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Abstract

We study several exotic systems, including the X-cube model, on a flat three-torus

with a twist in the xy-plane. The ground state degeneracy turns out to be a sensitive

function of various geometrical parameters. Starting from a lattice, depending on how

we take the continuum limit, we find different values of the ground state degeneracy.

Yet, there is a natural continuum limit with a well-defined (though infinite) value of

that degeneracy. We also uncover a surprising global symmetry in 2 + 1 and 3 + 1

dimensional systems. It originates from the underlying subsystem symmetry, but the

way it is realized depends on the twist. In particular, in a preferred coordinate frame,

the modular parameter of the twisted two-torus τ = τ1 + iτ2 has rational τ1 = k/m.

Then, in systems based on U(1) × U(1) subsystem symmetries, such as momentum

and winding symmetries or electric and magnetic symmetries, the new symmetry is a

projectively realized Zm × Zm, which leads to an m-fold ground state degeneracy. In

systems based on ZN symmetries, like the X-cube model, each of these two Zm factors

is replaced by Zgcd(N,m).



1 Introduction

The exciting, growing field of fracton phases of matter started with the discovery of two

peculiar models [1, 2]. They have stimulated a lot work, which has uncovered additional

models of fractons and has led to deeper insights. This subject is reviewed nicely in [3, 4].

These reviews include many references to other interesting papers.

These models are not rotationally invariant, and the Hamiltonian depends on preferred

directions, which we will denote by (x, y, z). They are typically formulated on a lattice with

Lx, Ly, and Lz sites in these directions with periodic boundary conditions. Then, the number

of ground states depends on these three integers. Models based on ZN spins typically have

ground state degeneracy

GSD = NQ(Lx,Ly ,Lz) , (1.1)

but, as we will see, other functional forms are also possible. A characteristic example, which

will also be studied below, is that of the X-cube [5], or more generally, its ZN version, where

the entropy Q is given by

Q(Lx, Ly, Lz) = 2(Lx + Ly + Lz)− 3 . (1.2)

This expression is peculiar for two reasons. First, even though the system is gapped,

the number of ground states diverges as the system size goes to infinity, i.e., in the limit

Lx, Ly, Lz → ∞. Second, the expression (1.2) is not extensive. It is sub-extensive; it grows

linearly with the size of the system. Other examples, including the original Haah code [2],

exhibit an even more bizarre Q(Lx, Ly, Lz), which is not even monotonic in the three sizes.

The existence of these models raises many interesting and deep questions. One of them

is how to formulate a continuum quantum field theory description of them. Early work on

the subject appeared in [6–8]. Here we will follow the systematic approach of [9–14].

The original models were formulated on a flat right-angled torus aligned with the preferred

directions (x, y, z). This immediately raises the question how to formulate these models on

more complicated manifolds. An important idea in this direction is to place the system on a

foliated space [15–20, 7, 21, 8]. The foliation then determines the alignment of the preferred

coordinates (x, y, z).

Our goal here is to place such a system on a slightly nontrivial space such that the analysis

is still straightforward. We will keep the torus flat, but will allow it to be slanted – not right-

angled. We will also allow a twist of the torus relative to the preferred (x, y, z) coordinate

system. The local interaction is still invariant under the appropriate subgroup of the rotation

group, but the global boundary conditions do not respect this rotation symmetry.

1



1.1 The twisted torus

Specifically, we will study the system with twisted boundary conditions. On the lattice, we

label the sites by integers (x̂, ŷ, ẑ) and impose the identifications

(x̂, ŷ, ẑ) ∼ (x̂+ Lux, ŷ + Luy , ẑ + Luz ) ∼ (x̂+ Lvx, ŷ + Lvy, ẑ + Lvz) ∼ (x̂+ Lwx , ŷ + Lwy , ẑ + Lwz ) .

(1.3)

Related problems were studied in [15, 16, 22–25]. Although our approach is different,

some of the issues we will address have counterparts in these papers.

Actually, for simplicity, we will limit ourselves to nontrivial twists only in two of the

directions, i.e.,

(x̂, ŷ, ẑ) ∼ (x̂+ Lux, ŷ + Luy , ẑ) ∼ (x̂+ Lvx, ŷ + Lvy, ẑ) ∼ (x̂, ŷ, ẑ + Lz) . (1.4)

We will refer to the closed cycles associated with these identifications as the U , V , and Z

cycles, respectively.

There is a lot of freedom in choosing the generators of the identifications. We will take

all the integer coefficients Lri to be non-negative.

Without loss of generality, we can also align the U cycle with the x direction – the X

cycle. Then, in order to have a complete basis, we need V to be dual to X, the X̃ cycle.

In this case Luy = 0, and some of our expressions below simplify. Alternatively, we can align

the V cycle with the y direction – the Y cycle. In this case, we need U to be dual to Y , the

Ỹ cycle. It is important to note that in general, the X and Y cycles do not generate all the

cycles, and therefore they cannot be used as a complete basis. This fact will have interesting

consequences.

We have analyzed all the models in [10–12] on such a torus. Some of these models

are gapless. Their states with generic momenta have a peculiar dispersion relation, but

other than that, they are quite standard. As these modes reflect local physics, the effect of

the twisted boundary conditions on them is quite trivial. These gapless theories also have

strange states at non-generic momenta – specifically, states where two of the momenta px,

py, pz vanish. Some peculiarities of these modes were discussed in [10,11].1

Here we will focus on the consequences of the twisted boundary conditions and will find

that the system has states that realize the underlying subsystem symmetry in a surprising

way. In some of the non-gauge systems, some momentum and winding symmetries do not

1As emphasized in [10, 11], some of the detailed features of the charged states in the gapless models
depend on higher-derivative terms that go beyond the leading order terms in the continuum Lagrangian.
This subtlety is not present in the gapped models and does not affect the peculiarities we will discuss below.
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commute. In some of the gauge theories, some electric and magnetic symmetries do not

commute. These effects are reminiscent of effects found in [26, 27] and discussed further

in [28,29].

The gapped models are particularly interesting, and we will follow and extend their

analysis in [10,12]. The twisted boundary conditions change the ground state degeneracy and

the surprising realization of the subsystem symmetry in some gapless models has counterparts

in the gapped systems.

Analyzing the X-cube model along the lines of [12], we will show that in this case (1.2)

is replaced by

GSD = N2(Leff
x +Leff

y +Lz)−3gcd(N,M) , (1.5)

where
Leff
x = gcd(Lux, L

v
x) ,

Leff
y = gcd(Luy , L

v
y) ,

M =
LuxL

v
y − LvxLuy
Leff
x L

eff
y

.

(1.6)

As stated above, without loss of generality we can take Luy = 0, and then these expressions

simplify:
Leff
x = gcd(Lux, L

v
x) ,

Leff
y = Lvy ,

M =
Lux

gcd(Lux, L
v
x)
.

(1.7)

A special case of this expression was found in [25].

The ground state degeneracy (1.5) has several interesting features.

• As in the untwisted model, the ground state degeneracy (1.2) depends on the number

of sites in the lattice. As we rescale the lattice data to infinity Lri → ∞ with fixed

ratios, the number of ground states diverges in a sub-extensive manner.

• Relative to the untwisted model, the number of ground states (1.5) depends on more

lattice data Lri . Small changes in these integers can make a large effect on the number

of ground states. In fact, the ground state degeneracy does not change monotonically

with this data. These facts are reminiscent of the dependence of the ground state

degeneracy on the number of sites in the Haah code [2].

• As in the Haah code [2], the previous point makes it clear that the model does not

have an unambiguous continuum limit. Unlike the original untwisted model, where the

logarithm of the ground state degeneracy diverges linearly in the size, but is otherwise
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well-defined, here different ways of taking the continuum limit lead to different answers.

• The exponential dependence of the ground state degeneracy (1.5) on Lri has a natural

interpretation in the layer constructions of these models [30, 31]. The model is con-

structed out of Lz layers in the xy-plane, Leff
x layers in the yz-plane, and Leff

y layers

in the xz-plane. The exponential part of the degeneracy is then as in the untwisted

model with the same number of layers. The connection to the layers construction

was discussed in a special case in [23]. See also the general discussions in [16], which

advocates the use of foliated manifolds.

• In addition to the exponential behavior in (1.5), there is also a factor of gcd(N,M).

It reflects an interesting symmetry group, which is a central extension of Zgcd(N,M) ×
Zgcd(N,M). We will discuss it in detail below.

These peculiarities of (1.5) follow from properties of the charges of the subsystem global

symmetry (or equivalently, the logical operators) of the system. Some of these charges are

associated with closed lines along x, or y, or z. Because of the twisted boundary conditions

(1.3), (1.4), these lines wrap the torus an integer number of times. Consequently, the number

of distinct charges depends sensitively on Lri . The ground state degeneracy follows from

the number of such charges. This sensitivity leads to the peculiarities of the ground state

degeneracy mentioned above. This fact is reminiscent of the way the ground state degeneracy

arises in the Haah code.

Let us comment on the continuum limit in more detail. The continuum limit is taken by

introducing a lattice spacing a and taking Lri →∞ with fixed

`ri = lim
a→0

aLri . (1.8)

The fact that Leff
i can diverge in this limit and can lead to infinite Q is common in these

models. The important point here is that the limits lima→0 L
eff
i and lima→0 aL

eff
i can depend

on the way we take the continuum limit. This means that different sequences of lattice

models, all approaching Lri → ∞ with the same continuum values (1.8), can have different

ground state degeneracies.

This might lead us to question to what extent the continuum Lagrangian describes the

physics of such a system. The system must be regularized, and the limit as the regularization

is removed can lead to an infinite ground state degeneracy that depends sensitively on the

regularization. However, there is a natural way to regularize the continuum system such that

the answer is unambiguous. In particular, we let integers Lri go to infinity in fixed ratios.

More explicitly, starting with the continuum quantities `ri , we introduce a lattice spacing a
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with lattice integers Lri such that aLri = `ri . (This is possible only when the ratios of `ri are

rational.)

Taking this natural limit, we find the continuum limits of (1.7):

`eff
x = lim

a→0
aLeff

x ,

`eff
y = lim

a→0
aLeff

y ,

m = lim
a→0

M .

(1.9)

This means that in the continuum, the torus in the xy-plane is subject to the identifications

(x, y) ∼ (x+m`eff
x , y) ∼ (x+ k`eff

x , y + `eff
y ) ,

m, k ∈ Z , gcd(m, k) = 1 .
(1.10)

The real part of the modular parameter τ = τ1 + iτ2 for this torus is rational, i.e., τ1 = k
m

.

We would like to stress an important point about the integers m and k. From (1.10),

they appear to be related to the geometry of the torus rather than its topology. However,

the integers m and k have a topological meaning. As we will discuss below, they are asso-

ciated with intersection numbers of preferred cycles on the torus. One way to realize their

topological nature is to replace the metric ds2 = dx2 + dy2 in the xy coordinate system with

another flat metric. Then τ will be different, but the intersection numbers will not change.

1.2 A new, surprising symmetry

The analysis of [10–12] starts with the 2 + 1-dimensional XY-plaquette model of [32]. We

refer to its continuum limit as the φ-theory. Its Lagrangian is

L =
µ0

2
(∂0φ)2 − 1

2µ
(∂x∂yφ)2 , φ ∼ φ+ 2π

(
nx(x) + ny(y)

)
. (1.11)

with nx(x), ny(y) ∈ Z. The two operators

J0 = µ0∂0φ ,

Jxy = − 1

µ
∂x∂yφ

(1.12)

form the Noether current of a momentum U(1) subsystem symmetry with the conservation

equation

∂0J0 = ∂x∂yJ
xy . (1.13)
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The conserved U(1) charges are ∮
dxJ0 ,

∮
dyJ0 . (1.14)

They are conserved also on the twisted torus. The number of independent conserved charges

is infinite, and we discretize them on a lattice. It was Lx + Ly − 1 on an untwisted torus,

and reduces to Leff
x + Leff

y − 1 on a twisted torus.

The same local operators (up to rescaling) (1.12) lead to a conserved current for a winding

U(1) subsystem symmetry

Jxy0 =
1

2π
∂x∂yφ ,

J =
1

2π
∂0φ ,

∂0J
xy
0 = ∂x∂yJ ,

(1.15)

with the conserved U(1) charges∮
dxJxy0 ,

∮
dyJxy0 . (1.16)

Again, their number is reduced by the twist from Lx + Ly − 1 to Leff
x + Leff

y − 1. As argued

in [10], all the states that are charged under these symmetries acquire large energy, of order
1
a
, in the continuum limit. A conservative approach simply ignores them.

We will see that the theory on the twisted torus (1.10) has another symmetry constructed

out of the same momentum and winding currents. It is a clock and shift symmetry generated

by two operators U and Ũ satisfying

Um = Ũm = 1, UŨ = e
2πi
m ŨU . (1.17)

This symmetry is a central extension of Zm × Zm.2 Here the first factor can be interpreted

as a momentum symmetry and the second factor as a winding symmetry. Surprisingly, these

two symmetries do not commute.

One consequence of the clock and shift algebra (1.17) is that every state in the Hilbert

is in an m-dimensional representation. In particular, the system (1.11) on the twisted torus

(1.10) with τ1 = k
m

has m ground states!

The same conclusion is true for the 3 + 1-dimensional version of this model, which was

2 More precisely, the operators of the theory are in linear representations of Zm ×Zm. So strictly, this is
the symmetry group of the system. This symmetry is realized projectively on the Hilbert space. This can
be interpreted as an ’t Hooft anomaly in the symmetry.

6



analyzed on the untwisted torus in [11]. This model is dual to a gauge theory, the Â-

theory [11]. In the language of this gauge theory, the theory has electric and magnetic

subsystem symmetries, and the central extension of Zm×Zm represents non-commutativity

between electric and magnetic fluxes.

This situation is reminiscent of the analysis of ordinary U(1) gauge theories in 3 + 1

dimensions on a manifold with torsion cycles [26, 27]. A cycle γ in space is torsion if γ

is not contractible, but mγ is contractible, i.e., there is a surface Σ such that mγ = ∂Σ.

Following [28,29], we can interpret [26, 27] as follows. The operator

U = ei
∮
γ A−

i
m

∫
Σ dA (1.18)

satisfies Um = 1, but U itself is nontrivial. Similarly, using the dual gauge field Ã, the

operator

Ũ = ei
∮
γ Ã−

i
m

∫
Σ dÃ (1.19)

satisfies Ũm = 1. The parts of these operators associated with the surface Σ are similar to the

charges of the magnetic one-form symmetry and the electric one-form symmetry respectively.

However, since they include also the Wilson and the ’t Hooft lines, they are charged under

the electric and the magnetic one-form symmetries respectively. As a result, U and Ũ do

not commute and obey (1.17).

In the case of the X-cube model, the U(1) subsystem symmetry of the gauge theory is

replaced by a ZN subsystem symmetry. In that case, this central extension of Zm × Zm
is changed to a central extension of Zgcd(N,m) × Zgcd(N,m). Its irreducible representation is

gcd(N,m)-dimensional. This leads to a factor of gcd(N,m) in the ground state degeneracy

and corresponds to the factor of gcd(N,M) in the lattice expression (1.5).

Below we will discuss this symmetry and its consequences in much more detail.

We end this subsection by pointing out that this relation to [26–29] and the analysis

in Appendix C suggest that our discussion can be phrased in an appropriate version of

differential cohomology. (See an introduction for physicists in [26–29, 33, 34].) We will not

do it here.

1.3 Outline

In Section 2, we will discuss the geometry of the foliated torus. For simplicity, we will focus

on a two-torus. We will first analyze a continuous torus and then discuss its lattice version.

In Section 3, we will place a classical, circle-valued field φ ∼ φ+ 2π on our twisted torus

and will explore its winding configurations. Here we will find the Zm winding charges we
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mentioned above. This will lead us to a discussion of the symmetries and the spectrum of

the 2 + 1-dimensional φ-theory of [10] on the twisted torus.

In Section 4, we will study a 2 + 1-dimensional ZN tensor gauge theory on the twisted

torus. This model was analyzed on an untwisted torus in [10]. Starting with a lattice, this

model is not robust under small deformations of the lattice system. However, as discussed

in [10], it makes sense as a continuum field theory. We will study its two dual continuum

presentations of [10]. We will analyze the ground state degeneracy and the spectrum of

operators. We will also comment on the bundles and transition functions of the 2 + 1-

dimensional U(1) A-theory of [10] and the 2 + 1-dimensional ZN tensor gauge theory on the

twisted torus.

Section 5 will analyze the winding configurations of a circle-valued field on the twisted

three-torus. This information will be important in Section 6, where we will use the various

dual continuum field theory descriptions in [12] to analyze the 3 + 1-dimensional X-cube

model (i.e., the 3 + 1-dimensional ZN tensor gauge theory) on our twisted torus (1.4).

We will present some more technical information in appendices. In Appendix A, we

will analyze the 2 + 1-dimensional ZN plaquette Ising model in the broken phase. In the

continuum limit it becomes the ZN tensor gauge theory of Section 4 [10]. We will compute

the ground state degeneracy on a twisted torus and match it with the answer from the

continuum treatment. This provides a further check of our answer. In Appendix B, we

will discuss the invariants of the transition functions for a circle-valued field φ in Section 3.

Appendix C will discuss additional operators that lead to the Zm × Zm symmetry in the

φ-theory. The analogous operators in the 2 + 1-dimensional ZN theory will be subsequently

analyzed in Appendix D. Finally, Appendix E will discuss the winding configurations of a

circle-valued field φ̂i(jk) in the 2 of S4.

2 Geometry

In this section, we focus on the geometry of a flat two-dimensional torus T 2 on which we are

going to place our system.

2.1 Continuum geometry

Our system is equipped with a preferred coordinate system (x, y). We place it on a torus by

imposing identifications generated by

(x, y) ∼ (x+ `ux, y + `uy) ∼ (x+ `vx, y + `vy) . (2.1)
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Figure 1: The fundamental domain of the spatial torus.

As in (1.4), we can take all `ri ≥ 0. These two identifications correspond to two cycles of

the torus, which we denote by U and V respectively. See Figure 1 for an illustration of this

geometry.

The preferred coordinate system (x, y) leads to a foliation of the torus. It is given by the

special lines of constant x and constant y. As we will see, the physical answers depend both

on the parameters of the torus and on the choice of foliation. For simplicity, we are going to

limit ourselves to the case where these special lines wrap the torus a finite number of times.

Otherwise, some of the integers below are infinite.

• The Y cycle of the torus is characterized by constant x. It wraps the V cycle wvx times

and it wraps the U cycle −wux times. wvx and wux are non-negative integers satisfying

gcd(wvx, w
u
x) = 1. Using (2.1), we have

`uxw
u
x = `vxw

v
x . (2.2)

• The X cycle of the torus is characterized by constant y. It wraps the V cycle −wvy
times and it wrap the U cycle wuy times. Again, wvy and wuy are non-negative integers

satisfying gcd(wvy , w
u
y ) = 1. Using (2.1), we have

`uyw
u
y = `vyw

v
y . (2.3)

The condition that the wri must be finite integers amounts to the statement that `vx/`
u
x and

`vy/`
u
y are rational.

More mathematically, consider the first homology group Γ ≡ H1(T 2,Z) ' Z2 of the

torus with integer coefficients. The lattice Γ is generated by the U and the V cycles. Their
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intersection numbers are 〈U, V 〉 = −〈V, U〉 = 1. The X and Y cycles mentioned above are

X = wuyU − wvyV
Y = −wuxU + wvxV .

(2.4)

The intersection between these two cycles is

m ≡ 〈X, Y 〉 = det

(
wvx w

v
y

wux w
u
y

)
= wvxw

u
y − wvywux . (2.5)

By exchanging the U and the V cycle, we can take m to be positive.

We will denote the sublattice generated by the X and the Y cycles by Γ̂. Using (2.5),

the index of this sublattice is m, i.e.,

Γ/Γ̂ = Zm . (2.6)

When m 6= 1, Γ̂ ⊂ Γ and the X and Y cycles are not a complete basis of Γ. However,

we can still choose a basis involving X. It is related to the more generic {U, V } basis by an

SL(2,Z) transformation (
X

X̃

)
=

(
wuy −wvy
−nuy nvy

)(
U

V

)
wuyn

v
y − wvynuy = 1 ,

(2.7)

where the condition on nvy and nuy can be satisfied because gcd(wuy , w
v
y) = 1. This defines the

dual cycle X̃ = −nuyU + nvyV . The transformation SL(2,Z) (2.7) guarantees that the cycles

X and X̃ generate the entire lattice Γ, and their intersection is

〈X, X̃〉 = 1 . (2.8)

The cycle X̃ can be redefined further by adding to it an arbitrary integer multiple of X.

When m 6= 1, while X̃ is not an element of Γ̂, mX̃ is. More explicitly,

mX̃ = Y + 〈X̃, Y 〉X ∈ Γ̂ . (2.9)

The cycle X̃ can be taken to be the generator of Zm in (2.6). Intuitively, if we mod out

by the cycles generated by X and Y , we can think of X̃ as a torsion cycle. This fact will

have important consequences below.
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Figure 2: The X and X̃ cycles.

Similarly, we can define the dual of the Y cycle:

Ỹ = −nuxU + nvxV ,

〈Y, Ỹ 〉 = 1

wvxn
u
x − wuxnvx = 1 ,

(2.10)

where again we can satisfy the SL(2,Z) condition since gcd(wux, w
v
x) = 1. The two dual

cycles Y and Ỹ lead to a complete basis of Γ. And as for X̃, we can redefine Ỹ by adding

to it an arbitrary integer multiple of Y .

Other interesting intersections are

〈X̃, Ỹ 〉 = −nuynvx + nvyn
u
x

〈X̃, Y 〉 = −nuywvx + nvyw
u
x

〈Ỹ , X〉 = nuxw
v
y − nvxwuy .

(2.11)

The {X, X̃} basis is related to the {Y, Ỹ } basis as(
X

X̃

)
=

(
〈X, Ỹ 〉 −〈X, Y 〉
〈X̃, Ỹ 〉 −〈X̃, Y 〉

)(
Y

Ỹ

)
. (2.12)

Since this is an SL(2,Z) transformation, we have the identity

m〈X̃, Ỹ 〉 = 1− 〈X̃, Y 〉〈Ỹ , X〉 . (2.13)

We limit ourselves to flat space with the obvious metric ds2 = dx2 + dy2. Then, the
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lengths of the U and V cycles and the angle between them are

`u =
√

(`ux)
2 + (`uy)

2

`v =
√

(`vx)
2 + (`vy)

2

cosϕ =
`uy`

v
y + `ux`

v
x

`u`v
.

(2.14)

The lengths of the closed X cycle and Y cycle are

`x = wuy `
u
x − wvy`vx ,

`y = wvx`
v
y − wux`uy .

(2.15)

We also introduce the effective lengths

`eff
x ≡

1

m
`x =

`ux
wvx

=
`vx
wux

,

`eff
y ≡

1

m
`y =

`uy
wvy

=
`vy
wuy

.

(2.16)

Note that the area of our torus can be expressed as

m`eff
x `

eff
y = `u`v sinϕ = `ux`

v
y − `uy`vx . (2.17)

As we said above, it is convenient to replace the basis of cycles {U, V } by {X, X̃}, i.e.,

to align the U cycle with the X cycle (see Figure 2). This corresponds to setting `uy = 0 in

(2.1) and leads to simplifications in some of the expressions above. The modular parameter

of our torus is then

τ = τ1 + iτ2 =
k

m
+ i

`eff
y

m`eff
x

,

k ≡ 〈X̃, Y 〉 .
(2.18)

This makes it clear that our condition of finite wrapping amounts to τ1 = k
m

being rational.

Here we also see that the independent data is `eff
x , `eff

y and the two coprime integers m and

k. In addition, the freedom mentioned above in shifting k by a multiple of m is recognized

as being generated by the familiar T transformation on τ .

As we go around the X and X̃ cycle, the coordinates (x, y) are shifted as

X : (x, y)→ (x+m`eff
x , y) ,

X̃ : (x, y)→ (x+ k`eff
x , y + `eff

y ) .
(2.19)
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The geometric interpretation of the effective lengths is the following. Consider a periodic

function on the torus that depends only on y. The periodicity around the X̃ cycle (2.19)

means that

f(y) = f(y + `eff
y ) . (2.20)

Repeating this for a function g(x) that depends only on x we conclude that

g(x) = g(x+ `eff
x ) , (2.21)

i.e., their periodicities are smaller than `x and `y.

The length of a closed contour along y at fixed x is given by `y = m`eff
y , whereas the

length of a closed contour along x at fixed y is given by `x = m`eff
x . In other words,∮

dy ≡
∫ m`eff

y

0

dy ,

∮
dx ≡

∫ m`eff
x

0

dx . (2.22)

Any well-defined function on our torus f(x, y) must satisfy the periodicity constraints∮
dyf(x, y) =

∮
dyf(x+ `eff

x , y) ,

∮
dxf(x, y) =

∮
dxf(x, y + `eff

y ) . (2.23)

To integrate a function f(x, y) over the entire fundamental domain, we may first integrate

over a closed contour at fixed x and then integrate x over a region of length `eff
x , or we may

first integrate over a closed contour at fixed y and then integrate y over a region of length

`eff
y . In particular, we have

∫
T 2

dxdyf(x, y) =

∫ `eff
x

0

dx

∮
dyf(x, y) =

∫ `eff
y

0

dy

∮
dxf(x, y) . (2.24)

Pictorially, the rewriting of the integral is shown in Figure 3.

2.2 Lattice geometry

We now consider a discretization of the twisted geometry by putting it on the lattice, whose

sites are labeled by integers (x̂, ŷ). In particular, as in (2.1), we consider identifications

generated by

(x̂, ŷ) ∼ (x̂+ Lux, ŷ + Luy) ∼ (x̂+ Lvx, ŷ + Lvy) , (2.25)

with non-negative integers Lri .

As in the continuum discussion, we define integers W r
i describing the number of times a

13



Figure 3: The surface integral over the twisted torus in terms of the x and y integrals. The
contour of the integral

∮
dy runs along the blue lines, and the

∫
dx integral runs over the

red segment of length `eff
x .

fixed x or fixed y curve runs around the cycles of our torus. In terms of the parameters Lri
they are

W u
x ≡

Lvx
gcd(Lux, L

v
x)
, W v

x ≡
Lux

gcd(Lux, L
v
x)
, W u

y ≡
Lvy

gcd(Luy , L
v
y)
, W v

y ≡
Luy

gcd(Luy , L
v
y)
,

gcd(W v
x ,W

u
x ) = gcd(W v

y ,W
u
y ) = 1 ,

(2.26)

The lengths of the X and Y cycles are (compare with (2.15))

Lx = W u
y L

u
x −W v

yL
v
x ,

Ly = W v
xL

v
y −W u

xL
u
y .

(2.27)

As in the continuum discussion (2.5), we define

M ≡ W v
xW

u
y −W u

xW
v
y . (2.28)

The effective lengths of the X and Y cycles are

Leff
x ≡

Lx
M

= gcd(Lux, L
v
x) ,

Leff
y ≡

Ly
M

= gcd(Luy , L
v
y) ,

(2.29)

which are the lattice versions of continuum parameters `eff
x , `eff

y of (2.16). They represent the

periodicities of functions that depend only on x or only on y.

As in the continuum description, it is convenient to use the basis of cycles X and X̃ (see

14



(2.7)) (
X

X̃

)
=

(
W u
y −W v

y

−Nu
y N v

y

)(
U

V

)
W u
y N

v
y −W v

yN
u
y = 1 .

(2.30)

These cycles correspond to

X : (x̂, ŷ)→ (x̂+MLeff
x , ŷ)

X̃ : (x̂, ŷ)→ (x̂+KLeff
x , ŷ + Leff

y ) ,

K ≡ −Nu
yW

v
x +N v

yW
u
x .

(2.31)

Next, we consider the continuum limit. We introduce a lattice spacing a and scale the

integers Lri such that the four limits

`ri = lim
a→0

aLri (2.32)

converge to their continuum counterparts. Similarly,

lim
a→0

W v
x

W u
x

=
wvx
wux

lim
a→0

W v
y

W u
y

=
wvy
wuy

lim
a→0

a
√

(Lux)
2 + (Luy)

2 = `u

lim
a→0

a
√

(Lvx)
2 + (Lvy)

2 = `v .

(2.33)

However, the limits

lim
a→0

W r
i , lim

a→0
M , lim

a→0
aLi , lim

a→0
aLeff

i (2.34)

are not well-defined. They do not necessarily converge to the continuum quantities wri , m,

`i, `
eff
i . They depend on the details of how we take Lri to infinity.

As an extreme example of dependence on how we take the limit, consider two sequences

of lattice geometries labeled by L, which we will take to infinity as `/a with finite `. The

first is

Lux = Lvy = L , Lvx = Luy = 0 . (2.35)

and hence W v
x = W u

y = 1, W u
x = W v

y = 0, Leff
x = Leff

y = L. The second is

Lux = Lvy = L , Lvx = Luy = 1 . (2.36)
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and hence W v
x = W u

y = L, W u
x = W v

y = 1, Leff
x = Leff

y = 1.

As in (2.33), both of them lead to the untwisted geometry `ux = `vy = `, `vx = `uy = 0,
wux
wvx

=
wvy
wuy

= 0, `u = `v = `. However, while the first one leads to finite wri = lima→0W
r
i ,

the second one leads to divergent lima→0W
r
i , and misses the fact that the continuum values

derived from `ux = `vy = `, `vx = `uy = 0 should be wvx = wuy = 1, wux = wvy = 0. Relatedly, it

leads to lima→0 L
eff
i = 1 and hence lima→0 aL

eff
i = 0.

This example demonstrates also the discussion around (1.8). The sequence (2.35) is the

one that leads to a natural regularization of the continuum system. Indeed, the continuum

values of wri are the limits of the lattice values.

3 Winding on the twisted two-torus

In this section, we place circle-valued fields on our twisted torus.

As a warmup, let us start with a map from a one-dimensional circle of circumference `,

which is parameterized by x (i.e., x ∼ x+ `) to a target-space f(x). First, consider a smooth

f(x). If f is real-valued, then f(x+ `) = f(x). If f is circle valued, i.e., f ∼ f + 2π, then

eif(x+`) = eif(x) . (3.1)

Lifting f(x) to a real-valued function, we learn that f(x + `) = f(x) + g with g ∈ 2πZ.

We interpret g as a transition function, which measures the winding number of the map
g

2π
= 1

2π

∮
dx∂xf(x).

Since we allow discontinuous f , this discussion should be modified. We again lift f to

be real-valued. Then, we gauge f(x) ∼ f(x) + 2πn(x) with n(x) ∈ Z, i.e., we allow an x

dependent, integer-valued gauge parameter n(x). Unlike the case of smooth f , where the lift

at one point x constrains the lift at nearby points, now there is no such constraint. We can

again consider a transition function f(x+ `) = f(x)+g(x) with g(x) ∈ 2πZ, but now we can

choose another “trivialization” where g(x) = 0, and therefore there is no winding number.

More explicitly, we can perform a non-periodic transformation f(x)→ f(x)+2πn(x), g(x)→
g(x) + 2π(n(x+ `)−n(x)) to set g(x) = 0. (Note that locally this is a gauge transformation,

but it changes the transition function because it is not periodic.)

Equivalently, as in [10], we can say that in this case f and all its derivatives are not gauge

invariant. Only eif and its derivatives are gauge invariant. Therefore, the winding charge
1

2π

∮
dx∂xf is also not gauge invariant and it is not meaningful.

This discussion might appear as a fancy way of stating a well known fact. When the circle

parameterized by x is a lattice and f(x) is circle-valued, the configuration space does not
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break into sectors labeled by winding number – there is no winding number on the lattice.

Nonetheless, our extended discussion here will prove quite useful below.

As preparation for later analysis, let us define some useful functions. First, we will use

the periodic delta function

δP(x, x0, `) =
∑
I∈Z

δ(x− x0 + I`) . (3.2)

We will also find it convenient to define

ΘP(x, x0, `s) =

∫ x

0

dx′δP(x′, x0, `) . (3.3)

Note that ΘP(x, x0, `) is not periodic.3

3.1 Transition functions and winding charges

We want to place a circle-valued field φ, subject to the rules of [10], on the twisted torus.

In order to simplify the notation we will use the SL(2,Z) freedom in redefining U and V

and choose U = X and V = X̃ from this point on. Note that this choice also breaks the

symmetry exchanging X and Y together with the other data characterizing these cycles.

As in [10], we will be interested in discontinuous functions φ with certain discontinuities.

Specifically, we allow φ to be discontinuous and therefore ∂xφ and ∂yφ can have delta-

functions. However, we restrict the discontinuities of φ, such that ∂x∂yφ can include a delta

function in x or in y, but we exclude situations where ∂x∂yφ has terms like δ(x−x0)δ(y−y0).

A special case of it is a discontinuous φ with finite ∂x∂yφ.

We view the field φ as a real-valued field. To make it effectively circle-valued, we impose

the gauge identification

φ(x, y) ∼ φ(x, y) + 2π
(
nx(x) + ny(y)

)
, nx(x), ny(y) ∈ Z . (3.4)

For an ordinary periodic scalar, the identification involves a position-independent integer.

Here we allow discontinuous identifications of the form (3.4). We do not include in the gauge

identification an arbitrary integer valued function of both x and y, as this takes us out of

the space of functions we defined above.

We start with a real-valued field φ on R2. We need to impose the gauge identification

3Below we will sometimes use ΘP(x, 0, `s), which is subject to ambiguity given our convention that
ΘP(0, x0, `s) = 0 for any x0. To be more precise, we will define ΘP(x, 0, `s) as ΘP(x, ε, `s) with ε positive
and infinitesimally small.
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(3.4) and place it on our torus R2/Γ. Every vector in Γ leads to a closed cycle C on our

torus. The identification across C should involve a transition function of the form (3.4)

φ(x+ Cx, y + Cy) = φ(x, y) + gC(x, y)

gC(x, y) = 2π
(
nxC(x) + nyC(y)

)
, nxC(x), nyC(y) ∈ Z .

(3.5)

Here (Cx, Cy) is the vector on the covering space corresponding to C. For example, for our

basis of cycles X and X̃,
(Xx, Xy) = (m`eff

x , 0)

(X̃x, X̃y) = (k`eff
x , `

eff
y )

(3.6)

We will also discuss the Y cycle, for which

(Y x, Y y) = (0,m`eff
y ) . (3.7)

Our goal is to identify the distinct bundles. This involves two steps. First, we trivialize

the bundle by choosing the transition functions. Here we must impose the constraints from

the cocycle conditions. Second, we identify bundles labeled by different transition functions

that are related by redefinitions. Locally, these are gauge transformations, but globally they

are not.

The composition of cycles C = A+ B leads to the cocycle condition

gC(x, y) = gB(x, y) + gA(x+ Bx, y + By) = gA(x, y) + gB(x+Ax, y +Ay) . (3.8)

Using such a composition, it is enough to consider the transition functions for two gener-

ators of Γ, say X and X̃, and express the other transition functions as linear combinations

of these. For example, the transition function of the Y cycle is

Y = −kX +mX̃

gY (x, y) = −
k∑
I=1

gX(x− Im`eff
x , y) +

m∑
J=1

gX̃
(
x− Jk`eff

x , y + (m− J)`eff
y

)
.

(3.9)

The fact that the transition functions are separate functions of x and y (3.5) and the

cocycle condition (3.8) impose important constraints. For example, the cocycle condition of

the X and X̃ cycles leads to

nyX(y + `eff
y )− nyX(y) =

[
nx
X̃

(x+m`eff
x )− nx

X̃
(x)
]
− [nxX(x+ k`eff

x )− nxX(x)] (3.10)
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and the cocycle condition of the X and Y cycles leads to

nyX(y +m`eff
y )− nyX(y) = nxY (x+m`eff

x )− nxY (x) . (3.11)

From these two conditions and the equation obtained from (3.10) by exchanging X and Y ,

we find the periodicity
gX(x, y + `eff

y ) = gX(x, y) + 2πnxy

gY (x+ `eff
x , y) = gY (x, y) + 2πnxy

(3.12)

with the same constant nxy.

Next, we should identify bundles with different transition functions that are related by

certain transformations. Locally, these are gauge transformations, but they are not single

valued. Specifically, we identify

gC(x, y) ∼ gC(x, y) + 2π
(
nx(x+ Cx)− nx(x) + ny(y + Cy)− ny(y)

)
. (3.13)

As a check, the cocycle condition (3.8) is invariant under this identification.

Let us identify the invariant information in the transition functions. The action of the

transformation (3.13) on the transition functions of the X and Y cycles implies that the

U(1) winding charges (1.16)

Qx(x) =
1

2π

∮
dy∂x∂yφ =

1

2π
∂xgY (x, y) = ∂xn

x
Y (x) ,

Qy(y) =
1

2π

∮
dx∂x∂yφ =

1

2π
∂ygX(x, y) = ∂yn

y
X(y) ,

(3.14)

are invariant. Note that since nxY (x) and nyX(y) are integers, the charges are linear com-

binations of delta functions with integer coefficients. Furthermore, we have the periodicity

(3.12). The integer nxy in (3.12) can now be interpreted as a constant used in [10]:∫ `eff
x

0

dxQx(x) =

∫ `eff
y

0

dyQy(y) = nxy . (3.15)

So far we have identified a continuum of U(1) charges Qx(x) and Qy(y) labeled by 0 ≤
x < `eff

x , 0 ≤ y < `eff
y , subject to the constraint (3.15). If we regularize the theory on a lattice,

it leads to Leff
x + Leff

y − 1 integer charges.
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In addition to these integers, we have a Zm-valued phase:

U(x, y) = exp

[
− i

m

m−1∑
I=0

gX̃(x+ I`eff
x , y) +

i

m

k−1∑
J=0

gX(x+ J`eff
x , y)

]
. (3.16)

We will motivate this operator and discuss it further in Appendices B and C. It is straight-

forward to check that it is invariant under (3.13). Naively this defines many Zm charges

depending on the choice of x, y. However, using (3.9) and the cocycle conditions, we have

U(x, y)

U(0, 0)
= exp

[
−2πi

m

∫ x

0

dx′Qx(x′)

]
exp

[
2πki

m

∫ y

0

dy′Qy(y′)

]
, (3.17)

which is a function of Qx(x) and Qy(y). Therefore, U(x, y) leads to a single Zm invariant

beyond the U(1) charges Qx(x), Qy(y).

This Zm charge can also be written directly in terms of φ:

U(x, y) = exp

[
− i

m

m−1∑
I=0

(
φ
(
x+ (k + I)`eff

x , y + `eff
y

)
− φ

(
x+ (k + I)`eff

x , y
) )]

. (3.18)

We refer the readers for a more detailed discussion on related points to the appendices. In

Appendix B, we will verify the number of winding charges by classifying all the invariants of

the transition functions. In Appendix C, we will discuss additional operators in the φ-theory

and motivate the Zm charge (3.16).

We can summarize this discussion as follows. Windings around the X and Y cycles are

measured by the charges Qy(y) and Qx(x). They are essentially the same as the windings

in the untwisted torus, except that they have periodicities `eff
x and `eff

y respectively. The new

charge U is present because our torus has additional cycles. As stated after (2.9), if we mod

out by the X and Y cycles, the X̃ cycle behaves like a torsion cycle. This leads to the fact

that the new charge is a Zm charge.

3.2 Winding configurations of φ

In this section, we present winding configurations of φ that realize the winding charges in

Section 3.1.
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3.2.1 Special configurations

We start with the winding configurations satisfying

∂x∂yφ = 0 . (3.19)

These special configurations will be useful for other discussions below.

As a warmup, let us start with a real-valued function on the torus. In (2.20) and (2.21),

we studied a real-valued function that depends only on x or only on y and found that it has

periodicity `eff
x and `eff

y respectively. A trivial extension of this analysis applies to the case of

a real-valued function f satisfying ∂x∂yf = 0. Because of the differential equation, we have

f(x, y) = fx(x) + f y(y), and the boundary conditions set

fx(x+ `eff
x ) = fx(x) ,

f y(y + `eff
y ) = f y(y) .

(3.20)

We will see that the conclusion is different for a circle-valued field φ ∼ φ + 2π. Locally,

we can solve (3.19) as

φ(x, y) = φx(x) + φy(y) . (3.21)

The boundary conditions tell us that

eiφ
x(x+m`eff

x ) = eiφ
x(x) ,

eiφ
x(x+k`eff

x )eiφ
y(y+`eff

y ) = eiφ
x(x)eiφ

y(y) .
(3.22)

This means that
eiφ

x(x+`eff
x ) = ηeiφ

x(x)

eiφ
y(y+`eff

y ) = η−keiφ
y(y)

ηm = 1

(3.23)

with a position-independent η.

We see that while a real-valued function f has the simple periodicity (3.20), a circle-

valued function φ has a new Zm phase η in that periodicity (3.23).

The most general such φ can be expressed as

φ(x, y) =
2πr

m

(
x

`eff
x

− k y

`eff
y

)
+ fx(x) + f y(y) ,

eif
x(x+`eff

x ) = eif
x(x) , eif

y(y+`eff
y ) = eif

y(y) ,

r = 1, 2, ...,m .

(3.24)
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It carries a nontrivial Zm charge (3.16), U(x, y) = e2πikr/m, but zero U(1) charges, Qi(xi) = 0.

As in [10], we are also interested in discontinuous functions with certain discontinuities.

In particular, fx(x) and f y(y) in (3.24) can be discontinuous. Also, the field φ is subject to

a discontinuous gauge transformation (3.4).

This has two important consequences. First, we can replace the first term in (3.24) by

another function with the same transition functions, e.g.

φ(x, y) =
2πr

m

(
ΘP(x, 0, `eff

x )− kΘP(y, 0, `eff
y )
)

+ fx(x) + f y(y) (3.25)

with different fx and f y. Second, as in the discussion of the one-dimensional case above, the

fact that eif
x(x+`eff

x ) = eif
x(x) and eif

y(y+`eff
y ) = eif

y(y) means that we can choose a lift where

fx(x+ `eff
x ) = fx(x) and f y(y + `eff

y ) = f y(y) as real functions.

3.2.2 More general configurations

Next, we consider configurations that carry nontrivial U(1) charges with ∂x∂yφ 6= 0. The

minimal winding configuration with nontrivial Qx(x) and Qy(y) should satisfy

Qx(x) =
1

2π

∮
dy∂x∂yφ = δP(x, x0, `

eff
x ) ,

Qy(y) =
1

2π

∮
dx∂x∂yφ = δP(y, y0, `

eff
y ) ,

(3.26)

for some x0 and y0. The periodic delta function δP(x, x0, `
eff
x ) was defined in (3.2). These

configurations can also carry the Zm charge (3.16).

The charges (3.26) lead us to look for a configuration satisfying

∂x∂yφ(x, y) =
2π

m

[
1

`eff
x

δP(y, y0, `
eff
y ) +

1

`eff
y

δP(x, x0, `
eff
x )− 1

`eff
x `

eff
y

]
(3.27)

for some x0 and y0. Such a minimal winding configuration is given by

φ = 2π

(
x

`x
− 〈X̃, Y 〉 y

`y

)
ΘP(y, y0, `

eff
y ) + 2π

(
y

`y
− 〈Ỹ , X〉 x

`x

)
ΘP(x, x0, `

eff
x )

− 2πm

[
−1

2
〈X̃, Y 〉

(
y

`y

)2

− 1

2
〈Ỹ , X〉

(
x

`x

)2

+
xy

`x`y

]
+ 2π

(
cx
x

`x
+ cy

y

`y

)
cx =

m

2
〈Ỹ , X〉+ r , cy = −m

2
〈X̃, Y 〉

(
〈X̃, Ỹ 〉+ 〈Ỹ , X〉

)
− 〈X̃, Y 〉r .

(3.28)
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Here we have chosen cx, cy such that the transition functions take a simple form (see below).

We also have the freedom of adding a standard winding configuration (3.24) to φ and shifting

the value of r.

Let us check that the transition functions are indeed 2πZ-valued. Using (3.8), it suffices

to check this for the transition functions for the X and X̃ cycles. The transition function

around the X cycle is

gX(x, y) = φ
(
x+m`eff

x , y
)
− φ(x, y) = 2πΘP(y, y0, `

eff
y )− 2π〈Ỹ , X〉ΘP(x, x0, `

eff
x ) + 2πr .

(3.29)

Similarly, the transition function around the X̃ cycle is

gX̃(x, y) = φ
(
x+ 〈X̃, Y 〉`eff

x , y + `eff
y

)
− φ(x, y) = 2π〈X̃, Ỹ 〉ΘP(x, x0, `

eff
x ) . (3.30)

Using (2.13), one finds that the cocycle condition is satisfied.

In addition to the winding chargesQx(x), Qy(y), the minimal winding configuration (3.28)

also carries the Zm charge (3.16)

U(x, y) = exp

[
−2πi

m

∫ x

0

dxQx(x)

]
exp

[
2πki

m

∫ y

0

dyQy(y)

]
× exp

[
2πi

m
(kr + r0)

] (3.31)

where r0 = − (m−1)m
2
〈X̃, Ỹ 〉− (k−1)k

2
〈Ỹ , X〉. The first line, which depends on x, y, is expressed

in terms of the the winding charges Qx(x), Qy(y).

3.3 Comments about the 2 + 1-dimensional φ-theory

The 2+1-dimensional φ-theory (1.11), which had been introduced in [32], was studied in [10]

on an untwisted torus. Its main features are

• The theory has “momentum” and “winding” subsystem symmetries, (1.12) and (1.15),

each of which leads (on the lattice) to Lx + Ly − 1 conserved U(1) charges.

• In the quantum theory, all the states charged under these symmetries acquire large

energy, of the order of the UV cutoff.

• The theory is self-dual. The duality exchanges the original field φ with another field

φxy. It also exchanges the momentum and winding symmetries.
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Let us see how this picture changes on the twisted torus. First, it is clear that the

conserved momentum and winding currents remain conserved. By analogy to the untwisted

case, we now have Leff
x + Leff

y − 1 conserved U(1) charges. It is also clear that all the states

charged under these symmetries acquire large energy in the quantum theory.

The main novelty in the problem on the twisted torus is associated with the configurations

(3.24) with r 6= 0 mod m. These configurations have two consequences. First, they carry a

discrete Zm winding charge under (3.16). Since this operator can be defined in terms of the

transition functions, it is a conserved operator in the φ-theory. See Appendix C for more

discussion on the winding operator.

Second, a shift of φ by (3.24) is a momentum symmetry. Clearly, it is not included in the

Leff
x +Leff

y − 1 U(1) momentum symmetries. Instead, this shift amounts to a Zm momentum

symmetry. This symmetry operator cannot be written simply in terms of the φ field – it is

a twist operator of φ. Alternatively, it is represented, as in (3.18), in terms of the dual field

φxy as

V(x, y) = exp

[
− i

m

m−1∑
I=0

(
φxy
(
x+ (k + I)`eff

x , y + `eff
y

)
− φxy

(
x+ (k + I)`eff

x , y
) )]

. (3.32)

This operator has all the properties of U(x, y) that we mentioned above. In particular, up

to adding momentum charges, it is independent of x and y.

The two Zm global symmetries generated by (3.18) and (3.32) commute with all the

U(1) momentum and winding symmetries. But they do not commute with each other. They

generate a clock and shift algebra

Um = Vm = 1 ,

UV = e−2πi k
mVU .

(3.33)

(Since gcd(k,m) = 1, we can redefine the generators of this algebra to make the phase

above e2πi/m as in (1.17).) This algebra has an m-dimensional representation. Therefore,

the Hilbert space of our problem includes a factor of this m-dimensional representation. In

particular, the system must have m degenerate ground states.

We conclude that unlike the theory on the untwisted torus, here we have two Zm sym-

metries, and these two symmetries do not commute. Clearly, these two symmetries are

exchanged under the self-duality of the system. Also, unlike the U(1) momentum and wind-

ing symmetries, all the states in the theory transform under these symmetries in their m-

dimensional representation. As we mentioned in the introduction, these effects are reminis-

cent of the phenomena discovered in [26,27]. In [10], it was shown that all the local operators
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that are charged under the momentum and winding symmetries are infinitely irrelevant in

the continuum limit. Therefore the m-fold degeneracy on a twisted torus is robust against

local perturbations.

4 2 + 1-dimensional ZN tensor gauge theory

As a warm-up for the 3 + 1-dimensional X-cube model, we start by placing the 2 + 1-

dimensional ZN tensor gauge theory in [10] on a two-dimensional spatial torus with twisted

boundary condition (2.1). We will analyze this model using the two dual presentations

in [10].

4.1 Special ZN configurations

In the rest of this paper, we will frequently consider a ZN -valued φ field on a twisted torus.

More explicitly, such a ZN field φ obeys the same rule as in Section 3.1 plus one ZN condition:

Nφ

2π
∈ Z . (4.1)

Similar to Section 3.2.1, of particular interest is the special case when

∂x∂yφ = 0, (4.2)

is obeyed.

The most general expression of such a ZN -valued φ can be found through an analysis

similar to that of Section 3.2.1. The phase η there now obeys not only ηm = 1, but also

ηN = 1. Hence it is a Zgcd(N,m) phase. In conclusion, the most general such φ takes the form:

φ =
2πr

gcd(N,m)

(
ΘP(x, 0, `eff

x )− kΘP(y, 0, `eff
y )
)

+
2π

N
(W x(x) +W y(y)) , (4.3)

where r = 1, · · · , gcd(N,m) and W i(xi) ∈ Z. Using the freedom in (3.4) to redefine φ, we

can choose a lift of W i(xi) such that W i(xi + `eff
i ) = W i(xi).
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4.2 φ− A theory

The first presentation of the ZN model is based on the Lagrangian

L =
1

2π
Ẽxy(∂x∂yφ−NAxy) +

1

2π
B̃(∂0φ−NA0) , (4.4)

where (A0, Axy) are U(1) tensor gauge fields and φ is a 2π-periodic real scalar field that

Higgses the U(1) gauge symmetry to ZN . The gauge transformations of these fields are

φ ∼ φ+Nα ,

A0 ∼ A0 + ∂0α ,

Axy ∼ Axy + ∂x∂yα .

(4.5)

The fields Ẽxy and B̃ are Lagrange multipliers. Their coefficients are are not important at

this stage, but we set them such that Ẽxy and B̃ are standardly normalized field strengths

in the dual picture. The equations of motion are

∂x∂yφ−NAxy = 0 ,

∂0φ−NA0 = 0 ,

Ẽxy = B̃ = 0 .

(4.6)

Using the equations of motion (4.6), we can solve all the other fields in terms of φ. Then,

we mod out by gauge transformations φ ∼ φ+Nα. The remaining configurations are linear

combinations of the winding mode (3.28) with different x0, y0. The coefficients in the linear

combinations are in the set {0, 1, ..., N−1}. In addition, the winding configuration is labeled

by an integer r, which in the ZN theory is defined modulo gcd(N,m).

We will regularize the ground state degeneracy by putting the theory on a lattice. As

discussed in Section 2, the discretization of a continuum geometry is not unique, and we will

see that the ground state degeneracy depends not only the continuum geometric data `ri , but

also the details of the lattice regularization.

Let us consider a lattice geometry of the form discussed in Section 2.2. From this point

on, the analysis of the ground state degeneracy proceeds in an analogous way as in [10], with

the replacement Lx → Leff
x , Ly → Leff

y . Recall that Leff
x = gcd(Lux, L

v
x) , L

eff
y = gcd(Luy , L

v
y).

A general winding configuration on this lattice is labeled by a choice of integers W x
α ∈

{0, 1, ..., N − 1} for each x̂α = 1, · · · , Leff
x on the lattice and W y

β ∈ {0, 1, ..., N − 1} for each
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ŷβ = 1, · · · , Leff
y on the lattice. We also have the constraint∑

α

W x
α =

∑
β

W y
β . (4.7)

In addition to these integers, the winding configuration is further labeled by a Zgcd(N,M)

-valued integer r. (Recall that M is the lattice version of m.) Combining these together, the

ground state degeneracy of our model is given by

NLeff
x +Leff

y −1 gcd(N,M) . (4.8)

This formula for the ground state degeneracy has several peculiar features. Like that of

the untwisted model in [10], the logarithm of the ground state degeneracy grows with the

size of the system in a sub-extensive manner. In contrast with that of the untwisted model,

however, this ground state degeneracy does not vary monotonically under small changes in

the parameters Lri . Relatedly, it does not have a well-defined continuum limit. To see this,

let us compare the ground state degeneracy of two sequences of lattice models with the same

continuum limit. In particular, consider the sequence in (2.35),

Lux = Lvy = L , Lvx = Luy = 0 , (4.9)

and the sequence in (2.36),

Lux = Lvy = L , Lvx = Luy = 1 . (4.10)

These sequences both approach the same continuum quantities `ri . But the first of these

sequences has Leff
x = Leff

y = L, and M = 1, and hence a ground state degeneracy of N2L−1,

whereas the second sequence has Leff
x = Leff

y = 1, and M = L2− 1, and hence a ground state

degeneracy of Ngcd(N,L2 − 1). The ground state degeneracy of these models is therefore

completely different: the first diverges in the continuum limit L → ∞, whereas the second

is ill-defined. As we said above, the first sequence is the natural choice for this continuum

theory.

4.2.1 Using transition functions

In the previous analysis, as in the discussion of this theory on the untwisted torus in [10], we

assumed that we can always set the transition functions of the gauge theory on the spatial

two-torus to be trivial. Here we will show that the same conclusion is obtained by allowing

arbitrary transition functions.
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We consider nontrivial circle-valued transition functions γC that determine

Axy(x+ Cx, y + Cy) = Axy(x, y) + ∂x∂yγC(x, y)

Φ(x+ Cx, y + Cy) = eiJγC(x,y)Φ(x, y)
(4.11)

where Φ is a complex field with charge J . (We will limit ourselves to static configurations.)

The composition of cycles C = A+ B leads to the cocycle condition:

exp [iγB(x, y) + iγA(x+ Bx, y + By)] = exp [iγA(x, y) + iγB(x+Ax, y +Ay)] . (4.12)

Next, we identify configurations with different transition functions that are related by

certain transformations. Specifically, for any circle-valued function eiβ, we identify

exp[iγC(x, y)] ∼ exp [iγC(x, y) + iβ(x+ Cx, y + Cy)− iβ(x, y)] ,

Axy(x, y) ∼ Axy(x, y) + ∂x∂yβ(x, y)

Φ(x, y) ∼ eiJβ(x,y)Φ(x, y) .

(4.13)

If eiβ is single-valued on our torus, then this is a gauge transformation, and it does not

change the transition functions. Otherwise, it relates different trivializations of the same

configuration.

Consider first the pure gauge A-theory. Locally, we can choose Axy = 0 and then all

the information about the gauge fields is in the transition functions. The analysis of these

transition functions is parallel to the discussion of the transition functions and winding

configurations in the φ-theory in Section 3.1 and Appendix B. There is only one difference:

the integer valued functions gC of the scalar theory are replaced in the gauge theory with

real, circle-valued functions γC.

First, we focus on the X and Y cycles. We will return to the X̃ cycle shortly. We find

eiγX = ei(f
x
X(x)+fyX(y)) ,

eiγY = ei(f
x
Y (x)+fyY (y)) ,

eif
x
Y (x+`eff

x ) = eif
x
Y (x)+iϕ ,

eif
y
X(y+`eff

y ) = eif
y
X(y)+iϕ .

(4.14)

As in in Section 3.1 and Appendix B, ∂yf
y
X(y), ∂xf

x
Y (x), and ϕ are physical and gauge

invariant. (We will soon relate them to the holonomy around the X and Y cycles.) In

order to check whether there is additional invariant information, we follow the approach in

Appendix B and set these quantities to zero and look for more data. In particular, we look
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for additional information in
eiγX = eif

x
X(x) ,

eiγY = eif
y
Y (y) ,

eiγX̃ = ei(f
x
X̃

(x)+fy
X̃

(y)) .

(4.15)

Imposing the cocycle conditions and using the freedom to change the trivialization, we find

that all the functions here can be set to zero.

Unlike the analysis of the φ-theory, there is no additional Zm charge. Specifically, in

following the steps in Appendix B with circle-valued functions, rather than integer-valued

functions, the identification (B.4) becomes

eif
x
X̃

(x) ∼ ei(f
x
X̃

(x)+CX̃) ,

eif
y

X̃
(y) ∼ ei(f

y

X̃
(y)−CX̃) ,

eiZ ∼ ei(Z−mCX̃) ,

(4.16)

where CX̃ and Z were denoted in Appendix B by NX̃ and N , respectively. Since now they

are circle-valued, we can set eiZ = 1 and there is no additional Zm charge.

We end up with the same data we have with trivial transition functions, but with nonzero

Axy =
1

`y
fx(x) +

1

`x
f y(y) , (4.17)

with ∂xf
x
Y (x) = fx(x) + 1

`x

∮
Y
dyf y(y), ∂yf

y
X(y) = f y(y) + 1

`y

∮
X
dxfx(x). As a check, they

both have the same holonomies

WX = exp

(
i

∫ y2

y1

dy

∮
X

dx

(
1

`y
fx(x) +

1

`x
f y(y)

))
= ei(γX(x,y2)−γX(x,y1)) ,

WY = exp

(
i

∫ x2

x1

dx

∮
Y

dy

(
1

`x
f y(y) +

1

`y
fx(x)

))
= ei(γY (x2,y)−γY (x1,y)) .

(4.18)

Let us repeat this analysis in the ZN theory using this perspective of the Higgs theory

(4.4). The matter field φ transforms such that Φ = eiφ in (4.11) and (4.13) has charge

J = N . We choose the unitary gauge φ = 0 and set Axy = 0. In order for the gauge choice

φ = 0 to be meaningful, the transition functions (4.15) should be N ’th roots of unity. In

contrast to the U(1) gauge theory of A, we can no longer use the identification (4.16) to set

eiZ = 1. In more detail, now eiZ and eiCX̃ in (4.16) are N ’th roots of unity. Therefore, (4.16)

identifies eiZ ∼ ei(Z−
2πm
N

) and we end up with gcd(N,m) distinct values. Placing this result

on the lattice, we reproduce (4.8).
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Let us phrase it more explicitly. The ZN theory has gcd(N,m) configurations:

eiφ = 1 , A0 = Axy = 0 ,

eiγX = e2πir m
Ngcd(N,m) , eiγX̃ = 1 ,

(4.19)

with r = 0, 1, · · · , gcd(N,m)− 1. Such configurations are present in the U(1) A-theory, but

they do not contribute to the holonomies (4.18). In fact, they are identified with the trivial

configuration with eiγX = 1 by a change of the trivialization (4.13), with e.g.,

eiβ = exp

[
− 2πir

Ngcd(N,m)

(
x

`eff
x

− k y

`eff
y

)]
(4.20)

or

eiβ = exp

[
− 2πir

Ngcd(N,m)

(
ΘP(x, 0, `eff

x )− kΘP(y, 0, `eff
y )
)]

(4.21)

Therefore, the U(1) theory does not have another label associated with these configurations.

This is to be contrasted with the situation in the ZN theory. Here, as we explained above,we

cannot perform identifications like (4.20) or (4.21) because they are not ZN -valued. (Equiv-

alently, they do not preserve the choice φ = 0 in the Higgs theory (4.4).) Consequently, the

configurations (4.19) are nontrivial in the ZN theory and lead to the factor gcd(N,M) in

(4.8).

Let us offer a broader view on the analyses of the transition functions in the various

theories. The transition functions for the φ-theory in Section 3.1, and those for the U(1)

and ZN tensor gauge theories in this section, are subject to similar cocycle conditions and

identifications, but with coefficients valued in different groups, Z, U(1), and ZN respectively.

In these three cases, there is an additional Zm label for the φ-theory, no such label for the

U(1) A-theory, and an additional Zgcd(N,m) label for the ZN -theory. These additional labels

can be thought of as torsion parts of an appropriate cohomology with Z, U(1), and ZN
coefficients.

4.3 BF -type ZN tensor gauge theory

Next, we compute the ground state degeneracy using a dual presentation of the same ZN
model [10]:4

L =
1

2π
Nφxy(∂0Axy − ∂x∂yA0) =

1

2π
NφxyExy . (4.22)

4Since φxy is circle-valued, the Lagrangian has to be defined more carefully. Specifically, we can choose
a trivialization, use this expression in each patch, and add correction terms similar to those in Appendix C,
in the overlap regions. We will not do it here.
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The phase space is given in the temporal gauge A0 = 0 by{
φxy(x, y), Axy(x, y)

∣∣∣ ∂x∂yφxy = 0 , Axy(x, y) ∼ Axy(x, y) + ∂x∂yα(x, y)
}
. (4.23)

This is solved modulo gauge transformations by5

Axy =
1

`y
fx(x) +

1

`x
f y(y) ,

φxy =
2πr

m

(
ΘP(x, 0, `eff

x )− kΘP(y, 0, `eff
y )
)

+ f̂x(x) + f̂y(y) ,

(4.24)

where r = 1, · · · ,m. Here the functions f i(xi) and f̂i(x
i) have periodicity `eff

i . Compare Axy
with (4.17) and see Section 3.2.1 for the origin of the first term in φxy.

The quantization of fx, f y and their conjugate variables f̂x, f̂y proceeds in an analogous

way as in [10], with the replacement `x → `eff
x , `y → `eff

y . On a lattice, it leads to NLeff
x +Leff

y −1

states.

The global considerations constrain the allowed values of r. One way to see that, is

to note we have the operator statement eiNφ
xy

= 1. Therefore, r should be a multiple of

m/gcd(N,m). This leads to gcd(N,m) values.

Combining the above two contributions, we reproduce the ground state degeneracy (4.8).

4.4 Global symmetry operators

Here we compute the ground state degeneracy using the global symmetry operators. This

calculation mirrors the lattice calculation of the ground state degeneracy using the logical

operators.

The gauge-invariant local operator eiφ
xy

generates a ZN electric global symmetry. In

particular, eiNφ
xy

= 1. The equation of motion states that

∂x∂yφ
xy = 0 . (4.25)

The discussion in Section 4.1 then implies that the ZN electric symmetry can be generated

by
eiφ

xy(x,y0), x0 ≤ x < x0 + `eff
x

eiφ
xy(x0,y), y0 ≤ y < y0 + `eff

y ,
(4.26)

5Here we take the transition functions for Axy to be trivial. Alternatively, as above, we can set Axy = 0
and have the nontrivial information in the transition functions.
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for any choice of (x0, y0). There is also a Zgcd(N,m) operator

V = exp
[
−iφxy(x, y + `eff

y ) + iφxy(x, y)
]
. (4.27)

The discussion in Section 4.1 implies that V is independent of x, y, despite its appearance.

On a lattice, this leads to Leff
x + Leff

y − 1 ZN charges and one Zgcd(N,M) charge.

On the other hand, the strip operators

W(x)(x1, x2) = exp

[
i

∫ x2

x1

dx

∮
dyAxy

]
,

W(y)(y1, y2) = exp

[
i

∮
dx

∫ y2

y1

dyAxy

] (4.28)

generate a ZN dipole global symmetry. They obey the constraint W(x)(0, `
eff
x ) = W(y)(0, `

eff
y ).

On a lattice we therefore have Leff
x + Leff

y − 1 such operators.

There is one more gauge-invariant operator, which is most conveniently expressed in the

φ− A description:

U = exp
[
i

N

gcd(N,m)

∫ `eff
y

0

dy

∫ ky`eff
x /`eff

y +m`eff
x

ky`eff
x /`eff

y

dx
(
ΘP(x, 0, `eff

x )− kΘP(y, 0, `eff
y )
)
Axy(x, y)

− i m

gcd(N,m)

∫ `eff
y

0

ds ∂yφ(ks`eff
x /`

eff
y , s)

]
(4.29)

We will motivate this Zgcd(N,m) operator in Appendix D and discuss its relation to the Wilson

strips W(i). One can check that this is indeed a gauge-invariant operator. Note that the

integrand in the first line vanishes in the rectangle (k − 1)`eff
x < x < k`eff

x , 0 < y < `eff
y .

To summarize, just like on an untwisted torus, the ZN theory has a ZN electric and a ZN
dipole global symmetry. Similar to the analysis in [10], there are Leff

x +Leff
y −1 ZN operators

for each of these symmetries on a lattice. The novelty on a twisted torus is that there are

two additional Zgcd(N,m) symmetries generated by V and U.

The Zgcd(N,m) symmetry generated by U in the ZN theory comes from the Zm symmetry

generated by U(0, 0) (see (3.16)) in the φ theory before Higgsing. More specifically, when the

equation of motion Axy = 1
N
∂x∂yφ is imposed, the operator U is equal to U(0, 0)m/gcd(N,m)

on-shell.

Similarly, the Zgcd(N,m) symmetry generated by V in the ZN theory comes from the Zm
symmetry generated by V (3.32) in the φ theory before Higgsing. Using the equation of

motion ∂x∂yφ
xy = 0, we see that V is equal to V on-shell.
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Let us discuss the commutation relations between these operators.

In the unitary gauge, where φ = 0, (4.29) is manifestly an operator in the ZN gauge

theory. It is then clear that U and V form a Zgcd(N,m) clock and shift algebra. This leads to

gcd(N,m) states in the ZN theory.

The rest of the operators satisfy

eiNφ
xy

= WN
(x) = WN

(y) = 1 ,

eiφ
xy(x,y)W(x)(x1, x2) = e2πi/NW(x)(x1, x2)eiφ

xy(x,y) , if x1 < x+ I`eff
x < x2 for some I ∈ Z,

eiφ
xy(x,y)W(y)(y1, y2) = e2πi/NW(y)(y1, y2)eiφ

xy(x,y) , if y1 < y + I`eff
y < y2 for some I ∈ Z,

(4.30)

and they commute otherwise. (Here, we took for simplicity x2−x1 ≤ `eff
x and y2− y1 ≤ `eff

y .)

We can pick the following basis for them:

W(x)(x, x+ a) , exp [iφxy(x, 0)] , (k − 1)`eff
x ≤ x < k`eff

x ,

W(y)(y, y + a) , exp
[
iφxy

(
(k − 1)`eff

x , y
)
− iφxy

(
(k − 1)`eff

x , 0
)]
, 0 < y < `eff

y .
(4.31)

Here a is an infinitesimal UV regulator, e.g., the lattice spacing. The range of x, y for these

operators is chosen such that they commute with U,V. The pair of operators in each line

at the same x or y form a ZN clock and shift algebra, and they commute otherwise. On a

lattice, these give Leff
x +Leff

y − 1 copies of the ZN clock and shift algebra. This algebra leads

to NLeff
x +Leff

y −1 states in the ZN theory.

Combining these two contributions, we reproduce the ground state degeneracy (4.8).

5 Winding in 3 + 1 dimensions

In this section, we place a classical circle-valued field φ on a three-dimensional twisted torus.

We perform a twist in the xy-plane of the form discussed in Section 2, but we do not twist

in the xz-plane or yz-plane. The twist changes the allowed winding configurations relative

to those in [11] on an untwisted torus.

This discussion is relevant both for the 3 + 1-dimensional φ-theory of [11] on the twisted

torus and for the discussion of the ZN tensor gauge theory in Section 6.

The winding charges of a circle-valued φ field in 3 + 1 dimensions are associated with

cycles on the xy-, yz-, and zx-planes. For the yz-plane, we will choose the Y cycle and

the Z cycle to parameterize these charges, and similarly for the zx-plane. For the xy-plane,

however, the X and the Y cycles do not generate all the cycles. Instead, we will choose the
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basis {X, X̃}. The most general possible winding charges are given by (recall the definition

(3.2))
1

2π

∮
dx∂x∂yφ =

∑
β

W y
X β δ

P(y, yβ, `
eff
y ) ,

1

2π

∮
dy∂x∂yφ =

∑
α

W x
Y α δ

P(x, xα, `
eff
x ) ,

1

2π

∮
dz∂y∂zφ =

∑
β

W y
Z β δ

P(y, yβ, `
eff
y ) ,

1

2π

∮
dz∂x∂zφ =

∑
α

W x
Z α δ

P(x, xα, `
eff
x ) ,

1

2π

∮
dx∂z∂xφ =

∑
γ

W z
X γ δ

P(z, zγ, `z) ,

1

2π

∮
X̃

(dx∂z∂xφ+ dy∂z∂yφ) =
∑
γ

W z
X̃ γ
δP(z, zγ, `z) ,

(5.1)

and the Zm charge discussed in Section 3.1. Here {xα}, {yβ}, {zγ} are a finite set of points

on the intervals [0, `eff
x ), [0, `eff

y ), [0, `z) of the three axes, respectively. The W i
I α’s are integers

associated with the points {xiα} and I labels the cycle. These charges obey the constraints∑
β

W y
X β =

∑
α

W x
Y α ,∑

γ

W z
X γ = m

∑
α

W x
Z α ,∑

γ

W z
X̃ γ

=
∑
β

W y
Z β + k

∑
α

W x
Z α .

(5.2)

The winding configurations associated with nontrivial W x
Y α,W

y
X β and the Zm phase have

already been discussed in Section 3.2. The rest of the winding configurations are (recall the

definition (3.3))

φ = 2π

[(
x

`x
− k y

`y

)∑
γ

W z
X γΘ

P(z, zγ, `z) +
z

`z

∑
α

W x
Z αΘP(x, xα, `

eff
x )

− z

`z

(
x

`x
− k y

`y

)∑
γ

W z
X γ

+
y

`eff
y

∑
γ

W z
X̃ γ

ΘP(z, zγ, `z) +
z

`z

∑
β

W y
Z βΘP(y, yβ, `

eff
y )− z

`z

y

`eff
y

∑
γ

W z
X̃ γ

] (5.3)
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Here W y
Z β,W

x
Z β,W

z
X γ,W

z
X̃ γ
∈ Z are the integer winding charges obeying (5.2).

In order to verify that the function φ of (5.3) is an allowed configuration, we need to

check its periodicity on the torus. It suffices to check that φ is a 2π-periodic function along

the Z, X, and X̃ cycles. The transition function around the Z cycle is

gZ(x, y, z) = φ(x, y, z + `z)− φ(x, y, z) = 2π

[∑
α

W x
Z αΘP(x, xα, `

eff
x ) +

∑
β

W y
Z βΘP(y, yβ, `

eff
y )

]
(5.4)

The transition function around the X cycle is

gX(x, y, z) = φ(x+m`eff
x , y, z)− φ(x, y, z) = 2π

∑
γ

W z
X γΘ

P(z, zγ, `z) . (5.5)

The transition function around the X̃ cycle is

gX̃(x, y, z) = φ(x+ k`eff
x , y + `eff

y , z)− φ(x, y, z) = 2π
∑
γ

W z
X̃ γ

ΘP(z, zγ, `z) . (5.6)

Indeed, all these transition functions are 2πZ valued. Using (5.2), one finds that the cocycle

conditions are satisfied.

Combining with the winding configurations in Section 3.2, we have 2(Leff
x +Leff

y +Lz)− 3

integer winding charges and one Zm phase in 3 + 1 dimensions on a lattice.

6 3 + 1-dimensional ZN tensor gauge theory

Let us now consider the ZN tensor gauge theory of [12], the continuum limit of the X-cube

model [5], on the twisted torus. We twist in the xy-plane, as in Section 2, but we do not

twist in the xz-plane or yz-plane.

6.1 φ− A theory

We start with the Higgs Lagrangian using φ and A [12]:

L = − 1

2(2π)

∑
i 6=j

Êij(∂i∂jφ−NAij)−
1

2π
B̂(∂0φ−NA0) . (6.1)

The fields Êij in the 3′ and B̂ in the 1 serve as Lagrange multipliers. Their coefficients are

set such that Êij and B̂ are standardly normalized field strengths of a dual theory. The U(1)
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gauge transformation acts on the fields via

A0 ∼ A0 + ∂0α , Aij ∼ Aij + ∂i∂jα , φ ∼ φ+Nα , (6.2)

with 2π-periodic φ and α, as in Section 5.

The equations of motion are given by

∂i∂jφ−NAij = 0 ,

∂0φ−NA0 = 0 ,

Êij = B̂ = 0 ,

(6.3)

and they imply the vanishing of the gauge-invariant field strengths of A:

Eij = ∂0Aij − ∂i∂jA0 ,

B[ij]k = ∂iAjk − ∂jAik .
(6.4)

We will sometimes also use Bi(jk) ≡ B[ij]k +B[ik]j.

Using the equations of motion (6.3), we can solve all the other fields in terms of φ, and

the solution space reduces to {
φ
}
/ φ ∼ φ+Nα . (6.5)

Then, all the φ configurations can be gauged to a linear combination of the winding modes

(3.28), (5.3). In these linear combinations the coefficients are integers valued in {0, ..., N−1}.

For the purpose of finding the ground state degeneracy, we place the system on a lattice.

From this point on, the analysis of these winding modes is similar to [12] if we replace Lx, Ly
by Leff

x , L
eff
y . These winding modes are labeled by 2Leff

x + 2Leff
y + 2Lz − 3 integers valued

in {0, ..., N − 1}, plus one Zgcd(N,M) phase as in Section 4.2. Therefore, the ground state

degeneracy is

N2Leff
x +2Leff

y +2Lz−3gcd(N,M) . (6.6)

Alternatively, we can compute the ground state degeneracy by choosing a trivialization

where the gauge fields are trivial and all the nontrivial information is in the transition

functions. This proceeds along the same lines as in Section 4.2, and we again arrive at the

same result (6.6).
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6.2 Comments on the U(1) Â theory

In the previous subsection we computed the ground state degeneracy of the ZN X-cube model

using one of the continuum Lagrangians in [12]. Below we will reproduce the same result

using the other dual Lagrangians of the X-cube model in that reference. These presentations

involve an exotic gauge field Â. Before we discuss these other presentations, we first comment

on some new features of the U(1) gauge theory of Â on a twisted torus. We refer the readers

to [11] for detailed discussion of this gauge theory on an untwisted torus.

The temporal components Â
i(jk)
0 and spatial components Âij are in the 2 and 3′ of the

spatial S4 rotation symmetry. They are subject to the gauge transformations

Â
i(jk)
0 ∼ Â

i(jk)
0 + ∂0α̂

i(jk) ,

Âij ∼ Âij + ∂kα̂
k(ij) ,

(6.7)

where α̂k(ij) is 2π-periodic and transforms in the 2 of S4. The electric and magnetic fields

for Â are
Êij = ∂0Â

ij − ∂kÂk(ij)
0 ,

B̂ =
1

2

∑
i 6=j

∂i∂jÂ
ij .

(6.8)

Similar to Section 3.1, we start with gauge fields on the covering space R3. (We limit

ourselves to static configurations.) The identification across a cycle C should involve the

circle-valued transition function of the form (6.7):

Âij(x+ Cx, y + Cy, z + Cz) = Âij(x, y, z) + ∂kγ̂
k(ij)
C (x, y, z) (6.9)

where (Cx, Cy, Cz) is a vector on a covering space corresponding to the cycle C. Since they

transform in the 2 of the S4 spatial rotation symmetry, the transition functions are con-

strained by ei(γ̂
x(yz)
C +γ̂

y(zx)
C +γ̂

z(xy)
C ) = 1.

Complex matter fields Φ̂i(jk) with charge J satisfy Φ̂x(yz)Φ̂y(zx)Φ̂z(xy) = 1. They transform

under (6.7) as

Φ̂i(jk) ∼ eiJα̂
i(jk)

Φ̂i(jk) (6.10)

and under (6.9) as

Φ̂i(jk)(x+ Cx, y + Cy, z + Cz) = eiJγ̂
i(jk)
C (x,y,z)Φ̂i(jk)(x, y, z) . (6.11)
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The composition of cycles C = A+ B leads to the cocycle condition:

exp
[
iγ̂
i(jk)
B (x, y, z) + iγ̂

i(jk)
A (x+ Bx, y + By, z + Bz)

]
= exp

[
iγ̂
i(jk)
A (x, y, z) + iγ̂

i(jk)
B (x+Ax, y +Ay, z +Az)

]
.

(6.12)

Next, we identify configurations with different transition functions that are related by

certain transformations. Specifically, for any three circle-valued functions eiβ̂
i(jk)

satisfying

ei(β̂
x(yz)+β̂y(zx)+β̂z(xy)) = 1, we identify

exp[iγ̂
i(jk)
C (x, y, z)] ∼ exp

[
iγ̂
i(jk)
C (x, y, z) + iβ̂i(jk)(x+ Cx, y + Cy, z + Cz)− iβ̂i(jk)(x, y, z)

]
,

Âij(x, y, z) ∼ Âij(x, y, z) + ∂kβ̂
k(ij)(x, y, z)

Φ̂i(jk)(x, y, z) ∼ eiJβ̂
i(jk)(x,y,z)Φ̂i(jk)(x, y, z) .

(6.13)

If eiβ̂
i(jk)

is single-valued, then this is a gauge transformation and it does not change the

transition functions. Otherwise, it relates different trivializations of the same configuration.

The configurations on our three-torus are characterized by the circle-valued transition

functions eiγ̂
i(jk)
C (x,y,z) subject to the cocycle conditions (6.12) modulo the identifications

(6.13).

Restrict to flat gauge fields

We will be particularly interested in configurations with B̂ = 0. For such configurations,

we can further set locally Âij = 0 by gauge transformations, and all the information is then

contained in the transition functions.

Since Âij = 0, the transition functions must obey

∂kγ̂
k(ij)
C = 0 (6.14)

for every C. Using ei(γ̂
x(yz)
C +γ̂

y(zx)
C +γ̂

z(xy)
C ) = 1, we find that the transition functions factorize:

eiγ̂
x(yz)
C = exp [if yC (y) + if zC (z)] ,

eiγ̂
y(zx)
C = exp [ifxC (x)− if zC (z)] ,

eiγ̂
z(xy)
C = exp [−ifxC (x)− if yC (y)] .

(6.15)
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This parametrization has a zero mode ambiguity

fxC (x) ∼ fxC (x) + cC, f yC (y) ∼ f yC (y)− cC, f zC (z) ∼ f zC (z) + cC . (6.16)

We will soon discuss the periodicities of these functions f iC(x
i).

We will choose eiγ̂
i(jk)
X , eiγ̂

i(jk)

X̃ , eiγ̂
i(jk)
Z associated with the X, X̃, Z cycles as our basis for

the transition functions, while the others (including the one associated with the Y cycle) are

determined in terms of them. We will use the zero mode ambiguity (6.16) to set, eif
y
X(0) =

eif
x
X̃

(0) = eif
x
Z(0) = 1.

As discussed above, not all values of eiγ̂
i(jk)
C are distinct, and we can relate them using

eiβ̂
i(jk)

. In order to preserve Â = 0, eiβ̂
i(jk)

should factorize into three functions of one variable

eiβ̂
x(yz)

= eiF
y(y)+iF z(z) ,

eiβ̂
y(zx)

= eiF
x(x)−iF z(z) ,

eiβ̂
z(xy)

= e−iF
x(x)−iF y(y) .

(6.17)

This allows us to set

eif
x
X(x) = eif

y

X̃
(y) = eif

z
Z(z) = 1 (6.18)

and then the residual freedom in (6.17) is with functions satisfying

eiF
x(x+m`eff

x ) = eiF
x(x) ,

eiF
y(y+`eff

y ) = eiF
y(y) ,

eiF
z(z+`z) = eiF

z(z) .

(6.19)

We are then left with six functions of one variable, eif
y
X(y), eif

z
X(z), eif

x
X̃

(x), eif
z
X̃

(z), eif
x
Z(x),

and eif
y
Z(y), satisfying eif

y
X(0) = eif

x
X̃

(0) = eif
x
Z(0) = 1.

We now discuss the constraints on these six functions from the cocycle conditions (6.12)

for the {X,Z}, {X̃, Z}, and {X, X̃} cycles. They constrain the functions to satisfy

eif
y
X(y+`eff

y ) = eif
y
X(y) , eif

z
X(z+`z) = eif

z
X(z) , eif

x
X̃

(x+m`eff
x ) = eif

x
X̃

(x) ,

eif
x
Z(x)+ifyZ(y) = eif̃

x
Z(x)+if̃yZ(y)+2πi r

m(ΘP(x,0,`eff
x )−kΘP(y,0,`eff

y )) ,

eif
z
X̃

(z) = e−2πi kr
m

ΘP(z,0,`z)+if̃z
X̃

(z) ,

(6.20)
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where
eif̃

x
Z(x+`eff

x ) = eif̃
x
Z(x) ,

eif̃
y
Z(y+`eff

y ) = eif̃
y
Z(y) ,

eif̃
z
X̃

(z+`z) = eif̃
z
X̃

(z) .

(6.21)

Here r = 0, 1, · · · ,m−1 is an integer that arises from an argument similar to that of Section

3.2.1.

Finally, we can use the residual freedom in eiβ̂
i(jk)

in (6.19) to further restrict the period-

icity of eif
x
X̃

(x) to `eff
x :

eif
x
X̃

(x+`eff
x ) = eif

x
X̃

(x) . (6.22)

To summarize, the B̂ = 0 configurations can be described by Â = 0 and transition

functions that are characterized by six circle-valued functions of one variable eif
y
X(y), eif

z
X(z),

eif
x
X̃

(x), eif̃
z
X̃

(z), eif̃
x
Z(x), and eif̃

y
Z(y), satisfying eif

y
X(0) = eif

x
X̃

(0) = eif
x
Z(0) = 1, and with period-

icities `eff
x , `eff

y , or `z, as well as a Zm-valued integer r. These functions are physical and they

contribute to the holonomies.

On a lattice, these lead to 2(Leff
x +Leff

y +Lz)− 3 distinct U(1) phases and one ZM -valued

integer. (Recall that we label the lattice quantities by upper case letters and their continuum

counterparts by lower case letters.)

The main novelty on a twisted torus is the m configurations labeled by r. Quantum

mechanically, most of these configurations acquire infinite energies [11]. However, these m

degenerate states remain zero-energy states.

Similar to the discussion in Section 3.3, the 3 + 1-dimensional φ-theory also has m de-

generate ground states. This provides another check of the duality derived in [11] between

the pure U(1) gauge theory of Â and the φ-theory.

6.3 φ̂− Â theory

We now proceed to compute the number of ground states from the perspective of a different

Higgs Lagrangian using a circle-valued field φ̂i(jk) in the 2 of S4 and gauge fields (Â
i(jk)
0 , Âij)

in the (2,3′) of S4 [11, 12]. In comparing with the discussion around (6.10), Φ̂i(jk) = eiφ̂
i(jk)

with charge J = N . These fields are subject to the gauge transformation

Â
i(jk)
0 ∼ Â

i(jk)
0 + ∂0α̂

i(jk) ,

Âij ∼ Âij + ∂kα̂
k(ij) ,

φ̂k(ij) ∼ φ̂k(ij) +Nα̂k(ij)

(6.23)
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where φ̂k(ij) and α̂k(ij) are 2π-periodic and transform in the 2 of S4, as in Section 5. The

Lagrangian is:

L =
1

2(2π)

∑
i 6=j

Eij

(
∂kφ̂

k(ij) −NÂij
)
− 1

6(2π)

∑
i 6=j 6=k

Bk(ij)

(
∂0φ̂

k(ij) −NÂk(ij)
0

)
. (6.24)

We can choose the unitary gauge eiφ̂
i(jk)

= 1, and then the equation of motion sets the

B̂ = 0. Following the discussion in Section 6.2, we can choose Â = 0, and then all the

information is contained in the transition functions eiγ̂
i(jk)
C . In order to preserve the gauge

choice eiφ̂
i(jk)

= 1, they should be ZN phases. These transition functions are parameterized by

six ZN -valued functions eif
y
X(y), eif

z
X(z), eif

x
X̃

(x), eif̃
z
X̃

(z), eif̃
x
Z(x), and eif̃

y
Z(y), satisfying eif

y
X(0) =

eif
x
X̃

(0) = eif
x
Z(0) = 1 with periodicities `eff

x , `
eff
y , or `z, together with a Zgcd(N,m)-valued integer.

On a lattice, this leads to the ground state degeneracy (6.6).

Of special importance are the gcd(N,m) states characterized by

eiφ̂
i(jk)

= 1, Â
i(jk)
0 = Âij = 0 , eiγ̂

i(jk)
X = 1 ,

eiγ̂
x(yz)
Z = e

2π
gcd(N,m)

krΘP(y,0,`eff
y ) , eiγ̂

y(zx)
Z = e−

2π
gcd(N,m)

rΘP(x,0,`eff
x ) ,

eiγ̂
z(xy)
Z = e

2π
gcd(N,m)

r(ΘP(x,0,`eff
x )−kΘP(y,0,`eff

y )) ,

eiγ̂
x(yz)

X̃ = e−iγ̂
y(zx)

X̃ = e
2π

gcd(N,m)
krΘP(z,0,`z) , eiγ̂

z(xy)

X̃ = 1 ,

(6.25)

where r = 0, 1, · · · , gcd(N,m)− 1.

6.4 BF -type ZN tensor gauge theory

Now we consider a dual presentation of the ZN tensor gauge theory [6,12], which will permit

a different computation of the ground state degeneracy. This presentation involves gauge

fields (A0, Aij) in the (1,3′) of S4, and (Â
i(jk)
0 , Âij) in the (2,3′) of S4. These fields are

subject to the gauge transformations (6.2) and (6.7), and their field strengths are (6.4) and

(6.8).

The BF -type Lagrangian in this presentation is:

L =
N

2π

(
1

2

∑
i 6=j

AijÊ
ij + A0B̂

)
. (6.26)

As in [12], we work in temporal gauge, setting A0 = 0 and Â
i(jk)
0 = 0.

The analysis of the terms involving Axy, Â
xy proceeds in a similar way as in Section 4.3.
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The quantization of the electric modes for Axy, Â
xy leads to the bulk part of the spectrum,

which becomes NLeff
x +Leff

y −1 states on a lattice. In addition, there are gcd(N,m) states (6.25)

coming from the transition functions of the Â gauge theory. On a lattice, we have in to-

tal NLeff
x +Leff

y −1gcd(N,M) states. We will henceforth focus on the modes associated with

Azx, Ayz, Â
zx, Âyz.

The solutions to the Gauss law constraints modulo gauge transformations are

Azx =
1

`x
f zzx(t, z) +

1

`z
fxzx(t, x) ,

Ayz =
1

`z
f yyz(t, y) +

1

`y
f zyz(t, z) ,

Âzx =
1

`y
f̂ zxz (t, z) +

1

`y
f̂ zxx (t, x) ,

Âyz =
1

`x
f̂ yzx (t, x) +

1

`x
f̂ yzz (t, z) .

(6.27)

These functions are periodic in x ∼ x+ `eff
x , y ∼ y + `eff

y , and z ∼ z + `z.

The functions f and f̂ are subject to a redundancy due to the zero modes [12]. To remove

the redundancy of f , we define the following combinations:

f̄ iij(t, x
i) = f iij(t, x

i) +
1

`i

∮
dxjf jij(t, x

j) . (6.28)

They are subject to the constraint∮
dxif̄ iij(t, x

i) =

∮
dxj f̄ jij(t, x

j) . (6.29)

We will use these constraints to solve for the modes f̄ zzx(t, z = 0), f̄ zyz(t, z = 0) in terms

of the others. Correspondingly, we use the redundancy to set their conjugate variables

f̂ zxz (t, z = 0), f̂ yzz (t, z = 0) to zero.

Let us now discuss the periodicities of the modes f . Using the gauge transformations

α of the form (3.28), (5.3), we find that different components of f̄ iij have correlated, delta

function periodicities. To diagonalize these periodicities, we define

f̄X̃(t, z) =
1

m
f̄ zyz(t, z) +

k

m
f̄ zzx(t, z) . (6.30)

Then the modes f̄ zzx(t, z), f̄X̃(t, z), f̄xzx(t, x), f̄ yyz(t, y) have independent periodicities. For ex-

ample,

f̄X̃(t, z) ∼ f̄X̃(t, z) + 2πδP(z, z0, `z) , z 6= 0 mod `z (6.31)
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for each z0. The other three modes have similar delta function periodicities.

We now turn to the periodicities of the modes f̂ . Their periodicities arise from the large

gauge transformations:

1

2π
α̂x(yz) =

(
x

`x
− 〈X̃, Y 〉 y

`y

)
W y
x (y) +

x

`x
W z
x (z)− y

`y
W z
y (z)− z

`z
W y
z (y),

1

2π
α̂y(zx) =

y

`y
W z
y (z) +

(
y

`y
− 〈Ỹ , X〉 x

`x

)
W x
y (x)− z

`z
W x
z (x)− x

`x
W z
x (z) ,

1

2π
α̂z(xy) =

z

`z
[W x

z (x) +W y
z (y)]−

(
y

`y
− 〈Ỹ , X〉 x

`x

)
W x
y (x)−

(
x

`x
− 〈X̃, Y 〉 y

`y

)
W y
x (y) .

(6.32)

where W i
j (x

i) ∈ Z. We will motivate these gauge transformations in Appendix E where we

discuss the winding configurations of a classical field in the 2 on our twisted torus.

These gauge transformations correlate the integer-valued periodicities of different com-

ponents of f̂ iji . To diagonalize these periodicities, we define

f̂ X̃(t, z) ≡ 1

m
f̂ zxz (t, z)− k

m
f̂ yzz (t, z) . (6.33)

Then the modes f̂ yzz (t, z), f̂ X̃(t, z), f̂ zxx (t, x), f̂ yzy (t, y) have independent, pointwise 2πZ peri-

odicities.

Written in this basis of f̄ and f̂ with independent periodicities, the Lagrangian is diago-

nalized:
N

2π

∫ `eff
x

0

dxf̂ zxx (t, x)∂0f̄
x
zx(t, x) +

N

2π

∫ `eff
y

0

dyf̂ yzy (t, y)∂0f̄
y
yz(t, y)

+
N

2π

∫ `z

0+

dz
(
f̂ X̃(t, z)∂0f̄

z
zx(t, z) + f̂ yzz (t, z)∂0f̄X̃(t, z)

)
.

(6.34)

Recall that we have removed the modes at z = 0 using the constraint (6.29) of f and the

redundancy of f̂ . Quantizing these modes on a lattice, we obtain a Hilbert space with

NLeff
x +Leff

y +2Lz−2 zero-energy states. Combining with the contributions from Axy, Â
xy, we

reproduce the ground state degeneracy in (6.6).

6.5 Global symmetry operators

We can compute the ground state degeneracy in yet another way, using the ZN symmetry

operators of the theory. As we will see, the twist leads to various novelties that are not

present when the system is placed on the untwisted torus. Even though, as in [12], we will

use continuum notation, this approach is easily related to the corresponding lattice analysis
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using logical operators. In particular, it mirrors the recent lattice discussion in [23].

Let us start with the global symmetry operators depending on Axy and its conjugate

variable Âxy. This part of the analysis proceeds as in Section 4.4, with eiφ
xy

there replaced

by ei
∮
dzÂxy . We find NLeff

x +Leff
y −1gcd(N,M) states.

We now turn to the remaining gauge-invariant operators. The operators built of Azx, Ayz
are the Wilson strips:

W(x)(x1, x2, Z) = exp

[
i

∫ x2

x1

dx

∮
dzAzx

]
,

W(y)(y1, y2, Z) = exp

[
i

∫ y2

y1

dy

∮
dzAyz

]
.

(6.35)

and

W(z)(z1, z2, X) = exp

[
i

∫ z2

z1

dz

∮
dxAzx

]
,

W(z)(z1, z2, X̃) = exp

[
i

∫ z2

z1

dz

∮
X̃

(dxAzx + dy Ayz)

]
.

(6.36)

(Here, for simplicity, we took 0 < x2 − x1 ≤ `eff
x , 0 < y2 − y1 ≤ `eff

y , and 0 < z2 − z1 ≤ `z.)

More generally, we can study Wilson strip operators W(z)(z1, z2, C) associated with any curve

C on the twisted xy-torus. They depend only on the homology class of C and not on the

explicit representative. Since {X, X̃} form a basis of Γ = H1(T 2,Z), every Wilson strip

W(z)(z1, z2, C) can be generated by (6.36).

The Wilson strips are subject to two constraints, which come from viewing the same

integral in two different ways:

W(x)(0, `
eff
x , Z)m = W(z)(0, `z, X) ,

W(y)(0, `
eff
y , Z)W(x)(0, `

eff
x , Z)k = W(z)(0, `z, X̃) .

(6.37)

Next, the gauge-invariant operators of Âzx, Âyz involve the Wilson lines along the X and

the Y cycles:

Ŵ
x
(y, z) = exp

[
i

∮
dxÂyz

]
,

Ŵ
y
(x, z) = exp

[
i

∮
dyÂzx

]
.

(6.38)

The vanishing of the magnetic field of Â implies that the ZN symmetry operator Ŵ
x
(y, z)

factorizes [12]:

Ŵ
x
(y, z) = Ŵ

x

y(y)Ŵ
x

z(z) (6.39)
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and similarly in the other directions

There is one important novelty here, which was not present in the case of the untwisted

torus: the Wilson line operators Ŵ
x
,Ŵ

y
,Ŵ

z
do not generate all the gauge invariant oper-

ators constructed out of Â. Consider the Wilson strip operators of Â [12]:6

P̂(z1, z2, C) = exp

[
i

∫ z2

z1

dz

∮
C

(
∂zÂ

yzdx− ∂zÂzxdy − ∂yÂxydy
)]

. (6.40)

Since the magnetic field of Â vanishes, this strip operator P̂ depends only on the homology

class [C] of the curve C on the twisted xy-torus, and not on its representative.

Let us first consider the case when [C] is a cycle of Γ̂, i.e., the sublattice of Γ generated by

the X and Y cycles. That is, [C] = nxX + nyY with nx, ny ∈ Z. In this case we can choose

the representative C in (6.40) to first go around the X cycle nx times, and then around the

Y cycle ny times. For this choice of C, the term ∂yÂ
xy in (6.40) does not contribute to the

integral, and the strip operator can be written in terms of the Wilson lines:

P̂(z1, z2, C) = Ŵ
x
(y, z2)nxŴ

y
(x, z2)−nyŴ

x
(y, z1)−nxŴ

y
(x, z1)ny . (6.41)

Note that the negative sign in the exponent in (6.40) leads to negative signs in the exponents

here. It is important that because of (6.39) this P̂(z1, z2, C) is independent of x and y.

However, if [C] is not a cycle in Γ̂, then the strip operator P̂(z1, z2, C) is not generated

by the Wilson lines. We should then include these operators as independent ZN operators

in addition to (6.38). Note that on an untwisted torus, Γ̂ = Γ and therefore it suffices to

study the Wilson lines Ŵ
x
,Ŵ

y
,Ŵ

z
.

We conclude that the gauge-invariant operator built out of Azx, Ayz, Â
zx, Âyz are gener-

ated by (6.35), (6.36), (6.38), and (6.40). We can group these operators as follows:

W(x)(x, x+ a, Z) , Ŵ
y
(x, z = 0) , 0 ≤ x < `eff

x ,

W(y)(y, y + a, Z) , Ŵ
x
(y, z = 0) , 0 ≤ y < `eff

y ,

W(z)(z, z + a, X̃) , P̂(0, z,X) , 0 < z < `z ,

W(z)(z, z + a,X) , P̂(0, z, X̃)−1 , 0 < z < `z .

(6.42)

Here a is an infinitesimal UV regulator, e.g., lattice spacing. Using (6.37), the operators

W(z)(z, z + a, X̃) and W(z)(z, z + a, X̃) at z = 0 can be solved in terms of W(x) and W(y)

and therefore they are not included as independent operators in (6.42). The operators Ŵ
x

6Both the Wilson lines (6.38) and the Wilson strip (6.40) can be extended in time to become defects in
the ZN theory. They are the continuum representations of the probe limits of a single lineon and a dipole
of lineons (which is a planon) of the X-cube model, respectively. See [12] for more details.
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and Ŵ
y

at z > 0 can be generated by those at z = 0 and P̂(0, z,X), P̂(0, z, X̃)−1.

The pair of operators at the same point in space in each line in (6.42) form a ZN clock

and shift algebra, and operators at different points in space or on different lines in (6.42)

commute with each other. On a lattice, this gives rise to Leff
x + Leff

y + 2Lz − 2 copies of the

ZN clock and shift algebra. The dimension of the minimal representation of this algebra is

NLeff
x +Leff

y +2Lz−2. Combining with the contributions from the operators of Axy, Â
xy, we have

reproduced the ground state degeneracy (6.6).
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A 2 + 1 dimensional plaquette Ising model

In this appendix, we compute the ground state degeneracy of the 2 + 1-dimensional ZN
plaquette Ising model on our twisted lattice. We will assume the absence of the transverse

field and that we are in the broken phase. The low energy limit of this lattice model is the

ZN tensor gauge theory of [10].

We will analyze the model in the Hamiltonian formalism. On every site (x̂, ŷ) there is a

pair of ZN clock and shift operators U(x̂, ŷ), V (x̂, ŷ) that obey V (x̂, ŷ)U(x̂, ŷ) = e2πi/NU(x̂, ŷ)V (x̂, ŷ)

and U(x̂, ŷ)N = V (x̂, ŷ)N = 1. The Hamiltonian is

H = −β
∑
(x̂,ŷ)

V (x̂, ŷ)V (x̂+ 1, ŷ)−1V (x̂, ŷ + 1)−1V (x̂+ 1, ŷ + 1) + c.c. . (A.1)
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Since there is no U in the Hamiltonian, we can diagonalize the Hilbert space at every site

using V .

Let the eigenvalue of V (x̂, ŷ) be s(x̂, ŷ), which is also a ZN phase, i.e., s(x̂, ŷ)N = 1. The

translations along the X and X̃ cycles imply that (see (2.31))

X : s
(
x̂+MLeff

x , ŷ
)

= s(x̂, ŷ) ,

X̃ : s
(
x̂+KLeff

x , ŷ + Leff
y

)
= s(x̂, ŷ) .

(A.2)

Let us find the ground states. We need to find {s(x̂, ŷ)} subject to the constraint:

s(x̂, ŷ) s(x̂+ 1, ŷ)−1 s(x̂, ŷ + 1)−1 s(x̂+ 1, ŷ + 1) = 1 , (A.3)

for all lattice sites (x̂, ŷ). This is a lattice version of the analysis of eiφ
xy

in Section 4.4. We

will follow steps similar to the steps there and will reproduce the answer in the continuum

(4.8).

Locally, (A.3) is solved by

s(x̂, ŷ) = s(1, 1)−1s(x̂, 1)s(1, ŷ) , (A.4)

thus reducing the number of independent variables to Lx + Leff
y − 1. Next, we impose the

boundary conditions (A.2):

s
(
x̂+MLeff

x , 1
)

= s(x̂, 1) ,

s
(
x̂+KLeff

x , 1
)
s
(
1 , ŷ + Leff

y

)
= s(x̂, 1)s(1, ŷ) .

(A.5)

This leads to
s(x̂+ Leff

x , 1) = ηs(x̂, 1)

s(1, ŷ + Leff
y ) = η−Ks(1, ŷ)

(A.6)

with a constant η satisfying ηM = ηN = 1 and therefore ηgcd(N,M) = 1.

We conclude that the independent solutions are labeled by Leff
x +Leff

y −1 integers modulo

N from s(x̂, 1) and s(1, ŷ) and an integer modulo gcd(N,M) from η. So we end up with

NLeff
x +Leff

y −1 gcd(N,M) (A.7)

solutions.
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B Invariants of the transition functions for φ on a two-

torus

In this appendix, we discuss the invariants for the transition functions gC(x, y) under the

identification (3.13). Our goal is to show that all the invariants are given by the U(1) charges

Qx(x), Qy(y) in (3.14) (subject to (3.15)), and one integer modulo m charge (3.16).

Starting with a generic φ configuration, we can always subtract from it a standard con-

figuration with the same U(1) charges. The resulting φ configuration has vanishing U(1)

charges. Therefore, it is enough to consider such configurations. We are going to show that

for them the only remaining invariant is a Zm charge. This means that we start with a

configuration with
gX = 2πnxX(x) ,

gY = 2πnyY (y) ,
(B.1)

and nxy = 0. Since there is also invariant information in gX̃ , we should take it into account.

(3.9) leads to

nyY (y) =
m−1∑
I=0

ny
X̃

(y + I`eff
y )−N ,

0 = N −
k∑

J=1

nxX(x− Jm`eff
x ) +

m∑
I=1

nx
X̃

(x− Ik`eff
x ) ,

(B.2)

for some integer N . The cocycle condition (3.10) leads to

nx
X̃

(x+m`eff
x )− nx

X̃
(x) = nxX(x+ k`eff

x )− nxX(x) . (B.3)

The freedom in splitting the zero mode between nx
X̃

(x) and ny
X̃

(y) leads to the following

identification
nx
X̃

(x) ∼ nx
X̃

(x) +NX̃ ,

ny
X̃

(y) ∼ ny
X̃

(y)−NX̃ ,

N ∼ N −mNX̃ .

(B.4)

Therefore, only

exp(2πiN /m) = exp

[
−2πi

m

m∑
I=1

nx
X̃

(x− Ik`eff
x ) +

2πi

m

k∑
J=1

nxX(x− Jm`eff
x )

]

= exp

[
−2πi

m

m−1∑
I=0

nx
X̃

(x+ I`eff
x ) +

2πi

m

k−1∑
J=0

nxX(x+ J`eff
x )

] (B.5)

48



is meaningful. In the second line, we have used (B.3). Indeed, this agrees with the Zm charge

in (3.16) in the special case when all the U(1) charges Qx(x), Qy(y) vanish.

To complete the counting, we use the same strategy as above. We subtract from our

configuration a standard configuration with the same nonzero Zm charge and find a config-

uration with vanishing Zm charge. We are going to show that in this case there is no other

invariant information.

Using (3.13), we can choose nx
X̃

(x) = ny
X̃

(y) = 0. Then (B.2) implies nyY (y) = 0 and

0 =
k∑

J=1

nxX(x− Jm`eff
x ) . (B.6)

The only remaining transition function nxX(x) has periodicity nxX(x + k`eff
x ) = nxX(x) and is

subject to a residual identification:

nxX(x) ∼ nxX(x) + nx(x+m`eff
x )− nx(x) , (B.7)

where nx(x) satisfies

nx(x+ k`eff
x ) = nx(x) . (B.8)

Finally, we show that the remaining transition function nxX(x) can be set to zero as

follows. Since gcd(m, k) = 1, we can parameterize every point x as x = x̃− Rm`eff
x + Pk`eff

x

for some 0 ≤ x̃ < `eff
x and R,P ∈ Z. This parametrization of x in terms of (x̃, R, P ) has the

ambiguity (x̃, R, P ) ∼ (x̃, R+ k, P −m). Using this parametrization, we choose nx(x) to be

nx(x) = −
R∑
I=1

nxX(x̃− Im`eff
x ) . (B.9)

The condition (B.6) ensures that this nx(x) is invariant under the above ambiguity and

has periodicity k`eff
x . This residual identification then removes all the remaining transition

functions.

To conclude, we have shown that all the invariant information in the transition functions

is captured by Qx(x), Qy(y) in (3.14) and one Zm charge (3.16).

C Additional operators in the φ-theory

In this appendix, we discuss some additional operators in the φ theory. These include the

U(1) charges Qx(x), Qy(y) (3.14) and the Zm charge (3.16).
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We start with a first attempt. We want to use the local winding current 1
2π
∂x∂yφ to

construct an operator by integrating it against a certain profile function φ0(x, y):

“ exp

[
i

2π

∫
T 2

φ0(x, y)∂x∂yφ(x, y)

]
” (C.1)

Here φ0(x, y) is another classical background configuration, which is distinct from our field

φ(x, y). (For the purpose of this discussion, our field φ(x, y) is also a classical field.) Both

φ0 and φ obey the rules in Section 3.

This definition, however, is not precise. First, since both φ0 and φ are not real-valued

functions on the torus, the integral generally depends on the choice of the fundamental

domain for the torus. Second, this expression is not invariant under the gauge transformation

(3.4) for φ0.

In the rest of this appendix, we will give a precise definition of this operator that does not

suffer from the issues above. See [34] for a closely related discussion in other more familiar

models.

For simplicity, we will set `eff
x = `eff

y = 1 in this appendix.

We claim that the more precise version of the operator (C.1) is

U(φ0) = exp
[ i

2π

∫ y∗+1

y∗

dy

∫ x̃∗+ky+m

x̃∗+ky

dx φ0(x, y)∂x∂yφ(x, y)

− i

2π

∫ x̃∗+ky∗+m

x̃∗+ky∗

dx g0
X̃

(x, y∗)∂xφ(x, y∗)

− i

2π

∫ y∗+1

y∗

ds
[
g0
X(x̃∗ + ks, s)∂yφ(x̃∗ + ks, s) + k∂xg

0
X(x̃∗ + ks)φ(x̃∗ + ks, s)

]
+ in0

xx̃ φ(x̃∗ + ky∗, y∗)
]

(C.2)

where x̃∗ ≡ x∗−ky∗. In the first line we have picked the fundamental domain in the covering

space to be a parallelogram with the lower left corner at (x∗, y∗). Here g0
C is the transition

function for φ0 along the cycle C and

n0
xx̃ =

1

2π

[
g0
X(x+ k, y + 1)− g0

X(x, y)
]

=
1

2π

[
g0
X̃

(x+m, y)− g0
X̃

(x, y)
]
. (C.3)

Recall that because of (3.5), ∂xg
0
X (and similarly ∂xgX) is a function of one variable.
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Alternatively, this operator can be written as

U(φ0) = exp
[ i

2π

∫ y∗+1

y∗

dy

∫ x̃∗+ky+m

x̃∗+ky

dx φ0(x, y)∂x∂yφ(x, y)

− i

2π

∫ x̃∗+ky∗+m

x̃∗+ky∗

dx g0
X̃

(x, y∗)∂xφ(x, y∗)

+
i

2π

∫ y∗+1

y∗

ds
[
g0
X(x̃∗ + ks, s)k∂xφ(x̃∗ + ks, s) + ∂yg

0
X(s)φ(x̃∗ + ks, s)

] ]
(C.4)

In the special case of an untwisted torus, k = 0,m = 1, and this operator reduces to

U(φ0) = exp
[ i

2π

∫ x∗+1

x∗

dx

∫ y∗+1

y∗

dy φ0(x, y)∂x∂yφ(x, y)

− i

2π

∫ y∗+1

y∗

dy g0
X(x∗, y)∂yφ(x∗, y)− i

2π

∫ x∗+1

x∗

dx g0
Y (x, y∗)∂xφ(x, y∗)

+ in0
xy φ(x∗, y∗)

]
.

(C.5)

It is straightforward to check that this operator satisfies the following properties:

• It is independent of the reference point (x∗, y∗).

• It is symmetric under exchange of φ and φ0.

• It is invariant under the gauge transformation of φ0:

φ0(x, y) ∼ φ0(x, y) + 2πnx0(x) + 2πny0(y) ,

nx0(x) , ny0(y) ∈ Z .
(C.6)

• Since this operator is symmetric in φ↔ φ0, it is also invariant under the gauge trans-

formation of φ:
φ(x, y) ∼ φ(x, y) + 2πnx(x) + 2πny(y) ,

nx(x) , ny(y) ∈ Z .
(C.7)

• If ∂x∂yφ0 = 0, the operator U(φ0) depends only on the transition functions of φ, where

we have used the second property above. Therefore, it is a conserved operator in the

φ-theory.

When proving some of these statements, we drop integers of the form
∫
dxg(x)∂xn(x) for

some integer-valued functions g(x), n(x) in the exponent of U(φ0).
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We are now ready to discuss the most general conserved winding charges, which are U(φ0)

with ∂x∂yφ0 = 0. As discussed in Section 3.2.1, the most general such φ0 takes the form

φ0 =
2πr

m

(
ΘP(x, 0, 1)− kΘP(y, 0, 1)

)
+ fx(x) + f y(y) (C.8)

with r an integer modulo m and f i(xi + 1) = f i(xi).

The most general winding charge is therefore

U(φ0) = exp
[
− ir

m

m−1∑
I=0

gX̃(I, 0) +
ir

m

k−1∑
J=0

gX(J, 0)
]

× exp

[
i

∮
dxfx(x)Qx(x) + i

∮
dyf y(y)Qy(y)

]
.

(C.9)

where we have set x∗ = y∗ = 0 for simplicity. We have thus unified the U(1) charges (3.14)

and the Zm charge (3.16) into a single general winding operator U(φ0).

The analogous operators associated with the momentum symmetry of φ can be described

using the dual field φxy. (See [10] for details on the self-duality of the φ-theory.) More

explicitly, these operators are given by (C.2) with φ replaced by φxy. They shift φ by φ0.

D Wilson operators of the ZN theory

In this appendix, we construct the most general gauge-invariant Wilson operator in the φ−A
presentation of the 2 + 1-dimensional ZN gauge theory on a twisted torus. For simplicity,

we will set `eff
x = `eff

y = 1 in this appendix.

We follow a reasoning similar to that in Appendix C. We start with a background profile

circle-valued function φ0(x, y) and attempt to define

“ exp

[
iN

2π

∫
T 2

φ0(x, y)Axy(x, y)

]
” (D.1)

However, such an expression is generally not gauge-invariant, and depends on the choice of

the fundamental domain of the torus.

To remedy these issues, we define the following operator in a similar spirit as in Appendix
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C:

U(φ0) = exp
[iN

2π

∫ y∗+1

y∗

dy

∫ x̃∗+ky+m

x̃∗+ky

dx φ0(x, y)Axy(x, y)

− i

2π

∫ x̃∗+ky∗+m

x̃∗+ky∗

dx g0
X̃

(x, y∗)∂xφ(x, y∗)

− i

2π

∫ y∗+1

y∗

ds
[
g0
X(x̃∗ + ks, s)∂yφ(x̃∗ + ks, s) + k∂xg

0
X(x̃∗ + ks, s)φ(x̃∗ + ks, s)

]
+ in0

xx̃ φ(x̃∗ + ky∗, y∗)
]

(D.2)

When the equation of motion Axy = 1
N
∂x∂yφ is imposed, it becomes the operator U(φ0) in

the φ-theory (C.2). A similar calculation shows that U(φ0) is independent of the choice of

the reference point x∗, y∗. For simplicity, we will set x∗ = y∗ = 0 from now on.

It is clearly invariant under φ ∼ φ + 2πnx(x) + 2πny(y). Under a gauge transformation

φ ∼ φ+Nα,Axy ∼ Axy + ∂x∂yα, this operator picks up a factor:

exp
[iN

2π

∫ y∗+1

y∗

dy

∫ x̃∗+ky+m

x̃∗+ky

dxα(x, y)∂x∂yφ0(x, y)

− iN

2π

∫ x̃∗+ky∗+m

x̃∗+ky∗

dx gα
X̃

(x, y∗)∂xφ0(x, y∗)

− iN

2π

∫ y∗+1

y∗

ds [gαX(x̃∗ + ks, s)∂yφ0(x̃∗ + ks, s) + k∂xg
α
X(x̃∗ + ks, s)φ0(x̃∗ + ks, s)]

+ iNnαxx̃ φ0(x̃∗ + ky∗, y∗)
]

(D.3)

where gαC is the transition function and nαxx̃ is similarly defined . The condition for U(φ0) to

be gauge invariant is

∂x∂yφ0 = 0 ,
Nφ0

2π
∈ Z . (D.4)

On top of these conditions, φ0 should still have 2πZ-valued transition functions. As discussed

in Section 4.1, the most general such φ0 takes the form (4.3).

We now discuss several important examples of U(φ0):

• Consider

φ0 =
2π

N

(
ΘP(y, y1, 1)−ΘP(y, y2, 1)

)
. (D.5)

(Here, for simplicity, we assume 0 < y2− y1 ≤ 1.) This gives the Wilson strip operator
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(4.28)

W(y)(y1, y2) = exp

[
i

∫ y2

y1

dy

∮
dxAxy(x, y)

]
. (D.6)

There is a similar choice of φ0 giving the Wilson strip that is extended along the y

cycle. They generate the ZN dipole global symmetry of the ZN gauge theory.

• As another example, we can take φ0 to be:

φ0 =
2π

gcd(N,m)

(
ΘP(x, 0, 1)− kΘP(y, 0, 1)

)
. (D.7)

This leads to the Zgcd(N,m) operator in (4.29):

U = exp
[
i

N

gcd(N,m)

∫ 1

0

dy

∫ ky+m

ky

dx
(
ΘP(x, 0, 1)− kΘP(y, 0, 1)

)
Axy(x, y)

− i m

gcd(N,m)

∫ 1

0

ds ∂yφ(ks, s)
]
.

(D.8)

Note that the first integral has no support in the rectangle k − 1 < x < k, 0 < y < 1.

We have therefore unified the most general Wilson operators built from A and φ into

U(φ0) with different choices of φ0 obeying (D.4). On a lattice, we have Leff
x +Leff

y − 1 Wilson

strip operators W(i) (4.28) and one Zgcd(N,M) operator U (4.29).

E Winding configurations of φ̂

In this appendix, we place classical circle-valued fields φ̂i(jk) in the 2 of S4 on a twisted

three-torus. This, for example, is the quantum field of the φ̂-theory of [11]. In contrast to

the parallel analysis for φ in Section 5, we will see that, on a lattice, there is no new winding

charge beyond those labeled by the 2(Leff
x + Leff

y + Lz)− 3 integer winding charges.

The φ̂-theory is dual to the 3 + 1-dimensional U(1) gauge theory of A [11], where the

winding charges of φ̂ are mapped to the electric charges of A. Similar to the analysis of the

transition functions in Section 4.2, there is no new electric charge in the 3 + 1-dimensional

gauge theory of A beyond those labeled by the 2(Leff
x + Leff

y + Lz) − 3 integers. Hence, the

computation in this appendix provides another check of the above duality.

Furthermore, the gauge parameters α̂i(jk) of the gauge field Â in [11,12] are also in the 2 of

S4. The winding configurations in this appendix were used as the large gauge transformations

(6.32) in the gauge theory of Â in Section 6.4.
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We now proceed to analyze the winding charges of φ̂i(jk). The winding charges obey

∂i∂jQ
k(xi, xj) = 0 with i 6= j 6= k and can be expressed as

Qx(y, z) =
1

2π

∮
dx∂xφ̂

x(yz) = W y
x (y) +W z

x (z) ,

Qy(z, x) =
1

2π

∮
dy∂yφ̂

y(zx) = W z
y (z) +W x

y (x) ,

Qz(x, y) =
1

2π

∮
dz∂zφ̂

z(xy) = W x
z (x) +W y

z (y) .

(E.1)

where W i
j (x

i) ∈ Z. Pairwise they share a common zero mode:(
W i
k(x

i),W j
k (xj)

)
∼
(
W i
k(x

i) + 1,W j
k (xj)− 1

)
(E.2)

Since Q’s are single-valued integer operators on the torus, the discussion in Section 3.2.1

implies that W x
i (x+ `eff

x ) = W x
i (x), W y

i (y + `eff
y ) = W y

i (y), W z
i (z + `z) = W z

i (z).

However, these integers are not all independent. To see this, consider the following

combination:

∂zW
z
y (z)− 〈X̃, Y 〉∂zW z

x (z) =∂zQ
y − 〈X̃, Y 〉∂zQx

=
1

2π
∂z

∮
dy∂yφ̂

y(zx) − 〈X̃, Y 〉
2π

∂z

∮
dx∂xφ̂

x(yz) .
(E.3)

We start by showing that the last expression can be rewritten as

Q̂y(Ŷ ) ≡ 1

2π
∂z

∮
C

(
∂xφ̂

y(zx)dx+ ∂yφ̂
y(zx)dy

)
, (E.4)

where C is any curve homologous to Ŷ ≡ mX̃ = Y + 〈X̃, Y 〉X (2.9). Note that (E.4) only

depends on the homology class of the curve C, but not the explicit representative. For any

cycle S, the charge Q̂y(S) computes the derivative of the winding charges of φ̂y(zx) along S
and takes the form

Q̂y(S) =
∑
γ

nγδ
P(z, zγ, `z) , nγ ∈ Z . (E.5)

Let us choose C to be a curve that first goes around the Y cycle once and then goes

around the X cycle 〈X̃, Y 〉 times. With this choice, we can write Q̂y(Ŷ ) as

Q̂y(Ŷ ) =
1

2π

∮
C

(
∂z∂yφ̂

y(zx)dy − ∂x∂zφ̂x(yz)dx− ∂x∂zφ̂z(xy)dx
)

=
1

2π

∮
dy∂z∂yφ̂

y(zx) − 〈X̃, Y 〉
2π

∮
dx∂x∂zφ̂

x(yz)

(E.6)
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In the first line we used φ̂x(yz) + φ̂y(zx) + φ̂z(xy) = 0. In the second line we used the fact that

∂zφ̂
z(xy) is a single-valued operator, and therefore ∂x∂zφ̂

z(xy)dy does not contribute to the

integral along C, which is always aligned with the x or the y axes. We have thus shown that

∂zW
z
y (z)− 〈X̃, Y 〉∂zW z

x (z) = Q̂y(Ŷ ) = mQ̂y(X̃) . (E.7)

Therefore, from the general form of the charge Q̂y (E.5), we arrive at the constraint:

∂zW
z
y (z)− 〈X̃, Y 〉∂zW z

x (z) = m
∑
γ

Mγδ
P(z, zγ, `z) , (E.8)

for some integers Mγ ∈ Z. Using (2.13), this constraint is equivalent to

∂zW
z
x (z)− 〈Ỹ , X〉∂zW z

y (z) = m
∑
γ

M ′
γδ

P(z, zγ, `z) , (E.9)

for some integers M ′
γ ∈ Z.

We summarize that the winding charges of φ̂i(jk) on a twisted torus are parameterized

by W i
j (x

i) subject to the constraint (E.8) and the redundancy (E.2). On a lattice, we have

2(Leff
x + Leff

y + Lz)− 3 such integers.

Below we present the explicit winding configurations of φ̂i(jk) that realize all these charges.

For convenience, we will use (E.2) to gauge fix W z
x (z = 0) = W z

y (z = 0) = W x
z (x = 0) = 0

below.

The most general winding configuration is

1

2π
φ̂x(yz) =

ỹ

`x
W y
x (y) +

x

`x
W z
x (z)− y

`y
W z
y (z)− z

`z
W y
z (y),

1

2π
φ̂y(zx) =

y

`y
W z
y (z) +

x̃

`y
W x
y (x)− z

`z
W x
z (x)− x

`x
W z
x (z) ,

1

2π
φ̂z(xy) =

z

`z
[W x

z (x) +W y
z (y)]− x̃

`y
W x
y (x)− ỹ

`x
W y
x (y) .

(E.10)

where

x̃ = y − 〈Ỹ , X〉`y
`x
x ,

ỹ = x− 〈X̃, Y 〉`x
`y
y .

(E.11)

These coordinates are shifted by (x̃, ỹ)→ (x̃− 〈Ỹ , X〉`y, ỹ + `x) along the X cycle, and are

shifted by (x̃, ỹ)→ (x̃+ 〈X̃, Ỹ 〉`y, ỹ) along the X̃ cycle.
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Let us check that the transition functions are 2πZ-valued. The transition function around

the Z cycle is:

ĝ
x(yz)
Z = −2πW y

z (y) ,

ĝ
y(zx)
Z = −2πW x

z (x) ,

ĝ
z(xy)
Z = 2πW x

z (x) + 2πW y
z (y) .

(E.12)

The transition function around the X cycle is:

ĝ
x(yz)
X = 2πW y

x (y) + 2πW z
x (z)

ĝ
y(zx)
X = −2π〈Ỹ , X〉W x

y (x)− 2πW z
x (z)

ĝ
z(xy)
X = 2π〈Ỹ , X〉W x

y (x)− 2πW y
x (y) .

(E.13)

Finally, the transition function around the X̃ cycle is

ĝ
x(yz)

X̃
= 2π

〈X̃, Y 〉
m

W z
x (z)− 2π

1

m
W z
y (z)

ĝ
y(zx)

X̃
= 2π〈X̃, Ỹ 〉W x

y (x)− 2π
〈X̃, Y 〉
m

W z
x (z) + 2π

1

m
W z
y (z)

ĝ
z(xy)

X̃
= −2π〈X̃, Ỹ 〉W x

y (x)

(E.14)

In the gauge choice W z
x (z = 0) = W z

y (z = 0) = 0, (E.8) is equivalent to −〈X̃, Y 〉W z
x (z) +

W z
y (z) ∈ mZ. Hence, all these transition functions are indeed 2πZ-valued. The cocycle

conditions are trivially satisfied since all the transition functions are single-valued.
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