
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Plasmonically assisted channels of photoemission from
metals

Dino Novko, Vito Despoja, Marcel Reutzel, Andi Li, Hrvoje Petek, and Branko Gumhalter
Phys. Rev. B 103, 205401 — Published  3 May 2021

DOI: 10.1103/PhysRevB.103.205401

https://dx.doi.org/10.1103/PhysRevB.103.205401


Plasmonically assisted channels of photoemission from metals

Dino Novko∗,1 Vito Despoja,1 Marcel Reutzel,2 Andi Li,3 Hrvoje Petek,3 and Branko Gumhalter†1

1Institute of Physics, HR 10000 Zagreb, Croatia
2I. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

3Department of Physics and Astronomy and Pittsburgh Quantum Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

(Dated: April 8, 2021)

We analyse recently measured nonlinear photoemission spectra from Ag surfaces that reveal res-
onances whose energies do not scale with the applied photon energy but stay pinned to multiples
of bulk plasmon energy ~ωp above the Fermi level. To elucidate these unexpected and peculiar
features we investigate the spectra of plasmons generated in a solid by the optically pumped elec-
tronic polarization and their effect on photoemission. By combining quadratic response formalism
for calculations of photoemission yield, a nonperturbative approach to inelastic electron scatter-
ing, and first-principles calculations for the electronic structure, we demonstrate the dependence of
probability amplitude for single- and multiplasmon excitations on the basic parameters character-
izing the photon pulse and the system. The resulting multiexcitation spectrum evolves towards a
truncated plasmonic coherent state. Analogous concept is extrapolated to interpret plasmon gener-
ation by multiphoton excited electronic polarization. Based on this we elaborate a scenario that the
thus created real plasmons act as supplementary frequency-locked pump field for non-Einsteinian
plasmonically assisted channels of photoemission from metals. The established paradigm enables
assignment and assessment of the observed linear ~ωp- and nonlinear 2~ωp-electron yields from Ag.
Such effects may be exploited for selective filtering of optical energy conversion in electronic systems.

I. INTRODUCTION

In the standard one-electron picture of linear photo-
effect the kinetic energy of electrons photoemitted from
the system scales with the energy of the quanta of applied
electromagnetic (EM) field following Einstein’s relation

ǫf = ~ωx + ǫB. (1)

Here ǫf and ǫB are the final kinetic and the initial bind-
ing energy of the electron, respectively, and ~ωx is the
photon energy. In nonlinear multiphoton photoemission
(mPP, m ≥ 2) that measures the dynamics of photoex-
citation and unoccupied electronic structure of solids1 ǫf
scales with multiples p~ωx (1 ≤ p ≤ m) of the photon
energy, with p depending on (i.e. decreasing with) the
number of resonant intermediate states partaking in the
transition (see Fig. 2 in Ref. [2]). Novel measurements of
two-photon photoemission (2PP) spectra from Ag(111),
Ag(100) and Ag(110) surfaces3–5 have confirmed with
high resolution the obeyance of such scalings in one-
electron transitions which broadly determine the 2PP
spectra from metallic band states.6–11 However, besides
this, they have also revealed peaks in photoemission yield
at electron kinetic energies which do not scale with the
photon energy of applied EM field as would be expected
from the extension of Einsteinian relation (1) to 2PP.
Instead, these peaks occur as resonances pinned to the
double bulk plasmon energy 2~ωp above the Fermi level
EF and their energy appears independent of the energy
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of excitation source as long as ~ωx ≥ ~ωp ∼ 3.8 eV. This
peculiar behaviour is illustrated in Fig. 1. It can not be
interpreted as a standard n-th plasmon satellite whose
energy would exhibit a combined (p, n) scaling:

ǫsat = p~ωx + ǫB − n~ωp. (2)

Identical finding, although differently interpreted, was re-
ported at the dawn of 2PP spectroscopy for the Ag(111)
surface.12 Analogous feature is also implicit in one-
photon photoemission (1PP) spectra from submonolayer
sodium coated Ag(100) recorded in the constant ini-
tial state (CIS) mode which exhibit peaks pinned to
~ωp above EF .

13,14 These intriguing ”non-Einsteinian”
photoemission modes call for interpretations going be-
yond the sole effect of electron excitation by dielectrically
screened EM fields15–18 which oscillate with the frequen-
cies of the applied external fields. Evidently, the novel
paradigm should involve real plasmon excitation and en-
ergy exchange in the intermediate and final stages of one-
electron emission processes. The nonthermally excited
plasmons whose energy largely exceeds the thermal en-
ergy kT may like electrons19 also be termed ”hot”. Hence
a proof of concept is needed to ascertain as how the pri-
mary optically induced electronic polarization may gen-
erate hot plasmons that via subsequent absorption can
supply energy for non-Einsteinian electron emission from
the irradiated system.
The possibility that real plasmons appear as inter-

mediaries in photoemission and photoabsorption was al-
luded to long ago.20–23 More recently, and in the con-
text of ultrashort pulse photoexcitations, it was noted
in Ref. [24]. Expanding on this we first elaborate a
microscopic mechanism of generation of real plasmons
by light induced electronic polarization, i.e. by the pri-
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FIG. 1: Panel (a): Selection of 2PP spectra from three low
index surfaces of Ag for excitation field energies ~ωx in the
ENZ region where the real part of Ag dielectric function ε(ω)
is near zero.[5] The manifolds of all the dots shown above the
four representative plasmonic peak maxima make the 2~ωp

scaling curves in panel (b) below. Panel (b): Dependence
of the measured final state energies of 2PP electron yields
from Ag on the variation of energy ~ωx. The data shown by
triangles were recorded in the constant inital state mode (CIS)
involving the surface state (SS) and the first image potential
state (IP1) on Ag(111), the IP1 and the Fermi level EF on
Ag(100), and EF on Ag(110). They exhibit the standard
scaling of 2PP yield energy with 2~ωx in emission from SS
and EF , and with ~ωx in emission from IP1. In contrast to
this, there also appear yields with energy ∼ 2~ωp above EF

(dots) which do not scale with the multiples of the radiation
field energy p~ωx. This 2~ωp emission extends far beyond the
ENZ region denoted by vertical shading.

mary optically excited electron-hole pairs. This mech-
anism is complementary to direct plasmon excitation
by local EM fields in microscopically inhomogeneous
media.15,16,25 Once being excited in the system, real plas-
mons may support additional excitation pathways for the
electrons that could sustain preferential narow band op-
tical energy conversion.26–28 Such consecutive processes
may become effective in linear and nonlinear photoemis-
sion by supplementing the primary hot electron excita-
tion channels,29–37 and thereby modify the distributions
of photoemission yields from metals.3,5,14 To demon-
strate this we first define a calculable measure of the spec-
tral distribution of hot plasmons excitable in interactions
of the electron system with external EM fields. Estab-
lishment of a distribution of real plasmons in the system
enables us to exploit the analogy with mPP theory11 and

formulate the plasmon generated electron yields that sup-
plement the standard mPP ones.
In Sec. II A we introduce a minimal model for descrip-

tion of electron gas in interaction with plasmons and
pulsed EM field, viz. with only two members of the
plethora of excitation modes in polarizable media.38 Us-
ing this model we demonstrate in Sec. II B a construction
of quantum mechanical expression describing the spec-
trum of real plasmons generated in the system by opti-
cally induced electronic polarization. The construction
is explicitly shown for 1PP in which case it combines the
quadratic response to EM field39–41 with the nonpertur-
bative scattering formalism for description of multiboson
excitation processes.42 They are respectively used to for-
mulate the preparation of electronic polarization excited
by EM field and subsequent polarization-induced genera-
tion of plasmonic coherent states over the electronic state
of the system. Hot electrons arising from spontaneous de-
cay of excited plasmons complement the preferential pho-
toelectron yield from the Fermi level20 at the multiples of
plasmon energy and thereby explain the non-Einsteinian
features of mPP spectra reported in Refs. [3,5,12,14].
Special limits of the obtained results that are of general
interest are explored and plasmon generation probabili-
ties derived and discussed in Sec. III. Expanding on this
we propose in Sec. IV a theoretical framework in which
plasmons excited in multiphoton driven polarization pro-
cesses may give rise to plasmon frequency-locked electron
emission from irradiated solids. In Sec. V we employ the
density functional theory to calculate the relevant rates
of consecutive plasmon and hot electron generation in
Ag bands that illustrate the scenarios for non-Einsteinian
channels of 1PP and 2PP from metals. This provides es-
sential prerequisites for the studies of plasmonically as-
sisted channeling of broad band optically induced elec-
tronic excitations into a narrow energy interval spanned
only by the range of Ag plasmon dispersion.

II. EXCITATION OF PLASMONS BY
OPTICALLY INDUCED ELECTRONIC

POLARIZATION

A. Description of the model

We start with a quantum description of light-matter
interaction43 based on a simple model Hamiltonian H
comprising the component that describes the unper-
turbed system, Hsyst, and coupling W (t) of the system
to EM field

H = Hsyst +W (t). (3)

Here Hsyst is composed of He
0 describing electrons in

crystal band(s), Hpl
0 describing unperturbed plasmons,

and V e−pl describing their interaction, viz.

Hsyst = He
0 +Hpl

0 + V e−pl = Hsyst
0 + V e−pl. (4)
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In the second quantization they are respectively given by

He
0 =

∑

k

ǫkc
†
kck, (5)

Hpl
0 =

∑

q

~ωqa
†
qaq, (6)

V e−pl = g
∑

k,k̄,q

V q

k̄,k
c†
k̄
cka

†
q + h.c., (7)

where c†k and ck (a†q and aq) denote the electron (plas-
mon) creation and destruction operators, respectively,
which obey the fermion (boson) commutation rules. ǫk
(~ωq) stand for the electron (plasmon) energy associated
with the quantum numbers k (q) which may include the
Bloch momentum, band index, etc., describing the unper-
turbed dynamics of quasiparticles in the system. In this
general notation V q

k̄,k
is the electron-plasmon coupling

matrix element and g is the coupling constant eventually
to be set equal to unity. For later convenience we assume
that this interaction is switched on and off adiabatically,
viz. V e−pl ∝ e−η|t| where η → 0+.
The electron coupling to the EM field is described by

W (t) =
∑

i

Ei(ωx,i, t, σx,i)e
−i(ωx,it+ϕi)

×
∑

k1,k2

Wk1,k2
c†k1

ck2
+ h.c. (8)

Here Ei(ωx,i, t, σx,i) > 0, ωx,i > 0 and ϕi are the ampli-
tude modulation of the i-th pulse constituting the EM
field (pulse profile centered at tx,i and of duration σx,i)
and the pulse carrier frequency and phase in the crys-
tal, respectively, and Wk1,k2

denote the dipole matrix
elements of the electron interaction with the field.

Quite generally, the field amplitudes Ei(ωx,i, t, σx,i)
and the matrix elements Wk1,k2

depend on the dielectric
properties and the symmetry of the system that affect
selection rules for k2 ↔ k1 field-induced electronic tran-
sitions. Thus, the effective Ei(ωx,i, t, σx,i) would incorpo-
rate local and nonlocal Fresnel or Feibelman15 corrections
for the EM field in the sample. It may also be strongly
enhanced for metals at epsilon-near-zero18 (ENZ) where
the real component of linear permitivity is zero. Effec-
tive Wk1,k2

may also embody the surface enhanced44 and
Drude-assisted45 transitions in a phenomenological fash-
ion. In the following we shall restrict our discussions to
the quadratic and quartic response of the electronic sys-
tem to action of one pulse of the EM field. In this i = 1
limit of (8) the formal derivations of the various 1PP-
and 2PP-related transition rates can be demonstrated in
a conscpicuous fashion. Nonlinear responses induced by
two pulses (i = 1, 2) and leading to 2PP and 3PP pho-
toemission yields that are unaffected by real plasmon ex-
citations were studied numerically in the Supplementary
Material of Ref. [2].
B. Formulation of the spectrum of hot plasmons

generated by photoexcited quasiparticles

We seek a scenario based on the minimal electron-
plasmon model outlined in Sec. II A that may enable in-
terpretation of the plasmon energy locked photoelectron
yields for ωx ≥ ωp reported previously3,5,12,14 and here
in Fig. 1 for three low index Ag surfaces. Such yields oc-
curing at multiples n~ωp of plasmon energy indicate the
pumping of electrons by hot plasmons generated in the
course of photoemission process. An example of lowest
order process of this kind (n = 1), which starts from the
electron-plasmon system in the ground state that is lin-
early perturbed by the EM field (8), can be symbolically
represented by the flow scheme

n = 1 :

|electronic grd. state〉|photon〉W−→|polarization〉V
e−pl

−→ |polarization′〉|plasmon~ωp
〉V

pl−e

−→ |polarization′′〉|electron~ωp〉(9)

with symbols over arrows denoting the interactions in
(3) that drive particular transitions. Here |polarization〉,
|polarization′〉 and |polarization′′〉 denote the excited
states of the electronic system with (i) one primary pho-
toexcited electron above and a primary hole below EF ,
(ii) primary electron scattered to a secondary state by
emission of a real plasmon and the unperturbed primary
hole, and (iii) ionized state of the system with secondary
electron, primary hole and secondary hole created by
plasmon absorption that gives rise to electron excitation
to an emanating state |electron~ωp〉 whose energy exceeds
the initial one by ~ωp. This propagation sequence can be
also illustrated by open diagram46 shown in Fig. 2. For

secondary holes created at the Fermi surface, the energy
of the secondary emanating electrons is ~ωp-locked above
EF . Analogous sequence can be established for the case
of plasmon generation by primary hole scattering.
As is evident from the sequence (9) and the ensu-

ing description, the key intermediate events determining
the final ~ωp-locked electron yield are the emissions of
real plasmons which likewise photons can convey their
energy to excite electrons emanating from the system.
Therefore, we need as a prerequisite a rigorous assesment
of multiple excitation of real plasmons using the above
framework for light-matter interaction. To this end we
define the multiplasmon spectrum Spl(ε, t) as composed
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FIG. 2: Diagrammatic representation of the sequence of exci-
tation events (9) linearly induced in the electron-plasmon sys-
tem by pulsed EM field. Full red, dashed blue and purple wig-
gly lines denote electron, hole and plasmon propagation, re-
spectively. Blue and red circles denote matrix elements Vk̄1,k1

and Wk1,k2
defined in Eqs. (7) and (8), respectively. The dif-

ference of quasiparticle energies of the secondary electron and
hole arising from real plasmon absorption is ∆ǫ ≃ ~ωp.

of energies ε of all real plasmons generated during the
propagation of electronic polarization excited by the in-
teraction of electrons with the pulsed EM field (8). This
is obtained from the expresssion

Spl(ε, t) = 〈Ψ(t)|δ(ε−Hpl
0 )|Ψ(t)〉, (10)

in which the function δ(ε − Hpl
0 ) acts as a ”plasmon

counter” operator that projects from the wavefunction
|Ψ(t)〉 of the laser-perturbed system all the states with
multiply excited bosonic energies n~ωq, each component
being weighted by the corresponding boson excitation
probability. This expression for plasmon counting has
an advantage over the form

N pl(N, t) = 〈Ψ(t)|δ(N −
∑

q

a†qaq)|Ψ(t)〉, (11)

which directly gives the number N =
∑

q nq of excited
bosons. The latter may diverge in the case of linear boson
dispersion and transient and localized perturbations.47

By contrast, expression (10) renders regular results also
for linearly dispersing bosons.
To derive an explicit form of (10) we need to find a con-

venient and realistic representation of the excited state
wavefunction |Ψ(t)〉 and to facilitate this we introduce
several simplifying assumptions. The preparation of ex-
cited state starts from the initial unperturbed ground
state of the system |0〉 at some instant t0 in the remote
past before the perturbation W (t) has been switched on.
Real plasmon generation driven by one photon- and two
photon-induced polarization are illustrated with open
diagrams46 in Figs. 3 and 4. However, since the ”non-
Einsteinian peaks” have been observed already in 1PP

spectra,14 in order to present a proof of concept for their
occurence it suffices to employ the general framework of
linear photoemission theory39 and calculate (10) in the
quadratic response with respect to perturbation (8). This
amounts to acting at the time t′ < t with W (t′) on the
state Usyst(t′, t0)|0〉 only once (one photon absorption
driven processes) and then letting the thus excited sys-
tem to evolve under the action of the Hamiltonian (4).
This interaction sequence is symbolically represented by
the diagram in Fig. 3. This produces |Ψ(t)〉 in the form

|Ψ(t)〉 =

∫ t

t0

dt′

i~
Usyst(t, t′)W (t′)Usyst(t′, t0)|0〉, (12)

where Usyst(t, t′) is the evolution operator in the
Schrödinger picture of the system in the absence of in-
teraction W (t′), viz.

Usyst(t, t′) = exp[−
i

~
Hsyst(t− t′)]. (13)

Note in passing that in accord with Fig. 3 expression (12)
defines the wave function of an open system describing
the processes of photon absorption and subsequent real
plasmon generation and not the steady state evolution of
electron-plasmon system discussed in Ref. [48].

Expression (10) with substitution (12) is exact within
the quadratic response but still operationally too com-
plicated. Hence, at this stage we shall invoke the next
simplifying assumption. As we are interested only in real
plasmon generation we shall neglect the fluctuations of
the ground state (i.e. the Fermi sea) induced by electron-
plasmon interaction V e−pl in Usyst(t′, t0) on the RHS of
the integrand in (12), and replace it by

Usyst
0 (t, t′) = exp[−

i

~
Hsyst

0 (t− t′)], (14)

where Hsyst
0 = He

0 + Hpl
0 . This yields a simpler and

operationally more convenient expression

|Ψ(t)〉 =

∫ t

t0

dt′

i~
Usyst(t, t′)W (t′)Usyst

0 (t′, t0)|0〉, (15)

in which Usyst
0 (t′, t0) is diagonal on |0〉, viz.

Usyst
0 (t′, t0)|0〉 = e−

i
~
E0(t

′−t0)|0〉 where E0 is the
ground state energy, hereafter set equal to zero.

Introducing the Fourier transform

δ(ε−Hpl
0 ) = (2π~)−1

∫ ∞

−∞

dτe
i
~
(ε−Hpl

0 )τ (16)

we can bring (10) after suppressing index i in (8) to the
form



5

Spl(ε, t) =
1

2π~3

∫ ∞

−∞

dτeiετ
∫ t

t0

dt′′
∫ t

t0

dt′〈0|W (t′′)Usyst(t, t′′)†e−
i
~
Hpl

0 τUsyst(t, t′)W (t′)|0〉 (17)

=
1

2π~3

∫ ∞

−∞

dτeiετ
∫ t

t0

E(ωx, t
′′, σx)e

iωxt
′′

dt′′
∫ t

t0

E(ωx, t
′, σx)e

−iωxt
′

dt′

×
∑

k′′

1 ,k
′′

2 ,k
′

1,k
′

2

Wk′′

1
,k′′

2
Wk′

2
,k′

1
〈0|c†

k′′

2
ck′′

1
Usyst(t, t′′)†e−

i
~
Hpl

0 τUsyst(t, t′)c†
k′

1
ck′

2
|0〉. (18)

time

✂x,�

q,✁p
S✄☎✆

k2

k1

t0 ✝✞ t

_

k1

FIG. 3: Diagrammatic representation of linearly induced plas-
mon generation processes described by (10) with |Ψ(t)〉 de-
fined in (15) and leading to (18). Meaning of the symbols is
same as in Fig. 2. The time evolution after the application
of pulsed perturbation (8) is governed by the Hamiltonian
(4). Plasmon counting implemented through the operator

δ(ε − H
pl
0 ) is denoted symbolically by S(ε). Real multiplas-

mon excitations may occur for excited quasiparticle energies
exceeding the multiexcitation threshold nωp.

Note here that τ appearing in e−
i
~
Hpl

0 τ is not associated
with any time evolution of the system but only plays the
role of integration variable conjugate to the projected
energy ε, whereas the real evolution times are t, t′, t′′.

The main complications in evaluating (18) arise with
the treatment of matrix elements of the products of three
generalized exponential operators in the second line of
(18). This is addressed in the next subsection.

C. Approximations and operator algebra in the
calculations of hot plasmon spectrum in Eq. (18)

We seek a nonperturbative solution in terms of V e−pl

to expression in the second line on the RHS of (18). Here
the sum

∑

k′′

1 ,k
′′

2 ,k
′

1,k
′

2
... comprises coherent (k1′ = k1′′

and k2′ = k2′′) and incoherent components (k1′ 6= k1′′

and k2′ 6= k2′′) arising in the calculation of the ground
state average in (18). The evaluation of all such com-
ponents represents a formidable task but simplifications
which enable grasping the most salient features of hot

✂x,�

S(✟)

k2

k1

✂x,�

✂x,�

S✄✟✁

k2

k1

✂x,�

q,☎p

q,☎p

FIG. 4: Diagrammatic representation of multiplasmon gen-
eration driven by electronic polarizarion excited by double
action of the laser pulse. All symbols have the same mean-
ing as in Fig. 3. Electron induced plasmon generation may
take place either in the intermediate and final electron states
(upper panel), or in the final state of the two photon-driven
process (lower panel).

plasmon generation are possible. For this sake we shall
restrict the plasmon generation to processes in which in-
elastic electron scattering above the Fermi level is dom-
inant (i.e. ǫk > EF , ǫk̄ > EF after the action of V e−pl

on the photoexcited state), and neglect plasmon genera-
tion by holes excited below EF . This is justified for the
CIS mode photoyield measured from the vicinity of the
Fermi surface (cf. Fig. 7 of Ref. [14]) in which case
the processes involving the hole recoil (i.e. k′

2 6= k′′
2) due

to real plasmon emission must be excluded. This is also
consistent with the earlier exclusion of Fermi sea fluctu-
ations in the interval (t0, t

′) in Eq. (15). A quantitative
support for such approximation will be provided in Sec.
V by the calculations of plasmon generation by electrons
and holes propagating in Ag bands.

By restricting the plasmon coupling to only one type
of quasiparticle we omit all plasmon mediated excitonic
effects associated with the propagation of primary pho-
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toexcited e-h pair49–53 but this restriction does not in-
validate the desired proof of concept of hot plasmon
generation in solids. In the opposite limit of dominant
plasmon-hole coupling a completely analogous procedure
of neglecting electron-induced plasmon generation can be
followed.54–57 Moreover, for ωp ≤ ωx < 2ωp (experimen-
tal conditions in Fig. 1) only one of these two hot plas-
mon generation channels can be effective.
In the next step, and in accord with Ref. [39], we only

consider such coherent contributions from (18) which give
rise to steady state quantities in the long time limit, here
effective already past the duration of the pulse. This ren-
ders k′′

1 = k′
1 = k1, k

′′
2 = k′

2 = k2 and reduces the calcu-
lation of (18) to a much simpler quantity in which, as re-
gards the interaction with plasmons, the electronic states
above and below EF are decoupled except for the relation
between k1 and k2 imposed by the selection rules con-
tained in the optical transition matrix elements Wk1,k2

.
In this case the ground state average in (18) factorizes
into diagonal electron and hole components

〈0|c†k2
ck1

Usyst(t, t′′)†e−
i
~
Hpl

0 τUsyst(t, t′)c†k1
ck2

|0〉

= 〈0|c†k2
(t′′)ck2

(t′)|0〉

× 〈0|ck1
Usyst(t, t′′)†e−

i
~
Hpl

0 τUsyst(t, t′)c†k1
|0〉. (19)

Here 〈0|c†
k2
(t′′)ck2

(t′)|0〉 = nk2
exp[iǫk2

(t′′ − t′)] is the
unperturbed hole propagator or correlation function with

nk2
= 〈0|c†k2

ck2
|0〉, and the electron component appears

in the form of an excited state average of a product of
generalized exponential operators. The coupled photoex-
cited electron-plasmon entity is usually termed plasmonic
polaron or plasmaron.59,60

The electron component on the RHS of (19),viz.

〈0|ck1
Usyst(t′′, t)†e−

i
~
Hpl

0 τUsyst(t, t′)c†k1
|0〉

= 〈k1|U
syst(t′′, t)†e−

i
~
Hpl

0 τUsyst(t, t′)|k1〉 (20)

acquires the form of the counting-intercepted (via the ac-

tion of e−
i
~
Hpl

0 τ ) plasmaron propagator which describes
spontaneous emissions of plasmons48 by the primary elec-
tron photoexcited to the state |k1〉. Its evaluation pro-
ceeds by formal manipulations of the three generalized
exponential operators partaking in this excited state av-
erage. The details of corresponding calculations are pre-
sented in Appendix A. Making use of expression (A19)
derived therein we obtain the leading contribution to (18)
that is quadratic (i.e. perturbative) in the EM field, while
the effect of electron-plasmon coupling V q

k̄1,k1
is formally

included to all orders (i.e. nonperturbatively). Introduc-
ing the transient integral

∆q

k̄,k
(t, t′) =

1

~

∫ t

t′
e−

i
~
(ǫk−ǫk̄−~ωq)t1dt1 (21)

the afore mentioned leading contribution reads

Spl(ε, t) =
1

~2

∫ t

t0

E(ωx, t
′′, σx)dt

′′

∫ t

t0

E(ωx, t
′, σx)dt

′
∑

k1,k2

|Wk1,k2
|2(1 − nk1

)nk2
e

i
~
(~ωx−ǫk1

+ǫk2
)(t′′−t′)

×
1

2π~

∫ ∞

−∞

dτe
i
~
ετ exp



−
∑

k̄1,q

∣

∣

∣
V q

k̄1,k1
∆q

k1,k̄1
(t, (t′ + t′′)/2)

∣

∣

∣

2

(1− nk̄1
)(1 − e−iωqτ )



 , (22)

with a proviso ǫk1
, ǫk̄1

> EF . This and the symmetry se-
lection rules contained in V q

k̄1,k1
restrict the q-summation

in the last line on the RHS of (22).

The quadratic response formalism here applied to
description of electron photoexcitation temporally re-
stricted to the pulse duration, i.e. short times around tx,
required the introduction of finite times t, t′ and t′′ in the
general expression (18). Such dependence on the inter-
mediate propagation times obviously renders the spectra
(22) of plasmons emitted by photoexcited electrons much
more complicated than would have been obtained within
the standard scattering formalism.42,58 The same formu-
lation can be extended to quartic response appropriate
to 2PP11,19 but this is technically, although not so much
conceptually, more demanding.

Lastly, we observe that in the absence of electron-

plasmon coupling in (4) one obtains wk1
(t, t′, t′′) = 0,

the last line on the RHS of (22) is replaced by δ(ε) and
the remainder yields the transient electronic polarization
spectrum shown in Fig. 3 of Ref. [53].

III. APPLICATIONS OF THE OBTAINED
RESULTS IN SPECIAL LIMITS

In this section we illustrate the behaviour of expression
(22) in simple limits of physical relevance that all demon-
strate the formation of plasmonic coherent states62 in
electronic systems perturbed by ultrashort laser pulses.



7

A. Illustration of generation of plasmonic coherent
states in the limit of nondispersive plasmons

The multiplasmon features of (18) and (22) obtained
from the plasmon counting formula (10) can now be best
illustrated by assuming nondispersive plasmon frequency
ωq = ωp in the second line on the RHS of (22). This
allows the q-summations to be readily carried out to give

wk1
(t, t′, t′′) =

∑

k̄1,q

∣

∣

∣
V q

k̄1,k1
∆q

k̄1,k1
(t, t′ + t′′)/2)

∣

∣

∣

2

(1− nk̄1
)

→
∑

k̄1

(1− nk̄1
)V2

k̄1,k1

∣

∣

∣

∣

∣

∫ t

(t′+t′′)
2

e−
i
~
(ǫk1

−ǫk̄1
−~ωp)t1 dt1

~

∣

∣

∣

∣

∣

2

.(23)

where V2
k̄1,k1

=
∑

q

∣

∣

∣
V q

k̄1,k1

∣

∣

∣

2

. Using this, expanding the

exponential function in the last line on the RHS of (22)
into a power series and taking its Fourier transform term
by term yields (with t0 → −∞)

Spl(ε, t) =
1

~2

∫ t

−∞

E(ωx, t
′′, σx)dt

′′

∫ t

−∞

E(ωx, t
′, σx)dt

′
∑

k1,k2

|Wk1,k2
|2(1− nk1

)nk2
e−

i
~
(ǫk1

−ǫk2
−ωx)(t

′′−t′)

×
∞
∑

n=0

e−wk1
(t,t′,t′′) [wk1

(t, t′, t′′)]
n

n!
δ(ε− nωp). (24)

The last line on the RHS of (24) clearly demonstrates the
signature of plasmon counting effectuated in Spl(ω, t) by
the operator (16) and manifesting through the integer n
(0 ≤ n ≤ ∞) in the expansion of the diabatically devel-
oping time dependent plasmonic coherent state

|wk1
(t, t′, t′′)〉 =

∞
∑

n=0

e−wk1
(t,t′,t′′)/2

√

wk1
(t, t′, t′′)n

n!
|n〉,

(25)
where |n〉 is an eigenstate of the plasmon number opera-
tor, viz. a†pap|n〉 = np|n〉. The time dependent excitation
probabilities wk1

(t, t′, t′′) incorporate time-energy uncer-
tainities arising from finite temporal integration bound-
aries on the RHS of (23). Additional uncertainities may
arise in (24) from integrations of pulse profiles over the
final observation intervals (t0, t).

Expression (25) bears analogy with the solutions for
boson fields driven by external currents63 or energetic
particles64, and the plasmonic polaron model55 in which
the expression preceding each δ(ε − n~ωp) on the RHS
of (24) gives the probability for n-plasmon excitation,
in the present case caused by the electron component of
laser pulse-induced polarization. Note also that in this
nondispersive plasmon limit we readily obtain from (10),
(11) and (24) the equivalence

N pl(N, t) ↔ ~ωpS
pl(ε, t) (26)

implementable through δ(N − n) ↔ ~ωpδ(ε− n~ωp).

FIG. 5: Schematic illustration of the temporal behaviour of
the external EM field amplitude E(ωx, t

′, σx) (red curve) and

V e−pl(t′) = V e−ple−η|t′| (blue curve, η → 0+) appropriate
to the scattering boundary conditions for preparation of elec-
trons in excited states |k1〉 above the Fermi level and their
subsequent interaction with plasmons. The horizontal axis il-
lustrates the hierarchy of times established in expression (27).

B. Scattering boundary conditions limit of Eq. (22)

The scattering boundary conditions (SBC) limit of Eq.
(22) is particularly illustrative as it allows to trace the
energy conservation during the primary photoexcitation
of electronic polarization and subsequent plasmon gener-
ation. To illustrate this we follow the standard collision
theory approach58 and explore the consequences of adia-
batic switching on and off of the electron-plasmon inter-
action in Eq. (7) relative to the action of the pulse (8).
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Here we assume that the pulse centered at tx and with
amplitude E(ωx, t, σx) acts for sufficiently long prepara-
tion time σx in the interval t0 < tx < −η−1 that is em-
bedded in the much longer interval (t0 → −∞, t → ∞).
This establishes the hierarchy among the various charac-
teristic times66 appearing in expression (22), viz.

t0 ≪ (tx, t
′, t′′) ≪ −η−1 ≪ 0 ≪ η−1 ≪ t, (27)

with t0 → −∞ and t → ∞. This is sketched schemat-
ically in Fig. 5. Application of these SBC to definition
(21) enables a standard substitution

∆q

k̄1,k1
(t, (t′ + t′′)/2) |SBC → 2πδ(ǫk1

− ǫk̄1
− ~ωq) (28)

into Eq. (22) which puts plasmon emission by primary
photoexcited electron on the energy shell. This makes
expressions in the first and second line on the RHS of
(22) effectively factorizable in the time domain. Conse-
quently, the integrals over t′ and t′′ in the first line can be
readily carried out to lead to an expression describing the
role of experimental apparatus in the energy conserving
preparation of quasiparticles in the excited states |k1〉.

1. Factorization of the ”apparatus function”

The compliance of expression (22) with conditions (27)
and ω−1

x ≪ σx < η−1 < t leads in (24) to the factoriza-
tion of the ”apparatus function” containing the effective
fields

Ak1,k2
(ωx, σx) = |Wk1,k2

|2(1− nk1
)nk2

×

∣

∣

∣

∣

∫ ∞

−∞

dt′

~
E(ωx, t

′, σx)e
− i

~
(~ωx−ǫk1

+ǫk2
)t′
∣

∣

∣

∣

2

,(29)

which exhibits the property

Ak1,k2
(ωx, σx) ∝ σxδ(~ωx − ǫk1

+ ǫk2
). (30)

Combining (29) with the second line in Eq. (22) the
latter can be represented in the form of on-the-energy-
shell spectrum Spl(ε, t) with minimal time-energy uncer-
tainities during both stages of primary photoexcitation of
electronic polarization and sequential plasmon emission

lim
t→∞

Spl(ε, t) =
∑

k1,k2

Ak1,k2
(ωx, σx)

1

2π~

∫ ∞

−∞

dτe
i
~
ετ exp



−
∑

k̄1,q

wq

k̄1,k1
(1− e−iωqτ )



 (31)

=
∑

k1,k2

Ak1,k2
(ωx, σx)e

−wk1



δ(ε) +
∑

k̄1,q

wq

k̄1,k1
δ(ε− ωq) +

∑

k̄1,q;k̄′

1,q
′

wq

k̄1,k1
wq′

k̄′

1,k1
δ(ε− ωq − ωq′) + · · ·





(32)

Here

wq

k̄1,k1
=

∣

∣

∣
2πV q

k̄1,k1
δ(ǫk1

− ǫk̄1
− ~ωq)

∣

∣

∣

2

(1 − nk̄1
), (33)

is a dimensionless transition probability in which the
divergent square of the δ-function can be regular-
ized following the procedures appropriate to the treat-
ments of explicitly time-dependent quantum transition
probabilities.42,68,69 This is described in Sec. S1 of Ref.
[74]. As shown therein, from the on-the-energy-shell limit
(33) directly follows Fermi’s golden rule expression for the
differential transition rate describing electron transition
k1 → k̄1 through the energy conserving emission of one
plasmon of wavevector q, viz.

Γk̄1,k1
= 2π

∑

q

|V q

k̄1,k1
|2(1−nk̄1

)δ(ǫk1
−ǫk̄1

−~ωq). (34)

The saturation limits (33) and (34) become effective al-
ready few femtoseconds after plasmon excitation.69,70

The total transition rate per unit time, 1/τk1
= Γ>

k1
/~,

for one plasmon excitation by an electron scattered from

the primary photoexcited state |k1〉 above EF to all un-
occupied final band states |k̄1〉 satisfying energy conser-
vation, is obtained from71

Γ>
k1

=
∑

k̄1

Γk̄1,k1
= 2π

∑

k̄1,q

|V q

k̄1,k1
|2(1−nk̄1

)δ(ǫk1
−ǫk̄1

−~ωq).

(35)
Here the summation over the final electron quan-
tum numbers k̄1 introduces the one-plasmon excitation
threshold θ(ǫk1

− ~ωq−EF ). The quantity (35) depends
solely on the intrinsic properties of the electron-plasmon
system. Expressions (34) and (35) will serve in Sec. VB
for carrying out the calculations of primary hot electron
decay caused by plasmon emision.
It is notable that within the SBC the total energy

conservation over the temporally nonoverlapping interac-
tions W (t′) and V e−pl(t′) in the interval (t0, t) is linked
only via the primary excited quasiparticle energy ǫk1

.
This is easily seen by combining energy conservations
from the two nonoverlapping events of electron photoex-
citation and plasmon emission. This yields for one-
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plasmon excitation the condition ~ωx = ǫk̄1
+ ~ωq − ǫk2

where ǫk2
is the primary photoexcited hole energy. Fur-

thermore, since in the preparation of momentum and en-
ergy resolved scattering experiments the primary quasi-
particle momentum and energy are kept fixed, the ”appa-
ratus function” in (31) obeying this condition will be ef-
fectively restricted to a single factorizable k1-component
∑

k2
Ak1,k2

(ωx, σx). This leads to the formulation of the
plasmon emission event in accord with the standard col-
lision theory developed in Chs. 3-5 of Ref. [58].
The coherent state related representation of (31) is

again most easily visualized in the simple nondispersive
limit ωq = ωp employed in Sec. III A which together with
(29) and (37) yields a Poissonian distribution spectrum

lim
t→∞

Spl(ε, t) =
∑

k1,k2

Ak1,k2
(ωx, σx)

×
∞
∑

n=0

e−wk1
(wk1

)
n

n!
δ(ε− n~ωp), (36)

with

wk1
=

∑

k̄1,q

wq

k̄1,k1
(37)

In this limit expressions (15) and (25) tend to a super-
position of electronic and quasistationary coherent plas-
monic states that within the SBC acquire a compact form

|ΨSBC〉 =

n=∞
∑

k1,k2,n=0

√

Ak1,k2
(ωx, σx)

× e−
wk1

2

√

(wk1
)n

n!
|k1,k2〉|n〉. (38)

In the opposite case of temporally overlapping interac-
tions W (t′) and V e−pl(t′), the time dependences in the
first and second line on the RHS of (22) do not factor-
ize and simple closed form solutions are possible only for
special pulse shapes (see Sec. III C).

2. Truncated plasmonic coherent states

The plasmonic excitation spectrum given by the ex-
pression following the apparatus function on the RHS of
(31), (32) and (36) is unitary by construction. However,
as it was derived from second order cumulant expansion
which approximates the higher order plasmon emission
events by a succession of uncorrelated first order ones
(cf. Appendix A), the excitation threshold condition
ǫk1

− EF ≥ n~ωp for n-plasmon emission (n ≥ 2) does
not explicitly appear in the third and higher order terms
in the square brackets in (32). To remedy this defficiency
of second order cumulant approximation all the terms on
the RHS of (32) beyond the second one should be consec-
utively multiplied by the factors θ(ǫk1

− n~ωp − EF ) in

order to remove excess weights that violate energy con-
servation. Since the thus modified spectrum violates uni-
tarity it must be reunitarized with respect to the n = 0
elastic line e−wk1 δ(ε). One such procedure was outlined
in the last two paragraphs in Sec. III.C of Ref. [72] and
amounts to multiplying the elastic line δ(ε) in expression
(32) by the sum of all removed k1-dependent weights

∞
∑

n=2

∑

k̄1,q;...;k̄′

1,q
′

wq

k̄1,k1
· · ·wq′

k̄′

1,k1
θ(n~ωp+EF−ǫk1

). (39)

This procedure ensures that the sum of energies of excited
plasmons can not exceed the absorbed photon energy and
leaves the common Debye-Waller factor e−wk1 from (32)
unchanged. Besides, constraining n by energy conserva-
tion transforms (36) into a sub-Poissonian distribution
and the plasmonic wavefunction (38) into a truncated
coherent state.

C. Final plasmonic state in the limit of excitation
by extremely short pulses

In this example we consider the boundary conditions
pertaining to extremely short driving field pulse dura-
tion in comparison with the switching on time of the
electron-plasmon interaction, viz. the limit 1/η ≫ σx.
This is the situation opposite to the one sketched in Fig.
5, so that now a narrow pulse envelope with tx close to
0 is embedded within the adiabatic development of the
electron-plasmon interaction governed by e−η|t|. To ex-
plore the inferences of the very short pulse limit in a
tractable calculation we follow Keldysh73 and assume a
transient profile E(ωx, t, σx) → E0σxδ(t− tx). Using this
Ansatz in the simple example (24) we find for t > tx

Spl(ε, t) =

(

E0σx

~

)2
∑

k1,k2

|Wk1,k2
|2(1− nk1

)nk2

×
∞
∑

n=0

e−wk1
(t) [wk1

(t)]n

n!
δ(ε− n~ωp), (40)

with

wk1
(t) =

∑

k̄1,q

(1− nk̄1
)
∣

∣

∣
V q

k̄1,k1

∣

∣

∣

2

× 2

(

1− cos[(ǫk1
− ǫk̄1

− ~ωp)(t− tx)]

(ǫk1
− ǫk̄1

− ~ωp)2

)

.(41)

Observe in (40) the modified ”apparatus function”
(E0σx/~)

2|Wk1,k2
|2(1 − nk1

)nk2
relative to expression

(29). Also notable is the absence of a monochromatic en-
ergy conservation in the primary excitation process [oth-
erwise arising from the upper line in (22)] which is here
triggered by the white spectrum of δ-function pulse.
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FIG. 6: Diagrammatic illustration of perturbative contribu-
tions to plasmon pumped electron yield following the proce-
dures outlined in Refs. [10] and [41]. Positive time is run-
ning upward. Sketch of Keldysh diagram for plasmonically
induced electron yield in (a) quadratic response (analogous
to 1PP yield), and in (b) quartic response (analogous to 2PP
yield). Full red and dashed blue lines denote propagation
of electrons and holes above and below the Fermi level, re-
spectively. Purple wiggly lines indicate plasmons giving rise
to electron excitation via electron-plasmon interaction ma-
trix elements V q

k̄1,k1
denoted by blue dots. Vertical full black

arrows symbolize time dependent electron yield captured by
the electron counter. In the processes depicted in panels (a)
and (b) the wiggly lines can be any real plasmon emanating
from the primary photoinduced polarization vertices shown in
Figs. 3 and 4 or their complex conjugates. (c) Illustration of
the mechanism of plasmonic filter for electron yield obtained
through temporal juxtaposition of the processes depicted in
Fig. 3 and the herein panel (a). This particular yield channel
is open for ~ωx > ~ωp > φ.

In the case of subcycle pump pulses the physically
relevant limit of (40) is for t → ∞.73 Employing this
limit expression (41) tends to (33) in which the δ-
functions should be converted to nondiverging expres-
sions via the appropriate regularization procedures de-
scribed in Sec. S1 of Ref. [74]. Hence, both extreme
regimes of optical excitation considered in the previous
and present subsections support the formation of coher-
ent plasmonic states (25) with a common distributional
probability (33). However, the distinct temporal bound-
ary conditions imposed on the optical pumping processes
give rise to different ”apparatus functions” in (36) and
(40), and thereby to the pulse-specific weights of the re-
spective plasmonic spectra Spl(ε, t).

IV. SECONDARY HOT PLASMON-DRIVEN
PUMPING OF NONLINEAR ELECTRON YIELD

The presence of a distribution of real plasmons in the
system, either in the form of ”coherent states”, (25) and
(38), or a more general one, may have interesting impli-
cations on the dynamics of electronic excitations in the
valence and conduction bands. Like the photons of ap-
plied EM field, real plasmons propagating in the system
may also act, via the interaction V e−pl in (4), as a sec-
ondary pump field for excitation of electrons to states
above the vacuum level. These electrons would emanate
from the system with kinetic energies solely determined
by the multiples of plasmon energy. This is illustrated by
the diagrams (a) and (b) in Fig. 6. The essential differ-
ence between the plasmon and photon drivings appears
first in the meaning of wiggly lines denoting the exciting
boson fields (plasmon vs. photon), and second, in the in-
teraction vertices describing their coupling to electrons
(V q

k̄1,k1
vs. Wk1,k2

, respectively). Another difference

arises in temporal constraints on the two boson fields. In
the case of photons they are imposed by the modulation
E(ωx, t, σx) of ultrashort pulses. By contrast, once the
”hot” plasmons have been excited by the primary pho-
toinduced electronic polarization they can be regarded
as a steady continuous wave (cw) field whose action on
electrons is limited only by the plasmon lifetime.29

The transient secondary plasmon-induced electron
population 〈Nk̄(t)〉 in an outgoing state |k̄〉 can be most
directly demonstrated by taking the mean value of the

k̄-resolved electron occupation operator N̂k̄ = c†
k̄
ck̄ over

the quasistationary multiplasmonic state |Ψ(0)〉 reached
at t = 0 (which requires tx + σ < 0) and subsequently
developed by the long time limit t ≫ 0 of the evolution
operator (13), viz.

〈Nk̄(t)〉 = 〈Ψ(0)|Usyst(t, 0)†N̂k̄U
syst(t, 0)|Ψ(0)〉 (42)

Now, in analogy with the mPP formalism (cf. Eqs. (4)
and (10) in Ref. [19]) expanding Usyst(t, 0) in powers of
V e−pl gives the quadratic, quartic, etc. response expres-
sions for plasmon-driven electron yields described next.

1. One plasmon-assisted electron yield

We shall formulate the rate of creation of hot elec-
tron population in bulk bands through one plasmon-
driven processes within the quadratic response approach
adopted from the theory of cw-driven 1PP.39–41 This is
illustrated diagrammatically in Fig. 6(a) and can be
studied in two complementary usages of state-to-state
resolved electron excitation rates

γ
(~ωp)
k′,k = 2π

∑

q

|V q

k′,k|
2nk(1−nk′)δ(ǫk′−ǫk−~ωq). (43)

First, one may be interested as how a particular initial
electron state |k〉 below EF contributes to the total hot
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electron production in the states |k′〉. This would corre-
spond to the CIS mode and the pertinent electron exci-

tation rate is given by γ
CIS(~ωp)
k /~ where

γ
CIS(~ωp)
k =

∑

k′

γ
(~ωp)
k′,k . (44)

Alternatively, one may be interested in how much the
manifold of initial states {|k〉} gives rise to plasmon-
induced excitation of electrons into a particular state |k′〉
above EF . The corresponding constant final state (CFS)

rate is given by γ
CFS(~ωp)
k′ /~ where

γ
CFS(~ωp)
k′ =

∑

k

γ
(~ωp)
k′,k . (45)

Then, the expression

γ(~ωp) =
∑

k

γ
CIS(~ωp)
k =

∑

k′

γ
CFS(~ωp)
k′ , (46)

gives the total electron excitation rate induced by one
plasmon absorption.

The transitions rates Γ>
k1
, γ

CIS(~ωp)
k and γ

CFS(~ωp)
k′ are

appropriate for description of electron-plasmon scatter-
ing dynamics subject to SBC defined in (27). Note also

that the excitation rates (44) or (45), on the one hand,
and (35) on the other hand, are not simple time reversals
of each other because in the discussed experiment they
involve different subspaces of initial and final electron
states.

2. Two plasmon-assisted electron yield

Multiplasmon-assisted electron yields require the exis-
tence of more than one real plasmon in the system. Once
the real plasmons have been excited their annihilation
can give rise to 2~ωp-features presented in Fig. 1. This
process can be visualized as a quartic response of the
electron system to the plasmon field and is illustrated
diagrammatically in Fig. 6(b). Its description can be
brought into a full analogy with the earlier formulated
theory of 2PP processes presented in Sec. 2.1 of Ref.
[11], but with real plasmons instead of photons acting as
the pump and probe fields. Hence, in the long time limit
expression (42) produces the excitation rate describing
the total energy-resolved two plasmon-induced electron
yield

P (ǫ) =
∑

k′′,k

∣

∣

∣

∣

∣

∣

2π
∑

k′,q′,q

V q′

k′′,k′V
q

k′,k

ǫk′ − ǫk − ~ωq + iδ
δ(ǫk′′ − ǫk − ~ωq − ~ωq′)

∣

∣

∣

∣

∣

∣

2

δ(ǫ − ǫk′′), (47)

where k, k′ and k′′ denote the quantum numbers of ini-
tial occupied, and intermediate and final unoccupied elec-
tron states, respectively. Expression on the RHS of (47)
considerably simplifies in the case of weakly dispersive
plasmons for which ωq ≃ ωp.

The most notable feature of the above described plas-
mon pumping mechanism is its monochromaticity fixed
at the multiples of plasmon frequency nωp, irrespective of
the value of primary photon pump frequency ωx. Thus,
as long as ωx ≥ ωp in 2PP the secondary plasmon-
driven pumping of electronic excitations may become ef-
fective for the times t > tx + σx. This enables the non-
Einsteinian plasmonic CIS mode of photoelectron yield
from the Fermi level at kinetic energies 2~ωp − φ > 0.

3. Plasmonic filter of electron yield

The locking of electron emission energy at the plas-
mon energy can take place also in a temporal succes-
sion of the primary photon-induced plasmon genera-

tion shown schematically in Fig. 3, and the secondary
plasmon-driven pumping of electronic polarization shown
in Fig. 6(a). One of the lowest order contributions (i.e.
quadratic in photon and plasmon fields) to this combined
process is sketched in Fig. 6(c). This mechanism be-
comes effective provided the condition ~ωx > ~ωp > φ
holds and the limit of electron detection times exceeding
the characteristic times of the system is reached. The
latter is required because here plasmons appear in the
intermediate states past the primary optically induced
electronic transitions and not as a ”preexistent” distri-
bution of real excitations already available in (38) for
generation of electron yield via the processes sketched in
panels (a) and (b) of Fig. 6. Hence, for the plasmonic
energy filter to be effective the interval between the plas-
mon creation times [the times of lower plasmon vertices
in Fig. 6(c)] and the electron detection time (the time
of topmost vertex in the same plot) must be sufficiently
long to allow for establishment of energy conservation
between the successive processes. Most importantly, this
does not imply the resonance condition ~ωx ≃ ~ωp, as
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dominantly discussed in plasmonics,26–28,31,34 but only
the requirement ~ωx ≥ ~ωp.

75 The same applies also to
higher order processes [e.g. involving two-photon pump-
ing succeeded by the subprocess illustrated in Fig. 6(b)]
albeit in a more complicated fashion. Thus, for CIS mPP
from the states near the Fermi surface the electron yield
may exhibit secondary peak structures located at mul-
tiples of the plasmon energy n~ωp above EF and their
interpretation is possible only beyond the standard Ein-
stein picture of photoeffect quantified through Eq. (1).
However, the coherence of pumping processes producing
the electron yield can be quite different for photon and
plasmon driven emissions.

V. RESULTS AND DISCUSSION

In Refs. [3–5] we have presented exhaustive descrip-
tions of the Einsteinian one-electron aspects of 2PP spec-
tra from three low index surfaces of Ag that is consistent
with the common understanding of such processes. In
this section we focus on applications of concepts and
results obtained in Secs. II-IV to study the concomi-
tantly discovered non-Einsteinian plasmon-induced elec-
tron yield from Ag surfaces reported and heuristically
interpreted in Ref. [5]. Accordingly, we shall consider
primary electronic excitations induced by photon ener-
gies in the range shown on the horizontal axes in Fig. 1.
Such low photon energies limit the truncated coherent
plasmonic states generated in quadratic response by one
photon-induced electronic polarization to contain max-
imum one real plasmon [cf. discussion preceding Eq.
(39)]. Multiplasmon states are then generated in higher
order response, i.e. quartic, etc (cf. Fig. 4). Also, as
the on-the-energy-shell limits of transition rates (34) and
(35) are established in few femtoseconds past the instant
of plasmon creation69,70,81 we shall henceforth consider
only the results from this limit.

A. Band structure and dielectric properties of Ag

Calculations of the various quasiparticle excitation
rates (35), (44), (45) and (47) require realistic input
quantities for the underlying minimal plasmon model.
This specifically concerns the Ag electronic band struc-
ture and the ensuing dielectric properties. Figure 7 illus-
trates the computed electronic band structure over the
first Brillouin zone (BZ) of bulk Ag and the thereof de-
rived dielectric function (for details of ensuing calcula-
tion procedures see Ref. [5] and Sec. S2 of Supplemen-
tary Material74 building on Refs. [82–93]). The extrema
and kinks in the band dispersion curves around the end-
points of arrows denoting interband transitions (ib) in
Fig. 7(a) give rise to maxima in the electronic density
of states (DOS). Such maxima can strongly affect opti-
cal and plasmonic transition matrix elements in specific
energy regions (see Sec. S2.C in Ref. [74]) and thereby

also the excitation rates (35), (44) and (45).

B. Hot plasmon generation

Figure 8(a) shows the locations of k-states along the
high symmetry directions in the first BZ of Ag from which
the decay of hot electrons gives rise to significant plas-
mon generation rates Γ>

k defined in Eq. (35). Depending
on the initial electron k-state these values can be as large
as ∼ 120 meV. This implies that plasmons can be excited
already within 5 − 6 femtoseconds past the primary op-
tical polarization excitation by the pump pulse, i.e. well
within the duration of laser pulses used in experiments.3,5

Analogous calculations of Γ<
k corresponding to plasmon

generation by holes scattered from the initial s, p-band
states |k〉 extending to more than 4 eV below EF give
negligible values. This finding provides a fortiori sup-
port to the neglect of plasmon emission by holes pho-
toinduced in s, p-bands that was assumed in the deriva-
tion of expression (19). Good agreement between the
angular integrated Γ>

k shown in Fig. 8(b) and the analo-
gous GW-derived quantity 74 justifies the use of minimal
electron-plasmon model in the present calculations.

C. ~ωp-yield

(i) Bulk transitions. Figure 9 illustrates the rates

γ
CIS(~ωp)
k and γ

CFS(~ωp)
k′ of creation of hot electron popu-

lation in bulk Ag through the plasmon driven processes
sketched in Fig. 6(a) (for methods of calculation see
Sec. S2 in Ref. [74]). Panel (a) shows the locations of

k-states in the BZ for which γ
CIS(~ωp)
k describing elec-

tron excitation from a fixed occupied state |k〉 below EF

to the states |k′〉 above EF is large. Panel (b) shows
equivalent information on the energy scale of the occu-
pied bands. Here two domains with maximum electron
excitation rates are clearly discernible. They correlate
with the enhanced DOS at the upper edges of occupied
d-bands and the very narrow energy window just below
EF .

94 The latter case of plasmon-induced electron exci-
tation from EF which promotes electrons to the states of
energy ∼ EF + ~ωp is overwhelmingly dominant and of-
fers explanation of the ~ωp peak in the CIS 1PP spectra
of Ref. [14]. This also supports the conjectures of domi-
nant plasmon-induced electron excitation from EF made
in Ref. [20]. Panel (c) of Fig. 9 shows a complementary

picture in which γ
CFS(~ωp)
k′ describing electron excitation

from all occupied states |k〉 below EF to a fixed final
state |k′〉 above EF is maximum. Again, two distinct
types of plasmon-induced interband transitions are dom-
inant. The first are from the upper edge of d-band to EF ,
and thus unobservable in photoemission. The second are
from EF to the states with energy ∼ EF +~ωp, and thus
observable in the experiment described in Ref. [14].
The results presented in Figs. 7-9 above quantify the



13

FIG. 7: (a): First Brillouin zone of fcc Ag lattice. Green dots denote the high symmetry points of the zone and the red
rectangle its section in the (110) plane. (b): Band structure of Ag along the high symmetry points in the first Brillouin zone
computed within the GW-framework. The most prominent interband transitions (ib) in the energy range ∼ 4 eV are denoted
by vertical arrows. Earlier GW results (circles) are taken from Ref. [32]. Experimental points are from Refs. [76] and [77].
(c): Real and imaginary parts of the RPA dielectric function for q = 0 calculated for the band structure displayed in (a). (d):
Comparison of the thereof calculated loss function with the experimental data from Ref. [78]. (e): Bulk plasmon dispersion
in Ag calculated in RPA for the band structure shown in (b). Circles and diamonds denote experimental points of plasmon
dispersion.[79,80]

FIG. 8: (a): Electronic band structure along the high sym-
metry points of the first Brillouin zone in Ag. The magnitude
of the band- and momentum-resolved photoexcited quasipar-
ticle decay rate due to one plasmon emission Γk, Eq. (35), is
quantified by color bar in the inset. (b): Angle-integrated Γk

as a function of energy. Note the threshold at ∼ EF +~ωp and
very low values below EF and the d-band edge. Yellow line
denotes the result of analogous GW-based calculation which
incorporates the full linear electronic density response of the
system.

sequence (9) leading to the energy-locked excitation of
electrons to energy ~ωp above the Fermi level of the irra-
diated system. Essentially, this sequence appears on the
LHS, and its conjugate on the RHS, of the diagram shown
in Fig. 6(c). Here the vertex encompassing one incoming
and one outgoing red electron line and one wavy plasmon

line can be identified with the plasmaron vertex.60 Note
that the two-hole state |polarization′′〉 in (9) is mapped
in the appearance of two hole dashed lines in Fig. 6(c).
The measures of durations of pumping of the involved ex-
cited states are σx, ~/Γ

>
k
and ~/γCFS

k′ , respectively. The
occurence of ~ωp component of 1PP spectrum from Ref.
[14], that can not be explained by relations (1) or (2), is
now interpretable by the scenario (9) and supported by
the results of calculations presented in Figs. 7-9.

(ii) Bulk and surface transitions. To investigate and
illustrate the effects of the surface on plasmon-assisted
electron yield we carry out calculations analogous to
those in (i) above by projecting the bulk band states
onto the Ag(110) crystal plane (for calculational details
see Sec. S2 E in Ref. [74]). Figure 10(a) illustrates as
how due to the breakdown of translational symmetry per-
pendicular to the surface new states appear in the gaps
of the bulk band structure. The concomitant relaxation
of momentum conservation perpendicular to the surface
opens new channels of hot electron excitation by plas-
mon absorption. This gives rise to the enhancements of

hot electron excitation rates γ
CIS(~ωp)
k and γ

CFS(~ωp)
k′ , as

can be deduced from the intensities of γ
CFS(~ωp)
k′ shown

in Fig. 10(a). The contributions of surface-induced chan-
nels to plasmon-assisted hot electron generation can be
best visualized from the comparison of angular integrated

surface enhanced γ
CFS(~ωp)
k′ shown in Fig. 10(b) with

its bulk counterpart shown in Fig. 9(d). The differ-
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FIG. 9: (a): Band structure of Ag with electronic transi-

tions ib2 and ib1 contributing to CIS resolved rates γ
CIS(~ωp)

k

[Eq. (44)] for plasmon-induced hot electron generation pro-
cesses sketched in Fig. 6(a). The magnitudes of CIS and
CFS transition rates are quantified by color bars in the in-

sets. (b): Angle-integrated γ
CIS(~ωp)

k shown on the energy
scale. The CIS amplitudes for transitions from the occupied
states closely below EF to unoccupied bands above EF are
dominant. (c): Electronic transitions ib2 and ib1 contribut-
ing to CFS resolved plasmon-induced hot electron generation

rates γ
CFS(~ωp)

k′ [Eq. (45)] from all initial to a fixed final k-
state at ∼ EF and final k′-state at ∼ EF + ~ωp, respectively.

(d): Angle integrated γ
CFS(~ωp)

k′ shown on the energy scale.
Here the dominant amplitudes are for transitions to EF and
∼ EF + ~ωp.

ent vertical scales in the two plots reveal different mag-
nitudes of the respective quantities. Furthermore, the
surface-induced channels give rise to the nonvanishing

intensity of γ
CFS(~ωp)
k′ also in the intermediate interval

(EF < ǫ < EF + ~ωp) but the largest contributions at
EF and EF + ~ωp persist, in accord with experimental
trends observed for the other low index Ag surfaces.14

The comparison between bulk and surface results nicely
illustrates how surface effects can be of paramount im-
portance in descriptions of hot carrier generation in plas-
monic materials.

D. 2~ωp-yield

The 2PP features shown in Fig. 1, recorded with pulse
frequencies ωx obeying ωp ≤ ωx ≤ 2ωp, can not be visu-
alized within a unique excitation sequence of the type (9)
because the excited states giving rise to the 2~ωp-yield
may be reached via several different excitation paths in-

FIG. 10: (a): Band structure of Ag across the (110)-surface
projected bulk Brillouin zone showing the intensities of sur-

face enhanced γ
CFS(~ωp)

k′ quantified by the color bar. (b):

Angle integrated surface enhanced γ
CFS(~ωp)

k′ from (a) shown
on the energy scale. Shaded area spans the width of EF →
EF + ~ωp plasmon-induced electronic transitions. Notable is
the surface induced enhancement of all displayed quantities
relative to the purely bulk induced values shown in Fig. 9.

(c): Isoenergetic distribution of surface enhanced γ
CFS(~ωp)

k′

averaged around ǫk′ ≃ EF + ~ωp[97] and shown across the
projected BZ (a = 4.06 Å). The highest intensities are around
Γ̄, Ȳ and S̄ points.

volving two plasmons. This is symbolically represented
by Fig. 4 after exclusion of the plasmon lines emanat-
ing from the holes. However, concepts analogous to those
employed in the previous subsection to interpret the ~ωp-
yield may be extended to interpret the 2~ωp features as
well. The point of departure is the polarization-induced
formation of plasmonic coherent states governed by Γ>

k1

illustrated in Fig. 8. The thus generated real plasmons
may give rise to primary and secondary plasmon pump-
ing over virtual and real intermediate states, i.e. nonres-
onant and resonant intermediate excitation paths.
In the calculations of the one plasmon-driven elec-

tronic excitations reported in subsection VC above we
have identified a rich phase space of resonant states avail-
able for the one-plasmon pumping stage [cf. Fig. 9(c)].
These states also support resonant intermediate chan-
nels in the two-plasmon driven pumping of electrons
from EF . Since dominant contributions to dissipative
processes come from on-the-energy-shell transitions we
shall henceforth consider only the manifold of sequen-
tial electron excitation paths via the resonant intermedi-
ate states.95 Therefore, the second plasmonically induced
electronic excitation from an intermediate resonant state
|k′〉 to a final state |k′′〉 is characterized by the state-to-
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FIG. 11: (a): Band structure of Ag projected onto (110)
surface showing the points with maximal intensities of

γ
CFS(2~ωp)

k′′ (see color bar for computed values). The sec-
ond plasmon-induced electronic transitions start from reso-
nant intermediate states lying in the orange shaded energy
window at ∼ EF + ~ωp that have been occupied in one-
plasmon absorption processes illustrated in panels (c) and

(d) of Fig. 10. (b): Angle integrated γ
CFS(2~ωp)

k′′ from (a)
shown on the energy scale. Shaded area straddles the width of
plasmonically-induced electronic transitions to ∼ EF +2~ωp.

(c): Isoenergetic distribution of γ
CFS(2~ωp)

k′′ averaged around
ǫk′′ ≃ EF + 2~ωp[97] and shown across the projected BZ
(a = 4.06 Å). The accumulation of highest intensities is in
the vicinity of Γ̄ and Ȳ points.

state excitation rate

γ
(2~ωp)
k′′,k′ = 2π

∑

q′

|V q′

k′′,k′ |2nk′(1−nk′′)δ(ǫk′′ − ǫk′ − ~ωq′).

(48)
Here the energies ǫk′ ≃ EF +~ωp of the intermediate res-
onant states |k′〉 occupied after the first plasmon absorp-
tion lie within the orange horizontal stripe shown in Fig.
11(a). Expression (48) is an analog of the one-plasmon

induced transition rate γ
(~ωp)
k′,k defined in (43). For the

second plasmon absorption processes the CFS rate reads

γ
CFS(2~ωp)
k′′ =

∑

k′

γ
(2~ωp)
k′′,k′ . (49)

This description is akin to treating the second step of
2PP proposed in Ref. [96], but with hot plasmons instead
of photons playing the role of probe field in the middle
vertices in Fig. 6(b).
Panel (a) in Fig. 11 shows the values of excitation

rates γ
CFS(2~ωp)
k′′ (49) for the second plasmon-induced

electronic transitions in the projection of bulk BZ of Ag
onto the (110) crystal surface. Here all transitions com-
mence in the k′-states within the orange stripe at the en-
ergy ǫk′ ≃ EF +~ωp occupied in one-plasmon absorption

processes described by γ
CFS(~ωp)
k′ , and terminate in the

k′′-states with ǫk′′ ≃ EF + 2~ωp. Notable are the mag-

nitudes of γ
CFS(2~ωp)
k′′ in the final electronic states with

pronounced surface character (see surface state bands
between 7.1 eV and 7.3 eV in Fig. S1 of Ref. [74]). Panel

(b) shows the values of angle integrated γ
CFS(2~ωp)
k′′ on

the energy scale, displaying a prominent peak at the en-
ergy ∼ EF + 2~ωp. Panel (c) shows the isoenergetic

distribution of the values of γ
CFS(2~ωp)
k′′ across the (110)

surface projected BZ obtained from averaging around
ǫk′′ ≃ EF + 2~ωp.

97 The accumulations of significant
contributions around the Γ̄ and Ȳ points indicate a nar-
rower phase space of final states than in the case of one
plasmon-induced transitions displayed in Fig. 10(c).
Taking into account only resonant processes the joint

CFS rate γ
res(2~ωp)
k′′ of two plasmon-induced electron ex-

citations is in the present situation obtained from (47)
by retaining only the on-the-energy shell components
of intermediate state propagations contributing to this
expression.98 This gives

γ
res(2~ωp)
k′′ ≃

π

2
ρf (ǫk′′)

∑

k′

γ
(2~ωp)
k′′,k′ γ

CFS(~ωp)
k′ . (50)

Here ρf(ǫk′′) is the density of electron states around the

final k′′-vector for which ǫk′′ ≃ EF +2~ωp, and γ
CFS(~ωp)
k′

and γ
(2~ωp)
k′′,k′ are defined in Eqs. (45) and (48), respec-

tively. The peculiar prefactor π
2 arises from the combina-

tion of different temporal boundary conditions governing
the intermediate and final state electron propagation (i.e.
over semi-infinite vs. infinite time interval, respectively).
Using (50) we can pinpoint the essential features of

two plasmon-induced electron emission illustrated dia-
gramatically in Fig. 6(b) and leading to non-Einsteinian
electron yields. We first observe that the intensity bottle-
neck of resonant 2~ωp-electron emission described by the
rate (50) is the overlap of the phase space of intermediate
resonant states |k′〉 with the phase space of final states
|k′′〉. This overlap strongly depends on the magnitude of
plasmon wave vector cutoff. In the case of Ag(110) this is
illustrated in Figs. 10(c) and 11(c) and favours the 2~ωp-
emission in the directions of k′′ whose components k′′x
and k′′y are restricted to the vicinity of Γ̄ point. Here the
trends noted in Fig. 11 are further corroborated by the
evaluation of consecutive two plasmon-induced resonant
electron excitation rate (50). The results are presented
in Fig. 12. Panel (a) shows the distribution of the values

of γ
res(2~ωp)
k′′ within the (110)-surface projected BZ of Ag

obtained from averaging around ǫk′′ ≃ EF +2~ωp.
97 Pan-

els (b) and (c) show histograms of the same data along
the rectangular paths marked in the projected zone. All
panels illustrate anisotropic accumulation of the largest

values of γ
res(2~ωp)
k′′ around the Γ̄ point, thereby favour-
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FIG. 12: (a): Distribution of the magnitudes of resonant
two plasmon-induced electron excitation rates (50) averaged
around ǫk′′ ≃ EF + 2~ωp [97] and shown across the (110)
surface-projected bulk BZ of Ag (see color bar for absolute
values). (b) and (c): Histograms of the same data along the
blue and red rectangular paths marked in (a).

ing the majority of two plasmon-assisted photoemission
intensity around the normal to the Ag(110) surface. The
corresponding magnitudes of the rates characterizing the
two plasmon-induced electron excitations indicate that
these events can take place within the duration of the
ultrashort laser pulses. A good agreement between these
theoretical predictions and experimental findings pre-
sented in Refs. [3,5] and Fig. 1 substantiates the mecha-
nism of channeling of broad band optically induced elec-
tronic excitations into electron yield ”monochromatized”
to within the narrow range of plasmon dispersion.

VI. SUMMARY AND OUTLOOK

Following the above theoretical tour de force that es-
tablishes a mechanism for non-Einsteinin plasmonic pho-
toemission, it is important to consider its practical impli-
cations. The decay of plasmons into hot electrons is an
intensely invoked but hardly directly investigated theme
in physics and chemistry.28–36 The experimental mea-
surement of plasmonic photoemission3,5 and its theoret-
ical interpretation presented herein imply that the exci-
tation of the bulk plasmonic mode in the single crystal
Ag samples may lead to transfer of the entire plasmon
energy to selectively promote electrons from the Fermi
level to EF + n~ωp, rather than to a distribution that
is defined by the density of states and energy conserva-

tion, as is commonly believed.28–36 There has been evi-
dence that this selectivity occurs in alkali metals22,100–102

and we have demonstrated that it also occurs in single
crystalline Ag. If indeed the plasmonic response of met-
als can transfer energy entirely to hot electrons, rather
than distributing it also among the holes, implies that
plasmonic energy harvesting can be far more economical
than commonly assumed. Therefore, it is important to
consider whether the reported plasmonic photoemission
is a peculiarity of the studied physical system or a com-
mon response of metals. The evidence so far suggests
that it is indeed a plasmonic response of metals, based
on what has been reported for alkali metals,22,100–102

single crystalline Ag films,14 and Ag(111), (100), and
(110) crystals.3,5 Our starting model, however, is not
constrained by momentum conservation, so it does not
preclude similar plasmonic decay into hot electrons for
surface plasmon polaritons or bulk plasmons in nanos-
tructured Ag. Indeed, a recent report on 2PP from size
selected Ag clusters, where momentum conservation is
relaxed,103 confirms our claim of plasmonic photoemis-
sion from Ag.104 Moreover, our previous studies of two-
photon photoemission from silver nanoclusters on TiO2

and graphite surfaces, which were interpreted as originat-
ing from interface states,105–107 most likely include strong
enhancement from plasmonic excitation of electrons from
EF . Thus, our experimental and theoretical evidence for
plasmonic photoemission invites a broader reinterpreta-
tion of ultrafast electron dynamics in metals. To this
end, we leave the open question whether an unresolved
anomaly in hot electron dynamics in Cu108–112 can be
attributed to processes that could be interpreted as in-
terband polarization having a similar role as plasmonic
photoemission in Ag. In the case of Cu, the apparent hot
electron lifetimes for photon excitation above the inter-
band threshold have appeared to be anomalous, because
they do not follow the Fermi liquid theory.109,110 Wolf
and coworkers have attributed this anomaly to the d- to
sp-band excitation,111 which enables the d-band holes to
decay by Auger recombination to generate hot electrons
having energies of > 2 eV above EF . While this can ex-
plain some results, there has never been clear evidence
that there is a delayed rise of hot electrons reflecting the
lifetimes of d-band holes.112 One can conceive that as the
d− to sp-band excitation channel becomes energetically
accessible, the interband polarization of d−holes decays
by a coherent process, analogous to plasmonic photoemis-
sion in Ag, by transferring the hole energy to electrons
at EF , rather than through an incoherent Auger process.

To summarize, we have studied the response of a sys-
tem of coupled electrons and plasmons in a metal to
perturbations exerted by a laser pulse on the electrons.
We demonstrate that the wavefunction of the pulse-
driven system incorporates the truncated plasmonic co-
herent states whose decay may generate complementary
channels of plasmonically assisted electron emission from
metal bands. This new paradigm enables us to elucidate
the origin and quantify the intensity of ”non-Einsteinian”
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plasmon energy-locked electron yield from the Fermi
surface observed in photoemission from Ag(110).5 This
reveals an as yet unexplored mode of ”monochroma-
tized” electron emission in optical energy conversion and
harvesting27,28 from broad band radiation that so far has
escaped the deserved scrutiny.
This work is dedicated to the memory of Hiromu Ueba,

scientist and friend, who pioneered the theory of 2PP
from surfaces.113
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Appendix A: Nonperturbative evaluation of
expression (20)

To evaluate expression (20) nonperturbatively we first
introduce the interaction representation of the evolution
operators with respect to the interaction V e−pl in (4) by

Usyst(t, t′) = Usyst
0 (t, t′)Usyst

I (t, t′)

= e−
i
~
Hsyst

0 (t−t′)Usyst
I (t, t′) (A1)

where

Usyst
I (t, t′) = 1−

i

~

∫ t

t′
dtiUI(t, ti)V

e−pl
I (ti) (A2)

with

V e−pl
I (ti) = e−

i
~
Hsyst

0 (ti−t′)V e−ple−
i
~
Hsyst

0 (ti−t′). (A3)

For later convenience we shall make use of the exponen-
tial representation of (A2) in the form114

Usyst
I (t, t′) = e−iG(t,t′) = exp

[

−
i

~

∞
∑

l=1

glGl(t, t
′)

]

,

(A4)
where g is the coupling constant, G(t, t′) is a hermitian
operator and the expansion terms Gl(t, t

′) are obtained
from a nested commutator expansion of the powers of

interactions V e−pl
I (t′) whose several lowest members are

explicitly shown in Eqs. (183)-(186) of Ref. [42]. The
leading term is

G1(t, t
′) =

1

~

∫ t

t′
dt1V

e−pl
I (t1)

= g
∑

k̄,k,q

V q

k̄,k
c†
k̄
cka

†
q∆

q

k̄,k
(t, t′) + h.c.,(A5)

with k and k̄ summations restricted such that ǫk > ǫF
and ǫk̄ > ǫF . Here the phase integral ∆q

k̄,k
(t, t′) defined

in (21) arises from uncorrelated interactions induced by

Usyst
I (t, t′). It turns into an energy conserving δ-function

in the adiabatic limit (t′ → −∞, t → ∞). Analogous
time-dependent quantities in all higher terms Gn>1 are
much more complicated and give only the time corre-
lated corrections to the elementary processes described
by G1(t, t

′).42,114 In the following we shall effectively use
the form

Usyst
I (t, t′) ≃ exp

[

−i
(

gG1(t, t
′) + g2Gdiag

2 (t, t′)
)]

(A6)
because, as demonstrated in Sec. 4.3 of Ref. [42], this
gives major contribution to (20).
To proceed with evaluation of (20) we consecutively

substitute therein expressions (A1), (A2) and (A4), and

exploit the fact thatHsyst
0 and Hpl

0 commute. This yields

〈0|ck1
U

syst(t, t′′)†e−
i
~
H

pl
0 τ

U
syst(t, t′)c†k1

|0〉 = (A7)

= 〈0|ck1
U

syst
I (t, t′′)†e−

i
~
H

pl
0 τ

U
syst
I (t, t′)c†k1

|0〉e−
i
~
ǫk1

(t′′−t′)

(A8)

= 〈0|ck1
(e−iG(t,t′′))†e−

i
~
H

pl
0 τ

e
−iG(t,t′)

c
†
k1

|0〉e−
i
~
ǫk1

(t′′−t′)

(A9)

= 〈0|ck1
exp[−i(e−iG(t,t′′))†Hpl

0 e
−iG(t,t′)

τ ]c†k1
|0〉e−

i
~
ǫk1

(t′′−t′)
.

(A10)

Thereby we have reduced expression (A7) to the form
of excited state average of a generalized exponential
operator115 (A10) and this can be evaluated using cu-
mulant expansion.42,116 To apply the latter we must find

the explicit form of the transformed operator Hpl
0 in the

exponent in (A10), viz. of the product

eiG(t,t′′)Hpl
0 e−iG(t,t′) = Usyst

I (t, t′′)†Hpl
0 Usyst

I (t, t′).
(A11)

For t′ 6= t′′ this operator is not symmetric in temporal
variables and therefore not amenable to the simple oper-
ator algebra based on the expansion

eiBAe−iB = A+
∑

n=1

in

n!
Bn[A] (A12)
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which is routinely employed in manipulations with evo-
lution operators. Here Bn[A] denotes the n-th order
repeated commutator of operator B with operator A.
However, we observe that for ultrashort pulses the max-
imum contribution to the overall expression (18) arises
during the overlap of the pulse amplitudes E(ωx, t

′, σx)
and E(ωx, t”, σx), say at t′ ∼ t′′ ∼ tx. To exploit this we
introduce new temporal coordinates, the pumping mean
time T and the relative or mismatch time t̄ by

T =
t′′ + t′

2
, t̄ = t′′ − t′. (A13)

This is analogous to Keldysh’s introduction of ”slow” (T )
and ”fast” (t̄) variables, whereupon the ”fast” one is in-
tegrated out in his derivation of the kinetic equation.117

It is seen that the mean or central time T is strongly
restricted to the interval σx around tx and the relative
time t̄ to the values around zero, i.e. t̄ < σx. In terms
of these coordinates we obtain for the RHS of (A11) a
partially symmetric expression

Usyst
I (t, t′′)†Hpl

0 Usyst
I (t, t′) → Usyst

I (T + t̄/2, T )Usyst
I (T, t)Hpl

0 Usyst
I (t, T )UI(T, T − t̄/2)

∼ Usyst
I (t, T )†Hpl

0 Usyst
I (t, T ) +O(t̄), (A14)

where the ”temporally diagonal” component in the last
line on the RHS of (A14) picks the maximum contribu-
tion to (18) and becomes exact in the limit of extreme
ultrashort pulses, i.e. E(ωx, t, σx) ∝ δ(t− tx). Hence, in
the following we shall retain only this leading term. The
latter is now transformed using (A12) to give

Usyst
I (t, T )†Hpl

0 Usyst
I (t, T ) = Hpl

0 +W(t, T ) (A15)

which is now substituted in (A10). Thereby expression
(20) is reduced to the excited state average of a single
exponential operator, viz.

〈0|ck1
exp

[

−
i

~

(

Hpl
0 +W(t, T )

)

τ

]

c†k1
|0〉 (A16)

where according to (A12) the ”interaction” W(t, T ) is
expressible as yet another nested commutator series42,114

W(t, T ) =

∞
∑

n=1

in

n!
Gn(t, T )[Hpl

0 ]. (A17)

Due to the very complex structure of the various Gn’s
constituting (A4) the series (A17) is likewise complex
and hence we shall again retain only the terms of lowest
order in the electron-plasmon coupling constant g. Thus
we obtain for the leading term

W1(t, T ) = −ig
∑

k̄,k,q

~ωqV
q

k̄,k
c†
k̄
cka

†
q∆

q

k̄,k
(t, T ) + h.c.

(A18)
The final stage in bringing the RHS of (A16) to a
menagable form follows from the observation that this
expression has a formal appearance of the excited state
average of a Heisenberg evolution operator in the τ -space
(recall that τ is not the genuine evolution time). This
means that we can express it in the interaction picture

in the same τ space, viz. in the form e−
i
~
Hpl

0 τUW
I (τ)

and thereby reduce the RHS of (A16) to the expression
amenable to cumulant treatment56,116 in the τ -space.
This procedure is described in detail in Sec. 4.3 of Ref.
[42] and here we only quote the final result

〈0|ck1
exp

[

−
i

~

(

Hpl
0 +W(t, T )

)

τ

]

c†k1
|0〉 → exp



−g2
∑

k̄1,q

∣

∣

∣
V q

k̄1,k1
∆q

k̄1,k1
(t, (t′ + t′′)/2)

∣

∣

∣

2

(1 − nk̄1,
)(1− e−iωqτ )





(A19)

where on the RHS we have restored the original time
evolution variables t′ and t′′. This representation holds

within the validity of second order cumulant expansion
of the electron propagator.61
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24 M. Schüler, J. Berakdar, and Y.Pavlyukh, Time-
dependent many-body treatment of electron-boson dynam-
ics: Application to plasmon-accompanied photoemission,
Phys. Rev. B 93, 054303 (2016).

25 D. Podbiel, Ph. Kahl, A. Makris, B. Frank, S. Sinder-
mann, T.J. Davis, H. Giessen, M. Horn-von Hoegen, and
F.-J. Meyer zu Heringdorf, Imaging the nonlinear plas-
moemission dynamics of electrons from strong plasmonic
fields, Nanno Lett. 17, 6569 (2017).

26 S. Linic, U. Aslam, C. Boeringter, and M. Morabito, Pho-
tochemical transformations on plasmonic metal nanopar-
ticles, Nature Mat. 14, 567 (2015).

27 Roadmap on optical energy conversion, editted by S.V.
Boriskina, J. Opt. 18, 073004 (2016).

28 P. Narang, R. Sundararaman, H. Atwater, Plasmonic hot
carrier dynamics in solid-state and chemical systems for
energy conversion, Nanophotonics 5, 96 (2016).

29 A. Marini, R. Del Sole, and G. Onida, First-principles
calculation of the plasmon resonance and of the reflectance
spectrum of silver in the GW approximation, Phys. Rev.
B 66, 115101 (2002).

30 R. Sundararaman, P. Narang, A.S. Jermyn, W.A. God-
dard III, and H.A. Atwater, Theoretical predictions for
hot-carrier generation from surface plasmon decay, Nat.
Commun. 5, 5788 (2014).

31 A. Manjavacas, J.G. Liu, V. Kulkarni, and P. Nordlander,
Plasmon-induced hot carriers in metallic nanoparticles,
ACS Nano 8, 7630 (2014).

32 M. Bernardi, J. Mustafa, J.B. Neaton, and S.G. Louie,
Theory and computation of hot carriers generated by sur-
face plasmon polaritons in noble metals, Nat. Commun.
6,7044 (2015).

33 B.Y. Zheng, H. Zhao, A. Manjavacas, M. McClain,
P. Nordlander, and N.J. Halas, Distinguishing between
plasmon-induced and photoexcited carriers in a device ge-
ometry, Nat. Commun. 6:7797 (2015).

34 J.R.M. Saavedra, A. Asenjo-Garcia, and F.J. Garcia de
Abajo, Hot-electron dynamics and thermalization in small
metallic nanoparticles, ACS Photonics 3, 1637 (2016).

35 A.M. Brown, R. Sundararaman, P. Narang, W.A. God-
dard III, and H.A. Atwater, Nonradiative plasmon decay
and hot carrier dynamics: effects of phonons, surfaces,
and geometry, ACS Nano 10, 957 (2016).

36 J.B. Khurgin and U. Levy, Generating hot carriers in
plasmonic nanoparticles: when quantization does matter?,
ACS Photonics 7, 547 (2020).

37 L.V. Besteiro, X.T. Kong, Z.M. Wang, G. Hartland, A.O.
Govorov, Understanding hot-electron generation and plas-
mon relaxation in metal nanocrystals: Quantum and clas-
sical mechanisms, ACS Photonics 4 2759 (2017).

38 N. Rivera and I. Kaminer, Light-matter interactions with
photonic quasiparticles, Nature Reviews Physics 2, 538



20

(2020).
39 W.L. Schaich and N.W. Ashcroft, Model calculations in

the theory of photoemission, Phys. Rev. B 3, 2452 (1971).
40 G.D. Mahan, Theory of photoemission in simple metals,

Phys. Rev. B 2, 4334 (1970).
41 C. Caroli, D. Lederer-Rozenblatt, B. Roulet, and D. Saint-

James, Inelastic effects in photoemission: microscopic
formulation and qualitative discussion, Phys. Rev. B 8,
4552 (1973).

42 See Sec. 4.2 in: B. Gumhalter, Single- and multiphonon
atom-surface scattering in the quantum regime, Phys.
Rep. 351, 1 (2001).

43 D. L. Andrews, D. S. Bradshaw, K. A. Forbes, and A.
Salam, Quantum electrodynamics in modern optics and
photonics: Tutorial, J. Opt. Soc. Am. B 37/4, 1153
(2020).
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sor states in ultrafast pump-probe spectroscopies of surface
bands, Phys. Status Solidi B 247, 1907 (2010).

54 J.S. Zhou, J.J. Kas, L. Sponza, I. Reshetnyak, M. Guzzo,
Ch. Giorgetti, M. Gatti, J.J. Rehr, and L. Reining, Dy-
namical effects in electron spectroscopy, J. Chem. Phys.
143, 184109 (2015).

55 F. Caruso, H. Lambert, and F. Giustino, Band struc-
tures of plasmonic polarons, Phys. Rev. Lett. 114, 146404
(2015).
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