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The sensitivity of Density Functional Theory plus Dynamical Mean Field Theory calculations
to different constructions of the correlated orbitals is investigated via a detailed comparison of
results obtained for the quantum material NdNiO2 using different Wannier and projector methods
to define the correlation problem. Using the same interaction parameters we find that the different
methods produce different results for the orbital and band basis mass enhancements and for the
orbital occupancies, with differing implications regarding the importance of multiorbital effects and
charge transfer physics. Using interaction parameters derived from cRPA enhances the difference in
results. For the isostructural cuprate CaCuO2, the different methods give quantitatively different
mass enhancements but still result in the same qualitative physics.

I. INTRODUCTION

The quantum many body problem is both complex
and difficult. “Difficulty” refers to the combination
of the exponential growth of Hilbert space with sys-
tem size and quantum entanglement (in particular the
Fermion sign problem) which render standard methods
for dealing with large interacting problems ineffective.
“Complexity” refers to the issues involved in formulat-
ing the many-body problem, in particular defining and
computing the large number of basis functions and in-
teraction parameters required to capture the chemical
and structural effects that distinguish e.g. aluminum,
a low transition temperature superconductor well de-
scribed by conventional Migdal-Eliashberg theory, from
e.g. La2−xSrxCuO4, a high transition temperature su-
perconductor believed to have properties inconsistent
with conventional Migdal-Eliashberg theory.

Some methods, such as Density Functional Theory,
map the correlation problem onto a one body problem
with a self-consistently determined potential. While in
principle exact, these methods fail in practice for materi-
als with strong electronic correlations. Other approaches,
such as the coupled cluster theories of quantum chem-
istry [1], treat the full complexity of molecular systems
but work well only for relatively small, relatively weakly
correlated systems where the level of quantum mechan-
ical difficulty is not large. Conversely, Bethe ansatz ap-
proaches [2] provide an exact solution for model systems,
thus fully taking into account the quantum mechanical
difficulty while omitting the complexity needed to de-
scribe real materials.

A complete treatment of the full quantum many-body
problem in all its difficulty and complexity is not cur-
rently feasible. For most systems of interest, progress has
come from the combination of reducing the complexity by
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“downfolding” the full problem to a much smaller and
therefore more tractable one and managing the difficulty
via an approximate solution of the quantum many body
problem as defined in the downfolded subspace. Down-
folding typically involves the identification of a subset of
single particle states which are then used to construct the
many-particle Fock space in which the quantum many
body physics is to be solved and the projection of the
Hamiltonian into this basis. A widely studied example
of downfolding is the single band Hubbard model [3] in
which the single-electron electronic structure is approx-
imated as a one band tight binding model defined on a
simple lattice and only the onsite term in the electron-
electron interaction is retained.

Interest in downfolding has been renewed by the re-
cent discovery [4] of superconductivity in infinite layer
rare earth nickelates such as hole doped NdNiO2. This
family of materials has been of long-standing interest as
a potential analog of the layered copper oxide (cuprate)
superconductors [5–8] and is currently the subject of in-
tense theoretical and experimental research. Electronic
structure calculations [8–25] performed on NdNiO2 re-
veal some similarities to the cuprates, including a similar
nominal d9 valence and a band of transition metal dx2−y2
character crossing the Fermi level, but also some differ-
ences including the importance of Nd-derived bands, a
rather different charge transfer energy, and potential rel-
evance of other d-multiplet states. The similarities and
differences raise the question: can one use essentially the
same downfolded model to study superconductivity and
other properties of the two compounds?

The combination of Density Functional Theory and
Dynamical Mean Field Theory (DFT+DMFT) [26–29]
has emerged as a powerful and widely used method for
studying quantum materials, materials whose properties
are determined by quantum many-body effects, because
it combines a downfolding based on density functional
theory that produces a reasonably realistic description
of particular “correlated” orbitals in the structural and
chemical environment defined by the rest of the material
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with a many-body method that focuses on the solution
of a local correlation problem.

The DFT+DMFT methodology has been broadly suc-
cessful in describing the physics of many quantum ma-
terials [27–30]. Motivated by this success, many authors
have performed DFT+DMFT calculations on the infinite
layer nickelates [9, 19, 20, 24, 25, 31–39], but with dif-
ferent and sometimes conflicting results. Some papers
find that multiorbital physics is crucial to the correlation
effects in NdNiO2 [32–35, 38, 40], while others [9, 25]
claim that the important correlation physics lies in a sin-
gle self-doped band. Some papers state that NdNiO2 is in
the Mott-Hubbard regime with little influence of charge
transfer effects [25, 31], while others claim that, as in the
cuprates, charge transfer physics is important [9]. Some
of the differences arise from different choices of Coulomb
interaction parameters, but it now appears that some of
the differences arise from choices made in the downfold-
ing procedure.

In the DFT+DMFT context, discussion of downfold-
ing issues has centered on topics related to the appropri-
ate treatment of interactions. Important questions have
included the limits of applicability of the single-site dy-
namical mean field approximation, the question of which
Coulomb matrix elements are treated dynamically and
which via a mean field or one-loop theory [41–44] and
the “double counting” problem of how the portion of the
interactions included in the underlying density functional
theory are accounted for [45–50]. The issue of abstract-
ing a one electron basis for the correlated subspace out of
a more chemically realistic background electronic struc-
ture has been assumed to be less problematic.

In this paper we show, using NdNiO2 as an example,
that the aspect of downfolding involving the choice of ba-
sis set requires more attention than has heretofore been
assumed. Different methods of downfolding, all of which
reproduce the underlying band structure, are shown to
lead to markedly different results for many body prop-
erties of interest. We trace the origin of the differences
back to different partitioning of the band theory elec-
tronic states into correlated and uncorrelated orbitals.
The results suggest that the accuracy of different down-
folding approximations should be revisited. Our specific
results are derived in the context of the layered nickelates
but the conclusions should be more generally valid.

The rest of this paper is organized as follows. In sec-
tion II we review the DFT+DMFT method, describe
the different downfolding methods, and provide details
on the calculations performed in this paper. In section
III we compare the physical content of the localized or-
bitals constructed in the different downfolding methods.
Section IV presents our results from DFT+DMFT calcu-
lations with the different downfolding methods. Finally,
we offer further analysis and concluding thoughts in sec-
tion V.

II. METHODS

A. Theoretical Overview

In DFT+DMFT the main object of interest is the one
electron Green’s function

Ĝ(r, r′;ω) =
(
ω1− Ĥref − Σ̂(r, r′;ω)

)−1

(1)

with non-interacting reference Hamiltonian Ĥref taken
to be the Kohn-Sham Hamiltonian resulting from the so-
lution of the equations of density functional theory and
the self energy Σ̂ constructed by identifying (on physical
grounds) particular correlated orbitals with wave func-
tions φmα (r−Rα) corresponding to orbitals m and local-
ized near sites Rα. The Green’s function is calculated
by making the single site DMFT approximation in which
only the site-local matrix elements of the self energy be-
tween correlated orbitals are retained. For example, in
a transition metal oxide the φmα might be chosen to rep-
resent the orbitals in the 3d shell of the transition metal
ion with nucleus at site Rα.

The site-local self energy Σ̂αQI is obtained from the so-
lution of a quantum impurity model, a 0 space +1 time
dimensional quantum field theory describing m corre-
lated orbitals coupled to a non-interacting bath. The
interactions of the quantum impurity model are chosen
to represent the matrix elements of the screened Coulomb
interaction among the correlated orbitals φmα . The one-
electron parameters of the quantum impurity model are
determined from a self-consistency equation relating the
Green’s function of the quantum impurity model ĜQI
to the projection onto site α of the full lattice Green’s
function.

The specification of the correlated orbitals and of their
coupling to the other degrees of freedom in the solid is
thus fundamental to the DFT+DMFT method. Two
closely related methods, referred to in the literature as
“projector” and “Wannier” methods, are widely used for
this purpose.

In the projector methodology [51, 52], outlined in [53],
one predefines a set of atomic-like correlated orbitals
|φ̃αm〉, typically chosen to be centered on positions Rα

of particular atoms of interest with the symmetry appro-
priate to the correlated orbital of interest (e.g. transi-
tion metal d), and vanishing for |r − Rα| greater than
some pre-set value. One then represents Σ in the “Kohn-
Sham” basis of eigenstates ψνk(r) of Href . All practical
calculations retain only a finite set of bands within a
window W (which may depend on k) so the orbitals are
defined as

|φ̃mα 〉 =
∑

ν,k∈W(k)

P̃α,mν,k |ψν,k〉 (2)

with

P̃α,mν,k = 〈φ̃mα |ψν,k〉 (3)
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The |φ̃mα 〉 defined in Eq. 2 are a sum over an incomplete
basis and must be orthonormalized. The result after or-
thonomalization is a set of states |φmα 〉 that deviate to
some degree from the originally defined atomic like states
|φ̃αm〉, and in particular have tails that extend outside
the originally defined state radius. This consideration
suggests that it is often advantageous to formulate the
problem in as wide an energy range as feasible, to make
the |φαm〉 as similar as possible to the |φ̃αm〉.

With the |φmα 〉 in hand one “upfolds” the self energy
to the Kohn Sham basis via

Σνν′(k, ω) =
∑
αmm′

Pαkνm
[
ΣαQI(ω)

]
mm′

(
Pαkm′ν′

)?
(4)

where the P are the coefficients in an expansion of |φmα 〉
in the |ψν,k〉:

Pαkνm = 〈ψν,k|φmα 〉 (5)

so that full Green’s function, Eq. 1 is written[
Glatt(k, ω)

]
νν′ =

[
ω1− Ĥref (k)− Σ̂(k, ω)

]−1

νν′
(6)

The same basis transformation may be used to “down-
fold” the lattice Green’s function to the basis of corre-
lated orbitals, yielding the self-consistency equation re-
lating the quantum impurity model Green’s function GQI
to the downfolded lattice Green’s function:

Gmm
′

QI;α(ω) =
∑
ν,ν′,k

(
Pαkmν

)?
Gν,ν′(k, ω)Pαkν′m′ (7)

Eq. 7 can be rearranged to determine the one-electron
parameters of the quantum impurity model. It is im-
portant to note that the equation is formulated directly
in terms of the projection of the lattice Green’s function
onto the pre-specified correlated orbitals and the upfold-
ing of the impurity model self energy to the Kohn-Sham
basis. While it is possible to define the projection of
the Kohn-Sham Hamiltonian onto the correlated orbitals,
this Hamiltonian is not used in the formalism; in partic-
ular it is not what enters the impurity model.

In the Wannier methodology one first identifies a set of
N Kohn Sham bands that are not significantly entangled
with other energy bands. If the N bands are contained
within an energy window that does not contain any other
bands, the identification is straightforward. In the more
common case in which there is no energy window that
fully isolates a relevant set of bands, a disentanglement
procedure [54] is performed in which an energy window
W containing more than N bands is defined and then at
each k point N optimized bands are constructed as linear
combinations of bands inside the entanglement window
via

|ψopt
µk 〉 =

∑
ν∈W

T dis(k)
µν |ψνk〉 (8)

Following Ref. [54] the disentangling transformation

T
dis(k)
µν (which may be non-unitary) is chosen to minimize

a spread function that ensures k-point connectivity, or
“global smoothness of connection” [54] in the optimized
states and also includes an orthonormalization step.

Finally, N Wannier states φIa(r) localized at positions
RIa in unit cell I are defined as [54].

φIa(r) =
∑
k,ν

Uaνk |ψ
opt
ν,k (r)〉 e−ik(r−RI

a) (9)

and a number Nc ≤ N of these are designated as corre-
lated orbitals.

The unitary operators Umνk are chosen to optimize
some desired property of the Wannier functions, typically
localization about the Wannier centers Ra = 〈φa|r|φa〉.
In the Maximally Localized Wannier Function (MLWF)
procedure [54, 55] one minimizes the average over all
Wannier functions of the mean square positional uncer-
tainty

∑
a δR

2
a ≡

∑
a 〈φa(r)|(r −Ra)2|φa〉 (the unit cell

index is suppressed here since the localization is the same
for each cell). In the Selectively Localized Wannier Func-
tion (SLWF) procedure [56] one minimizes the spread
only of the designated correlated orbitals, and also opti-
mizes the center position and symmetry of these states,
but the procedure is otherwise the same.

The projection of the Kohn-Sham Hamiltonian onto
the Wannier orbitals defines an N orbital tight binding
model with Hamiltonian Hab

IJ = 〈φIa|HKS |φJb 〉. An im-
portant test of the Wannierization procedure is that the
eigenvalues of Hab

IJ reproduce the Kohn-Sham bands with
high precision: failure to reproduce the DFT band struc-
ture means that the Kohn-Sham Hamiltonian has matrix
elements between the |φa〉 and Bloch functions |ψnk〉 not
included in Eq. 9, so that the Wannier basis is not a
complete expression of the single particle physics in the
relevant energy range.

In the Wannier method the dynamical mean field self
consistency is expressed in terms of the Wannier Green’s
function

GabIJ(ω) =
[
ω1− Ĥ − Σ̂(ω)δIJ

]−1

IJab
(10)

where the self energy matrix has nonzero elements only
in the Nc × Nc correlated orbital subspace, with these
matrix elements being precisely equal to the quantum
impurity model self energy. The Wannier analog of Eq.
7 is then given by equating the quantum impurity model
Green’s function to the sub-block of the onsite G:

Gãb̃QI(ω) = Gã∈Ncb̃∈Nc

II (ω) (11)

In the Wannier method the self consistency is thus car-
ried out directly in the Wannier basis, with “upfolding”
to the Kohn Sham basis only required for reasons outside
the scope of this paper such as computing the charge den-
sity required for the “full charge self consistency” step of
the DFT+DMFT procedure.
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The Wannier procedure requires construction of Hab
IJ ,

which makes it in a sense less elegant than the projector
method, but as will be seen, the form of Hab

IJ provides
physical insight, and the orbitals and energies permit the
use of cRPA methods for computing the interactions.

Advantages of the projector method include the ability
to specify in an intuitively or chemical reasonable manner
the shape and location of the correlated orbitals (subject
to the orthonormalization issues discussed above) and the
avoidance of the multiparameter optimization required
to construct the Wannier functions. Advantages of the
Wannier procedure include a flexibility in determining
the correlated orbital wave function (which the Wannier
method will adapt, for example, to changes in lattice con-
stant). Additionally, analysis of the intermediate tight-
binding model can provide physical insight and permits
the use of cRPA methods for computing the interactions.

Both the Wannier and the projector methods involve a
specification of the correlated orbital wave function, im-
posed a priori in the projector method and computed as
part of the process in the Wannier approaches. The im-
portance of the specification for the correlation physics
may be seen by consideration of a simple two-site model
of a d orbital of energy εd, a ligand (“p”) orbital of
energy εp, a hybridization tpd, and a correlation term

Ud†↑d↑d
†
↓d↓. The strength of the correlation effects de-

pends on both U and (εd − εp)/tpd. On the noninter-
acting (U = 0) level, the model has two levels with en-

ergy difference ∆E =
√

(εd − εp)2
+ 4t2pd. We see that

a range of tpd and εd − εp can fit the same energy dif-
ference; pinning down the parameters requires additional
information such as the d content of the states. In close
analogy, in the solid state case the Kohn-Sham eigenval-
ues and eigenfunctions do not by themselves determine
the energies of the correlated orbitals or their relation to
the uncorrelated orbitals. The values of the analogs of
εp, εd, and tpd can be read off directly from the Wannier
Hamiltonian, and they can be inferred from the projec-
tor results. The crucial finding of our paper is that dif-
ferent projector and Wannier methods which have iden-
tical bands on a DFT level produce different results for
these parameters, leading to strikingly different correla-
tion physics.

B. Computational details

We perform one-shot DFT+DMFT calculations for
NdNiO2 using different combinations of downfolding ap-
proach and energy window. The four cases we consider
are:

1. MLWF: We construct 13 Wannier functions, corre-
sponding to the Ni-3d, O-2p, Nd-5dz2 and Nd-5dxy
orbitals. We use a disentanglement energy win-
dow of −9.5 eV to 6.1 eV and a frozen window from
−9.5 eV to 1.4 eV and maximally localize the total
spread of all 13 Wannier functions.

2. SLWF: We construct 13 Wannier functions, corre-
sponding to the same orbitals as the MLWF case
with the same disentanglement and frozen win-
dows. However, in this case we only minimize the
spread of the 5 Ni-3d Wannier functions and ignore
the spread of the rest.

3. Projectors in an energy window from −10 eV to
10 eV around the Fermi energy. This guarantees
that all relevant low energy states are included in
the window, and projectors are quite localized.

4. Projectors in an energy window from −10 eV to
3 eV around the Fermi energy, going high enough
in energy to include the self-doping band but not
the tail of the Nd-5dz2 and Nd-5dxy densities of
states.

For comparison we also used the two Wannier function
methodologies to perform calculations for the “infinite
layer” high-Tc cuprate CaCuO2, retaining in this case
only 11 bands because the Ca-d states are far above the
Fermi level.

For the projector cases, we perform DFT calculations
using WIEN2k [57] and the standard PBE GGA func-
tional [58]. We use the experimental crystal structure
with a = b = 3.92 Å and c = 3.31 Å [4] (NdNiO2) and
a = b = 3.86 Å and c = 3.20 Å (CaCuO2). We treat the
Nd-4f bands as core states. The DFT calculations are
converged with an RKmax = 7 and with a k-point grid
of 40 × 40 × 40. We use the dmftproj software [59] to
create the projectors.

For the MLWF and SLWF cases we perform the DFT
calculations with Quantum Espresso [60]. We use the
same structure parameters and PBE functional as with
Wien2k. We use PAW pseudopotentials with the the Nd-
f states in the core. We use a k-point mesh of 16×16×16,
an energy cutoff of 70 Ry for the wave functions, and
an energy cutoff of 280 Ry for the density and potential.
We use Wannier90 [61] to create the Wannier functions.
We find that wannierization results do not depend on
the DFT code; Wien2k (using the wien2wannier program
[62]) and Quantum Espresso give the same results.

We perform single-site DMFT calculations using the
TRIQS software library [59, 63]. For NdNiO2 we con-
sider two cases: a “two orbital” theory treating the dy-
namical correlations among the two Ni-eg orbitals and a
“one orbital” theory treating only the dx2−y2 orbital as
correlated; for CaCuO2 we perform a “two orbital” cal-
culation. The calculations are one-shot in the sense that
the DFT density is not further updated. For the pro-
jector cases we also run calculations with full charge self
consistency, finding that imposing full charge self consis-
tency does not alter the results significantly.

For the impurity problem, we choose the interactions



5

to be of the Kanamori form [64]:

H = U
∑
m

nm↑nm↓ +
∑

m<m′,σ

[U ′nmσnm′σ̄

+ (U ′ − J)nmσnm′σ − Jc†mσcmσ̄c
†
m′σ̄cm′σ]

− J
∑
m<m′

[c†m↑c
†
m↓cm′↑cm′↓ +H.c.] (12)

with U ′ = U − 2J and σ ∈ {↑, ↓} refers to the spin pro-
jection. Unless otherwise noted, we use an onsite Hub-
bard interaction of U = 7 eV and a Hund’s coupling of
J = 0.7 eV, considered reasonable values for nickelates
[65], and we use a temperature of T = 290 K. We solve
the impurity problem using CTHYB [66]. We use Held’s
double counting formula [47]:

Σdc =
U + (D − 1)(U − 2J) + (D − 1)(U − 3J)

2D − 1
(n−0.5),

(13)
where D is the number of correlated orbitals and n is
the density of the correlated orbitals obtained from their
local non-interacting Green’s function. We employ the
maximum entropy method [67] to analytically continue
the self energy.

For the MLWF and SLWF cases, we also perform
DMFT calculations using U and J values fitted from con-
strained random phase approximation (cRPA) calcula-
tions as implemented in VASP [68]. We use the Wannier
orbitals as described above for the construction of the
bare Coulomb interaction, and to evaluate the screening
by splitting the polarization as P = Psub + Prest where
Psub is the polarizability for the correlated subspace (in
our case, the Ni 3d orbitals) and Prest is for the rest of
the system. From this, the screened interaction tensor
can be calculated in a local basis from the bare Coulomb
interaction tensor V̂ , as Û(ω) = V̂ /[1− V̂ Prest(ω)]. Fol-
lowing common practice, we define the U and J as the
corresponding parts of the static limit Û(ω = 0) of the
screened interaction. For the cRPA calculation we use a
k-point grid of 9×9×9, with an energy cutoff of 500 eV,
and ∼ 300 empty bands (plus 21 occupied bands). To ex-
tract symmetrized interaction parameters we average the
full four index interaction tensor assuming cubic symme-
try, obtaining the parameters for the Hubbard-Kanamori
Hamiltonian used for the Ni-eg orbitals [69].

III. ORBITAL CONTENT

In this section, we examine the physical content of the
Wannier and projector representations of the band the-
ory. The Wannier methods produce an explicit repre-
sentation of the Kohn-Sham bands and eigenfunctions
within a given energy window and the correlated orbitals
are defined as particular linear combinations of these
states, permitting a straightforward analysis. Figure 1
shows the bands obtained from the MLWF and SLWF
Hamiltonians along a high symmetry path in k space,

Γ X M Γ Z R A Z
−8
−6
−4
−2
0
2
4
6

E
−
E F
 (e

V)

a) MLWF

Γ X M Γ Z R A Z

b) SLWF

other

dx2− y2

FIG. 1. Energy bands obtained from diagonalizing the Wan-
nier Hab(k) in the MLWF and SLWF methods. The color of
the bands at each energy eigenvalue represents the amount of
the dx2−y2 Wannier function in the corresponding eigenvec-
tors.

along with the dx2−y2 content, indicated in pseudocolor.
The energy dispersions produced in the two methods are
essentially identical and are indistinguishable from the
Kohn-Sham bands (not shown), but the orbital content
of the bands is different in the different Wannierization
schemes. The most relevant bands are the one crossing
the Fermi level between Γ−X −M and Z −R−A, and
the weakly dispersing band at ∼ −6 eV. In the MLWF
case, the Ni-dx2−y2 content is more concentrated in the
band that crosses the Fermi level, with less weight in the
−6 eV band, while the proportions are more equal in the
SLWF method.

Table I quantifies the difference, showing the Ni-
dx2−y2 content of relevant bands at the Brillouin zone
M point. We compare the orbital content obtained from
the MLWF and SLWF methods to that provided by the
Quantum Espresso and Wien2k codes, which use a pro-
jector method. We see that the different methods, while
exactly reproducing the energy dispersions, lead to quite
different orbital contents. The difference arises because
(as qualitatively seen in the two site model discussed in
the previous section), the same dispersion may be fit by
different tight binding parameters, which in turn lead
to different orbital content of bands. Table II presents
the p-d energy difference (obtained from the orbital and
site-diagonal terms of the Wannier Hamiltonian) and hy-
bridization (the first neighbor p-d hopping term in the
Wannier Hamiltonian). We see as expected that the

M-point dx2−y2 content Band at ∼ 2 eV Band at ∼ −6 eV
MLWF 0.64 0.36
SLWF 0.49 0.51
Wien2k 0.64 0.36
QE 0.58 0.42

TABLE I. dx2−y2 content of the two bands with significant
dx2−y2 content at the M point. In the MLWF and SLWF
cases the orbital content is the modulus squared of the over-
lap of the band basis state with the dx2−y2 Wannier function.
In the Wien2k case, the orbital content is obtained from the
projection of the band on the 3dx2−y2 basis state inside the
Ni muffin tin. In the Quantum Espresso (QE) case, the pro-
jection is onto orthogonalized atomic wavefunctions.
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εd − εp tpd dx2−y2 dz2 dxz/yz dxy total
MLWF 4.32 1.28 1.19 1.83 1.94 1.97 8.89
SLWF 3.38 1.41 1.32 1.88 1.96 1.98 9.11

Proj -10 to 10 2.66 - 1.19 1.58 1.89 1.95 8.50
Proj -10 to 3 4.18 - 1.21 1.71 1.95 1.99 8.82

TABLE II. Left: Difference between the onsite energies of the
Ni-dx2−y2 and O-pσ Wannier functions (εd− εp) and hopping
between them (tpd). In the Wannier cases the parameters are
read off directly from the appropiate entries in the real space
Wannier Hamiltonian Hab

IJ). In the projector cases, εd − εp is
determined by downfolding the Kohn-Sham Hamiltonian, but
tpd is not defined. Right: Orbital occupancies of Ni-d defined
as the square of the projection of the occupied k-states as
obtained from DFT onto the local orbitals summed over spin.

SLWF and MLWF methods trade off the values of εd−εp
and tpd to obtain comparable fits to the band structure.

Figure 2 shows the orbitally projected density of states
obtained using Wannier and projector methods. The up-
per left panel shows the projection onto the dx2−y2 or-
bital. Two peaks are observed, reflecting the strong hy-
bridization of Ni-dx2−y2 and O-pσ states which divides
the d density of states into bonding (low energy) and
antibonding (near Fermi energy) portions. The different
methods predict different d weights in the bonding (low
energy) region.

Fig. 2(b) shows the dz2 density of states. Around
∼ −2.5 eV a large difference between the MLWF/SLWF
DOS and the projector DOS is evident, with the pro-
jector method leading to a much smaller Ni-dz2 density
of states. Here the hybridization is not with the oxygen
but with the Nd-d states, as there are no oxygen states
at this energy (see Fig. 2(d)). We also see clearly that
at higher energies the dz2 orbital is hybridized with or-

−8 −6 −4 −2 0 20.0
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0.8

1.0

DO
S 

(1
/e

V)

a) dx2 − y2

−8 −6 −4 −2 0 2

b) dz2

−0.4 −0.2 0.0 0.2 0.4
E− EF (eV)

0.0

0.2

0.4

0.6

0.8
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DO
S 

(1
/e

V)

c) dx2 − y2 (zoomed in)
MLWF
SLWF
p oj -10 to 10
p oj -10 to 3

−8 −6 −4 −2 0 2
E− EF (eV)

d) O-pσ (pe  O atom)

FIG. 2. Uncorrelated DOS (per spin), obtained from the
imaginary part of the local Green’s function in the basis of lo-
calized orbitals using Wannier and projector methods without
self energy.

bitals of Nd character (not shown here) lying above the
Fermi level. The different methods treat the hybridiza-
tion to the higher lying states differently, and this affects
the final results.

Fig. 2 (c) shows the dx2−y2 DOS in a narrow fre-
quency range around the Fermi level. In this energy
range the MLWF dx2−y2 DOS is slightly greater because
it has more content from the Ni-derived band that crosses
the Fermi level. However, the differences are minimal, in-
dicating that in this case the choice of downfolding is im-
portant primarily in affecting the character of the states
farther from the Fermi level.

The differences are quantified in Table II, which shows
the occupancy of the d orbitals as obtained from each
method. In all cases, the t2g orbitals are almost full, jus-
tifying the use of a two-orbital model that neglects corre-
lations in these orbitals. All methods produce a greater
than half filled dx2−y2 orbital due to charge transfer from
the ligand orbitals. However, the different methods lead
to quantitatively different results. The dx2−y2 filling is
roughly the same in the MLWF and projector cases, but
it is significantly greater in the SLWF case. The dz2 or-
bital is less filled in the projector than in the Wannier
cases, especially the case with the larger energy window,
reflecting the difference in the feature at ∼ −2.5 eV in
the DOS.

The projector methods do not provide an explicit
definition of tpd, but the physics is revealed by a
comparison of the orbitally projected density of states
shown in Figure 2 to the bare hybridization function,
shown in Figure 3 and defined as ∆̂0(ω) = ω1 − ε̂0 −
Ĝ−1
loc,0(ω), where Ĝloc,0(ω) is the uncorrelated site lo-

cal Green’s function projected onto the basis of corre-
lated orbitals and ε̂0 is the onsite energy obtained from

limω→∞

(
ω1− Ĝ−1

loc,0(ω)
)

. In the simple two level model

considered above, the bare hybridization function would
be t2pd/(ω−εp). In the general case ∆̂0(ω) has poles at the
energies of the levels with which the correlated orbitals
are hybridized, while the integrated weight (

∫
Im∆0(ω))

gives the total hybridization strength.
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FIG. 3. Negative imaginary part of the real frequency hy-
bridization of the a) dx2−y2 and b) dz2 orbitals. The inset of
a) shows the dx2−y2 hybridization zoomed in on the window
of −7 to −2 eV and with a larger y axis to show the large
hybridization to O-pσ.
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Examination of the hybridization function reveals pro-
nounced differences between the methods. In particular,
Fig. 3(a), inset shows that the SLWF method yields an
intrinsically less dispersive but more strongly hybridized
O-pσ state at a noticeably lower (less negative) energy
than the other methods. For these reasons the SLWF
method has a substantially larger Ni-d-admixture in the
DOS in the bonding energy range, reflecting the larger
tpd and smaller εd−εp found in this method. Conversely,
looking at the O-pσ DOS (d), we see that the MLWF O-
pσ DOS is smaller at the Fermi level but larger in the
−6 eV range of the oxygen band energies, again reflect-
ing that the SLWF method assigns more from the oxy-
gen bands to the dx2−y2 Wannier function. The projec-
tor method produces results in between the SLWF and
MLWF methods, although closer to MLWF, indicating a
smaller effective tpd and larger εd− εp than in the SLWF
method, but not quite as small (large) as in the MLWF
method.

DOS, −Im∆0(ω)
MLWF 0.204 16.86
SLWF 0.288 21.41

Proj -10 to 10 0.213 17.92
Proj -10 to 3 0.218 17.98

TABLE III. Integral of the DOS over the energy range −8 to
−3 eV and hybridization function of the dx2−y2 over regions
of significant overlap with oxygen.

The differences in hybridization strength are quanti-
fied in Table III. The integral of the dx2−y2 DOS over
the energy region with oxygen-derived bands from −8 to
3 eV is greater for the SLWF case than the MLWF case,
indicating a smaller effective εd − εp and larger effective
tpd in the SLWF case, in agreement with the values in ta-
ble II. Likewise, the integral of −Im∆0(ω) in the region
of dominant peaks from −6 to −3 eV is greater for the
SLWF case, also indicative of a larger effective tpd. For
both of these quantities, the values in the projector cases
are in between those for the MLWF and SLWF cases but
closer to the MLWF case, indicating an effective εd − εp
slightly smaller than the MLWF case and an effective tpd
slight larger than the MLWF case. Thus in summary we
see that the selectively localized Wannier function leads
to the smallest p-d energy difference and strongest p-d
hybridization; the MLWF leads to the largest p-d hy-
bridization, with the projector method intermediate, but
closer to the MLWF method.

The differences in mapping from orbital to band basis
in the different downfolding methods also imply a differ-
ence in interaction strengths. In the DMFT approach,
the interaction parameters are chosen to represent the
on-site terms in the screened Coulomb interaction. They
are sometimes chosen phenomenologically or to obtain
agreement with experiment (for the case of perovskite
nickel oxides see [65]), and in most of the calculations
reported in this paper these phenomenologically deter-
mined parameters are used.

IV. DMFT RESULTS

This section investigates the ways in which the dif-
ferent downfoldings lead to different results in the in-
teracting theory. Unless otherwise specified this section
presents DMFT calculations for a ”two orbital” model of
NdNiO2 in which the dx2−y2 and dz2 orbitals are consid-
ered to be dynamically correlated and the phenomenolog-
ically determined U = 7 eV and J = 0.7 eV interaction
parameters discussed above are used. For comparison,
we also present “one orbital” results for the nickelates
in which only the dx2−y2 orbital is considered to be cor-
related and a brief discussion of the analogous cuprate
materials, where a one band description is more widely
accepted.

A. Self Energy and Mass Enhancement

Figure 4 compares the imaginary part of the Mat-
subara self energy of the different models for both the
dx2−y2 and dz2 orbitals. The difference in self en-
ergy corresponds to a difference in predicted correla-
tion strength. We quantify the strength of electronic
correlations by the inverse quasiparticle renormalization
Z−1 = 1 − ∂ReΣ(ω → 0)/∂ω related, in the single-
site DMFT approximation, to the quasiparticle mass en-
hancement as m?/m = Z−1. At low T in a Fermi liquid
regime, Z−1 can be expressed in terms of the Matsubara
self energy as Z−1 = 1− ∂ImΣ(iωn → 0)/∂ωn. We esti-
mate the derivative by fitting a 4th order polynomial to
the first 6 Matsubara points and taking the linear term,
following [70, 71]. The resulting mass enhancements are
shown in Table IV.

Figure 4 and Table IV show that for the dx2−y2 or-
bital the self energy at all frequencies as well as the mass
enhancement is much larger in the MLWF case than the
SLWF case, with projector cases being intermediate. The
dz2 orbital mass enhancement is small in all cases. We
attribute the differences in dx2−y2 self energy and mass
enhancement to the differences in p-d energy splitting
and p-d hybridization strength discussed in the previ-
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proj -10 to 3

FIG. 4. Imaginary part of the Matsubara self energy obtained
from a DMFT solution for a two orbital Ni-eg model with a
Kanamori Hamiltonian with U = 7 eV and J = 0.7 eV using
the downfolding methods shown in the legends.
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m?

m
dx2−y2

m?

m
dz2

m?

m
X Ueff dx2−y2

MLWF 7.6 1.2 6.7 3.6
SLWF 3.9 1.3 3.3 2.8

Proj -10 to 10 4.6 1.3 3.8 2.5
Proj -10 to 3 5.6 1.3 4.7 2.5

TABLE IV. Left: Orbital basis mass enhancements for the
dx2−y2 and dz2 orbitals, obtained by fitting a 4th order poly-
nomial to the first 6 Matsubara points of the imaginary part
of the self energy along with the band basis mass enhance-
ment obtained from the quasiparticle band nearest the Fermi
level at the X point of the band structure. Right: Effective
U values for the dx2−y2 , defined as the distance between the
Hubbard peaks of the dx2−y2 momentum integrated spectral
function.
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FIG. 5. Pseudocolor plot of the quasiparticle mass enhance-
ments in the band basis along a high symmetry k path. In
the Wannier cases the bands plotted are the same in Figure 1
and in the projector cases they are the Wien2k DFT bands.
The color corresponds to the mass enhancement of the DFT
band determined from upfolding the self energy to the band
basis. The self energy is obtained from a DMFT solution for
a two orbital Ni-eg model with a Kanamori Hamiltonian with
U = 7 eV and J = 0.7 eV

ous section, consistent with previous literature on the
charge-transfer to Mott insulator crossover [72, 73]. Note,
however, that in contrast to the situations considered in
previous literature, where only hybridization to oxygen
bands is relevant, for NdNiO2 the mass enhancements
also depend on the hybridized dz2/Nd bands, which de-
pend on the projection window.

One important caveat is that that the values reported
in Table II are “orbital basis” mass enhancements, deter-
mined from the diagonal elements of the projection of the
self energy operator onto the correlated orbitals. A quan-
tity of more direct relevance to the low energy physics is
the “band basis” mass enhancement, which is propor-
tional to the admixture of the uncorrelated orbitals in
the band of interest and gives the renormalization of the
quasiparticle bands with respect to the DFT bands. For
the MLWF and SLWF methods, we obtain the band ba-

sis mass enhancement by transforming the self energy to
the band basis using the eigenvectors of the uncorrelated
Wannier Hamiltonian H(k). For the projector methods,
we use the projectors to upfold the self energy back to the
Kohn-Sham basis (Eq. 4). Figure 5 shows the band basis
mass enhancement along the same high symmetry path
on which the bands are plotted in Figure 1, and Table IV
gives the value of the band basis mass enhancement for
the near Fermi surface state at the X point. Consider-
ing the correlation contribution to the mass enhancement
m∗/m− 1, in the band basis at the X point, the ratio of
this quantity in the MLWF case to the SLWF case is 2.5,
slightly greater than the orbital basis value of 2.3, for the
same reason– in the MLWF case there is less admixture
of oxygen in the near Fermi surface band so the d self
energy has a greater effect on the dispersion.

Another potential caveat is that different choices for
downfolding may lead to different interaction parame-
ters. To investigate the basis dependence of the interac-
tion parameters we have used the “constrained Random
Phase Approximation” (cRPA) approach to estimate the
Coulomb parameters corresponding to the two Wannier
downfoldings. This approximation is believed to under-
estimate the true interactions, but gives trends correctly.
Symmetrizing our computed screened Coulomb tensor
over the two active orbitals gives parameters U ≈ 3.6 eV
and J ≈ 0.7 eV for MLWF and U ≈ 2.9 eV and J ≈
0.7 eV for SLWF. We observe that although the SLWF
correlated orbitals are smaller (more localized) than the
MLWF orbitals, calculating the interaction parameters
within the SLWF basis leads to smaller interaction pa-
rameters than within the MLWF basis, because the dom-
inant effect on the interaction parameters is from screen-
ing, which is stronger for the smaller εd−εp found in the
SLWF method. Use of the cRPA interaction parameters
(smaller for SLWF and for MLWF) yields a Ni-dx2−y2
orbital mass enhancement of 2.1 for MLWF and 1.4 for
SLWF, corresponding to a factor of almost 3 in correla-
tion contributions m?/m−1. Thus the difference in inter-
action parameters arsising from differences in downfold
amplify, rather than decrease, the downfolding-induced
differences in self energy.

B. Spectral function

Figure 6 shows the orbitally resolved momentum in-

tegrated spectral function Â(ω) = i
[
Ĝ(ω)− Ĝ(ω)†

]
/2π

for the dx2−y2 and dz2 orbitals for a range of energies
not too far from the chemical potential. The dx2−y2 or-
bital (left panel) exhibits a three peak structure similar
to that found in the single-band Hubbard model at mod-
erate correlation strength. Interpreting the structure in
terms of a low energy effective model, we identify the
electron removal peak at ω ≈ −1.5 eV with the lower
Hubbard band, the broader peak at ∼ 2 eV with the up-
per Hubbard band, and the central peak near ω = 0 with
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FIG. 6. Momentum integrated spectral functions per spin
obtained from DMFT solutions for a two orbital Ni-eg model
with a Kanamori Hamiltonian with U = 7 eV and J = 0.7 eV
using the downfolding methods shown in the legends.

the quasiparticle band. The energy separation between
the lower and upper “Hubbard peaks”, shown in Table
IV then provides an estimate for the effective interaction
Ueff characterizing an effective low energy model. While
all methods provide qualitatively similar spectral func-
tions, in the MLWF case the Hubbard peaks are further
away from each other, indicating a greater effective Hub-
bard repulsion due to the greater εd− εp and smaller tpd
and consistent with the larger mass enhancement found
in the previous subsection.

The spectral function for the dz2 orbital shows a weak
tail at energies above the chemical potential, a sharp peak
at ∼ −1 eV and a broad feature in the range ∼ −2 to ∼
−4 eV. Again all methods produce the same qualitative
behavior, but differ quantitatively. In the projector cases
the peaks are closer to the chemical potential and there
is more weight above the Fermi level than in the Wannier
cases.

FIG. 7. Pseudocolor plots of the momentum resolved spectral
functions A(k, ω) obtained from DMFT solutions for a two
orbital Ni-eg model with a Kanamori Hamiltonian with U =
7 eV and J = 0.7 eV.

Figure 7 shows the momentum resolved spectral func-

tion A(k, ω) = −Tr
[
Im Ĝ(k, ω)

]
/π along a high symme-

dx2−y2 dz2 LS N=2 HS N=2 N=3 N=4
MLWF 1.13 1.91 0.04 0.05 0.78 0.13
SLWF 1.27 1.93 0.03 0.02 0.69 0.26

Proj -10 to 10 1.14 1.65 0.11 0.15 0.64 0.09
Proj -10 to 3 1.15 1.81 0.07 0.08 0.72 0.12

TABLE V. Left: Orbital occupancies of the correlated or-
bitals, obtained from the Matsubara Green’s function. Right:
Occurrence probabilities of multiplet configurations obtained
from the impurity density matrix. LS stands for low spin
(s = 0) and HS stands for high spin (s = 1).

try path in the Brillouin zone. The bands with signifi-
cant correlation effects appear more diffuse because of the
larger imaginary part of the self energy. Comparison to
Fig 6 shows that the correlated band crossing the Fermi
level (e.g. between X and M) arises from the dx2−y2
orbital. Corresponding to the different mass enhance-
ments, this band is renormalized the most in the MLWF
case (see e.g. the distance below the Fermi level of the
band at the Z point), then the projector cases, and then
the SLWF case. The sharp peak visible in the dz2 density
of states in Fig. 6 arises from the almost dispersionless
correlated band visible from Z to A, while the features in
the −2 eV to −4 eV range arise from the more diffuse fea-
tures seen between Γ and M in the momentum-resolved
figures. The energy position and relative sharpness of
these features depends on the downfolding method, pro-
viding the possibility of experimental tests of different
downfoldings.

C. Orbital Occupancies

The occupancy of the different orbitals has been viewed
as an important diagnostic of correlation physics. For
example, in a model with a single relevant orbital, the
orbital is more Mott-Hubbard like as it gets closer to
half filling, while an occupancy noticeably greater than
half filling implies important charge transfer effects. Con-
versely, a significant probability of occupation (by holes)
of more than one orbital is a necessary condition for
Hund’s metal physics. Here we consider how the cal-
culated orbital occupancies depend on the downfolding
methodology.

The left side of Table V shows the orbital occupan-
cies, obtained directly from the impurity Green’s func-
tion ĜQI(iωn) without analytic continuation. Compari-
son to Table II shows that in all methods the main ef-
fect of adding correlations is to drive the dx2−y2 orbital
closer to half filling while the dz2 orbital gets more full.
However, the dz2 orbital is significantly less full in the
projector cases than in the Wannier cases, with the fill-
ing depending on the energy window employed and being
smallest for the wider window extending to 10 eV. This
demonstrates the importance of the hybridization to the
Nd orbitals at positive energy.

The right side of Table V shows the probabilities of
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different multiplet configurations of the correlated states
obtained from the impurity density matrices determined
from the CTHYB solver. Important quantitative differ-
ences are evident. In all cases the N = 3 configuration is
dominant, but in the Wannier cases the fluctuation into
N = 4 (fully occupied eg, spin singlet) are larger than the
fluctuations into N = 2 (2 holes in the eg; potential high
spin state), whereas in the projector methods the situ-
ation is opposite. These differences have been used to
argue for and against the relative importance of Hund’s
and charge-transfer physics. [9, 31, 33, 35, 38, 39]

D. One vs. Two Orbital Results

One way to approach the physics of a complicated ma-
terial such as the multilayer nickelates is to attempt to
define a “minimal model” of the correlation effects. The
much larger value of the dx2−y2 self energy than the dz2
self energy suggests that a minimal model might involve
only one correlated orbital. Insight into this possibility
may be obtained by comparing results obtained from a
model with multiple correlated orbitals to those obtained
from a model with only one correlated orbital.

0 2 4 6 8 10
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proj -10 to 10 2 orbitals
proj -10 to 3 1 orbital
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FIG. 8. Comparison of imaginary part of the Matsubara
self energy of the dx2−y2 orbital obtained from two orbital
DMFT calculations (solid lines) to self energy obtained from
one orbital DMFT calculation (dashed lines) with downfold-
ing methods unchanged.

We investigate the the effects of dynamical correlations
of the dz2 orbital by using exactly the same downfolding,
definition of correlated orbitals, and interaction U = 7
as in our previous two orbital DMFT calculations to per-
form “one orbital” DMFT calculations in which only the
dx2−y2 orbital is treated as correlated. Figure 8 com-
pares the resulting dx2−y2 self energies, and Table VI
compares the mass enhancements. In the SLWF case,
the dx2−y2 self energy and mass enhancement are not
changed considerably by including the dz2 orbital, pre-
sumably because the dz2 orbital is almost completely full.
In the MLWF and projector cases, there is a significant
difference in the self energies and mass enhancements be-
tween the one and two orbital results. Referring to Tables

V and VI we attribute the differences to a combination
of the difference from half filling of the dx2−y2 orbital
(with the larger occupancy in the SLWF case indicating
a greater relevance of charge transfer physics) and (espe-
cially in the projector cases) greater number of holes in
the dz2 orbital. The SLWF results imply that correlation
physics related to the dz2 orbital may be neglected with-
out adversely affecting the accuracy of the results; the
other methods would suggest that this is not the case.

E. Cuprate results

The layered d9 nickelates of primary interest in this pa-
per have a potentially rich physics associated with mul-
tiple bands at the Fermi surface and important ligand
states lying both above and below the strongly corre-
lated d states. In this subsection we examine the ex-
tent to which our qualitative considerations apply also
to the electronically simpler cuprate system, where only
the dx2−y2 is correlated (the dz2 orbital is to good ap-
proximation completely full) but charge transfer to oxy-
gen is also relevant. In this examination, a difficulty
immediately arises. A straightforward application of
the DFT+DMFT methodology outlined above predicts
a rather weakly correlated system, essentially because
εd − εp is so small in magnitude that the d-d interaction
U is irrelevant. Previous work has argued that straight-
forward application of the DFT+DMFT method is not
appropriate, essentially because the DFT approximation
predicts that the oxygen levels are about 1 eV closer to
the Fermi level than they are in practice. Adjusting the
p-level energy “by hand” to match photoemission exper-
iments [74] provides cuprate correlation physics in better
agreement with experiment and we follow this route here.

Table VII shows that the phenomenon found in the-
ories of the nickelate materials occurs also in theories of
cuprates: the MLWF method yields substantially larger
dx2−y2 mass enhancements than does the SLWF method.
Examination of the Wannier fits (not shown) reveals
that origin is the same–the MLWF parametrization cor-
responds to a larger εd− εp and smaller tpd and hence to
stronger correlations.

The occupancy analysis shown in Table VII confirms
this conclusion, revealing a larger covalence (more N = 4
weight) for SLWF than for MLWF. It is important to
note, however, that in contrast to the nickelate case,
where the different methods point towards different un-

m?

m
1 orb m?

m
2 orb nx2−y2 1 orb nx2−y2 2 orb

MLWF 11.0 7.6 1.14 1.19
SLWF 3.8 3.9 1.29 1.32
proj -10 to 10 9.7 4.6 1.14 1.19
proj -10 to 3 9.7 5.6 1.16 1.21

TABLE VI. Comparison of the mass enhancement and filling
of dx2−y2 orbital in the one and two orbital DMFT calcula-
tions on NdNiO2.
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m?

m
dx2−y2 n dx2−y2 N=3 N=4

MLWF 1.9 1.41 0.56 0.42
SLWF 1.5 1.52 0.45 0.54

TABLE VII. Results for the dx2−y2 orbital from a two orbital
calculation on CaCuO2 where εp is reduced by 1 eV. Left:
Mass enhancement Middle: Orbital occupancy. Right: Oc-
currence probabilities of multiplet configurations.

derlying physics, in the cuprate case both the MLWF and
the SLWF methods paint the same picture of a charge
transfer material, different only in quantitative aspects.

V. DISCUSSION

Quantum embedding methods approach the correlated
electron problem by defining a subset of “correlated or-
bitals” whose contributions to the physics are determined
by the use of a high level many body method and are self-
consistently embedded into a more complex electronic
structure specified by an inexpensive, lower-level method.
In the DFT+DMFT approach the correlated orbitals are
identified as partly filled, atomic-like orbitals relatively
tightly localized to particular ions. Implementation of
this appealing idea encounters the difficulty that the intu-
itively clear idea of a “transition metal d orbital” cannot
be defined unambiguously because an atomic-like state
is not an eigenstate of any reasonable single particles ap-
proximation to the electronic Hamiltonian. What must
be done, in effect, is to define a single particle basis that
includes atomic-like states with the desired spatial struc-
ture and enough other states so that the projection of
the Kohn-Sham Hamiltonian onto this basis reproduces
the DFT band structure. Different methods have been
used to define the correlated orbitals and select the addi-
tional states; see Sec. II for a discussion of the principal
techniques. While the issue seems not to have been ex-
tensively investigated (see [49] for an exception), the con-
sensus in the field has been that all methods that produce
correlated states with approximately the desired spatial
structure and reproduce the DFT bands accurately are
approximately equally good. This paper investigates the
issue carefully and finds that this is not at all the case,
because the different methods in effect lead to different
partitioning of the band states into correlated and uncor-
related components, and these differences in partition-
ing have a substantial effect on the computed correlation
physics.

Focusing on one system of intense current interest, the
layered nickelate NdNiO2, this paper performs a compar-
ative study of the implications for the many body physics
of the methodology used to construct the correlated or-
bitals. In the layered nickelates the important correlation
physics is believed to relate to states arising from the
Ni dx2−y2 and perhaps also from dz2 orbitals. Straight-
forward quantum chemical considerations suggest that
the primary valence configuration of the Ni is d9 with

one hole in the dx2−y2 orbital, but other configurations
may also be important. Currently debated questions in-
clude the relevance of “Hund’s metal” physics arising
from high-spin d8 (two holes, one in dx2−y2 and one in
dz2), the importance of correlation physics in the Ni/Nd
hybrid bands crossing the Fermi level, and the relevance
of valence fluctuations involving the O-p. In addressing
these questions, the definition of the Ni-d states and their
hybridization to other orbitals is evidently crucial.

We use different variants of the two most widely used
techniques, the projector and Wannier methods discussed
in detail in Sec. II, to compute various physical quanti-
ties, while keeping everything else the same. In Sec. IV A
we show that different methods lead to almost factor-of-
two differences in the predicted renormalization factor
(“mass enhancement”). In Sec. IV C we show that the
different methods also give quite different predictions for
the relevance of multiorbital (high spin, “Hund’s metal”)
physics, and this conclusion is reinforced in Sec. IV D
which shows that the different methods give also very
different results for the changes in many body properties
between models with two and one correlated orbitals.
The issues are not specific to the NdNiO2: Sec. IV E
shows that similar results are obtained in a model of the
copper-oxide superconductor CaCuO2, where only one
correlated orbital is relevant and charge transfer physics
plays a larger role.

Before proceeding to the discussion of origin and im-
plications of the results, we dispose of two side issues.
First, the results mentioned in the previous paragraph
all pertain to properties of the correlated orbitals as de-
fined in the different methodologies. The correlated or-
bitals themselves are only auxiliary quantities used in
intermediate stages of computations of experimental ob-
servables. Physically meaningful results are experimen-
tal observables such as the mass enhancement, relative
to the underlying DFT mass, of the theoretically de-
rived quasiparticle bands (see Fig. 7), which are measur-
able in angle-resolved photoemission. Table IV shows
that the differences between these “band basis” mass en-
hancements are actually greater than the orbital basis
self energy renormalizations. One may similarly consider
the many-body density of states (local spectral function)
measurable in angle-integrated photoemission and ana-
lyzed in Sec. IV B. We find that large differences be-
tween methods also appear in the local spectral function.
Of special interest are the upper Hubbard feature around
2 eV and the strong shift of the as Ni-dz2 characterized
band between the different methods (see Fig. 6).

Second, most of our calculations investigate variations
at fixed values of the interaction parameters, while dif-
ferent specifications of the correlated orbitals also im-
ply differences in the interaction parameters governing
the physics of these orbitals, which might compensate to
some degree for the differences in orbital specification.
We examine this issue in Sec. IV A, which presents re-
sults of cRPA calculations of effective interaction param-
eters for different downfolding schemes. We find that the
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differences in interaction parameters arising from differ-
ences in specification of correlated orbitals are such as to
enhance the differences between methods. In summary,
different prescriptions for defining correlated orbitals lead
to different results for physically measurable quantities.

We now discuss the interpretation and implications of
our results. Sec. III shows that the different parameter-
izations lead to quite different fillings of the correlated
orbitals, already on the DFT level. Orbital filling is an
important determinant of correlation physics; for exam-
ple, Hund’s metal physics requires at least two partially
filled orbitals while Mott physics is most pronounced if
there is one nearly half filled correlated orbital. We find
that the MLWF Ni-dx2−y2 occupation is much closer to
half-filling than the SLWF Ni-dx2−y2 occupation, and is
thus more likely to be found more correlated. Both pro-
jector approaches have very similar Ni-dx2−y2 occupation
compared to MLWF. However, the Ni-dz2 content is lower
for projectors, depending on the energy window, which
could be an indicator that projectors fail to capture inter-
stitial contributions in strongly hybridized systems. This
is observed both with Wien2k and VASP projectors.

The differences arise because different constructions
of the correlated orbitals correspond to different embed-
dings of the correlated orbital in the underlying band the-
ory, or in other words to different overlaps of correlated
orbitals with Kohn-Sham eigenfunctions. To be explicit,
for transition metal oxides such as NdNiO2, important
parameters include the energy level difference between
oxygen p and transition metal d orbitals εd − εp, and
the p-d hybridization tpd (see Tab. II) and (see Tab. III).
Different constructions of the correlated orbitals lead to
equally accurate parametrizations of the calculated band
structures but with drastically different values of εd − εp
and tpd. Furthermore, we find that the hybridization to
the Nd-d orbitals right above the Fermi level is strongly
method dependent (see Fig. 3). We emphasize that this
behavior is found both for VASP and Wien2K band the-
ory codes.

Section IV C shows that the different methods lead
to differences in the multiplet occurrence probabilities in
the interacting theory. The multiplet occurrence proba-
bilities are often used to gauge the nature of correlations.
In a typical one orbital Mott-Hubbard system we expect
a dominance of N = 3 with roughly equal amounts of
N = 4 and low spin N = 2. In a charge transfer mate-
rial, we expect more N = 4 than N = 2. This is seen
in the MLWF case and to a much greater extent in the
SLWF case, but not in the projector cases. Conversely,
a large amount of high spin N = 2, seen in the projector
cases but not the Wannier cases, points to an importance
of Hund’s correlations. Using these results to classify the
material will therefore lead to different conclusions based
on the downfolding method employed, and may explain
the differences in classification found in the literature.
Likewise, our results in Section IV D show that compar-
ing one and two orbital calculations using the different
methods leads to different results on the importance of

multiorbital effects.
The results presented in this paper, along with the ex-

isting discussions in the literature around the issues of
value and frequency dependence of interaction parame-
ters and the double counting correction, underscore the
fact that the DFT+DMFT methodology requires choices
at various points in the calculation. As noted in other
contexts [65], experiment can to some degree help to
guide the required choices. Experimental probes involv-
ing form factors that can distinguish between d and p
orbitals can help pin down orbital content of different
bands. Further, differences in e.g. the position of the dz2
orbital relative to the chemical potential (see Fig. 6)
and broadening of the −3 eV band (Fig. 7) also distin-
guish the methods.

On the theoretical side, our work highlights the impor-
tance of the development of methods [75, 76] which treat
more of the orbitals as correlated and include more of the
matrix elements of the Coulomb interaction. While not
all of these calculations are yet in a position to treat the
strong correlation problem, comparison even in a more
weakly correlated limit will provide insight. Further, as
a simple benchmark, in new situations the robustness of
the results with respect to different downfolding methods
should be verified.

It is important to emphasize that the differences we
highlight are in many cases quantitative rather than qual-
itative. For example, all methods place the cuprate ma-
terials firmly in the class of charge transfer compounds,
whereas the nickelate materials are closer to the Mott-
Hubbard regime. Further, the results presented here are
important only for “wide window” calculations involv-
ing both correlated and uncorrelated orbitals, and are
more significant for materials such as the layered nicke-
lates that exhibit a rich interplay between strongly and
weakly correlated orbitals and between single band and
multiband effect. In cases such as Sr/Ca2RuO4 where the
correlated bands are to good approximation disentangled
from the other bands and a low energy theory involv-
ing only the correlated bands may be constructed, the
physics is independent of the method used to construct
the correlated orbitals. It is also important to emphasize
that our findings have implications for any method that
uses downfolding from a Kohn-Sham like Hamiltonian,
including DFT+U.

The success of DFT+DMFT in many contexts moti-
vates further research to determine the optimal down-
folding approach for different physical contexts. Identi-
fication of experimental observables that will distinguish
different downfoldings will also be valuable, as would be
the determination of quantities that are robust with re-
spect to choice of downfolding.

VI. ACKNOWLEDGEMENTS

J.K. and A.J.M. acknowledge funding from the Ma-
terials Sciences and Engineering Division, Basic Energy



13

Sciences, Office of Science, US DOE. We thank F. Lecher-
mann, S. Beck, M. Zingl, A. Botana, and A. Georges for
very helpful discussions. The Flatiron Institute is a divi-
sion of the Simons Foundation.

Appendix A: t2g DOS and Hybridization

Figure 9 show the density of states and Figure 10 show
the imaginary part of the real frequency hybridization
for the Ni-t2g orbitals, corresponding to the plots for the
eg orbitals in Figures 2 and 3. The plots show some
differences between methods, but less drastic than the eg
orbitals.

−8 −6 −4 −2 0 2
E− EF (eV)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

DO
S 
(1
/e
V)

a) dxy

−8 −6 −4 −2 0 2
E− EF (eV)

b) dxz/yz
MLWF
SLWF
proj -10 to 10
proj -10 to 3

FIG. 9. Uncorrelated density of states (per spin) of the t2g
orbitals with the different methods.
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FIG. 10. Negative imaginary part of the real frequency hy-
bridization of the t2g orbitals.

Appendix B: Doping Dependence

To simulate the effects of hole doping, we use Wien2k
with the virtual crystal approximation, adjusting the
atomic numbers of the Nd ions to fractional values and
correspondingly change the number of electrons.

We assess the behavior of each of the downfolding
methods upon doping by running the same calculations
with a hole doping of 0.2. We achieve this doping using
the virutal crystal approximation, where we artificially
change the Nd atomic number to 59.8 and take out 0.2
electrons from the system. We choose the number 0.2
since that doping level is well within the experimental
superconducting dome [77].

dx2−y2 dz2
MLWF -0.048 -0.004
SLWF -0.078 -0.003

Proj -10 to 10 -0.053 0.004
Proj -10 to 3 -0.049 0.015

TABLE VIII. Orbital occupanices (summed over spin) at hole
doping of 0.20 minus the orbital occupanices at stoichiometry.
Positive values indicate that the filling increases with hole
doping.

Table VIII shows the changes in orbital fillings upon
hole doping. For each method, the dx2−y2 filling de-
creases with hole doping, as expected. The filling de-
creases more in the SLWF case than the other cases. In
all cases, the dz2 filling does not change considerably,
but the behavior depends on the method. It increases
the most in the projector from -10 to 3 case because the
self doping band moves above 3 eV so more dz2 weight
has to be given to the main dz2 -derived band below the
Fermi level. In the projector from -10 to 10 case it also
increases. In the MLWF and SLWF cases it decreases.

Appendix C: Full Charge Self Consistency

For the case of projectors in the wide window from
−10 to 10 eV, we compare the results of a fully charge
self consistent (FCSC) DFT+DMFT calculation to the
one-shot results. In the FCSC case, we find the same
dz2 orbital occupancy as the one shot case and a dx2−y2
occupancy of 1.16, very close to the one shot results of
1.14. Likewise, the self energies are not so different in
the one shot and FCSC case, as shown in Figure 11. We
can therefore conclude that full charge self consistency is
not crucial to the DFT+DMFT study of NdNiO2.
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FIG. 11. Comparison of the one shot and FCSC DFT+DMFT
Imaginary Matsubara self energies for the case of projectors
in the wide energy window from −10 to 10 eV
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