aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum Monte Carlo study of an anharmonic Holstein
model
G. Paleari, F. Hébert, B. Cohen-Stead, K. Barros, RT. Scalettar, and G. G. Batrouni
Phys. Rev. B 103, 195117 — Published 10 May 2021
DOI: 10.1103/PhysRevB.103.195117


https://dx.doi.org/10.1103/PhysRevB.103.195117

Quantum Monte Carlo study of an anharmonic Holstein model

G. Paleari,’»? F. Hébert,!"* B. Cohen-Stead,® K. Barros,* RT. Scalettar,® and G.G. Batrouni %67

! Université Céte d’Azur, CNRS, INPHYNI, France
2 Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, 20133 Milano, ITtaly
3 Department of Physics, University of California, Davis, California 95616, USA
4 Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexzico, 87545, USA
5 Department of Physics, National University of Singapore, 2 Science Drive 8, 117542 Singapore
S Centre for Quantum Technologies, National University of Singapore; 2 Science Drive 3 Singapore 117542
" Beijing Computational Science Research Center, Beijing 100193, China

We study the effects of anharmonicity on the physics of the Holstein model, which describes the
coupling of itinerant fermions and localized quantum phonons, by introducing a quartic term in the
phonon potential energy. We find that the presence of this anharmonic term reduces the extent of
the charge density wave phase (CDW) at half-filling as well as the transition temperature to this
phase. Doping away from half-filling, we observe a first order phase transition between the CDW
and a homogeneous phase which is also present in the harmonic model. In addition, we study the
evolution of the superconducting susceptibility in the doped region and show that anharmonicity

can enhance the superconducting response.

PACS numbers: 71.10.Hf, 71.30.+h, 71.45.Lr, 63.20.-e

I. INTRODUCTION

Electron-phonon interactions in solids drive a number
of quantum many body effects. Omne is conventional
superconductivity (SC).? Another is the formation
of insulating charge density wave (CDW) phases.>®
Complex Hamiltonians which describe both many
electronic orbitals and multiple phonon bands, are
typically needed to describe these phenomena in real
materials.  Fortunately, simplified models can often
capture the key qualitative consequences of the electron-
phonon coupling, while being much more analytically and
computationally tractable.

The Holstein Hamiltonian® is one such model. It
describes a single electronic band and dispersionless
quantum phonons coupled locally to the fermion density.
A considerable body of computational work exists for
the Holstein model. Studies of the dilute limit reveal
how individual electrons are dressed by phonons, and
the effective mass and transport properties of these
‘polarons’ have been evaluated.” ' At higher densities,
the emergence of SC at generic fillings, and gapped
CDW phases at commensurate occupations has been
investigated.!6-23

The solution of even this relatively simple model
is not, however, computationally easy. Only
relatively recently have the critical temperatures for
the CDW transition been evaluated for the square®*
and cubic?® lattices via quantum Monte Carlo (QMC).
Likewise, the determination of the critical interaction
strength at the quantum critical point for the
CDW transition on a honeycomb lattice is a rather
new development.?® Analytic approaches, especially
Migdal-Eliashberg theory?”:2® have been critical to the
understanding of the Holstein Hamiltonian.??3° Their
comparison with QMC has been an especially useful line
of investigation, especially in efforts to determine the
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largest possible SC transition temperature.?!

In the course of these studies, it has become
apparent that the Holstein Hamiltonian has a significant
deficiency in some parameter regimes.  Specifically,
it has been shown?? that the values of the phonon
displacement reached in CDW phases could be quite
large, even reaching values comparable to the intersite
spacing in the system. Thus, the harmonic description
of phononic excitations in the medium provided by
the Holstein model may not be sufficient, and the
effects of anharmonic terms on the phases of Holstein
systems should be taken into account.?2737:39-41 Several
approaches to include anharmonic effects have been
considered, for example nonlinear coupling terms
between fermions and phonons,?237 or quartic3® 40 or
Gaussian*! contributions to the phonon potential energy.
Anharmonicity has also been considered in the context
of Migdal-Eliashberg theory.** 44

In infinite dimension, using a technique similar to
dynamical mean field theory (DMFT), Freericks, Jarrell,
and Mahan®® studied the effects of a simple anharmonic
term in the form of an additional quartic potential energy
for the phonons. They concluded that a CDW phase
exists for a large range of densities at low anharmonicity,
but that the CDW is gradually replaced at low and high
densities by a SC phase as the anharmonicity increases.
The half-filled system always remains in a CDW state.
They also observed a decrease of the critical temperatures
at which CDW and SC phases appear with increasing
anharmonicity. Similar models have been studied in one
dimension.?*

The goal of this article is to study the effects of such
an additional quartic anharmonic term on the behavior
of the Holstein model in two dimensions using a recently
introduced Langevin algorithm.*4¢ Unlike DMFT, the
Langevin approach handles spatial correlations in finite
dimensions without introducing systematic error. In



section III, we will introduce the Holstein model and its
anharmonic extension, as well as the methods we will use
to study the system and characterize the different phases.
Section IT will be devoted to the study of the behavior at
half-filling, especially the CDW phase and how it evolves
with anharmonicity. Section IV will concentrate on the
behavior away from half-filling, discussing possible CDW
phases as well as superconducting behavior. We will then
give some final thoughts and conclusions.

II. MODEL AND METHODS

We study a generalized version of the Holstein
Hamiltonian which incorporates anharmonicity in a
specific way, namely as an additional term in the
quantum phonon potential energy:*°
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The sums run over the L? sites of a two-dimensional
square lattice. The operator c,, (c;ro) destroys (creates)
a fermion of spin ¢ =1 or | on site i; n,, = cjacw
is the corresponding number operator; x; and p; are
the canonical displacement and momentum operators
of the phonon mode at site i. The first term (Eq. 1)
represents the hopping energy of the fermions between
neighboring sites (ij). A chemical potential term is
included as our algorithm performs the simulations in
the grand canonical ensemble. The hopping parameter
t will be used as the energy scale.  The second
term (Eq. 2) represents the energy of the phonons of
harmonic frequency w and includes an anharmonic term
proportional to z} with a prefactor wy, and we put m = 1
in the rest of the article. The third term (Eq. 3) is
the phonon-electron interaction. This coupling can be
rewritten as gzw(a;r + ai)nis where g = A\/v/2w and
a; and a;r are the destruction and creation operators of
phonons at site i. We focused on the cases where g = 1,
w = 0.5 and w = 1. Using two values of w yields the
evolution of the anharmonic effects as a function of w
and also allows comparison with previous studies.40:%2

The average value of x; on a doubly occupied site
can be roughly estimated as —2)\/w? (see Appendix A).
With this expression, the ratio 1 of the anharmonic to
harmonic terms is given by

16wy g*

(4)
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For ¢ = 1 and w < 1, n becomes substantial even for
relatively small values of wy. Indeed, we will see that

wyg < 0.01 is sufficient to affect profoundly the CDW
physics at w = 0.5.

We study this model using a recently developed
quantum Monte Carlo algorithm*® based on a Langevin
equation approach.?S This method does not suffer from
the sign problem for the Holstein model and the scaling
of the simulation time with the number of sites is
more advantageous than with conventional methods such
as determinant quantum Monte Carlo (DQMC).*" For
the Langevin algorithm applied in two dimensions, the
simulation time scales approximately as L?? instead of
LS for DQMC.* Throughout this work, we used sizes and
inverse temperatures ranging up to L = 16 and 8 = 20,
although, as will be seen, it is difficult to obtain reliable
results for some quantities on large systems, especially
away from half-filling or for small values of both w and
wyq.

The Langevin approach requires a discretization of
the inverse temperature 5. We used an imaginary time
step AB = 0.1 which we checked was sufficient so that
systematic effects are smaller than statistical error bars.
The Langevin time step was generally dt = 1073 and we
used up to a few million Langevin steps for equilibration
before performing measurements over up to 107 steps,
using a standard binning of the data to analyze statistical
errors.*8

We will look at the density p = Y,(n;,)/L* and its
behavior as a function of u to detect the presence of
charge gaps. We will also examine other simple diagonal
quantities such as the average value of the phonon
displacement (x;) and the double occupancy (n;ngy).
In the harmonic case, the particle-hole symmetry yields
an analytical expression for the chemical potential at
half-filling 4 = —\2/w? and for the average value of
the displacement (z;) = —\/w? (see Appendix A).
With wy # 0, there is no particle-hole symmetry and
the value of p for which the system is at half filling
as well as the average displacement are unknown and
must be determined by simulations, although some rough
estimations can be made (App. A).

To characterize the presence of a CDW phase we
study the charge structure factor, the Fourier transform
at momentum (m,7) of the density-density correlation
function,

Seaw = Y _(niniy;)(=1)7 . ()

i

Here n; is the total number of particles on site i,
n; = ng + ny. The ordering vector for a half-filled
square lattice is known to be at (m, 7). Incommensurate
order at ¢ # (m,m) is possible upon doping, but we
do not see evidence of it here. As the fermions enter
the CDW phase, the electron-phonon coupling induces
a corresponding order in the average values of (xz;)
where |{x;)| takes alternatively small and large values
on neighboring sites, following the alternating values of
the density n; (see Fig. 1).

Away from half-filling, the system is suspected to
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FIG. 1. Behavior of the average density, (n;), and phonon
displacement, |[{x;)|, as functions of the position, i, along
one axis in the square lattice in the homogeneous and CDW
phases. In CDW phase at half-filling, there is symmetry
breaking and two alternate values of (n;) and (z;) are
observed. Out of half-filling, in an homogeneous phase, (n;)
and (z;) are independent of the position.

be superconducting, with Cooper pairing driven by the

phonons that generate on-site attraction Ueg between

particles, as noted in the discussion of Eq. A3. We

will look at this behavior through the s-wave pairing
susceptibility

1 B
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III. HALF-FILLING

Without anharmonicity, the Holstein model develops
a Peierls CDW phase at half-filling, where the chemical
potential at half-filling is given by u = —2¢%/w. In the
presence of the anharmonic term, however, we do not
have an analytic expression for p at half filling (App.
A).

We first study the effects of the anharmonic term
(Eq. 3) on this phase. To this end, we examine the
evolution of the density as a function of p at inverse
temperature 8 = 20 which we verified had converged to
the low temperature limit. A large system is not needed
to obtain reliable measurements of the charge gap at
half-filling, so we used L = 6. These simulations also
determine the value of p for which the system is at half-
filling. We observe (Fig. 2) that wy shifts the insulating
plateau to larger values of p and that the width of the
half-filled density plateaux decrease with ws. The other
smaller plateaux that are observed away from half-filling
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FIG. 2. (Color online). Density as a function of x for different
values of wy. L =6, g =1, 8 = 20, w = 0.5. We find a
reduction of the charge density gap found at half-filling when
wy is increased. The apparent gaps away from half filling are
shell effects. A simulation at L = 8, ws = 0.0025 shows that
half-filled plateau is not affected by finite size effects while the
plateaux off of half-filling are reduced for larger sizes.

are finite size (‘shell’) effects due to the finite system
size. These shell effects are revealed by nonzero w, as it
inhibits the CDW order. In Fig. 2, results from a L = 8
simulation for ws = 0.0025 show that these shell effects
are reduced for larger sizes while the gap at half-filling
remains essentially unchanged. This confirms that the
small plateaux appearing off of half-filling are finite size
effects, while the gap at half-filling is not.

The plateau at half-filling is a genuine collective effect,
since there is no gap at half-filling at ¢ = 0. Indeed,
the density of states diverges there for a square lattice
and only half of the states present at the Fermi level
are occupied in the free system. Then, the gap observed
at half-filling cannot be a spurious ‘shell’” effect, even on
small size systems.

A collection of chemical potential sweeps such as that
in Fig. 2, for different values of wy, yields the boundaries
of the CDW region in a phase diagram in the (u, wy)
plane. We delimit the CDW region with the value of
for which 1 -0 < p < 144, using a small threshold value
d. Figure 3 shows w = 0.5 in panel (a) and w = 1 in panel
(b), for 6 = 0.05. The effect of wy on the width and the
position of the CDW gap is much stronger at w = 0.5
than at w = 1, as the w dependence in expression for the
relative size of the anharmonic term 7 in Eq. 4 would
suggest should be the case. In both cases, we observe
a shift of the chemical potential at half-filling towards
smaller absolute values. This shift can be explained
qualitatively using a simple approximation presented in
Appendix A. The red triangles in Fig. 3 show the values
of u at p = 1 obtained with this approximation. In
both cases, w = 1 and w = 0.5, we observe a reduction



of the charge gap (width of the CDW lobe) as wy is
increased although the effect is more dramatic for w = 0.5
(see Fig. 3 (c)). The sensitivity of the system to the
anharmonic term in the w = 0.5 case is noticeable with
strong differences already obtained for w, of order 1073,
a value for which n ~ 0.5. As the charge gap is much
reduced for w = 0.5, it becomes smaller than the w =1
charge gap as wy > 0.0075, despite the fact that it is
much larger at small wy (Fig. 3 (¢)).

For large w4, the gap becomes small in the w = 0.5
case (Fig. 3 (c)). We verified for larger systems that the
small gap is not a finite size effect (Fig. 4). In these cases
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FIG. 3. (Color online). Phase diagrams of the system

obtained from L = 6 simulations at 8 = 20 and g = 1, for
w = 0.5 (a) and w =1 (b) and comparison of the charge gaps
in these cases (c). The anharmonic parameter w,s ranging
from 0 to 0.01. The area enclosed by blue curves is the
incompressible CDW phase at half-filling while the rest of
the phase diagram corresponds to compressible phases that
should become superconducting at low temperatures. The
red triangles mark the half-filled chemical potential inferred
from the approximate theory of Appendix A. The width of
the CDW phase is strongly reduced due to the anharmonic
effects for w = 0.5 (a). For w = 1 (b), the charge gap is
relatively unaffected by the anharmonicity w4 in the range
shown although it is generally smaller for w = 1 than for
w = 0.5 (c).
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FIG. 4. (Color online). The density, p, and CDW structure
factor, Scaw, (rescaled for better visibility) for an L = 10
system, focusing on the CDW plateau. Notice that, for g =
10, the density does not yet show a plateau at half filling;
B = 20 is necessary for the system to display the ground state
behavior and exhibit the CDW gap. The structure factor
Scaw displays an abrupt change of values when the system is
doped away from half-filling.

the plateau is rounded (Fig. 4) by thermal excitations
at f = 10 and inverse temperatures up to S = 20 are
needed to observe the flat plateau typical of the ground
state behavior. We also observe an abrupt change of the
density and of the CDW structure factor when the system
is doped away from half-filling. In the parameter regime
which is accessible to our QMC, we did not find a value
for wy where the gap at half-filling vanishes completely.
The QMC simulations for wy > 0.01 become prohibitively
difficult because they require exceedingly large values of
5.
Knowing the values of p where the system is half-
filled, we performed several targeted simulations at half-
filling. In Fig. 5 (top), we show the evolution of the
average value |[(z;)| = —(x;) for different w, and sizes,
L, in the CDW phase at half-filling for the w = 0.5 case.
We have not been able to obtain reliable results at this
low temperature and large sizes for small values of wy,
the wy = 0 case being particularly difficult. We then
compare to the analytical value at wy = 0, [(x;)| = | —
A/w?| =4 (see App. A). We find that, although it always
extrapolates to a nonzero value, |{x;)| is strongly reduced
as wy increases, by a factor of 2 at wy = 0.01 compared to
wyq = 0. This is expected as the anharmonicity penalizes
large values of x, as does a large value of w. As the
phonon field generates an effective attraction between
the fermions, this attraction is weakened and the double
occupancy (ngn;y) is correspondingly reduced, although
it always remains larger than the uncorrelated value
(ni4)(n;y). This suppression of |(z;)| and the resulting
reduction of the effective attraction between fermions
explain the observed shrinking of the CDW charge gap.
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FIG. 5. (Color online). Average value (z;) (top) and double
occupancy (bottom) as functions of L™* for different w4 in
half-filled systems. |(z;)| is reduced as w4 increases although it
always extrapolates to nonzero values. For the harmonic case
wa =0, (x;) = —4. The double occupancy is also reduced but
always extrapolates to values larger than (n;;)(n;;) = 0.25.

For w = 1, we find the same effects but with a much
reduced amplitude. In that case, for wy = 0, [{(z;)|] =
V2 which we have confirmed numerically (for L = 16
and 8 = 20, we find [(x;)| = 1.4143(4)). [{x;)| varies
from v/2 down to |(x;)| ~ 1.3 when wy varies from 0 to
0.005 while (n;n;;) decreases from (n;n; ) ~ 0.35 to
(niyn;y) =~ 0.33 over the same wy interval.

The gapped phase is expected to show CDW order,
which we confirmed by a direct study of Scqw at
half-filling for different wy (Fig. 6). In all the cases
studied here, S.qw extrapolates to a nonzero value in
the thermodynamic limit . — oo and is reduced as w4
increases. We verified the presence of a corresponding
CDW order in the distribution of |(x;)].

A. Finite temperature transition to CDW order

To complete this analysis of the CDW behavior at half-
filling, we analyze the transition to this phase as the
temperature, T, is lowered. The CDW transition breaks
translation symmetry between the two sublattices of the
square lattice. It is, therefore, in the universality class
of the two-dimensional Ising model with a finite critical
temperature, 7., and 2D Ising critical exponents.

We used standard finite size scaling analysis where,

0.6F oo

®,=0.0010

a4 0,=0.0025

Nt ®,=0.0050

\; M ®,=0.0075
z |

(/JOOA_ »— 0,=0.0100

t=1, g=1, @=0.5, =20 1

" " " | " "
0 005 01 0I5 02 025
1/L

FIG. 6. (Color online). Structure factor Scqw as a function of
size L for different values of w4 at half-filling. For all wy, the
linear extrapolation of Scqw to L — 00 is nonzero. The linear
extrapolation is based on fits for the data with L > 8.

close to the transition, the structure factor behaves as

SZ% = L7 P/VS(LYt) = Seqw = L/AS(Lt),  (7)
with the critical exponents § =1/8andv =1,t =T-T,
is the reduced temperature, and S is a universal scaling
function. As the critical exponents are known a priori,
the only unknown quantity is 7. which will be chosen
to optimize the superposition of the curves obtained for
different system sizes (see Fig. 7). To do so, we choose
a value of T, rescale all the data according to Eq. 7
and fit those data with a high degree polynomial. We
then determine the optimal value of T, as the one that
minimizes the distance between the polynomial fit and
the data. At large wy, finite size corrections to scaling
are larger and we have not found sizes where finite size
scaling analysis can be used (see Appendix B), which
limits the range in which we are able to determine the
critical temperature.

As expected, T, decreases with wy (see Fig. 8). This
behavior could have been inferred from the evolution
of the charge gap and the structure factor at low
temperatures.  Compared to the infinite dimension
results presented in Ref.[40], which focused on the w =
0.5 case, we observe a similar reduction of T, with
wy. Our simulations show that the critical temperature
changes from T, ~ 0.25 at wy = 0 down to T, ~ 0.12
at wq = 0.005. Freericks et al.*° also predicted an initial
increase of T, with ws. While we observe such an effect
in some simulations, we cannot give a definite conclusion
concerning this increase of T, due to the lack of precision
of our data for small ws. The most remarkable difference
with the infinite dimension description is the range of wy
over which noticeable changes are observed: we found
a strong modification of critical temperature for wy ~
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FIG. 7. (Color online). Finite size analysis for w = 0.5

and ws = 0.001. (Top) Structure factor for different sizes
as a function of temperature T. (Bottom) Rescaled structure
factor as a function of the rescaled reduced temperature. The
critical temperature T, = 0.24 4+ 0.01 is chosen to obtain the
best possible collapse between the different curves.

5- 1072 whereas similar variations are found in*® for
wy ~ 1071

In the w = 1 case, for a similar range of w4, we did
not observe a strong change of the value of the critical
temperature with wy. Values of w4 where we could
apply the finite size analysis were more restricted than
for w = 0.5 and we could only get results for wy up
to 0.001. At ws = 0, we found a critical temperature
of T. = 0.16 + 0.01 which is compatible with values
found recently in similar cases.?*4%:59 For w, = 0.001 the
critical temperature is barely reduced to T, = 0.1540.01.
This was expected as we observed that, in this case, the
anharmonicity hardly changes the width of the gap at
half-filling.

Finally, for both w = 0.5 and w = 1, we observed a
reduction of the charge gap and critical temperature as
wy increases but we did not observe a disappearance of
the CDW phase in the accessible parameter range. For
larger values of wy, as in the pure Holstein case,?? there
are two possible scenarios. The first is a persistence of
the CDW phase at half-filling with decreasing gap and
critical temperature, which is possible because our model
retains the Fermi surface nesting present in the Holstein
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FIG. 8. (Color online). CDW critical temperature, T, at
half-filling as a function of anharmonicity, w4, for w = 0.5,
t =1, g = 1. With sizes up to L = 12, the finite size analysis
was only feasible for ws < 0.005.

model that favors CDW order. The second scenario is
the existence of a critical value of w4 above which the
CDW phase no longer exists.

IV. DOPED SYSTEM
A. First order transition near half-filling

The infinite dimension prediction by Freericks et. al.*°
shows a CDW when the system is doped away from
half-filling as well as a SC phase. At sufficiently low
temperature, in our Langevin simulations, the evolution
of the density with p, for both w = 0.5 (Fig. 4) and
w =1 (Fig. 9), exhibits an abrupt change of the density
in the neighborhood of the CDW plateau. We see that
these jumps are not finite size effects as their amplitude
does not vary much with the size of the system (Fig. 9).
We observe this kind of discontinuity in the density for all
values of wy, down to wy = 0. They are more pronounced
for the lower phonon frequency w = 0.5. Below half-
filling, for w = 1, the density jumps from p ~ 0.75
to p = 1 and the extent of the jump does not depend
much on wy (Fig. 10) although it decreases slightly with
increasing wy. We observe a similar jump above half-
filling.

For w = 0.5, the finite temperature effects are stronger
and it is more difficult to assess precisely the size of the
discontinuity. It appears the change is from p =1 to a
value which is around p ~ 0.25 for ws = 0.001 whereas,
as can be observed in Fig. 4, the jump is reduced to p =1
down to p ~ 0.75 for wy = 0.0075. The structure factor
is essentially zero when the density is no longer one. We
do not find, at these low temperatures, any sign of an
intermediate doped region with nonzero structure factor.
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when the system is doped away from half-filling, which also
corresponds to the disappearance of CDW order.

1.25F

2 5 Vo — Z e
o a—o—o—oa -

e-op, ®,=0.0000
=-ap, ®,=0.0005
p, ®,=0.0010
aap, ©,=0.0025
p, »,=0.005 _

0.75F

-2 -1.8 -1.6

FIG. 10. (Color online). Density, p, as a function of the
chemical potential for w = 1 and several values of w4 at § =
16. The abrupt change of the density found when the system
is doped is present for all values of wy.

Such discontinuities indicate that the transition, as
u is changed, is of first order. If the simulations were
done in the canonical ensemble, there would be phase
separation between a CDW and a uniform phase in the
jump region, as was observed in bosonic Hubbard models
when the system is doped away from a CDW phase.®!
Such a transition was recently observed in variational
Monte Carlo simulations®? and was also reported in [52].
To confirm the first order nature of the transition, we
analyzed the behavior of the density and energy for
a large enough system, L = 10, at low temperature,
B = 20, doping below half-filling (Fig. 11). By choosing
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FIG. 11. (Color online). Density, p, energy per site, E/L?,
and grand potential per site, E/L2 — up, as functions of
w for different initial conditions of the simulations (CDW
start or homogeneous start). We observe hysteresis with an
intermediate region where two different phases coexist.

appropriate values of the phonon coordinates, we are
able to start the Langevin simulations with two different
initial conditions: a homogeneous solution and a CDW
one.

For such large systems, the simulations remain “stuck”
in the kind of phase that was initially imposed upon
the system indicating a metastability characteristic of
first order transitions. This leads to hysteresis as is
seen clearly in Fig. 11. In the hysteresis region, we find
that the grand potentials £ — uN of the two phases to
be essentially equal, and since £ — p/N is minimized at
equilibrium, we then observe two equivalent solutions in
this chemical potential range. As a consequence, the
energy F of the CDW phase is lower than that of the
homogeneous phase in the coexistence region.

Contrary to what was observed in infinite dimension,
we do not find in two dimensions a region away from half-
filling where CDW order survives. It is noticeable that
smaller systems, such as the ones used at the beginning
of this study (Fig. 2), or higher temperatures may give
the false signal that there is CDW away from half
filling because it is possible to choose a value of i that
gives an average density located in the unstable region.
The system will then have a broad density distribution
ranging from the low homogeneous phase density up to
p = 1, and since measured quantities are averaged over
this wide distribution, the structure factor can appear to
be nonzero."!
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B. Superconducting behavior

Away from half-filling, the system is expected to
become superconducting at low temperatures. However,
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FIG. 12. (Color online). Density, p, and s-wave pairing

susceptibility, xs, as functions of g for w = 0.5, ws = 0.001,
and g =t = 1. p = —3.1 corresponds to the half-filled system,
u = —4 to a lower density p ~ 0.25, and u = —2.5 to p > 1.5.

in general, the transition temperatures appear to be
low.3152 For the w = 1 harmonic Holstein model, the
transition towards a SC state happens for 5 ~ 28°2 and
even larger inverse temperature for w = 0.5. This makes
it difficult to observe the effects of anharmonicity on the
critical temperature itself, especially since wy is expected
to reduce T,. even further. Instead, we will focus on
the evolution of the superconducting susceptibility xs,
without attempting to discern where it might diverge.

Fig. 12 shows the evolution of the density, p, as well
as the superconducting susceptibility, xs, as functions
of g for w = 0.5 and three values of u corresponding
to densities below, at, and above half-filling. We first
observe that, away from half-filling, the density reaches
its ground state behavior only above § = 10. As can be
expected, the pairing susceptibility at half filling does not
diverge, but remains small. For the doped system, it was
not possible to observe a divergence of x; in the range of
accessible temperatures. As shown in Fig. 12, statistical
fluctuations in x5 become large in the doped system for
S > 10, and would become even more problematic in
attempting to approach the superconducting transition
one expects at much lower temperature.

With this limited access to superconducting behavior,
we study the effects of the anharmonicity through the
evolution of xs as a function of wy for small size and
intermediate temperatures 8 = 8,10. In Fig. 13, w = 0.5,
we observe that the superconducting response increases
rapidly as wy is increased for a density range 0 < p <
0.6. Once again, we observe that increasing w, has
roughly the same effect as increasing w; it promotes
superconductivity. We did not study the region between
p = 0.6 and p = 1 as it corresponds to the unstable region
between homogeneous and CDW phases. We remark
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FIG. 13. (Color online). The s-wave pairing susceptibility, xs,
as a function of density, p, for w = 0.5, ¢ = t = 1, different
values of w4, and 8 = 8,10. The susceptibility increases as wa
or 3 increases.

" |e-0 ®,=0.0000

=-00,=0.0010
®,=0.0025

0.8} |44 ©,=0.0050

| |o©dashed =10

L=8, t=1, g=1, 0=1, p=8

—
T

2 0.6

0.4

FIG. 14. (Color online). The s-wave pairing susceptibility,
Xs, as a function of density, p, for w =1, g = ¢t = 1, different
values of w4, and 8 = 8,10. The susceptibility is not sensitive
to changes in w4 but increases with (.

that, for the smaller values of wy, the system will already
be unstable for p > 0.25.

For w = 1, the anharmonicity has limited effect on
the SC susceptibility at the values of wy we studied (Fig.
14). This parallels the small w, dependence of the CDW
lobe in the phase diagram (Fig. 3(b)) for this phonon
frequency.

In both cases, w = 0.5 (Fig. 13) and w = 1 (Fig. 14),
we observe an increase of x; as 8 goes from 8 to 10 but
are not able to observe the divergence of xs.



V. CONCLUSIONS

In this work, we studied the effect of an anharmonic
quartic term on the physics of the Holstein model at
strong electron-phonon coupling, ¢ = 1, and phonon
frequencies w = 0.5 and w = 1. We observed
similar effects of the anharmonicity for the two phonon
frequencies, but the effects were much reduced for the
w = 1 case in the range of anharmonicities we studied.
We found that the main effect of the quartic term is to
reduce the importance of the electron-phonon coupling
compared to the phonon potential energy. At half-filling,
this shrinks the charge gap and leads to a suppression
of the CDW structure factor at zero temperature and
to a lowering of the critical temperature for the CDW
transition.

The behavior of the density as one approaches an
insulating plateau has been a central interest in a number
of contexts, including early Bethe ansatz solutions of
the 1D fermion Hubbard model.’® For the 2D fermion
Hubbard model, Assaad and Imada used QMC methods
to extract critical exponents.®® Further fermion work
is reviewed in [55]. In parallel, similar issues have
been central to the investigation of the boson-Hubbard
model, including theoretical prediction®® of the mean
field nature of the density controlled transition into the
Mott lobe which were confirmed by QMC.?”

In this work, we have added further information to this
area by studying the anharmonic Holstein Hamiltonian.
Doping the system away from half-filling, we observed a
first order phase transition between the CDW phase at
half filling and a homogeneous phase at lower densities.
This first order transition is present, though not widely
studied previously, in the harmonic Holstein model.?2:>2

In the homogeneous phase below half-filling, for
w = 0.5, we observed a clear enhancement of the
superconducting susceptibility at finite temperature as
wy is increased. However, with the limited range of
accessible temperatures, we were not able to observe the
superconducting transition. For w = 1, wy does not have
a strong effect on the superconducting response.

The results we presented here show that the transitions
from p =1top >1and to p < 1, as p is tuned, are
both first order (Fig. 10). However, most of our results
for the doped system focused on p < 1, and, since the
system is no longer particle-hole symmetric, it would
be interesting to study its properties above half filling
further. To complete the understanding of the role of
the quartic term, it is necessary to study the system at
other coupling parameters, in particular lower values of

g.
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Appendix A: Approximate values of (z;), p and Ueg

In the harmonic case, the value of the chemical
potential at half-filling and of the average phonon
displacement can be found exactly by a particle-hole
transformation combined with a transformation of the
phonon displacement

Cic = (_1)1-520—7 C;‘ra = (_l)iéiaa

Ti = —T; +To, Pi=—D;-

(A1)

The transformed Hamiltonian is the same as the original
one provided that zop = —2)\/w? = —2v/2wg/w?, which
cancels out terms that are linear in x;, and that y =
Ao /2, which is then the chemical potential at half-filling.

Using this value of u, the resulting Hamiltonian can
be expressed in terms of §; = x; — z¢/2 and is invariant
under the particle-hole transformation combined with a
d; — —9; transformation. This shows that (z;) is exactly
equal to 29/2 = —\/w? = —/2wg/w? in the ground state
at half-filling.

We can roughly estimate the relative sizes of the
harmonic and anharmonic terms as follows: at half-
filling, a CDW phase will develop and we will,
approximately, have an alternation of empty and doubly
occupied sites. As (x;) = xo/2 when averaged over all
sites, the value of x; on doubly occupied sites can be
approximated by xg. If we then compute the ratio n of
the anharmonic to harmonic terms at xy we obtain,

w4xé 16wy 92
2.2 - 5
w2xg /2 w

" (A2)

We can also estimate the effective attraction between
fermions. Completing the square of the phonon term at
w4 = 0 results in

1 1
—w?z? + Aan = §w2 (a: (A3)

An\E N
2

——n
w? 22

Since n? = n4 + ny + 2n4ny, the second term on the

right hand side of this expression gives an attractive



interaction between up and down electrons, Ueg =
—A?/w?. The first term shows that the phonon potential
energy is indeed minimized at g = —2\/w? on a doubly
occupied site.

Adding the anharmonic term (Eq.1) breaks the
particle-hole symmetry and it is no longer possible to
derive analytically the value of the chemical potential
at half-filling. One can obtain an approximate value
by using particle-hole transformation Eq. A1l and by
canceling the terms that are linear in x;, neglecting
higher order terms. This leads to the following equation
for xg:

wizg + dwgrd = —2) (A4)
and the chemical potential at half-filling is approximately
given by p = Axzp/2. |zg| is obviously reduced as wy
increases and, then, the chemical potential at half-filling
is increased. This approximate formula is used to derive
the chemical potential shown in Fig. 3.

Appendix B: Corrections to finite size scaling

For values of wy larger than wy = 0.005 we have not
been able, in the range of temperatures and sizes that
we could simulate, to find cases where rescaled structure
factor curves obtained for different sizes would cross each
other. Finite size analysis (Eq. 7) predicts that, for large

10

systems, Scqw * L~7/4 should take a unique value S (0) at
T.. For w = 0.5 and wy = 0.0075, we studied system’s
sizes up to L = 16 for § < 10 (see Fig. 15) but, even for
these relatively large systems, we could not find a crossing
point for the curves and could then not apply a finite size
scaling analysis to find the critical temperature.
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FIG. 15. (Color online). For ws = 0.0075, w = 0.5 and L =6
to L = 16, rescaled data for Scqw do not cross each other,
precluding the use of finite size scaling. This is probably due
to larger finite size scaling corrections.
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