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The first-principles computation of the surfaces of metals is typically accomplished through slab
calculations of finite thickness. The extraction of a convergent surface formation energy from slab
calculations is dependent upon defining an appropriate bulk reference energy. I describe a method
for an independently computed, slab-consistent bulk reference that leads to convergent surface
formation energies from slab calculations, that also provides realistic uncertainties for the magnitude
of unavoidable non-linear divergence in the surface formation energy with slab thickness. The
accuracy is demonstrated on relaxed, unreconstructed low-index aluminum surfaces with slabs with
up to 35 layers.
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I. INTRODUCTION

Fundamental physical properties of metal surfaces such as the atomic relaxations and surface reconstructions, or
electronic work functions have long been targets of first-principles electronic structure studies using density functional
theory (DFT). In state-of-the-art approaches, slab calculations of thin metal films of finite thickness within a supercell
approximation are used to model semi-infinite solid surfaces. In the limit of infinitely thick slabs, the desired limit
of an isolated surface is recovered. However, with the thin slab models of a metal surface dictated by computational
considerations, the two surfaces of the slab will interact with one another and engender quantum size effects,1 from
confining long-range electronic states into a slab of finite thickness. Friedel oscillations in metals can extend long
distances2 suggesting that computationally intractable thick slabs might be necessary to compute properties converged
to a semi-infinite bulk surface. Defining the slab formation energy as the relative energy of a slab with respect to a
bulk reference energy of the same number of atoms (and assuming the two opposite surfaces of a slab are equivalent)
the surface energy of a slab Esurface(n) with n atomic layers—the energy to cleave an infinite bulk crystal— can be
written as:

Esurface(n) =
1

2
(Eslab − nEbulk), (1)

where Eslab is the computed total energy of a slab. Use of this basic relationship shows the crucial role of the bulk
reference energy Ebulk: the surface energy diverges linearly with n with any error in defining Ebulk, and specifically
for Ebulk obtained through an independent bulk crystal calculation.3 I describe a method that, in principle, rigorously
and exactly defines the bulk crystal limit of a slab model. The results will prove that a bulk reference energy
obtained directly through this slab-consistent bulk crystal calculation leads to convergent surface formation energies.
Moreover, this definition provides a direct estimate of the uncertainty in surface energy calculation due to the computed
bulk reference energy. This approach is demonstrated on relaxed, unreconstructed low-index surfaces calculations of
aluminum.

Boettger3 was first to document the nonconvergence of surface energies obtained from thin-film calculations using
independent bulk crystal calculations for a bulk reference energy. The insight that a thicker slab is created by inserting
additional nominal “bulk” atoms into the slab led to the proposal that the bulk energy might be better approximated
by the incremental energy of adding an extra layer—an extra bulk atom—in a slab. Fiorentini and Methfessel4 showed
that using Ebulk derived from a linear fit of Eq.1 over a range of slab thicknesses led to better convergent surface
energies. As Boettger, et al.5 pointed out, this intuitive notion had (implicitly) been applied much earlier by Gay, et
al.6 to fit a surface energy. The linear fit acquires, by definition, a “convergent” surface energy. Such a fit, however,
requires numerous slab calculations larger than a converged slab thickness to verify that a converged surface energy
is actually obtained. The uncontrolled variability due to quantum size effects means that surface formation energies
are unreliable until a minimum thickness is reached, which is not known a priori. That minimum thickness can only
be empirically determined.

This slab-thickness extrapolation becomes less practical with larger surface cells, such as those needed to investigate
larger surface reconstructions. Da Silva, et al.7, showed that independent slab and bulk reference calculations could
lead to convergent surface energies, provided slab and bulk calculations were both performed at high accuracy.
However, a high level of accuracy for the slab calculation can be impractical, particularly for slab calculations with
large area surface cells. Singh-Miller and Marzari8 analyzed these various approaches for extracting surface properties
from slabs, and concluded that the extrapolation methods gave the most reliable convergence. Feibelman,9 in trying
to compute step formation energies on Pt(111) surface with slab models of vicinal surfaces, mentioned a different
alternative: compute Ebulk directly from a three-dimensionally periodic bulk crystal, but design the bulk crystal unit
cell to specifically align to the orientation of the slab surface calculation, and ensure that the bulk unit cell and
slab unit cell sample the bulk and surface Brillouin Zone equivalently. In this paper I describe how to extract a
meticulously slab-consistent bulk reference energy for any slab calculation, that within Eq.1 is guaranteed to yield
directly convergent surface energies to within a predictive uncertainty, without depending upon any fit of surface
energy of slabs of incremental thicknesses.

II. SLAB-COMPATIBLE BULK CRYSTAL REFERENCE CELLS

Construction of a compatible bulk reference to a slab calculation requires that atoms in the two limits are treated
equivalently, in real space grids and in sampling of the Brillouin Zone (BZ).10,11 This mandates a different bulk crystal
unit cell specific to each surface, which will generally mean different, surface-consistent, values for the bulk reference
energy for different surfaces. A surface-consistent bulk unit cell has the identical two-dimensional lattice vectors that
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FIG. 1. (Color online) Construction of slab-consistent bulk crystal unit cells for low index surfaces of a simple fcc crystal with
lattice constant a. The dashed lines in the top view outline the two-dimensional primitive unit cells for the slab models of the
(100), (110), and (111) surfaces of an fcc crystal, which define the primitive vectors, constrained to the surface plane, of the
slab-consistent bulk crystal reference cell. The third primitive vector of the slab-consistent cell is normal to the surface plane.
The (100) and (110) have two equally spaced (equivalent) layers in the slab-consistent bulk cell, while the (111) requires three
equally spaced (equivalent) layers to form the slab-consistent bulk cell.

define the slab surface supercell, and then a third lattice vector normal to the surface that extends until the top
surface layer repeats. This is illustrated in Fig. 1 for the low-index surfaces of an fcc lattice with lattice constant a.

The primitive cell (dashed) for the (100) surface is a square in the surface plane a/
√

2 on a side. The three-
dimensional (100)-consistent bulk crystal cell is defined by using these and a third vector and along the (100) surface

normal, a (a/
√

2)2 × a tetragonal unit cell containing two atoms. The (110)-consistent bulk cell is also a two-atom

tetragonal cell, defined by the a× a/
√

(2) rectangle matching the slab surface primitive cell vectors, and a full lattice

constant a along the (110) surface normal for the bulk repeat vector. The (111)-consistent cell is hexagonal,
√

3a
deep, and contains three atoms.

For an atom in a slab calculation to have a numerically equivalent environment to the bulk reference calculation,
the atoms must have the same registry to the real space integration grid. Hence, the (non-periodic) slab repeat vector
should be an integral number of the slab-consistent bulk layer repeat vector, and the atomic layers aligned to be
an integer number of layers away from the vacuum boundary. Additionally, to take advantage of the equivalence of
the.individual layers in each of these bulk reference cells, the real space grid dimensions in the bulk should be even
numbers for the (100) and (110) compatible bulk cells so as to make the two atoms in these cells in identical registry
to the real space grid, and evenly divisible by three in the (111) cell to make the atoms in each of the three equivalent
layers in the same registry with respect to the real space grid.

A slab calculation with a kA × kB BZ sampling in the limit of an infinitely thick slab is then formally equivalent
to a (slab-consistent) bulk calculation with an identically aligned kA × kB × k⊥ sampling of the BZ, in the limit
of infinitely large k⊥. Extrapolations to larger k⊥ to achieve convergence of the slab consistent bulk calculations is
straightforward. In the following, I show that this extrapolation can be used to directly calculate a bulk reference
energy that ensures convergence of the computed surface energy in Eq. 1. This eliminates the need to extrapolate
from fits to slab energies of varied thickness, provides good accuracy even with coarser two-dimensional surface BZ
sampling. The bulk calculations also provide a diagnostic to determine how coarse a surface sample can be made
before significant errors emerge.
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III. COMPUTATIONAL METHODS

The DFT calculations are executed with the SeqQuest code, which uses pseudopotentials to eliminate explicit
treatment of core electrons and carefully optimized contracted Gaussian basis sets to represent the electronic wave
functions.

I present calculations using both the local density approximation (LDA)12 as formulated by Perdew and Zunger,13

and the generalized gradient approximations (GGA) created by Perdew, Burke, and Ernzerhof (PBE),14 functionals
standardly used in studies of metal surfaces, including aluminum.7,8 I complement these with results using the PW91
functional15 and using the AM05 functional developed by Armiento and Mattsson16 specifically designed to improve
upon the treatment of surface effects in DFT.

The LDA pseudopotentials were generated with Hamann’s generalized norm-conserving pseudopotential (GNCPP)
code17 and the PBE and AM05 pseudopotentials, while also using the GNCPP form,17 were generated with the
FHI98PP code.18 The Ne-core 3-electron Al pseudopotential used the default settings for s- and p-potentials, and
added a d-potential with a cutoff of R = 1.2 Bohr to give a more faithful description of the local potential, all
these potentials left in the unmodified “semi-local” form. Where indicated, a non-linear core correction (NLCC)19 is
included.

The aluminum atom basis set is a “double-zeta plus polarization” contracted Gaussian basis, providing two radial
degrees of freedom for the strongly occupied s- and p-orbitals, plus a single d-function to allow for angular polarization.
To give accurate treatment of the evanescent electron density extending outside the surface, the atomic-centered basis
is augmented with “floating orbitals”: ghost atoms fixed to the positions of the first missing layer of atoms above
the last aluminum atoms on the (100), (110), and (111) surfaces. A ghost atom has single-Gaussian s-, p-, and d−
orbitals, where the Gaussians are roughly the same as the outermost (polarization) Gaussian in each aluminum atom
basis orbital: decay constants of 0.09, 0.08, and 0.20/Bohr2, respectively. This simple prescription is shown (below)
to be quantitatively effective in removing basis set errors from localized orbitals for calculations of surface properties
of Al.

A Fermi function filling factor with an electronic temperature of 0.003 Rydberg (∼41 meV) is used to smear the
occupations near the Fermi level. This artificial temperature is large enough to achieve electronic self-consistency
(up to slabs of ∼40 layers), but smaller than that which might significantly affect the energy and might otherwise
unacceptably begin to corrupt results.20

Slab models are constructed starting from an atom in a central layer in the middle of the slab supercell and creating
slabs of greater thickness by incrementally adding an atom layer on both sides, topping both surfaces of the slab with
ghost atoms at the positions of the next layer of (missing) atoms. The vacuum boundary is set to be an integer number
of bulk repeat layers from the center, with sufficient vacuum (∼10 Å) to separate the repeating slabs (SeqQuest
explicitly checks for overlap of electronic density at the vacuum boundary). All atom positions in the slab calculations
are relaxed to minimum energy configurations, invoking all available symmetry, using a modified Broyden method due
to Johnson21 adapted for geometry updates. An atomic relaxation is deemed converged when the total force on every
atom is less than 0.0002 Rydberg/Bohr (5 meV/Å). Relaxation of ghost atoms leads to negligible energy lowering.
To avoid the noisy numerics that accompanies resolving their positions in the optimization, in the results reported
here, ghost atom positions are always held fixed.

IV. RESULTS AND ANALYSIS

A. Bulk fcc properties

The slab calculations of aluminum surfaces all use the optimal (k-converged) bulk fcc lattice parameter obtained
with each functional. Table I presents my calculated lattice parameter and bulk modulus for Al using the LDA, PBE,
PW91, and AM05 functionals. These bulk Al calculations are done in a one-atom rhombohedral fcc cell with an 183

real space integration grid and Γ-centered regular (even-dimension) k-meshes ranging from 163 to 323.
The lattice parameter and bulk modulus are obtained from a (cubic polynomial) fit using a Birch-Murnaghan

equation of state22–24 to 14− 16 fixed a0 calculations equally spaced within ∼ ±2% around a0. The optimized a0 are
converged to ∼ 0.001Å after a k-mesh of 163. The bulk modulus B fit for each k-mesh exhibits intrinsic numerical
uncertainties (to the number and locations of data points, and to the form of equation of state) of ∼1 GPa. The
computed B quoted in Table I, also varies ∼ ±0.8 GPa for k-meshes from 163 through 323. Even assuming a perfect
representation of the form of the equation of state, the B can be trusted to no better than 1 GPa. Similarly, the
equilibrium total energy (not shown) varies by 1 meV/Al over this same range of k-samplings. Above 163 k-samplings
are generally considered very highly-converged k-meshes.7 This magnitude of variability foreshadows the limits in
defining a precise bulk reference for surface formation energy computations.
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TABLE I. Bulk properties of aluminum: lattice parameters a0 (Å) and bulk modulus B(GPa).

Experiment 4.032a 79.38b

LDA PBE PW91 AM05

a0 B a0 B a0 B a0 B

This work 3.970 82.5 4.053 76.2 4.048 74.1 4.024 82.8

w/NLCC 3.976 84.1 4.034 78.1 4.041 74.2 3.998 86.1

PAWc 3.99 84 4.04 78 4.05 74 − −
RSPTd 3.986 82.5 4.043 77.1 − − 4.008 86.2

Da Silva, et al.e 3.98 84 4.04 78 − − − −
Singh-Miller and Marzarif − − 4.06 74 − − − −

(a) Extrapolated to 0K from a0(293K)=4.0490 Å, following Ref. 27 and the thermal expansion data collated in Ref. 28.
(b) At 4K, Ref. 27.
(c) Ref. 26 using a projector augmented wave method.
(d) Ref. 25, using the full potential RSPT code.
(e) Ref. 7, using a full-potential linear augmented plane wave method FP-LAPW.
(f) Ref. 8. using a norm-conserving pseudopotential plane wave method.

The DFT structural properties agree well with experiment, confirming the suitability of DFT for aluminum, and
agree well with results from all-electron7,25 and projector augment wave based26 calculations, verifying the quality
of the pseudopotentials and basis sets used in this work. The results also agree well with the previous DFT studies
for aluminum surfaces of Da Silva, et al.7, and Singh-Miller and Marzari,8 making possible meaningful quantitative
comparisons to their results. Non-linear core corrections improve agreement with the all-electron bulk benchmarks,
but have only minor effects on my pseudopotential surface results, and are ignored henceforward.

B. Slab-consistent bulk reference energies

While the 1-atom bulk fcc calculations produce a bulk energy for aluminum, these are not directly usable as bulk
reference energies in surface formation energy calculations, unless the 2-dimensional slab k-point sampling is similarly
highly-converged.7

The vertical tetragonal 100-consistent bulk reference cell has real space grid dimensions of 16 × 16 in the square
a0√
2
× a0√

2
surface plane and 24 along a⊥ = a0, while the flat tetragonal 110-consistent bulk reference cell has a 24× 16

real space grid in the rectangular a0× a0√
2

surface place and 16 along its a⊥ = a0√
2
. With even-dimensioned grids, both

atom positions in the cell are coincident with a grid point. The hexagonal (111)-consistent bulk reference cell has a
152 real space grid in-plane, and 42 grid points spanning the three Al layers in this cell. Each of the three atoms are
in identical registry with the real space grid, the grid dimension purposefully made evenly divisible by three.

Variations in the k⊥-dependent slab-consistent aluminum reference energy are depicted in Fig. 2 for the (100)-
consistent bulk reference calculation with the PBE, the (111) with the LDA, and the (110) with the AM05 functional.
Plotted as differences from the k-limit averages of Al energies in the fcc calculations, these results highlight the perils
of using a single bulk reference energy for all surface formation energies, and the need to use appropriate surface- and
planar-k-sample-specific averages for reference energy. The (111), with the longest a⊥, converges (within variations of
0.5 meV/Al) with modest k⊥ < 16. The (100) varies within a range of 1 meV/Al at k⊥ ≥ 16 and above. The (110),
with the smallest layer thickness a⊥, varies almost as much as 8 meV/Al for k⊥ ≥ 16, and only dampens variations
to 1-2 meV after k⊥ ≥ 24.

Even for the (111) however, the different k‖-samples converge values that differ by as much as 10 meV/Al. For
a bulk-specific calculation, this precision might be acceptable. For plausibly converged slab calculations requiring
10-20 layers, this uncertainty would inject large errors, especially for the (110)-oriented cell. The variability in these
k⊥-limit values represent a practical limit on the accuracy with which the bulk reference energy can be determined.
This irreducible uncertainty can be used to estimate uncertainties in derived quantities such as the surface energy.

That it requires a 24× 24 k‖ sampling to obtain a bulk reference energy converged within 1-2 meV/Al of the bulk
fcc energy, indicates that this would be the minimum k‖-sampling necessary to converge a surface energy from an
independent surface calculation. The construction of a slab-consistent bulk reference energy cancels this variability
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FIG. 2. (Color online) Variations of surface-consistent aluminum bulk reference energies versus k⊥ dimension, referenced to
the k-limit average of the one-atom fcc bulk energy.

in the bulk reference energy in the computation of the surface energy, leading to the accelerated convergence with k‖
described in the next section.

For constructing the slab-consistent bulk reference energies, I average energies over well-converged k⊥=16 through 32
to obtain a k⊥-limit reference energy specific to the surface and the in-plane k‖-sample, and an associated uncertainty
from the variability over that range.

C. Analysis of surface energies

The low-index aluminum surfaces exhibit minimal relaxations. In these calculations, the relaxed (100) surfaces show
a typical energy lowering of 3 meV from the unrelaxed (bulk-terminated) structure, the (111) a negligible 1 meV, and
the (110) a larger, but still minor, relaxation of 10-15 meV, irrespective of functional (LDA, PBE, AM05, or PW91)
or slab thickness. For simplicity, most of the analysis that follows will be focus on the unrelaxed slab results, the
relaxed slab analysis being almost identical (except for one illuminating example discussed below).

Figure 3 shows the LDA surface formation energy of the unrelaxed Al(111) surface obtained with the slab-consistent
(surface and k-sample) bulk reference energy defined above, for slab thicknesses up to 35 layers. As anticipated by Da
Silva, et al.,7 and confirmed by Singh-Miller and Marzari,8 there is no divergence when a large and matching k-point
sampling is used.

Plotted in Figure 3, the surface energy varies with slab thickness progressively more strongly as the k‖-mesh gets
coarser, from 16 × 16 to 12 × 12 and reduced even further to 8 × 8, The 8 × 8 might have a slant, amounting to
a small shift of ∼20 meV in surface energy from 15 to 35 layers. This is within the 0.02 eV scatter of computed
surface formation energies across this entire series, and could be entirely attributable to the k-limit uncertainty,
±0.5 meV/atom, in the computation of the 8×8 (111) bulk reference energy (see Figure 1). All of the series converge
to within the uncertainties in the k-limit averages of the slab-consistent bulk reference energies.

The k‖-resolved bulk reference energies differ by as much as 8 meV/atom from each other for the Al(111) surface
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FIG. 3. (Color online) Surface formation energy of the unrelaxed Al(111) surface using the LDA functional, as a function of
the surface k-sample grid versus the slab thickness (number of layers). Lines are guides for the eye.
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FIG. 4. (Color online) Surface formation energy of the unrelaxed Al(100) surface (solid lines) using the PBE functional, as
a function of the surface k-sample grid versus the slab thickness (number of layers). The dashed line traverses the surface
formation energies for the relaxed surface with an 8 × 8 k-sampling.

(see Fig. 1), and are as distant as 5 meV from the highly converged k-limit fcc bulk energy. Errors in a reference
energy of this magnitude would lead to an unacceptable drift of ≥0.1 eV in the ensuing surface energy calculations
out to 35 layers. The absence of this divergence in any of the current results demonstrates that a slab-consistent bulk
energy is the correct reference energy to use in Eq. 1 to obtain convergent surface energies from DFT slab calculations.

Each k-resolved series converges, and converges to the same surface formation energy, >∼0.41 eV/surface-atom (1×1
surface cell). Even the coarse 8 × 8 k-mesh is sufficient to give a surface energy within 0.01 eV/surface-atom of the
largest highly-converged k-mesh result.

The close-packed (111) surface is typically the most stable surface of a fcc metal, and surface calculations are usually
numerically well-behaved. This is convenient to show convergence of different methods for extracting surface energies
from slabs with increasing thickness,7,8,11 but does not illustrate the challenge that slab-based calculations of surface
can face. The other, more open surfaces are less well-behaved and represent more stringent and discriminating tests
of convergence with slab thickness.

The computed formation energies for the Al(100) surface, in this case using PBE (the overall convergence behavior
is insensitive to the choice of functional), are depicted in Figure 4. The k-samples larger than 12× 12 mostly overlap
each other and converge well, to a (100) surface formation energy of 0.46 eV/atom (1× 1 surface cell). The unrelaxed
8 × 8 series (the solid blue line connecting solid circles), however, diverts from the others. Out to 15 layers, this
formation energy decreases almost linearly with slab thickness, and then flattens only above 25 layers, converging to
0.42 eV/atom. Furthermore, in contrast to the denser k-sampling, a full geometry optimization the for 8 × 8 series
results in a significant lowering. Rather than the 1-3 meV total relaxation energy lowering characteristic for the other
series on the 100 surface, the k‖ = 8 × 8 surface energy relaxes ∼0.02 eV for thin slabs, increasing to >0.06 eV for
thick slabs, and appears to be diverging.

The unrelaxed 8×8 series illustrates the hazard of using an empirical fit to extract an effective bulk reference energy
and surface energy. Truncated at 15 layers, an empirical fitting approach to a bulk reference energy might plausibly
be mistaken to show good convergence, incorporating the apparent (roughly) linear decrease out to 15 layers into an
erroneous bulk reference energy. The more rigorous surface-consistent bulk reference indicates a decreasing surface
formation energy, and convergence to a fixed surface energy only above 25 layers.

Hints of similar behavior might be inferred in the plots for the denser k‖-point series. This suggests that the extent
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FIG. 5. (Color online) Surface formation energy of the unrelaxed Al(110) surface using the AM05 functional, as a function of
the surface k-sample grid versus the slab thickness (number of layers).

of quantum size effects (QSE) in Al might be more significant than generally believed, as seen in previous work for Al
surfaces.29,30 The current calculations indicate that effects of QSE on the surface energy, albeit small, can be detected
out to a slab thickness of 24 a0.

The relaxed k‖ = 8 × 8 series for Al(100) aggravates this behavior, seeming to contradict the hypothesized con-
vergence of this surface-consistent bulk reference approach. The surface relaxation energy steadily increases and the
total surface energy continues to diverge even after 25 layers. The relaxations, rather than being small and limited
to the top two or three layers, are seen to extend to the center of the slab, the interlayer spacing increasing by
2.2(2)% from the bulk value. This divergence of the surface energy is not directly due to an incorrect bulk reference
energy, but stems from the coarse 8 × 8 surface k-sample that leads to an incorrect bulk reference structure. The
surface-compatible 8×8×k⊥ k-sampling is inadequate for bulk Al. A bulk cell optimization shows the in-plane lattice
constant shrinking by 1.4(1)% and the normal lattice constant increasing by 3.7(2)% from the fcc bulk value (the
uncertainty in parenthesis due to variations in cell parameters with k⊥). The optimal slab-compatible (tetragonally
distorted) bulk crystal lattice parameters differ significantly from the optimized bulk fcc lattice parameter used to
construct the slab model, leading to artificial inter-layer relaxations in the slab calculations.10

Using the k‖-sampling- and orientation-specific lattice constants—modifying the bulk reference structure—in the
construction of the slab model would remove this divergence and lead to a convergent surface energy. Simply fixing
the inner layers to their bulk positions would also mitigate this pathology. Depending upon the quantity of interest,
these fixes might be sufficient. However, the significant restructuring of the crystal indicates that this surface k‖
sample leads to a poor description of the bulk metal. This serves as a warning and defines an assessable criterion for
accepting a computational model. This failure could be anticipated by bulk cell-optimization of k-samplings suspected
to be too coarse, testing adequacy of the k‖-sampling in the bulk reference calculations before attempting the more
expensive surface calculations.

Figure 5 presents the convergence behavior for the Al(110) surface, this time using AM05 as the representative
functional. Unlike the (111) or (100) surface, where the surface energy was well converged at 15 layers, the (110)
surface energy is still varying significantly, and does not appear to fully stabilize until more than 25 layers. Without
a rigorous slab-compatible bulk reference, it would be very difficult to infer convergence to a surface energy for the
more open (110) surface.

D. Converged surface properties

The surface-consistent bulk reference approach enables computing surface properties that are converged, with a
realistic measure of quantitative confidence. In Table II, I summarize the fully converged (layer thickness and k-point)
results for low-index Al surfaces, using slab-consistent references, and incorporating realistic estimates of uncertainties.
In addition to the surface energies discussed above, the results for computed work functions are also presented. Work
functions are a very sensitive numerical quantity in DFT surface calculations—and highly discriminating tests of
localized orbital methods. Experimental work function data is available for each of the low index Al surfaces,31

whereas the surface formation energy has only been measured for the Al(111) surface.32

With the use of a rigorous surface-consistent bulk reference energy, with its k⊥-limit uncertainty and from ex-
trapolation with slab thickness, I determine a numerical uncertainty of 0.01 eV/surface-atom in the surface energy
for each surface. This is ten times smaller than the physical error (difference from experiment) due to the DFT
approximations. The computed surface energies closest to experiment, using the LDA and AM05 approximations, are
0.1 eV smaller than experiment. This numerical uncertainty is also comparable to the differences between the current
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TABLE II. Properties of low-index aluminum surfaces: surface energy σ (eV/surface-atom) and work function Φ (eV). Computed
uncertainties in σ (slab thickness, k-point variation) is 0.01 eV, and in Φ is 0.03 eV.

Al(100) Al(111) Al(110)

σ Φ σ Φ σ Φ

Experiment

− 4.41(±.03)a 0.51b 4.24(±.02)a − 4.28(±.03)a

LDA

Unrelaxedc 0.54 4.53 0.41 4.27 0.82 4.22

Relaxedc 0.53 4.49 0.41 4.26 0.80 4.22

Fall (1998)d − 4.38 − 4.25 − 4.30

Da Silva (2006)e − − 0.39 4.21 − −
Nguyen (2019)h − − − − 0.82 4.22

PBE

Unrelaxedc 0.47 4.34 0.35 4.12 0.71 4.07

Relaxedc 0.46 4.34 0.35 4.11 0.70 4.07

Da Silva (2005)f 0.48 4.24 0.36 4.06 0.72 4.07

Da Silva (2006)c − − 0.33 4.04 − 4.04

Singh-Miller (2009)c 0.45 4.30 0.30 4.02 0.70 4.09

Nguyen (2019)h 0.48 4.20 0.24 4.05 0.72 4.06

PW91

Unrelaxedc 0.44 4.38 0.34 4.14 0.67 4.10

Relaxedc 0.44 4.35 0.33 4.12 0.66 4.10

AM05

Unrelaxedc 0.55 4.34 0.42 4.10 0.83 4.04

Relaxedc 0.54 4.33 0.42 4.10 0.82 4.04

(a) Ref. 31.
(b) Ref. 32, converted from quoted 1.14 J/m2 to eV/atom using a0(293K)=4.05 Å.
(c) Current work, quoting large k‖ (21 × 21 for the 100 and 111 and 24 × 16 for the 110) and averaging over slab thickness of
17-35 layers.
(d) Ref. 34, using a norm-conserving pseudopotential code with 9 (for 111) or 8 (100,110) layers.
(e) Ref. 7, using a full-potential code with 7 layers (for the Al(111) surface).
(f) Ref. 33, using a full potential code with between 15 (for 111), to 23 (for 110) layers.
(g) Ref. 8, using a norm-conserving pseudopotential plane wave method code with 13 layers.
(h) Ref. 30, using a plane wave code with up to 30 layers.

converged extrapolations and the surface formation energies computed in previous works.7,8,33 And also comparable
to differences between these previous works—as should be expected as these all are typically quoted as single-point
results of different thicknesses and different k-point samplings.

There is good agreement between the current local orbital results for the surface energy and the previous plane-wave
basis works7,8,33,34 for each of the low-index Al surfaces. This is testimony that the simple prescription of adding
ghost atoms with floating orbitals at the first set of vacated sites at the surface of a metal slab is an effective means
to fix basis set insufficiencies in surface calculations using local orbitals.

Surface energies are exceedingly challenging to determine experimentally. Only the (111) surface energy has been
obtained for aluminum: a surface energy of 0.51 eV/surface-atom quoted by Gay, et al.32 The predictions using the
LDA and AM05 are within 0.1 eV, a very good accuracy—the best physical accuracy one can reasonably expect of
the DFT approximation for structural energies.

The GGA is commonly preferred to the LDA for bulk metal calculations, but the GGA has been shown to lead to
generally inferior predictions of surface properties.16 The PBE results and PW91 results (often taken to be synonymous
with GGA) presented in Table II deviate slightly (but not greatly) more from experiment than the LDA and AM05
results. While these two GGA functionals are less equivalent than typically assumed,26 in the case of aluminum, the
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PBE and PW91 surface results are very similar to each other, and also not that dissimilar from the LDA and AM05
results. The aluminum system is, fortuitously, very forgiving with respect to the choice of DFT functional.

The work function can be more readily measured experimentally, and the work function for aluminum have been
reported to be 4.41, 4.24, and 4.28 eV for the (100), (111), and (110) faces, respectively.31 These can be measured with
good accuracy (within 0.03 eV experimental uncertainty), and are straightforwardly extracted from DFT calculations
for metals (as the position of the computed Fermi level below the vacuum level).

The computed LDA work function is within 0.1 eV of the experimental work function for each surface, higher
for the (100), lower for the (110), and within experimental and theoretical uncertainties for the (111) faces. The
GGA functionals systematically underestimate the work function, by about 0.2 eV. The AM05 functional mimics the
GGA results, rather than the rather good LDA results. This is unexpected, given that AM05 incorporates specific
modifications to better treat surface effects,16 and that AM05 gave improved results comparable to the LDA for the
Al surface energies. The deviation is small, however, and might benefit from more systematic study in other materials.

The work function is an exceedingly sensitive computational quantity, and, in particular, the work function is
strongly dependent upon accurately describing the long-range evanescent density above the surface that is short-
changed in an atom-centered local orbital method. The work function results presented in Table II show good
agreement between the current local orbital basis calculations and previous, plane-wave basis results, The differences
are within the computational uncertainties, comparable to differences between the different plane-wave results, and
less than the physical uncertainties, i.e., the difference of any of the DFT results and experiment.

V. SUMMARY AND CONCLUSIONS

A slab-consistent bulk reference approach has been described and shown to produce convergent surface formation
energies in slab-based calculations. This bulk reference energy, designed to be meticulously consistent with the target
slab surface model, leads to assured determination of convergence, in contrast to an a posteriori reference energy
obtained from empirical fits to varied slab thicknesses. Moreover, this definition describes an (irreducible) uncertainty
in the bulk reference energy, leading to predictable, a priori estimates of numerical uncertainties in surface energy
calculations. Rather coarse surface k‖ meshes were shown to give good results for the surface energy (and work
function), demonstrating that one does not need extremely high quality meshes for both slab and for bulk calculations
to obtain accurate, converged surface properties. This can be particularly valuable in reducing computational costs
for larger-area surface slab models, such as might be needed for investigating extended surface reconstructions or
multi-oomponent alloys with large unit cells. An a priori criterion can be applied on the bulk reference structure to
detect and assess the minimum k-point sampling necessary to obtain good results to a predictable accuracy.

It was further shown that local orbital methods, despite their lack of long-range tails, can give results as converged as
plane-wave calculations. The simple expedient of adding ghost atoms is seen to eliminate any meaningful deficiencies in
the atom-centered basis sets. The explicit consideration of numerical uncertainties is pivotal in making this assessment:
any basis set errors are less than or comparable to other numerical uncertainties in the DFT slab calculations, which,
in turn, are much less than the physical uncertainties (errors) in the DFT approximation itself. It is possible to benefit
from the computational efficiencies of local orbital methods, without compromising the accuracy in the calculation.

These methods were tested and verified with comprehensive assessment for three different low-index aluminum
surfaces, (100), (111), and (110), with thickness extending out to 35 layers. The customary use of closed-packed (111)
surfaces for assessing methods to compute surface properties is shown to be not very discriminating because of the
conveniently good numerical behavior of close-packed surfaces. The properties of more open (100) and (110) surfaces
show greater variability with slab thickness, these exhibiting detectable quantum size effects in slab calculations
as thick as 25 layers (or beyond). These more open surfaces are better (more discriminating) tests for slab-based
surface calculations. The slab-consistent bulk reference enables definitive determination of convergence, modulo the
uncertainty in the k⊥-limit, which would not be possible with empirical a posteriori fits to a reference bulk energy.
This was specifically illustrated in the coarsest (k‖ = 8 × 8) Al(100) surface model, where the insufficiency in the
model was easily detected, where an empirical fit to thin slabs could be deceiving.

The notion of a slab-consistent bulk reference makes for more rapidly convergent surface calculations, but additional
import stems from the systematic treatment of uncertainties that this definition makes possible. For the aluminum
example considered here, the uncertainties could be used to assess convergence, in making quantitative assessments
numerical aspects of the calculations and of basis set sufficiencies, about the comparative assessment of functionals
and methods with respect to each other, and with respect to experiment, all with quantitative confidence. This
framework will be crucial for probing subtle energetics of more complex systems, such as assessing subtle energetics
of different reconstructed surfaces such as in Pt.35
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