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Abstract 

The intrinsic antiferromagnetic topological insulator MnBi2Te4 undergoes a metamagnetic 
transition in a c-axis magnetic field. It has been predicted that ferromagnetic MnBi2Te4 is an ideal 
Weyl semimetal with a single pair of Weyl nodes. Here we report measurements of quantum 
oscillations detected in the field-induced ferromagnetic phase of MnBi2-xSbxTe4, where Sb 
substitution tunes the majority carriers from electrons to holes. Single frequency Shubnikov-de 
Haas oscillations were observed in a wide range of Sb concentrations (0.54 ≤ x ≤ 1.21). The 
evolution of the oscillation frequency and the effective mass shows reasonable agreement with the 
Weyl semimetal band-structure of ferromagnetic MnBi2Te4 predicted by density functional 
calculations. Intriguingly, the quantum oscillation frequency shows a strong temperature 
dependence, indicating that the electronic structure sensitively depends on magnetism.   

Introduction 
The recently discovered magnetic topological material MnBi2Te4 presents a unique platform to 
study band topology intertwined with magnetic order [1-4]. The crystal structure of MnBi2Te4 (Fig. 
1a) consists of van der Waals bonded septuple layers. Each of the septuple layers can be viewed 
as a natural heterostructure of a magnetic MnTe layer sandwiched by Bi2Te3 topological insulators. 
The layered structure enables exfoliation to reach the regime of two-dimensional phenomenon. 
For example, the quantum anomalous Hall effect has been observed in atomically thin flakes [5-
8]. The ground state of bulk MnBi2Te4 is a layered antiferromagnet (AFM) (TN = 24 K), in which 
the individually ferromagnetic Mn-Te layers are coupled antiferromagnetically in the out-of-plane 
direction (the c-axis), which is also the easy-axis of the moments. Density functional theory (DFT) 
calculations indicate that the three-dimensional bulk electronic structure in the AFM phase is an 
antiferromagnetic topological insulator, with an insulating bulk and gapped surface state on the 
top and bottom surfaces. Although soon after the material realization, angle-resolved 
photoemission spectroscopy (ARPES) studies of MnBi2Te4 revealed the Dirac surface states 
predicted by the theory [9-14], controversy remains as to whether the Dirac point is gapped as 
expected [15].  



When a magnetic field is applied along the c-axis, the AFM phase undergoes a meta-magnetic 
transition, and a ferromagnetic (FM) phase is stabilized at 8 T. Compared with the 
antiferromagnetic phase the electronic structure in the field-induced FM phase is much less 
explored. This is partly because the magnetic field and ARPES measurements are incompatible. It 
has been predicted that the electronic structure in the FM phase of MnBi2Te4 is an ideal type-II 
Weyl semimetal, with just two Weyl nodes which are situated on the kz axis[1,2]. If so, the 
metamagnetic transition is also a field-induced topological phase transition. Recent scanning 
tunneling spectroscopy (STS) measurements found that the local density of states is almost 
unchanged across the AFM-FM transition[16,17], inconsistent with a topological phase transition. 
However, STS only probes the surface. Clearly, a direct measurement of the bulk electronic 
structure of FM MnBi2Te4 is desirable to resolve this issue. 
Sb substituted MnBi2Te4 (MnBi2-xSbxTe4) offers the opportunity to study the electronic structure 
in the ferromagnetic phase via quantum oscillations measurements. The Sb substitution effectively 

tunes the carriers from electrons to holes while preserving its intrinsic magnetism (19 K <TN < 24 
K)[13,18]. Close to the charge neutrality point, the mobility is enhanced and quantum oscillations 
have been observed [19]. The measurement of quantum oscillations has been a canonical method 
to probe the bulk electronic structures of metals and semiconductors. In particular, the doping 
dependence of the oscillation frequency and effective mass provides strong constraints on the 
band-dispersion near the band edge. 
Here, we report measurements of the Shubnikov de Haas (SdH) oscillations in the field-induced 
FM phase of MnBi2-xSbxTe4 over a wide range of Sb concentrations (0.54 < x < 1.21).  By 
comparing the measured oscillation frequency, carrier density and effective mass with DFT 
calculations, we find overall reasonable agreement with calculations assuming a rigid band-shift 

 

FIG. 1. Transport characterization of MnBi2-xSbxTe4. (a) Crystal structure of MnBi2-xSbxTe4 (b) 
Temperature dependence of zero-field in-plane resistivity ρxx. (c) Field dependence of Hall resistivity 
ρxy with field along the c-axis at T = 2 K. Dash-dotted lines denote data taken on Oak Ridge samples, 
while solid lines represent UW samples. (d) Carrier density versus chemical doping x. Carrier density 
is extracted by fitting the linear background of the Hall resistivity above Hc2.  

 



of the Weyl semimetal band-structure in FM MnBi2Te4. Interestingly, the oscillation frequency 
shows a strong temperature dependence. We can explain this unusual phenomenon as a 
manifestation of the high sensitivity of the electronic structure to the size of the magnetization in 
this material.  

Methods 
Single crystals of MnBi2-xSbxTe4 were grown out of a Bi (Sb)-Te flux [18,20]. Initial 
measurements were performed on samples grown in the Oak Ridge National Lab (OR). After the 
initial measurements, another batch of the samples were grown at the University of Washington 
(UW) using the recipe developed by the OR group. The compositions were determined by 
elemental analysis on a cleaved surface using a Hitachi TM-3000 tabletop electron microscope 
equipped with a Bruker Quantax 70 energy-dispersive x-ray system for OR samples and a Sirion 
XL30 scanning electron microscope for UW samples. Both batches of samples exhibited a similar 
compositional dependence of the physical properties, with a slight offset in the exact composition, 
likely due to differences in the number of antisite defects[21].  Magnetotransport was carried out 
in a 36 T series connected hybrid magnet at the National High Magnetic Field Laboratory at 
Tallahassee, FL (OR samples) and in a 14 T Physical Property Measurement System (PPMS) (UW 
samples). Magnetotransport measurements were made in a standard four-probe or six-probe 
contact configuration with current direction in-plane and magnetic field out of the plane (c-axis). 
To eliminate any effects from contact misalignment, the magneto- and Hall resistivities were 
symmetrized and anti-symmetrized respectively. Magnetization measurements were made using 
the vibrating sample magnetometry option of the PPMS. 

Density functional theory calculations were performed with the Vienna Ab initio Simulation 
Package (VASP)[22,23]. A projector-augmented wave [24] method with an energy cut of 269.9 

eV is used to expand Kohn-Sham wave functions. The sampling mesh in reciprocal space is 
12×12×4. The electron-electron interactions are described by modified Becke-Johnson (mBJ) 

 

FIG. 2. Magnetization characterization of MnBi2-xSbxTe4. (a) Field dependence of magnetization of 
the x = 0.63 OR sample measured at various temperatures. (b) Field-temperature magnetic phase 
diagram of MnBi2-xSbxTe4 for x = 0.63. Circles and triangles denote spin-flop field Hc1 and saturation 
field Hc2 respectively. Dotted lines are guides for the eyes for the phase boundaries. Color in the phase 
diagrams maps to the logarithm of the absolute value of the second derivative of magnetization with 
respect to field. Note: the temperature range is 2K to 30K. (c) Doping dependence of spin-flop field Hc1 
(circles) and saturation field Hc2 (triangles) at 2K. Red data are taken on UW samples, whereas black 
data are taken on OR samples.  

 



functional[25]. Maximally localized Wannier functions are constructed with the Wannier90 
package[26]. 

Results 
The magnetic and transport properties of MnBi2-xSbxTe4 have been characterized in previous 
studies[17,18]. In Fig. 1 and 2 we show representative data for the samples studied in this work. 
Fig. 1 (b) shows the temperature dependence of the zero-field in-plane electrical resistivity ρxx. 
For most samples, the resistivity exhibits a metallic behavior, consistent with a degenerately doped 
semiconductor. For one composition very close to the charge neutrality point (x = 0.7), the 
resistivity shows a non-monotonic temperature dependence.  A kink in the resistivity at around 23 
to 25 K marks the AFM transition temperature TN. Fig. 1 (c) shows the Hall resistivity ρxy measured 
at T = 2K. The carrier density is extracted by fitting the linear background of the Hall resistivity 
above Hc2. As shown in Fig. 1 (d), the carrier density changes from 6×1019 cm-3 electrons to 2×1019 
cm-3  holes as the Sb concentration increases, and the system switches from n-type to p-type at a 
compensation point in the vicinity of 0.6 < x < 0.7.   
Fig. 2 shows the magnetization measurement of a representative sample, x = 0.63. As shown in 
Fig. 2 (a), when the magnetic field is swept along the c-axis at low temperatures, the sample first 
undergoes an AFM to canted AFM transition, corresponding to the sudden jump of the 

 

FIG. 3. Magnetoresistance of MnBi2-xSbxTe4. Field dependence of ρxx for MnBi2-xSbxTe4 with c-axis 
magnetic fields up to 36 T (OR samples (a-d)), 14 T (UW samples (e-j)) and 31T (UW sample (k)). 
The temperature of measurements is color coded based on the scale bar on the right.  

 



magnetization at the spin-flop field Hc1, and then a canted AFM to FM transition at the saturation 
field Hc2.  Using the magnetization versus field data, we constructed the magnetic phase diagram 
for x = 0.63, shown in Fig. 2(b). By plotting the second derivative of the magnetization with respect 
to the field in a log scale, sharp color changes highlight the phase boundaries defined by Hc1 (circles) 
and Hc2 (triangles). As the temperature increases, the FM phase eventually crosses over to the 
paramagnetic (PM) phase. Within the range of the doping focused on in this study, the Sb 
substitution only slightly suppresses TN, Hc1 and Hc2  without altering the magnetic phase behavior 
[18]. All the quantum oscillations presented below were observed in the FM-PM crossover regime. 
Shubnikov-de Haas oscillations were observed in the transverse magnetoresistance of MnBi2-

xSbxTe4. Fig. 3 shows the in-plane longitudinal resistivity ρxx as a function of c-axis magnetic field. 
The magnetoresistance (MR) exhibits a strong field dependence. At base temperature, two 
successive features can be seen in most samples, corresponding to Hc1 and Hc2.  As the temperature 
increases, the two anomalies merge and eventually smear out above TN. For all the doping levels 
shown in the figure, quantum oscillations can be seen once the field surpasses Hc2. In Fig. 4, the 

oscillatory part of the resistivity is plotted against the inverse of the magnetic field. The oscillatory 
part was extracted by subtracting a fifth-order polynomial background. Using a fast Fourier 
transform (FFT), we obtained the frequency spectrum for each doping level, plotted in Fig. 5. The 

 

FIG. 4. Shubnikov-de Haas oscillations of MnBi2-xSbxTe4. Oscillatory part of resistivity for MnBi2-

xSbxTe4 as a function of inverse field obtained by subtracting a fifth order polynomial background. 

 



oscillation frequency, defined as the peak position in the FFT spectrum at base temperature, is 
plotted as a function of composition in Fig. 5 (l). Starting from the electron doped side, the 
oscillation frequency decreases as x increases and reaches 82 T for x = 0.63. After crossing the 
compensation point, the frequency increases monotonically from 37T to 144 T as x increases from 
0.7 to 1.21. 
 

The quantum oscillation frequency is related to the extremal area of Fermi surface cross section 
(A) projected along the field direction via the Onsager relation 	𝐹! = (ℏ/2𝜋𝑒)𝐴. The compositional 
dependence of the frequency (Fig. 5(l)) is consistent with the shrinking and expanding of the Fermi 
surface as the system is tuned across the charge neutrality point. Notice that for a three-dimensional 
Fermi surface the full angular dependence of the frequency is required to determine the carrier 
density from its volume. Such a three-dimensional mapping is impossible for MnBi2-xSbxTe4 
because the rotation of magnetic field also changes the direction of magnetization, which 
inevitably changes the electronic structure [27]. In this study, we focus on the electronic structure 
when the magnetization is aligned to the c-axis by magnetic field. 

 

FIG. 5. Fast Fourier transform (FFT) spectrum and oscillation frequency of MnBi2-xSbxTe4 (a-k) 
FFT spectrum of the oscillatory part of resistivity for MnBi2-xSbxTe4 at various temperatures. (l) Doping 
dependence of the peak frequency Fs. Red (black) dots are data taken from OR (UW) samples. The grey 
dashed line denotes the doping level closest to the charge-neutral point.   

 



We next turn to the temperature dependence of the quantum oscillations. The amplitude of 
quantum oscillations always decays with temperatures due to the smearing of the Fermi-Dirac 
distribution, but the frequency is usually a constant as a function of temperature. Surprisingly, here, 
in addition to the thermal damping, we also observed substantial shifts of the peak and valley 
positions (Fig. 4) as temperature increases. A closer inspection of the FFT spectra (Fig. 5) shows 
that the oscillation frequency also shifts with temperature. To ensure that this shift is not an artifact 
due to background subtraction, we extracted the oscillatory data of two representative samples, x 
= 0.63 (electron-doped) and x = 0.75 (hole-doped), using three different methods: background 
subtracted ρxx, second derivative of ρxx with respect to H; and background subtracted Hall 
resistivity ρxy. The results shown in Fig. 6 (a) and (b) all exhibit the same clear shifts of the peak 
and valley positions, which are plotted in Fig. 6 (c) and (d). From these we obtained the oscillation 
frequency by extracting the period in inverse field, which is plotted vs temperature in Fig. 6 (e, f). 
Interestingly, as the temperature increases the electron-doped sample (x = 0.63) shows a decrease 
in frequency whereas the hole-doped sample (x = 0.75) shows an increase in frequency. 
In the standard theory, the frequency of quantum oscillations reflects the area of Fermi surface. 
The Fermi surface may change in principle if the Fermi energy shifts with temperature due to an 
asymmetric density of states, but such a shift is usually very small. In the cases of Dirac or Weyl 
semimetals, energy dependent cyclotron mass also leads to a frequency shift as the temperature 

 

FIG. 6. Anomalous temperature dependence of SdH oscillations of MnBi2-xSbxTe4. (a)-(b) 
Oscillatory part of ρxx, second derivative of ρxx, and background subtracted ρxy for (a) electron-doped (x 
= 0.63) and (b) hole-doped (x = 0.75) MnBi2-xSbxTe4 at varied temperatures as a function of inverse 
field 1/μ0H. (c)-(d) Temperature dependence of peak and valley positions in the SdH oscillations for (c) 
x = 0.63 and (d) x = 0.75. (e)-(d) Oscillation frequency Fs as a function of temperature for (e) electron-
doped MnBi2-xSbxTe4 (x = 0.63) and (f) hole-doped (x = 0.75).  

 



changes[28]. However, the temperature dependence of oscillation frequency we observed in 
MnBi2-xBixTe4 is orders of magnitude larger than the effect caused by band curvature. Hence, such 
a significant change in frequency suggests instead a modification of the energy bands connected 
to the temperature-dependent magnetic order. As the temperature increases, the field-induced 
magnetization decreases due to thermal fluctuations, and the size of the Fermi surface changes 
accordingly. The opposite trend in electron-doped and hole-doped samples indicates that both the 
conduction and valence bands move upwards in energy as the temperature increases, so that the 
electron pocket size decreases while the hole pocket size increases. We note that shifts of the 
oscillation with temperature have been observed in the magnetic topological semimetal PrAlSi 
[29], and in the magnetic semimetal CeBiPt [30], suggesting that the phenomenon may be generic 
to magnetic semimetals.  

 

FIG. 7.  Effective mass m/me of MnBi2-xSbxTe4 extracted from Lifshitz-Kosevich fitting (a-k) 
Temperature dependence of the oscillation amplitude measured near 36T ((a-d) OR samples), 14T ((e-
g, i-k) UW samples) and 31T ((h) UW sample). Red solid curves are fits to the Lifshitz-Kosevich factor 
to obtain the effective mass. (l) Doping dependence of the effective mass for OR samples (red) and 
UW samples (black). The grey dashed line denotes the doping level closest to the charge-neutral point.   

 

 



As usual, we proceed to determine the effective mass m = m*me by fitting the temperature 
dependence of the amplitude of oscillations to the Lifshitz-Kosevich factor, 

𝑅" =
𝛼𝑇𝑚∗

𝐵𝑠𝑖𝑛ℎ(𝛼𝑇𝑚∗/𝐵)  

, where 𝛼 = 2𝜋$𝑘%𝑚&/𝑒ℏ	. We determine the amplitude by taking the difference between the 
peak and valley resistances measured at the highest field, where the magnetization is in the 
saturation state and the electronic structure state should be stable. As shown in the Fig. 7, the 
temperature dependence is well fitted by RT in all cases. The extracted effective mass shows a 
strong doping dependence (Fig. 7 (l)), indicating that the energy bands are non-parabolic. In 
particular, the increase of m* as the system is doping away from zero-carrier condition is consistent 
with the massive Dirac dispersion. 
To gain further insights, we used DFT to calculate the band structure of ferromagnetic MnBi2Te4 
with the magnetization fully saturated along the c-axis (Fig. 8 (a)). We obtain a Weyl crossing 

along the Γ-Z direction, consistent with previous studies. As the Fermi energy moves from the 
heavily electron doped to the heavily hole doped condition, the Fermi surface evolves from a single 
electron pocket that encloses both Weyl points, to two electron pockets each enclosing a single 
Weyl point, to a coexistence of one hole pocket and two electron pockets, and finally to one hole 
pocket that encloses both Weyl points. This is illustrated in Fig. 8 (c) using projections of the Fermi 
surface onto the ky = 0 plane. Note that Weyl points are close to Fermi level only when the Fermi 
surfaces consist of two electron pockets (second panel from the right in Fig. 8(c)). The frequencies 
corresponding to the extremal orbits are plotted in Fig. 8 (b) as a function of Fermi energy. If we 
map the observed frequencies to the calculation (Fig. 8 (b)), the estimated range of Fermi levels 
for the samples in this study (shown as the shaded gray region in Fig. 8 (a)) are all outside the 

 

FIG. 8. Density functional theory calculations. (a) Band structure of MnBi2Te4 in the FM state 
with magnetic moments saturated along the c-axis calculated by DFT. (b) Calculated oscillation 
frequency versus Fermi energy for the electron (red) and hole (blue) pocket. The electron pocket has 
two extremal orbits. The dashed (solid) line represents the kz ≠ 0 (kz = 0) extremal orbit. (c) Evolution 
of the Fermi surface projected onto the kx-kz plane passing from heavily electron doped (rightmost 
panel) to heavily hole doped (leftmost panel).  



range of Lifshitz transitions in which the Fermi surface topology changes, i.e. the Fermi surface is 
either a single electron or a single hole pocket that encloses both Weyl points.  

Discussion 
The goal of this study was to address two questions about MnBi2-xSbxTe4: (i) Does the electronic 
structure change across the field-induced meta-magnetic transition? (ii) Is the field-induced FM 
state an ideal magnetic Weyl semimetal? The first questions is answered by the strong temperature 
dependence of the oscillation frequency - it clearly demonstrates that the energy band shifts as the 
magnetization decreases. From this observation we expect a change of electronic structure as the 
system undergoes the meta-magnetic transition. We can address the second question by making a 
comparison between the experimentally measured and theoretically calculated effective mass. 

The effective mass, m, is the derivative of the cyclotron orbit area 𝐴 with respect to energy, E: 

𝑚 =
ℏ$

2𝜋
𝜕𝐴
𝜕𝐸  

The effective mass 𝑚 as a function of 𝐴 is determined by the band dispersion 𝐸(𝒌), and 𝐴 is in 
turn directly related to the oscillation frequency 𝐹!  via the Onsager relation, 	𝐹! = (ℏ/2𝜋𝑒)𝐴. 
Therefore, the experimentally measured variation of m with respect of Fs provides strong 
constraints on the underlying band dispersion. In Fig. 9 (a), the measured effective mass versus 
oscillation frequency is plotted alongside the prediction based on the Weyl dispersion (blue and 
red curves) calculated by DFT. The Weyl dispersion shows a good agreement with the 
experimental values. In particular, the calculated values of effective mass of the conduction band 

match almost perfectly with the experimental data, and the valence band effective mass also falls 
within the range of measured values, although the experimental doping dependence seems 
somewhat stronger. We also calculated the carrier density (from the Fermi surface volume) versus 

 

FIG. 9. Comparison between experiment and theory. Theoretical predictions (dashed lines) and 
experimental measurements of the effective mass (a) and carrier density (b) as a function of quantum 
oscillation frequency. Circles are for UW samples, and squares are for OR samples. In both (a) and (b), 
red lines represent calculations for the conduction band, and blue lines are calculations for the valence 
band. In (a), the red dashed line is the calculations for the kz ≠ 0 extremal orbit of the conduction band, 
while the red solid line is for the kz = 0 orbit of the conduction band.  

 



oscillation frequency from the Weyl band structures and it too shows good agreement with the 
experimental data (Fig. 9 (b)).   
Another indicator that has been widely used to determine the topological nature of a band-structure 
is the phase shift, 𝜆, of the quantum oscillations[31]. This has three contributions: 𝜙% , due to 
geometric phase; 𝜙', due to orbital magnetic moment; and 𝜙(, due to the Zeeman coupling. It has 
often been assumed that in 3D metals Dirac-type bands lead to 𝜙% = 𝜋 and parabolic bands lead 
to 𝜙% = 	0 . However, a recent comprehensive analysis has shown that 𝜙%  is in general a 
continuous quantity and is only fixed to the specific values of 0 and 𝜋  in certain symmetry classes 
determined by the space group and the type of cyclotron orbits[32]. The cyclotron orbit and the 
point group symmetry of FM MnBi2-xSbxTe4 do not belong to one of those symmetry classes and 
therefore we do not expect to observe either 𝜙% = 0 or 𝜋. Hence the phase shift cannot be used as 
smoking-gun evidence for Weyl points in this system. For the sake of completeness, however, we 
present an analysis of the phase shift of the quantum oscillations in the appendix.  
We close by noting two reasons for caution. First, Sb substitution may induce effects that differs 
significantly from a simple rigid energy shift of the band-structure of MnBi2Te4 [13,14]. This 
question could be addressed by developing new dopants that tune the Fermi level with less change 
in chemical composition[33]. Secondly, in the DFT calculations the existence of the Weyl nodes 
in FM MnBi2Te4 is very sensitive to the input parameters, such as lattice constants [1,2]. Future 
studies on samples with even lower carrier concentrations will help resolve the exact band 
structures near the putative Weyl points. 

Conclusion 
In summary, we obtained important insight into the bulk electronic structure of the ferromagnetic 
MnBi2-xSbxTe4 using quantum oscillation measurements. From the temperature dependence of the 
oscillation frequency, we infer that the electronic structure is sensitive to the magnitude of the 
magnetization, while in the limit of saturated c-axis magnetization we find good overall agreement 
with band-structure calculations. This lays the foundations for understanding magnetism-induced 
topological phases in this class of materials. 
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Appendix: Phase shift of quantum oscillations 

We analyzed the doping dependence of phase shift 𝜆 by constructing Landau fan diagrams from 
the quantum oscillations, as shown in Fig. 10. We assigned integer Landau level indices to 



resistivity peaks, which were shown to coincide with Landau band edges in a study that performed 
numerical simulation of a minimal magnetic Weyl semimetal [34]. The phase shift 𝜆 is determined 
by the following relation: 

Γ = −
1
2 + 𝜆 + 𝛿 

in which Γ is the y-intercept of the linear fits to Landau indices n vs inverse field, |𝛿| is 1/8 with 
the sign depending on whether the orbit is the minimum of maximum of the Fermi surface. We 
plot Γ as a function of oscillation frequency in Fig. 10 (i). Notice that 𝜆 contains contribution from 
Berry curvature, orbital moment and Zeeman coupling, i.e. 𝜆 = 	 (ϕ) + ϕ* + ϕ+)/2π . Their 
contributions cannot be separated without the analysis of higher harmonics of quantum oscillations, 
which we did not observe. We also do not expect 𝜙% = 0 or 𝜋 based on the symmetry of space 
group and orbits of MnBi2-xSbxTe4. Hence, we cannot determine the existence of Weyl points 
based on the extracted Γ.  

  

References 

[1] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang et al., Science Advances 5, eaaw5685 (2019). 
[2] D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang, Physical Review Letters 122, 206401 
(2019). 

 

Fig. 10 The phase shift of quantum oscillations extracted from Landau Fan diagram: (a-h) Plot 
of Landau level index against the inverse field, with integer Landau level indices assigned to resistivity 
peaks. Red solid curves are linear fits. (i) The phase shift 	Г extracted from the y-intercept of the linear 
fits in Landau fan diagram as a function of oscillation frequency. See main text for more details. 



[3] M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev et al., Nature 
576, 416 (2019). 
[4] Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu et al., Chinese Physics Letters 36, 076801 (2019). 
[5] C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li et al., Nature Materials 19, 522 (2020). 
[6] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang et al., Science 367, 895 (2020). 
[7] J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu et al., National Science Review 7, 1280 (2020). 
[8] D. Ovchinnikov, X. Huang, Z. Lin, Z. Fei, J. Cai, T. Song et al., arXiv preprint arXiv:2011.00555  
(2020). 
[9] H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.-J. Tian et al., Physical Review X 9 (2019). 
[10] Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang et al., Physical Review X 9, 041040 
(2019). 
[11] Y.-J. Hao, P. Liu, Y. Feng, X.-M. Ma, E. F. Schwier, M. Arita et al., Physical Review X 9, 041038 
(2019). 
[12] P. Swatek, Y. Wu, L.-L. Wang, K. Lee, B. Schrunk, J. Yan, and A. Kaminski, Physical Review B 101, 
161109(R) (2020). 
[13] B. Chen, F. Fei, D. Zhang, B. Zhang, W. Liu, S. Zhang et al., Nature Communications 10, 4469 
(2019). 
[14] X.-M. Ma, Y. Zhao, K. Zhang, R. e. Lu, J. Li, Q. Yao et al., arXiv e-prints, arXiv:2004.09123 (2020). 
[15] D. Nevola, H. X. Li, J. Q. Yan, R. G. Moore, H. N. Lee, H. Miao, and P. D. Johnson, Physical Review 
Letters 125, 117205 (2020). 
[16] Y. Yuan, X. Wang, H. Li, J. Li, Y. Ji, Z. Hao et al., Nano Letters 20, 3271 (2020). 
[17] W. Ko, M. Kolmer, J. Yan, A. D. Pham, M. Fu, F. Lüpke et al., Physical Review B 102, 115402 
(2020). 
[18] J. Q. Yan, S. Okamoto, M. A. McGuire, A. F. May, R. J. McQueeney, and B. C. Sales, Physical 
Review B 100, 104409 (2019). 
[19] S. Huat Lee, Y. Zhu, H. Yi, D. Graf, R. Basnet, A. Fereidouni et al., arXiv e-prints, arXiv:2002.10683 
(2020). 
[20] J. Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Y. Chen, J. G. Cheng et al., Physical Review 
Materials 3, 064202 (2019). 
[21] Z. Huang, M.-H. Du, J. Yan, and W. Wu, 2020), p. arXiv:2009.07437. 
[22] G. Kresse and J. Furthmüller, Physical Review B 54, 11169 (1996). 
[23] G. Kresse and D. Joubert, Physical Review B 59, 1758 (1999). 
[24] P. E. Blöchl, Physical Review B 50, 17953 (1994). 
[25] A. D. Becke and E. R. Johnson, The Journal of Chemical Physics 124, 221101 (2006). 
[26] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton et al., Journal of Physics: 
Condensed Matter 32, 165902 (2020). 
[27] J. Li, C. Wang, Z. Zhang, B.-L. Gu, W. Duan, and Y. Xu, Physical Review B 100, 121103(R) (2019). 
[28] C. Guo, A. Alexandradinata, C. Putzke, F.-R. Fan, S. Zhang, Q. Wu et al., arXiv preprint 
arXiv:1910.07608v3  (2020). 
[29] M. Lyu, J. Xiang, Z. Mi, H. Zhao, Z. Wang, E. Liu et al., Physical Review B 102, 085143 (2020). 
[30] J. Wosnitza, G. Goll, A. D. Bianchi, B. Bergk, N. Kozlova, I. Opahle et al., New Journal of Physics 8, 
174 (2006). 
[31] G. P. Mikitik and Y. V. Sharlai, Physical Review Letters 82, 2147 (1999). 
[32] A. Alexandradinata, C. Wang, W. Duan, and L. Glazman, Physical Review X 8, 011027 (2018). 
[33] M.-H. Du, J. Yan, V. R. Cooper, and M. Eisenbach, Advanced Functional Materials n/a, 2006516. 
[34] C. M. Wang, H.-Z. Lu, and S.-Q. Shen, Physical Review Letters 117, 077201 (2016). 

 


