(k, w0, w1) = 〈ψm|Hperturb(k, w0, w1)|ψm′〉 = (

√
w2

0 + 1

2
− w1)(σy +

√
3σx) (F24)

Hence there is now a linear term in the Hamiltonian. Because of this, many other terms in the further degree
perturbation theory become nonzero.

b. Second Order

H
(2)
mm′(k, w0, w1) = −

∑
l=3...12

1
El
〈ψm|Hperturb(k, w0)|ψl〉〈ψl|Hperturb(k, w0)|ψm′〉

= −
4w2

0

(
k2
x + k2

y

)
3
√
w2

0 + 1 (3w2
0 − 1)

(σy +
√

3σx) (F25)

The second order perturbation theory is unchanged!
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c. Third Order

There are now two third order terms, as the first order perturbation terms do not vanish. First:

H
(31)
mm′(k, w0, w1) =

∑
l,l′=3...12

1
ElEl′

〈ψm|Hperturb(k, w0)|ψl〉〈ψl|Hperturb(k, w0)|ψl′〉〈ψl′ |Hperturb(k, w0)|ψm′〉

=
4kxw0

(
w2

0 − 3
) (
k2
x − 3k2

y

)
9 (1− 3w2

0)
2√

w2
0 + 1

σ0 −
8w2

0

(
k2
x + k2

y

) (√
w2

0 + 1− 2w1

)
9 (1− 3w2

0)
2 (σy +

√
3σx) (F26)

Second:

H
(32)
mm′(k, w0, w1) = − 1

2

∑
l=3...12

∑
m′′=1,2

〈ψm|Hperturb(k,w0,w1)|ψl〉〈ψl|Hperturb(k,w0,w1)|ψm′′ 〈ψm′′ |Hperturb(k,w0,w1)|ψm′ 〉+h.c.
E2

l

= −
2(17w2

0+9)(k2x+k2y)
(√

w2
0+1−2w1

)
9(1−3w2

0)
2 (σy +

√
3σx) (F27)

(where h.c. is the Hermitian conjugate)
The total third order Hamiltonian then reads:

4kxw0

(
w2

0 − 3
) (
k2
x − 3k2

y

)
9 (1− 3w2

0)
2√

w2
0 + 1

σ0 −
2
(
7w2

0 + 3
) (
k2
x + k2

y

) (√
w2

0 + 1− 2w1

)
3 (1− 3w2

0)
2 (σy +

√
3σx) (F28)

d. Fourth Order

For the fourth order, there are now four terms:
First,

H
(41)
mm′(k, w0, w1) =

−
∑
l,l′,l′′=3...12

1
ElEl′El′′

〈ψm|Hperturb(k, w0, w1)|ψl〉〈ψl|Hperturb(k, w0)|ψl′〉
× 〈ψl′ |Hperturb(k, w0, w1)|ψl′′〉〈ψl′′ |Hperturb(k, w0, w1)|ψm′〉

=
8w0

(
7w2

0 + 3
)
kx
(
k2
x − 3k2

y

) (
2w1 −

√
w2

0 + 1
)

27 (3w2
0 − 1)

3 σ0

+

4w2
0

(
k2
x + k2

y

)(
2
(
w4

0 + 16w2
0 − 9

) (
k2
x + k2

y

)
+
(
w2

0 + 1
) (

5w2
0 − 7

) (
2w1 −

√
w2

0 + 1
)2
)

27 (w2
0 + 1)

3/2
(3w2

0 − 1)
3

(σy +
√

3σx) (F29)

Second,

H
(42)
mm′(k, w0) =

=
∑
l,l′=3...12

∑
m′′=1,2

1
ElEl′

( 1
El

+ 1
El′

)〈ψm|Hperturb(k, w0, w1)|ψl〉〈ψl|Hperturb(k, w0)|ψm′′〉
× 〈ψm′′ |Hperturb(k, w0, w1)|ψl′〉〈ψl′ |Hperturb(k, w0, w1)|ψm′〉 =

=
16w2

0

(
17w2

0 + 9
) (
k2
x + k2

y

)2
27
√
w2

0 + 1 (3w2
0 − 1)

3 (σy +
√

3σx) (F30)

Third, we have, adopting the notation 〈ψm|Hperturb(k, w0)|ψl〉 = H ′ml, etc:

H
(43)
mm′(k, w0, w1) = − 1

2

∑
l,m′′,m′′′

1
E3

l
(H ′mm′′H

′
m′′m′′′H

′
m′′′lHlm′ +H ′mlH

′
lm′′H

′
m′′m′′′H

′
m′′′m′)

= −
8w2

0

(
35w2

0 + 23
) (
k2
x + k2

y

) (√
w2

0 + 1− 2w1

)2

27
√
w2

0 + 1 (3w2
0 − 1)

3 (σy +
√

3σx) (F31)
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H
(44)
mm′(k, w0, w1) = 1

2

∑
l,l′,m′′

1
ElEl′

(
1
El

+ 1
El′

)
(H ′mlH

′
ll′H

′
l′m′′Hm′′m′ +H ′mm′′H

′
m′′lH

′
ll′H

′
l′m′)

=
32kxw0

(
w2

0 − 15
) (
k2
x − 3k2

y

) (√
w2

0 + 1− 2w1

)
27 (3w2

0 − 1)
3 σ0

+
4
(
25w4

0 + 28w2
0 + 27

) (
k2
x + k2

y

) (√
w2

0 + 1− 2w1

)2

27 (1− 3w2
0)

3√
w2

0 + 1
(σy +

√
3σx) (F32)

The full 4’th order Hamiltonian reads

−
8kxw0

(
w2

0 + 21
) (
k2
x − 3k2

y

) (√
w2

0 + 1− 2w1

)
9 (3w2

0 − 1)
3 σ0+

4
(
k2
x + k2

y

)(
2w2

0

(
35w4

0 + 68w2
0 + 9

) (
k2
x + k2

y

)
− 9

(
w2

0 + 1
) (

10w4
0 + 9w2

0 + 3
) (

2w1 −
√
w2

0 + 1
)2
)

27 (w2
0 + 1)

3/2
(3w2

0 − 1)
3

(σy +
√

3σx)(F33)

If w1 =

√
1+w2

0

2 , then the expressions reduce to our previous Hamiltonian. We can label the two band Hamiltonian
as:

HHex
2band(k, w0, w1) = d0(k, w0, w1)σ0 + d1(k, w0, w1)(σy +

√
3σx) (F34)

where

d0(k, w0, w1) =
4kxw0

(
w2

0 − 3
) (
k2
x − 3k2

y

)
9 (1− 3w2

0)
2√

w2
0 + 1

−
8kxw0

(
w2

0 + 21
) (
k2
x − 3k2

y

) (√
w2

0 + 1− 2w1

)
9 (3w2

0 − 1)
3 σ0 (F35)

and

d1(k, w0, w1) = (

√
w2

0 + 1

2
− w1)−

4w2
0

(
k2
x + k2

y

)
3
√
w2

0 + 1 (3w2
0 − 1)

−
2
(
7w2

0 + 3
) (
k2
x + k2

y

) (√
w2

0 + 1− 2w1

)
3 (1− 3w2

0)
2 +

4
(
k2
x + k2

y

)(
2w2

0

(
35w4

0 + 68w2
0 + 9

) (
k2
x + k2

y

)
− 9

(
w2

0 + 1
) (

10w4
0 + 9w2

0 + 3
) (

2w1 −
√
w2

0 + 1
)2
)

27 (w2
0 + 1)

3/2
(3w2

0 − 1)
3

(F36)

where the perturbation is made on the zero energy eigenstates of HHex(k = 0, w0, w1 =

√
1+w2

0

2 ).

Notice that so far, remarkably the eigenstates are not k-dependent, they are just the eigenstates of (σy +
√

3σx).
We did not obtain the fifth order for this Hamiltonian: due to the fact that the first order Hamiltonian does not
cancel, this is not easy to do.

4. Calculations of the B1 shell first order perturbation

We now compute the shell B1 perturbation Hamiltonian:
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−HA1,B1H
−1
kB1H

†
A1,B1(k, w0, w1) =

−



T1(k−2q1)·σT1

|k−2q1|2 0 0 0 0 0

0 T3(k+2q3)·σT3

|k+2q3|2 0 0 0 0

0 0 T2(k−2q2)·σT2

|k−2q2|2 0 0 0

0 0 0 T1(k+2q1)·σT1

|k+2q1|2 0 0

0 0 0 0 T3(k−2q3)·σT3

|k−2q3|2 0

0 0 0 0 0 T2(k+2q2)·σT2

|k+2q2|2


.

(F37)

We now compute the perturbation Hamiltonian:

H(B1)(k, w0, w1) = 〈ψm| −HA1,B1H
−1
kB1H

†
A1,B1(k, w0, w1)|ψm′〉

= 1∏
i=1,2,3 |k−2qi|2|k+2qi|2 (d̃0(k, w0, w1)σ0 + d̃x(k, w0, w1)σx + d̃y(k, w0, w1)σy + d̃z(k, w0, w1)σz) (F38)

where

d̃0(k, w0, w1) =
4kx(k2x−3k2y)(k2x+k2y+4)

(
(k2x+k2y)

2−4(k2x+k2y)+16
)
w0

(√
w2

0+1+w1+1
)(√

w2
0+1+w1−1

)
√
w2

0+1
(F39)

d̃z(k, w0, w1) =
64kxky(k2x−3k2y)(3k2x−k

2
y)w0

((√
w2

0+1w1+w2
0

)2
+w2

0

)
(w2

0+1)
3/2 (F40)

d̃x(k, w0, w1) =

−
16
(√

3
√
w2

0+1
(
−(ky(3k2x−k

2
y))

2
+(kx(k2x−3k2y))

2
+64

)
(w2

0−w
2
1)−2kxky(k2x−3k2y)(3k2x−k

2
y)
(√

w2
0+1w2

1+2w2
0w1+
√
w2

0+1w2
0

))
w2

0+1
(F41)

d̃y(k, w0, w1) =

−
16
(√

w2
0+1

(
−k2y(3k2x−k

2
y)

2
+k2x(k2x−3k2y)

2
+64

)
(w2

0−w
2
1)+2

√
3kxky(3k2x−k

2
y)(k2x−3k2y)

(√
w2

0+1w2
1+2w2

0w1+
√
w2

0+1w2
0

))
w2

0+1
(F42)

This gives the first order term of HApprox1(k) projected into the zero energy bands in the Hexagon model on the
second magic manifold.

5. Exact eigenvalues of the 1 shell model at ΓM point

At w0 = 0, we find the ΓM point eigenenergies of the Hamiltonian HApprox1 = HkA1 +HA1,A1−HA1,B1H
−1
kB1H

†
A1,B1

in Eq. 33 to be the following:

(−w2
1+4w1−2)

2 ,
(w2

1−4w1+2)
2 ,

(−w2
1+2w1−2)

2 ,
(−w2

1+2w1−2)
2 ,

(w2
1−2w1+2)

2 ,
(w2

1−2w1+2)
2 ,

(−w2
1−2w1−2)

2 ,
(−w2

1−2w1−2)
2 ,

(w2
1+2w1+2)

2 ,
(w2

1+2w1+2)
2 ,

(−w2
1−4w1−2)

2 ,
(w2

1+4w1+2)
2 (F43)

One sees the ΓM point has zero bandwidth at w1 = 2 −
√

2, the same as that of the zero-bandwidth manifold
w1 = 2

√
w2

0 + 1−
√

3w2
0 + 2 = 2−

√
2 in Eq. (57) for the two band model at w0 = 0.

Furthermore, in the chiral limit w0 = 0, the value w1 = 2
√
w2

0 + 1−
√

3w2
0 + 2 = 2−

√
2 for which the bandwidth

is 0 in our two band model is in fact exact for the no-approximation Hamiltonian of the n = 1 shell Hamiltonian (of



46

A1, B1 subshells). We find its eigenvalues at ΓM to be(
−
√

5w2
1−6w1+9−w1−1

)
2 ,

(
−
√

5w2
1−6w1+9−w1−1

)
2 ,

(
−
√

5w2
1−6w1+9+w1+1

)
2 ,

(
−
√

5w2
1−6w1+9+w1+1

)
2 ,(√

5w2
1−6w1+9−w1−1

)
2 ,

(√
5w2

1−6w1+9−w1−1
)

2 ,

(√
5w2

1−6w1+9+w1+1
)

2 ,

(√
5w2

1−6w1+9+w1+1
)

2 ,(
−
√

5w2
1+6w1+9−w1+1

)
2 ,

(
−
√

5w2
1+6w1+9−w1+1

)
2 ,

(
−
√

5w2
1+6w1+9+w1−1

)
2 ,

(
−
√

5w2
1+6w1+9+w1−1

)
2 ,(√

5w2
1+6w1+9−w1+1

)
2 ,

(√
5w2

1+6w1+9−w1+1
)

2 ,

(√
5w2

1+6w1+9+w1−1
)

2 ,

(√
5w2

1+6w1+9+w1−1
)

2 ,(
−
√

8w2
1−12w1+9−2w1−1

)
2 ,

(
−
√

8w2
1−12w1+9+2w1+1

)
2 ,

(√
8w2

1−12w1+9−2w1−1
)

2 ,

(√
8w2

1−12w1+9+2w1+1
)

2 ,(
−
√

8w2
1+12w1+9−2w1+1

)
2 ,

(
−
√

8w2
1+12w1+9+2w1−1

)
2 ,

(√
8w2

1+12w1+9−2w1+1
)

2 ,

(√
8w2

1+12w1+9+2w1−1
)

2 . (F44)

Therefore, we see that the active bands have zero bandwidth at w0 = 0, w1 = 2−
√

2 in the n = 1 shell model.
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