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Despite the robustness of the chiral edge modes of quantum Hall systems against the superconducting proximity
effect, Cooper pairs can penetrate into the chiral edge channels and carry the Josephson current in an appropriate
setup. In our work, the Josephson junction of a spin-polarized quantum anomalous Hall insulator (QAHI) with
a Chern number v = 1 connecting conventional superconductors is studied from the perspective of pairing
symmetry consistent with the chiral edge mode. Induced pairing states are equal-spin triplet, a combination of
the even- and odd-frequency components, nonlocally extended, and have a finite momentum 2k . The signature
of the equal-spin triplet pairings is confirmed via the dependence on the interface-magnetization direction, and
that of the finite-momentum pairing states via the width dependence of the critical current and the spatial profile
of the anomalous Green’s function. In the presence of disorder, the robustness of the chiral edge mode leads to
high sensitivity of the critical current and the equilibrium phase difference to disorder configurations, which is
resulting from the interference of current-carrying channels. The numerical calculations on a lattice model are

also examined by a simplified analytical model.

I. INTRODUCTION

Quantum Hall phases [1] and conventional superconductor
phases are electronic states of matter characterized by differ-
ent orders, topological and spontaneously-symmetry-broken
orders, while both are immune to disorder and support non-
dissipative electric current. The quantized Hall current in a
quantum Hall insulator is carried by conducting edge channels,
the number of which coincides with the Chern number defined
by the bulk electronic states. These edge channels consist of
unidirectionally flowing electronic system (chiral edge mode),
which is unique to quantum Hall edges in that they cannot be
realized in closed one-dimensional electronic systems due to
the quantum anomaly.

Supercurrent in a superconductor is carried by pairs of elec-
trons called the Cooper pairs. While the superconducting order
is measured by the pair potential A, (#, x), the amount of pair-
ing states is measured by the pair amplitude (or the anomalous
correlation) —i{7 ¢y (t, x)cs(0,0)), where ¢, (¢, x) is the an-
nihilation operator of the electron with a spin o at temporal
and spatial coordinate (f,x) and 7 is the time-ordering op-
erator. The pair potential and pair amplitude are categorized
by the spin configuration, angular momentum, and symme-
try regarding time reversal, which as a whole obey the Pauli
principle, that is, the permutation of two electrons changes the
sign of the pair potential (amplitude) [2-4]. Among them, con-
ventional superconductors indicate superconductors having an
even-frequency/spin-singlet/even-parity (ESE) pair potential.
On the other hand, odd frequency indicates that the pair po-
tential (amplitude) is odd under time reversal (and thus odd
under the sign change of the frequency). Although realiza-
tion of the odd-frequency pair potential in the bulk of super-
conductors is still under debate [5], the odd-frequency pair
amplitude appears ubiquitously at the surface or the interface
of even-frequency superconductors [4]. Specifically, in the
heterostructure of a normal metal and a conventional super-

conductor, ESE pairs are transformed into a combination of
ESE and odd-frequency/spin-singlet/odd-parity (OSO) pairs
during the tunneling into a normal metal, due to the breaking
of translational symmetry [6-8].

When a ferromagnet is attached to a conventional supercon-
ductor, the penetration depth of singlet pairs is limited by a
length determined by the exchange coupling [9-11], and, fur-
thermore, singlet pairs are completely excluded in the limit of
a half metal since pairings between opposite spins are prohib-
ited. However, in the presence of a mechanism to flip the spin
at the interface, singlet pairs are transformed into equal-spin
triplet pairs, which penetrate even into a half metal at long
range [12—16]. The resulting triplet pairs are even-frequency
odd-parity (ETO) pairs in addition to odd-frequency even-
parity (OTE) pairs since translational symmetry is broken at
the interface [7, 9, 10].

Topological materials have unique electronic states on their
boundary, and thus the heterostructure with superconductors
can have a different functionality from non-topological materi-
als [17, 18]. Especially, the proximity-induced odd-frequency
pairings in topological materials have been studied in 3d
topological insulators [19-25], quantum spin Hall insulators
(QSHI) [26-31], Rashba metals [31-35], and Weyl semimetals
[36-38].

The focus of this study is the Josephson junction of a conven-
tional superconductor and a spin-polarized quantum anoma-
lous Hall insulator (QAHI). Experimentally, heterojunctions
of quantum Hall systems and superconductors have been re-
ported e.g. in [39-44]. In quantum Hall systems, symmetry
of induced pairing states depends on the nature of chiral edge
modes. When chiral edge modes are spin-degenerate, such as
in a spin-degenerate quantum Hall state with a Chern number
v = 2[45-52], the Josephson current is carried by singlet (ESE
and OSO) pairs. Similar pairing states occur in a single chiral
edge mode of a spin-unpolarized QAHI [53, 54], in which the
spin-polarization axis depends on the direction of the bound-
ary. However, the situation is different in a spin-polarized
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FIG. 1. (a) A setup for the lattice model of a S/QAHI/S Josephson
junction. Near the interfaces with superconductors, the regions of
which are referred to as the left and right interface layers and are
shown by darker purple in the figure, the exchange field (black arrow)
is tilted from the bulk direction. (b) A mechanism of the equal-spin
crossed Andreev reflection. The blue solid (dashed) line represents
the spin-up electron (hole), and the red solid line represents the spin-
down electron. The arrows indicate the direction in which electrons
and holes flow.

single chiral edge mode [55-57]. In general, a spin-polarized
chiral edge mode is not a good conductor of the Josephson
current due to (i) the chirality by which backward Andreev
reflection does not occur, (ii) the Pauli exclusion principle by
which equal spins cannot be present at the same position and
time, and (iii) spin polarization which prohibits opposite-spin
pairings to flow into the edge [55].

In this work, we study the DC Josephson effect of a junction
comprising of a spin-polarized QAHI and conventional s-wave
superconductors by putting emphasis on symmetry of induced
pairing states. Since the spin-polarized chiral edge mode is a
less transparent conductor of conventional ESE pairs due to the
above-mentioned three factors, induced pairings are shown to
be (i) equal-spin triplet, (ii) a combination of even and odd fre-
quencies, and have (iii) a finite momentum (the Fulde-Ferrell
state [58]). In addition, (iv) the anomalous correlation extends
nonlocally throughout the QAHI edge due to the robustness of
the chiral edge mode against the proximity effect and disorder.
By comparing with the Josephson effect through a QSHI, it
will become clear that these pairing states are unique to the
spin-polarized chiral edge mode. Notice that in our setup the
bulk of a QAHI is not influenced by the proximity effect, which
may cause a topological phase transition to a topological su-
perconductor phase [59-61]. In addition, we consider only
conventional superconductors, while the Josephson junction
between unconventional ones has been studied in [62, 63].

This paper is organized as follows. A lattice model of
a superconductor/QAHI/superconductor (S/QAHI/S) Joseph-
son junction is introduced in Sec. II, and is used to calculate
the anomalous correlation and the Josephson current through a
clean and dirty QAHI in Sec. III. From analytical perspective,
amodel of a Josephson junction through a chiral edge mode as
an low-energy model of the S/QAHI/S junction is introduced
in Sec. IV, and the corresponding physical quantities are esti-
mated perturbatively in Sec. V. Finally, the conclusion is given
in Sec. VL.

II. A LATTICE MODEL FOR NUMERICAL
CALCULATIONS

Consider a Josephson junction of a spin-polarized QAHI
sandwiched by two s-wave superconductors [Fig. 1 (a)]. First,
we model a spin-polarized QAHI with a Chern number v = 1
by the Bernevig-Hughes-Zhang (BHZ) model [64] of a QSHI
coupled with an exchange field M. The Fourier transform
of the Hamiltonian defined on the square lattice is given by
Hoanr = Heuz + Hexchange, Where
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Here, o and s are Pauli matrices for spin and orbital (s and
p) degrees of freedom, respectively. Without the exchange
field (M = 0), the BHZ model shows a trivial insulator phase
when € — €, > 4(t; + 1,,), while it shows a QSHI phase when
€& — €p < 4(ts +1p) and £y, # 0 [65]. In the presence of the
exchange field, the QSHI phase, where both spin components
are in quantum Hall phases with opposite Chern numbers, is
turned to a QAHI phase, where one of the spin components is
in trivially insulating phase, via a topological phase transition
[66]. When we fix t; =1, > 0 and 0 < = —¢, < 4t; and
the exchange field is along the z direction (M = M,Z), the
BHZ model shows a QSHI phase when M, € [e; — 4t;, —€; +
4t¢], while QAHI phases when M, € [—e; — 4t,, € — 4]
and [—e€g + 4t,, €5 + 4t], where the spin of the chiral edge
mode is polarized along —Z and Z directions, respectively.
Notice that the exchange term (2) is made to respect four-fold
rotational symmetry of the BHZ model: the s orbital has spin
1/2 and the p orbital has total spin 3/2, and thus the BHZ model
has symmetry of Hguz(ky, —kx) = RHpuz(kx, ky)R‘l, where
R = ¢ (1 4 5%) /2 + 7374 (] — 57)/2.
A conventional s-wave superconductor is modeled by
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where the 2 X 2 matrix represents the Nambu space of the
electron and hole degrees of freedom and & = [2f5c(2 -
cos ky —cos ky) — o,

Near the interface between the QAHI and two superconduc-
tors, the exchange field M is slightly tilted from the direction
of the bulk field in order to introduce triplet pairings into the
spin-polarized chiral edge mode of the QAHI [Fig. 1 (a)]. At
the interface of the QAHI and the superconductors, the number
of electron bands mismatches (4 electron bands in the QAHI
while 2 electron bands in the superconductors). Here, we as-
sume that an electron in the superconductors tunnels to s- and
p-orbitals of the QAHI by the same tunneling amplitude with-
out flipping the spin. The tunneling between the QAHI and
the superconductors is made to respect the four-fold rotational
symmetry so that the both interfaces behave in the same way.



The formation of equal-spin pairing states is resulting from
the equal-spin crossed Andreev reflection through which spin-
up electrons in one boundary are reflected as spin-up holes in
the other boundary [Fig. 1 (b)]. This phenomenon consists
of the following two processes [11, 14, 16, 67, 68]. First, the
tilt of the spin-polarization axis in the interface layer mixes
spin-up and spin-down electrons, and then the usual Andreev
reflection transforms spin-down electrons into spin-up holes
[Fig. 1 (b)]. Equivalently, in the reversed order, the Andreev
reflection transforms incoming spin-up electrons into spin-
down holes, from which the interface layer generates spin-up
holes.

III. NUMERICAL RESULTS

In this section, numerical calculations performed with the
lattice model are presented. The parameters are fixed as €; —
€ =0,t; =1, = 1,1, =05,15c = 1, u =2, |AR| = |AL| =
0.5, and the tunneling amplitude #ynne; = 0.5. The chemical
potential is defined by ¢ = €; — 3, where u = 0 corresponds to
the center of the bottom of the conduction bands and the top of
the valence bands. Notice that we employ relatively large pair
potential to make the observation easier. The exchange field
in the bulk of the QAHI is M = (0, 0, 2) along the z direction,
while that in the QSHI is M = (0, 0, 0). Near the interface with
superconductors, the first and second layers have the direction
of the exchange field tilted from the z direction by polar angles
of 0.1 and 0.057, respectively, and the polarization axis of
the right interface lies within the M,.-M, plane [Fig. 1, see also
Fig. 5 (a)]. The width of the junction is fixed to be 20 and the
length of two superconductors to be 20, which is much longer
than the coherence length v/|A| ~ 2 [69]. The length of the
QAHI is L = 30 except for the study of the length dependence
in Sec. IITC.

A. Induced pairings

First, we consider how the chiral edge mode is affected by
the superconducting proximity effect. The chiral edge mode
is known to be robust against the proximity effect in the sense
that the linear dispersion cannot be gapped, which can be seen
in the spectrum of the chiral edge mode. Fig. 2 (a) represents
the change of the energy spectrum of a S/QAHI/S Josephson
junction as a function of the phase difference between the
left and right superconductors. The energy spectrum within
the pair potential |Ar(,)| is equally spaced, and looks almost
insensitive to the phase difference. Since the chiral edge mode
extends along the whole boundary of the QAHI [Fig. 2 (c)],
the inter-level spacing is determined by the perimeter of the
QAHI. This result is in stark contrast to the energy spectrum
of the Josephson junction via a QSHI (S/QSHL/S) [Fig. 2 (b)],
in which the proximity effect induces a gap of ~ 0.4|A|, and
the energy spectrum of the bound states is largely affected by
the change of the phase difference. The ingap modes within
the induced gap are bound to the top and bottom boundaries
where the proximity effect is absent [Fig. 2 (d)], and thus the
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FIG. 2. The energy spectrum of the whole Josephson junction is
shown as a function of the phase difference between two supercon-
ductors for (a) a S/QAHL/S junction and (b) a S/QSHI/S junction.
The corresponding geometry, the edge modes, and the type of the
Andreev reflection (equal-spin crossed or normal) are shown for (c)
a S/QAHI/S junction and (d) a S/QSHI/S junction, where the blue
(red) lines represent spin-up (-down) modes and the colored arrows on
them represent the direction in which both electrons and holes flow.
Filled and empty circles represent electrons and holes and arrow on
them the spin.

interlevel-spacing is determined by the length of the QSHI (or
equivalently, the distance between two superconductors).

From the perspective of the Andreev reflection, the chirality
of a QAHI edge prohibits a hole to be reflected locally, that
is, a spin-up electron flowing along the bottom boundary is
reflected as a spin-up hole on the top boundary [Fig. 2 (¢)],
which is known as the crossed Andreev reflection. On the other
hand, since a QSHI has spin-up and spin-down edge modes
flowing in the opposite direction, the Andreev reflection occurs
in the ordinary way, that is, separately in the bottom and top
boundaries [Fig. 2 (d)], which is consistent with the gapped
interface by the induced pair potential.

When the equal-spin crossed Andreev reflection occurs in
a QAHI, triplet pairs are induced along the boundary. The
amount of the pairing states is measured by the anomalous part
of the Green’s function calculated by the inverse of w —H +ié,
where 6 = |Agy|/100 is used in the following. The anomalous
Green'’s function is exponentially small inside the gapped bulk
of the QAHI, and the only non-vanishing components in the
QAHI are those between an spin-up electron and hole along the
boundary. In the following, only the s-orbital part is focused
since two orbitals are qualitatively equivalent. The equal-
spin triplet anomalous Green’s function is decomposed into
symmetric and anti-symmetric parts with respect to the sign
change of the frequency w — —w and the permutation of the
positions as [4]

FETOOTE (W) =[FR (0)]15.15 F [FE . ()]qs 15
+ [Fh, (—0)ts1s = [FO. (01515 (D)
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FIG. 3. (a) Spatial profile of the anomalous Green’s function
(FEEE/ OTE gnd F. OSO/ETO) along (a) the S/TQAHI/S junction boundary

rr+éx
and (b) the S/QSHI/S junction boundary is shown for u/|A| = 0,0.6
(bottom to top) and w/|A| = 0.6. (c) The frequency dependence of
the anomalous Green’s function FTEEPéX and FOTE at the center of the
S/QAHL/S junction boundary for i = 0 is plotted. In each figure, the
real (imaginary) part of the anomalous Green’s function is shown by
the solid (dotted) black line, and the absolute value by the red shaded
region. The length of the solid arrow below the u = 0.6]A| data in

(a) represents the period of the anomalous Green’s function.

where F}X{" is the retarded (advanced) anomalous Green’s
function between two points  and r’. The real-, imaginary-
part, and the absolute value of even-parity components at the
same site FES/OTE and odd-parity components between neigh-
boring sites Fff&TTO along the junction boundary are shown
for the chemical potential u/|A| = 0 and 0.6, and the fre-
quency w/|A| = 0.6 in Fig. 3 (a). As can be seen from the
figure, the absolute value is almost constant while the real-
and imaginary part of the anomalous Green’s function have
spatial oscillation. The periodicity of the oscillation coincides
with 27 /2kp(= nv/u), where v is the Fermi velocity of the
chiral edge mode and in our model the same as the hopping
amplitude #; = 1, = 1. This is an evidence that the Cooper pair
has momentum 2k, that is, two electrons with both the Fermi
momentum kg are paired, which has been pointed out in [47]
for singlet pairings in a v = 2 spin-degenerate quantum Hall
system. This pairing state is known as the Fulde-Ferrell state,

while the other type of the finite-momentum pairing state, the
Larkin-Ovchinnikov type [70], does not appear in our numer-
ical and analytical models. The finite momentum pairing is
common to pairings in S/ferromagnet/S junctions [71, 72],
while the alternation of 0 and 7 junctions by the length of the
weak link cannot be seen in our case. The presence of both
even- and odd-frequency components is consistent with the
breaking of translational symmetry by the finite-momentum
pairing, which transforms the ETO into OTE component and
vice versa. Notice that the amplitude of the anomalous Green’s
function varies largely by the frequency w, since it contains
peaks with a width § around the electron and hole spectra of
the chiral edge mode [Fig. 3 (c)].

For the case of the S/QSHI/S junction, the anomalous
Green’s function along the boundary is also shown in Fig. 3
(b). There are four non-vanishing components away from the
interface, that is, ESE and OSO components, and opposite-
spin ETO and OTE components. The absolute value shows a
stationary wave between two superconductors, and its period
is approximately inversely proportional to the frequency w, but
not dependent on the Fermi momentum as in the case of the
S/QAHI/S junction. This result is consistent with the fact that
electrons in the QSHI boundary make pairs in the conventional
way, that is, a spin-up electron with the momentum kr makes
a pair with a spin-down electron with the momentum —kp.

B. Nonlocal correlation

Since the crossed Andreev reflection at the QAHI/S inter-
face occurs between the top and bottom boundaries [Fig. 1 (b)],
electrons and holes have a correlation across the boundaries in
a nonlocal way. The nonlocal anomalous Green’s function in
a S/QAHI/S junction between a fixed point 7y on the bottom
boundary and a point 7 along the top and bottom boundaries is
shown in Fig. 4 (a) for u/|A| = Oand w/|A| = 0.6. The anoma-
lous Green’s function is finite even at the opposite boundary
(r on the top boundary). When u = 0, the anomalous Green’s
function F,.., is a periodic function of r, whose period is
inversely proportional to the frequency w. We have also ex-
amined that the nonlocal correlations persist in the presence
of disorder due to the robustness of the chiral edge mode (not
shown in this paper).

Fig. 4 (b) is the nonlocal anomalous Green’s function in
a S/QSHI/S junction for w/|A| = 0.2, which is below the
induced gap (~ 0.4|A|) at the QSHI/S interface, and u/|A| =
0.6. The anomalous Green’s function extends within the same
boundary since the top and bottom boundaries are separated
by the gapped interface regions. This result is consistent with
an intuitive picture given in Fig. 2 (c) and (d).

C. DC Josephson effect

Next, we consider the DC Josephson effect induced by the
phase difference ¢ between the pair potential of two supercon-
ductors. When the absolute value of the pair potential is the
same (JAr| = |AL]), the Josephson current is estimated from
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FIG. 4. Nonlocal anomalous Green’s function Fy, from a fixed
point ¢ (shown by red circles) is shown as a function of = along the
top and bottom boundaries, respectively, in (a) a S/QAHI/S junction
and (b) a S/QSHI/S junction in the same manner as Fig. 3.

the free energy F of the junction by I = (2¢/h)dF /dy [73],
and in the limit of vanishing temperature T — 0, the expres-
sion is simplified as [ = (2e/h)dE /dp, where E = ¥, o€,
is the ground-state energy.

When the Josephson current is carried by the equal-spin
triplet pairs, the equilibrium phase difference where the ground
state energy is minimized is continuously dependent on the an-
gle formed by the direction of the exchange field of the bulk,
left, and right interfaces [Fig.5 (a)] [11, 14, 16, 67, 68]. The
equilibrium phase difference is either 0 or 7 when the three
directions are coplanar, and it is continuously changed by 27
when the direction of the exchange field of one of the interface
is rotated around the bulk one. The azimuth-angle dependence
of the equilibrium phase difference in junctions with a QAHI
length L = 12 and 30 is shown in Figs. 5 (b). For L = 30,
the ground state energy and the Josephson current as a func-
tion of the phase difference ¢ are shown in Figs. 5 (c) and
(d), respectively, for the azimuth angle of the left interface
¢r = 0,w/4,7/2,3n/4, and n. The current-phase relation
is almost always sinusoidal: I = I, sin(¢ — ¢g), where I is
the critical current and ¢ is the equilibrium phase difference
[10, 74]. Exceptional cases occur when accidental near-zero-
energy modes cross € = 0 during the change of the phase
difference from ¢ = 0 to 2x. However, for a long junction
these exceptions can be neglected since the variation of each
eigenmode near € = 0 is far smaller than the inter-level spacing
[see Fig. 2 (a)]. Thus the following calculations are performed
under the assumption of the sinusoidal current-phase relation
to reduce the computational cost. When L = 30, the equilib-
rium phase ¢ varies continuously from —x to 7 during the
change of the azimuth angle ¢ of the left interface from 0
to 2. On the other hand, for L = 12, the equilibrium phase
difference is insensitive to the direction of the the interface ex-
change field. This result indicates that pairing states carrying
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FIG. 5. (a) The direction of the exchange field in the bulk (black),
the right interface (yellow), and the left interface with the azimuth
angle ¢; = 37/4 (red). (b) Azimuth-angle ¢; dependence of the
equilibrium phase difference of a S/IQAHLI/S junction is shown for a
QAHI length L = 12,30 (solid lines). The dashed line is the result
of an analytical model in Sec. V B. (c) The ground state energy and
(d) the current-phase relation as a function of the phase difference are
shown for the azimuth angle ¢; = 0, 7/4,7/2,3n/4, 7 and L = 30.
Colors of the lines in (c¢) and (d) correspond to the dots with the same
colors in (b).

the Josephson current are changed from opposite-spin compo-
nents [ESE, OSO, ETO (S = 0), OTE (S = 0)] to equal-spin
ones [ETO (S = 1) and OTE (S = 1)] between L = 12 and
L = 30. From this result, a short junction (in our setting,
L < 20) is considered to behave as an ordinary S/insulator/S
junction where the chiral edge mode doesn’t work as a con-
ducting channel.

The QAHI length dependence of the critical current and the
equilibrium phase difference is shown in Fig. 6 (a) and (b),
respectively. Around a length L ~ 20, an exponential decay
implying that the QAHI behaves as an insulator is changed to
an algebraic decay implying that the chiral edge mode carries
the Josephson current. This transition can also be seen from
the equilibrium phase in Fig. 6 (b), where a short junction is in-
sensitive to the relative direction of the exchange field between
two interfaces while the equilibrium phase in a long junction
is changed from 7 to O by rotating the azimuth angle of the
left interface by m (from parallel to symmetric configuration).
The critical current for the parallel configuration shows a dip
around L = 20 where the transition from 0 to 7 junction oc-
curs. We call it a O-rr transition point. The appearance of the
0-7r transition point is the signature of the crossover of pairing
symmetry, that is, from singlet to equal-spin triplet pairings.
The critical length at which the O-7 transition point occurs
depends on many detailed factors, since it is determined by
the crossover between exponentially (singlet) and algebraically
(equal-spin triplet) decaying functions. Specifically, a larger
tilt angle of the interface magnetization would increase the
equal-spin-triplet Josephson current while a larger bulk gap of
the minority spin would decrease the singlet Josephson cur-
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FIG. 6. Length dependence of (a) the critical current and (b) the
equilibrium phase difference is shown for the chemical potential u =
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is for the case where the exchange field is uniform. The inset in
(a) shows the uniform, symmetric and parallel configurations of the
exchange field. The length and chemical-potential dependence of
the critical current in (c) a S/QAHI/S junction with the symmetric
configuration and in (e) a S/QSHI/S junction are shown in log scale.
For a specific value of the chemical potential /|A| = 0,0.2,0.6,0.8,
and 1, the length dependence of a S/QAHI/S junction is shown in (d).
The critical current I in (c) and (e) is measured in unit of |A|e/7.

rent, both of which shift the 0-r transition point to a shorter
length. However, quantitative prediction of the 0-r transition
point would be difficult since the equal-spin-triplet Josephson
current depends non-monotonically on the chemical potential
[Fig. 6 (d)], the width of the sample (Sec. VD). When the
exchange field is uniform throughout the QAHI, triplet pairing
states are not induced and thus the critical current decays ex-
ponentially even in a long junction (L > 20) [the red curve in
Fig. 6 (a)].

The length and chemical-potential dependence of the critical
current is shown in Fig. 6 (c) and (d) for the S/QAHI/S junction
and (e) for the S/QSHI/S junction, respectively. In contrast to

the S/QSHI/S junction, a periodic wavy pattern of a S/IQAHI/S
junction at g > 0 and L > 20 is attributed to the finite-size
effect, where the critical current shows a cusp when the chem-
ical potential u agrees with a discrete spectrum of the chiral
edge mode [Fig. 2 (a)]. Notice that, the periodicity of the cusp
pattern in Fig. 6 (d) is considered to represent the oscillation
corresponding to the momentum kr (not 2kr) as a function
of the perimeter of the QAHI. The current phase relation in
the S/QSHI/S junction is not sinusoidal due to the discrete
ingap spectrum sensitive to the phase difference [Fig. 2 (b)].
Notice that in ferromagnets and half metals the interface mag-
netization is determined by the interface properties [14], and
thus would not be controllable externally. Therefore, experi-
mentally detectable signature of the equal-spin triplet pairing
would be the length dependence at sufficiently low tempera-
ture, that is, the critical current is inversely proportional to the
cubic of the perimeter ([56] and (24) in Sec. V B).

D. Disorder effect

Finally, we consider the disorder effect on the DC Josephson
effect. Here, we consider on-site potential disorder given in
the Nambu space by

oe, O )’ )

[(}_[disorder]rr = ( 0 —de,

where r is the position in the QAHL d¢, is uniformly dis-
tributed within [-W, W], and each matrix element implicitly
accompanies the identity matrices of the spin and orbital de-
grees of freedom. The critical current and the equilibrium
phase difference in the presence of disorder of the strength W
are shown in Fig. 7 (a) and (b), respectively. It is known that
within a disorder strength W € [0, 2|A|] studied here, the bulk
is still in a QAHI phase and thus the chiral edge mode persists.
The results indicates that the both critical current /. and the
equilibrium phase difference ¢q are sensitive to disorder con-
figurations, which can also be seen in rapidly decaying critical
current of the configuration-averaged current-phase relation
max [l sin(¢ — ¢p)] [the blue curve in Fig. 7 (a)], while the
average of the critical current I, is less sensitive to disorder
[the red curve in Fig. 7 (a)].

Although disorder is an irrelevant perturbation to the chi-
ral edge mode, it can change local parameters such as the
Fermi velocity and the chemical potential. When the chemical
potential has asymmetry between the top and bottom bound-
aries, the equilibrium phase difference can be shifted [54].
This property will be studied analytically in Sec. V C. It will
be shown that the configuration-dependent equilibrium phase
difference is attributed to asymmetry of the potential on top
and bottom boundaries. Notice that in order for the Josephson
current through robust edge modes to be sensitive to disorder
configurations, it is essential that the chiral edge mode extends
across the boundaries [Fig. 2(c)], since the shift of the equilib-
rium phase difference is resulting from the interference of two
conduction modes of the Josephson current: one is by an elec-
tron on the bottom boundary and a hole on the top boundary
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and the other is by a similar mode with the electron and hole
inverted. On the other hand, less sensitive averaged critical
current [the red curve in Fig. 7 (a)] is considered to be result-
ing from the robustness of the chiral edge mode (the critical
current through a diffusive normal metal typically decays as
I. o« W4, since when the Thouless energy Ety is smaller than
the pair potential |A|, the critical current obeys I RN ~ Etp
[75], where the normal-metal resistance and the Thouless en-
ergy are estimated as Ry o« 7~V and Ey, « 1, and the relaxation
time as 7 o« W2 by the Born approximation [76]). While the
averaged critical current decreases as the disorder becomes
stronger within W € [0, 2|A|(= t,)], it increases as the disorder
strength approaches the critical value W ~ 4t,, over which the
bulk becomes a (non-topological) Anderson insulator.

Fig. 7 (c) shows the disorder effect of the critical current
of the S/QSHI/S junction. Since the Andreev reflection in
the S/QSHI/S junction occurs locally and thus there is no
interference, the phase difference at an equilibrium is always
0. Also the critical current is insensitive to both disorder
strength and disorder configurations.

Consider the case when disorder is spin dependent (mag-
netic disorder), but weak enough so that the other spin com-
ponent in a trivial insulator is not involved. Magnetic disorder
in the bulk would not affect the Josephson effect up until the
topological phase transition point, which is larger than the
gap of the minority spin and hence is out of focus here. Due
to magnetic disorder near the interface, the critical current

(a) QAHI edge (b) u |_,_N1
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FIG. 8. (a) Symmetric and (b) asymmetric lattice geometry of a
analytical model of a QAHI edge connected to two superconductors.

and the equilibrium phase difference would be largely affected
since they are sensitive to the direction of the interface mag-
netization. Therefore, regarding the Josephson effect, weak
magnetic disorder in the QAHI would have a similar effect as
potential disorder.

IV. A CHIRAL EDGE MODEL FOR ANALYTICAL
CALCULATIONS

In the following, the numerical results in the previous sec-
tions, that is, the edge-induced pairing states and the DC
Josephson effect through a spin-polarized QAHI are studied
analytically based on the equilibrium Green’s function. In this
section, the analytical model of a Josephson junction is defined
on a one-dimensional lattice [Fig. 8 (a)].

The low-energy properties of the QAHI is modeled by the
gapless edge mode: a spin-polarized chiral linear-dispersion
model on a closed one-dimensional lattice defined by

Hedge = Z CZT(Vk - ll)ckT- (6)
k

Here, although the momentum k = 2xs/N for the lattice of
N sites should be defined in the Brillouin zone [—, 7], this
condition is relaxed to k = 27s/N (s € [—0o0, o0]) to remove
the ambiguity [45].

The Josephson junction is modeled by the chiral edge
model (6) coupled with two s-wave superconductors on a one-
dimensional semi-infinite lattice [Fig. 8 (a)]. The Hamiltonian
of the two superconductors are given by

HSC,R = —IsC Z a;ﬂgamg + AR Z a;rnTaLl +h.c., (7)
mxl,00 m>1

HscL = —tsc Z aL_l(Tam(r + Ar Z a:nTajnl + h.c.,
m<-1,00 m<—1

®)

where the right (left) superconductor is defined on a lattice
labeled by m > 1 (m < —1). Notice that the annihilation and
creation operators of the electrons in the chiral edge (the two
superconductors) are denoted by ¢ and ¢’ (a and a").

Let the number of the lattice sites N be an even integer
and let the length of two paths (clockwise and anti-clockwise)
connecting two contact points on the chiral edge be the same.
We assign j = 0 (j = N/2) to the coordinate of the right (left)



contact point. The tunneling Hamiltonian between the chiral
edge and the two superconductors is given by

T Ci
Htunnel,R = (Cl.lrT all) TR (Cgl) + h.C., (9)
c
Htunne],L = (CILT aill) Tr. (65;21) + h.c., (10)

where cj, (00 =T,]) in the above expression is the Fourier
transform of cg, in (6). The tunneling matrix defined by
1+ 0% 1-o07%

+
2 T

Trw) = —tunnel RR(L) Rﬁ(lL), (11)
represents spin-filtered tunneling resulting from a tilted spin-
polarization axis which works equivalently as the interface
layers in the lattice model [16]. The polarization axis is mea-
sured by the polar angle 6r() and the azimuth angle ¢gr(,),
and they are contained in the tunneling matrix through the ro-
tation matrix Rray = R(Ora), dr(L)) = e RO /2 pmibRO /2
of spin 1/2. Notice that the tunneling matrix contains tunneling
of both majority and minority spins with respect to the polar-
ization axis, the latter of which is resulting from the evanescent
mode decaying exponentially by the thickness of the interface

layer, and the ratio of the amplitude of two tunneling is denoted
by 7(< 1) [16].

V. ANALYTICAL RESULTS

First of all, we review the Green’s function of the chiral
edge mode and the superconductors in the absence of the tun-
neling between them, the derivation of which is explained in
Appendix A.

The Matsubara Green’s function of the chiral edge electron
and hole between two points j and j’ is given, respectively, as
[45]

1 e ilwn+)(sgnlj=j'IN/2=j+]")[v

e-c_lge . - 12
[8]]/ (iwn)n 2 Sin[N(iwp + p1)/2v] ’ (12)
dee 1 e—ili@n=—)(senlj=jIN [2=j+j")/v
[8j; (iwn)]s3 2y sin[N(iw, — u)/2v] )

On the other hand, the Green’s function of the spin-down
electron and hole that do not propagate along the chiral edge
is also necessary in the following argument. Here, the energy
band of the spin-down electrons and holes is assumed to be
dispersionless with an energy gap V, thatis, H| = >}, Vcli 1kl
and the resulting Green’s function is, respectively,

1 - Y 1 6 i’
edge - - ik(j-j") __ % 14
(87 (iwn)]22 = Ek e oV ey 1Y
(€5 o) as = —2 . (15)
ji i +V

The Green’s function of the superconductors in a semi-
infinite lattice is derived by using the boundary Green’s func-
tion method [77, 78]. In the wide-band limit (w,, |A| < tsc),

the boundary Green’s function between the leftmost (right-
most) site of the right (left) superconductor is, respectively,

C icun + AR

SCR,.
Tiwy) = — , 16
& iwn) tsc(wi + |Ar[?)1/? (10
iy + A
g5t (i) ~ —— T L (17

tsc(w? + |ALID)V2

where AR(L) = —RC[AR(L)]O'yTy - Im[AR(L)]O'yTx.

A. Anomalous Green’s function

First, consider the anomalous Green’s function between two
sites j, j on the chiral edge. When j and j’ are away from
the contact points, only spin-up components propagate. The
leading order terms of the anomalous Green’s function repre-
senting the equal-spin Andreev reflection in the perturbation
series with respect to the tunneling amplitude #,n,e) are given
by

iwy, Cre'@relAr]-dr)
(@3 + AR +V?)
x [g50 (iwn) gy (wn)lss + (R = L,0— N/2), (18)

(GO w1z =

where Cry, = tt‘fl el | ARLIVT(1 = 72) sin Osr./ téc (see deriva-
tion in Appendix B). Some notices on (18) are in order: the
anomalous Green’s function depends on (i) the tunneling of
the evanescent minority spin (o« 7), (ii) the reflection of the
spin-down electrons and holes from a superconductor back to
the same superconductor (o< [ggggc(iwn)]zz - [gggge(iwn)]M =
=-2V/ (a),zl + V?)), and also (iii) the polar angle of the tunnel-
ing matrix Tr/ through sin 6g/. These facts indicate that the
equal-spin Andreev reflection is resulting from the combina-
tion of spin-flipping normal reflection and the opposite-spin
(ordinary) Andreev reflection. In addition, (iv) the anoma-
lous Green’s function vanishes in the limit w,, — 0, which is
consistent with vanishing Andreev reflection in the same limit
of the Josephson junction through half metals [16]. (v) The
azimuth angle ¢/ works equivalently as the phase of the pair
potential Agyr, [11, 14, 16, 67, 68]. (vi) Since

(8505 ()l (25 iwn)]s3
o= n =iV g=ip(N=j=j")/v

= 2 sin[N(iwn + p)/2v] sin[N(iwn — p)/2v]’

19)

the anomalous Green’s function with a fixed interval j — j’
behaves as ¢*#//V, which agrees with a numerically found
2kp(=2u/v) oscillation in Sec. IIT A.

The ETO and OTE components can be directly derived by
substituting iw,, — +(w +i6) and using the definition (4), part
of which resulting from the right superconductor is given by

wCRei(arg[AR]—¢R)

V(AR = 02V = )
ETO/OTE () p=it(N=2))/v

ETO/OTE —
Fijva (@)= -

X
X SIN[N(@ + i + 1)/2v] sin[N(@ + i6 — )/2v]°

(20)



Here, the interval a appears in the expression as yF1°(a) =
ie'e/Vsin[wa/v] and y°TE(a) = €%/ cos[wa/v], which
agree with the periodicity of the nonlocal anomalous corre-
lation in Sec. IT B. From the expression of yET%OTE(q), large
OTE indicates small ETO and vice versa [6]. Both the ETO and
OTE components have singularities at w = 2zvs/N¥u(s € Z),
which corresponds to the spectra of the chiral edge electron
(hole). However, to be precise, the peak position of the anoma-
lous Green’s function in numerical calculation [Fig. 3 (c)] does
not agree with the spectrum of the isolated QAHI, but with the
modified spectrum of the chiral edge mode shown in Fig. 2 (a),
which cannot be explained by the above perturbative calcula-
tion. In addition, the highest peak of the anomalous Green’s
function can be seen around w = |A| and |V in (20), while that
in the numerics around w ~ 0.6]A|. According to the numeri-
cal calculation, the highest peak position is determined by the
tunneling amplitude between the QAHI and superconductors
(alarger amplitude shifts the highest peak position farther from
|A]). We have adopted a relatively large tunneling amplitude of
0.5¢5, which is beyond the scope of the perturbative approach
of this section.

B. DC Josephson effect

Next, consider the Josephson current through the chiral edge
mode (see derivation in Appendix C). The Josephson current
is an equilibrium current, and thus is derived from the equilib-
rium Green’s function as

ie . .
1= 35 thrrz [TRG10(iwn) = TLG_1nja(iws)], (1)

where 7R is defined in (B2). Notice that O and N/2 in the
subscript of the Green’s functions in (21) are the coordinate of
the right and left point contacts on the chiral edge, respectively,
and 1 (1) is the leftmost (rightmost) site of the right (left)
superconductor.

Intuitively, the Josephson current is carried by electrons
moving in one direction and holes moving in the opposite di-
rection, the number of which is balanced to be in an equilibrium
by the Andreev reflection at two superconductors [79]. In our
model, electrons on the bottom (top) boundary and holes on
the top (bottom) boundaries are related by the equal-spin An-
dreev reflection by the right and left superconductors, which
is described by the two terms in (18) by assigning j and j’ on
the bottom and top (bottom and top) boundaries, respectively.
The leading-order contribution to the Josephson current is thus
the combination of the leading contribution of the anomalous

Green’s function [Gg\zl)/z’o(iwn)]lgg 1) given in (18) and and its

counterpart [Géz)

N /z(iwn)]31(]3) The expression of the Joseph-
son current is shown in (C8).

In the high-temperature limit (27v/N < 1), the summa-
tion over the Matsubara frequency w, is approximated by the

summation over wy(j) = +m87!, which gives

[0 2 AR Ny

7 5 sin 6
v

2
y il . (2
(n2 + B2 AR|D) (72 + B2|AL2)(n2 + B2V2)?
where
A
S = argA—L + ¢r — PL. (23)
R

On the other hand, in the low-temperature limit 27v/N >
B~1) and when the inter-level spacing of the chiral edge mode
is much smaller than the pair potential and the gap of the
minority spin (27v/N < |Ag,Ll, V) the Josephson current is
given by

JO

= H3NVA|ARALP

2nvCrCL Nu
2y

F —) sin d¢, 24)

where F(a) is a dimensionless periodic function [F(a + 1) =
F(a)] defined in (C10), and it gives the maximum value of 1
when the chemical potential lies exactly at the discrete spec-
trum of the chiral edge mode u = 27vs/N(s € Z) (see Fig. 10).
The Josephson current is dependent on the relative azimuth an-
gle ¢r — ¢ of the tunneling matrix in addition to the phase
difference of the pair potential of two superconductors, which
shares the same property as the Josephson current through
half metals [11, 14, 16, 67, 68]. However, this leading or-
der calculation of the Josephson current cannot reproduce the
non-linearity of the numerically obtained azimuth-angle de-
pendence of the equilibrium phase difference [Fig. 5 (b)] and
relatively small critical current for non-coplanar configura-
tions [¢r. # 0, m in Fig. 5 (d)]. This difference might be due to
the difference of the spin-flipping mechanism. The phase (23)
is the consequence of the interference mentioned in Sec. III D.
The critical current decays as 1/N>, which agrees with [56].

C. Asymmetric geometry

Next, we consider a case where the geometry of the junction
has asymmetry with respect to the permutation of the top
and bottom boundaries [Fig. 8 (b)] (see details in Appendix
D). A similar topic has been studied from the perspective of
symmetry of a spin-unpolarized QAHI in [54].

Let the length and the chemical potential of the top (bot-
tom) boundary be denoted by N; and yu; (N> and wp). The
plane wave ¢’** is an eigenstate with the eigenenergy vk — u;
(vk — o) on the top (bottom) boundary. Eigenstates in the
whole chiral edge are thus determined by the scattering prob-
lem, in which plane waves with the same eigenenergy are
connected by boundary conditions. The boundaries of the
two regions are the two contact points with superconduc-
tors. Let the perimeter of the chiral edge be denoted by
N(= N + N,). The eigenenergies are € = 2nvs/N — fi(s € Z),
where g = (u; Ny + upN>)/N, and the corresponding mo-
mentum is ki; = 27s/N + (u; — up)No/Nv and kpg =
2715 /N + (uz — u1)Ni/Nv on the top and bottom boundaries,
respectively. The unperturbed Green’s function of the chiral
edge without tunneling can be derived in the same way as
before. The resulting expression of the Josephson current is



obtained from that for the symmetric case (C8), (22), and (24)
by changing the chemical potential as 4 — i and d¢ defined
in (23) by

(N = No)fi 2N Na(p1 — o)

0P =0p —
¢ ¢ % Nv

(25)

The dependence of the length difference appears in the second
term of the right-hand side of (25) and that of the chemical-
potential difference in the third term.

According to (25), even when the length of the two bound-
aries is the same (N; = M), a chemical-potential difference
of the interlevel spacing of the chiral edge mode (u; — pp =
27v/N) can change a 0 junction into a 77 junction or vice versa.
Therefore, although the expression in this section is applicable
only to systems without disorder, it can be deduced that strong
disorder-configuration dependence of the equilibrium phase
in Sec. III D is the consequence of asymmetric profile of the
disorder potential.

D. Comparison with numerical results

Using the result of the previous subsection, we can consider
the effect of a finite width W as in the lattice model studied
numerically in Sec. II.

Let the QAHI be modeled by a chiral edge channel on a
one-dimensional lattice as in Fig. 8, and let superconductors
on the both sides of the junction be modeled by arrays of
one-dimensional superconductors (Fig. 9). Within the leading
order contribution to the Josephson current as in Sec. V B, the
total Josephson current is estimated by the summation over all
pairs between the left and right arrays of superconductors, that
is, W2 pairs. Each contribution has the same magnitude, while
the phase differs by the difference of the two paths Ny — N,
according to (25). There are W pairs corresponding to N —
N, = 0, W — 1 pairs corresponding to Ny — N, = %2, and
so on. When the length of the QAHI is L, the perimeter is
N = Ny + N =2(L + W) — 4. From (24), the total Josephson
current at sufficiently low temperature is given by

150

=W+l

e 2nvCrCL,
~ h3N3VAARAL?
(26)

The resulting Josephson current is proportional to sin d¢, while
the critical current depends on the width W. As a consequence
of the periodic function F(a), the critical current shows a wavy
pattern with the period 6u = 2v/N [see Fig. 6 (¢)], that is, the
interlevel spacing of the chiral edge mode. On the other hand,
from the summation part of (26), the critical current vanishes
identically when u/v = £ma/W (m € N), which can be seen

by large dips of the critical current at u/|A| ~ 0.4,0.75,- - - in
Fig. 6 (c), or equivalently when
2

w=T T e ). 27)
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FIG. 9. (a) A lattice geometry of the Josephson junction of the chiral
edge mode connected to finite-width superconductors. (b) The critical
current as a function of the width is shown for the chemical potential
u/IAl = 0,0.2,0.4, and 0.6 by comparing with the corresponding
numerical result. (c) The inverse of the interval of the neighboring
width where the critical current vanishes is shown as a function of the
chemical potential. The analytical result is shown by the solid line,
and the numerical one by points.

(27) indicates that the interval of the vanishing-critical-current
width could be a possible signature of a finite-momentum
pairing since the period is determined by 2k and it is resulting
from the second term of the RHS of (25) that is present only
when the chemical potential is nonzero and the system is chiral,
that is, the momentum of the Cooper pair is finite.

For the QAHI with alength L = 30 and a width W = 20, the
width dependence of the critical current is estimated numeri-
cally and analytically in Fig. 9 (b) for the chemical potential
u/|A] =0,0.2,0.4 and 0.6. The analytical result with a width
W agrees with the numerical one with a slightly different width
W + 4. This difference would be resulting from a finite thick-
ness of the chiral edge mode, which is not necessarily bound



to the boundary lattice sites. However, the interval of the
vanishing-critical-current width of the numerical calculation
quantitatively agrees with the analytical one [Fig. 9 (c)], and
hence would work as a measure of the finite momentum of the
Cooper pair.

VI. CONCLUSION

We have studied the Josephson effect through a spin-
polarized QAHI between conventional s-wave superconduc-
tors focusing on pairing symmetry induced by the edge state
and on the comparison with that through a QSHI. The pairing
states along the QAHI edge are equal-spin triplet, the combi-
nation of even and odd frequencies, nonlocally extended, and
have a finite momentum (the Fulde-Ferrell state) due to the
spin polarization, translation symmetry breaking, robustness,
and the chirality.

Equal-spin triplet pairs carry the Josephson current when the
length of the QAHI exceeds a crossover length, below which
the Josephson current is carried by singlet pairs via the bulk.
The appearance of the equal-spin triplet pairs was examined
by the dependence of the interface-exchange-field direction
between the QAHI and two superconductors. When the three
directions of the bulk, left- and right-interface exchange field
have a finite solid angle, the phase difference that minimizes the
junction energy is neither 0 nor 7, and changes continuously
by 27 during the rotation of the left-interface exchange field by
27 around the bulk one. The finite momentum of the ETO and
OTE pairs can be confirmed via the interval of the vanishing-
critical-current width, and theoretically by a spatial oscillation
of the corresponding anomalous Green’s function, in which the
periodicity coincides with twice the Fermi momentum 2k

Numerical calculations are qualitatively examined by a sim-
ple analytical model of a chiral fermion on a closed one-
dimensional circle coupled to two superconductors on a semi-
infinite lattice. The anomalous Green’s function and the
Josephson current are perturbatively derived via the Matsubara
Green’s function up to the leading order in the tunneling ampli-
tude between the QAHI and superconductors. The analytical
model explains a numerically discovered large fluctuation of
the equilibrium phase difference in the presence of potential
disorder from an asymmetric profile of the chemical potential.
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Appendix A: Unperturbed Green’s function

In this section, we review the derivation of the unperturbed
Green’s function of the chiral edge fermion [45] and the s-wave
superconductor on a semi-infinite space [77, 78].

First, the Matsubara Green’s function of the spin-up electron
on the chiral edge mode (6) with the Matsubara frequency
wyn = (2n + )T between two points j and j’ is given by

, 1 i 1
[ won)i = D M)

- . (A1)
N T iw, —vk+pu

Here, the momentum £ is simplified to be unbounded since the
energy levels away from the Fermi level would be less relevant
[45]. The summation over k = 27s/N(s € Z) is rewritten by
the complex integral as

1 sgn[j — j’] e2U=IIN
edge . _ d gnlj —J
(8} (Gwn)lin 27iN jgc Sl — 1 iwn + ivz/N +
| emilion+u)sgnli—f'IN [2=j+]) v
T2y sin[N(iwn + p)/2v]

(A2)

where C is an infinitely large circle on the complex plane that
avoids a pole at z = iN(iw, + ¢)/v, and sgn[j — j’] is included
to ensure the convergence. The expression (A2) is consistent
with the periodicity of the number of the lattice sites NV, that is,
for two points j and j’ satisfying j > j’, the distance measured
in the clockwise direction (j — j” > 0) and that in the counter-
clockwise directions (j — j° — N < 0) give the same result
as long as they are within [-N, N]. The unperturbed Green’s
function of the spin-up hole is given by changing y — —u in
(A2).

The unperturbed Green’s function of a superconductor on a
semi-infinite lattice (the boundary Green’s function) is derived
by solving the Dyson equation for the superconductor on the
infinite lattice in the presence of an infinite potential at m = 0
that excludes particles at this site [77, 78]. The Hamiltonian
of the superconductor in the infinite lattice is Hsc = Hscr +
Hsc + Hscp, where AR = AL = A and Hsco connects the
two superconductors as

HSC,O = —IsC Z Z a;ﬂa_amg- + AagTagl + h.c..

o m=-1,0

(A3)

The Green’s function is derived in the presence of a potential,
the Hamiltonian of which is given by

Hpotential = UZ aga.aO(_T' (A4)
o

By Fourier transform of Hgc, the Matsubara Green’s func-
tion of the superconductor in the infinite lattice is

. 1 e
grsncm/(lwn) = Zkl tk(m=m’)

1
— (AS5)
iwy — Hsc(k)
where M is the number of lattice sites. Here, Hsc(k) =
=2t cos k% — Re[Ar]oY 7 — Im[Ag]oY T* is the 4 X 4 Hamil-
tonian matrix of Hsc on a basis (ax1, ax |, ajm, ajki), and o (1)



is the Pauli matrix for the spin (Nambu) space. In the limit of
M — oo,

1 . ’ 1
, dk ik(m-m')
St 100) = 7 / ¢ iwn — Hsc(k)
1 -1 ip =1z + 2777+ A

= ¢ dzz ,
" 27 Jg, wh + 122+ 72+ A

(A6)

where Cy is the unit circle in the complex plane, and A =
—Re[A]oY 77 —Im[A]o¥Y 7*. Performing the integral, we obtain

1w, + A
SC _ n T2
1 T°
SC SC
gm+1m gmm+1 = (AS)

tsc A2+1

where 12 = [w? + |A]> + 2
412)12) /212,

In the presence of the potential (A4), the Dyson equation
for the boundary Green’s function is given by

= (wp + [AP) P (wy, + 1A +

b , .

Gonnr (0n) = G (0n) + g (o) U P ().

where U = Ut*. In the limit of an infinite potential height

U — oo, the Green’s function ggng’,b(iwn) vanishes while

the product with U remains finite. The Dyson equation for
SC b(za)n) is simplified by taking the limit of U — oo as

(A9)

U P(iwn) = [U™ - go§ (iwn)] ™ gos(iwn)

— —[g55 ((wn)] 7 g5S (iwn). (A10)

Therefore, the boundary Green'’s function of the superconduc-
tor is given in terms of that in the infinite lattice by

0 (jw,) = §5C (iwn) — 855 (1wn)[85S ((wn)] ™' g5S, (iwn).

(Al1)

Specifically, by substituting (A7) and (AS8), the boundary
Green’s function between the leftmost (rightmost) site of the
right (left) superconductor is given in the wide-band limit
(t > wy, |AR]) by (16) [(17)]. Notice that since conventional
superconductors are not topological, the boundary Green’s
function (16) and (17) are simply twice that in a uniform sys-
tem (A7) in this limit.

Appendix B: Anomalous edge correlation

In the presence of tunneling between the chiral edge mode
and the two superconductors, the Dyson equation of the
Green’s function of the chiral edge mode is

G (iwn) =855 (iwn) + 5% ((wn)ZR (iwn) Goy (iwn)

edge

+8 N/Q(lwn)z (iwn)G N2y (iwn). (BI)
Here, by introducing 4 x 4 tunneling matrix
TR(L) 0
TR = ( s (B2)
L) 0 TR(L)

12

and using the boundary Green’s function (16) and (17) of the
two superconductors, the self energy is given by

. SC,R(L) .
X Wiwy) = TRayg)y f_i>(lw)7ri<L>
2

— _ Ltunnel ia)nPR(L) _l:TAR(L)O'y (B3)
tsc(w? + |Aray )12 \ITArq) 0 iwnPpq,

By using projection operators P.(6g, #r) defined by Tx =
—twunnel [P+(0Rr, #r) + TP_(OR, #r)] [see also the definition of
the tunneling matrix (11)], we obtain Pr) = P+(Orw), Pr(L))+
T2P_(6rw) PR(L))-

Since only the spin-up electrons and holes can propagate
along the edge, the only finite components of the anomalous
Green’s function are the (1, 3) and (3, 1) components. Accord-
ing to (B3) the (1, 3)-component of the self energy R (iw,,)
is absent. The leading order contribution in perturbation ex-
pansion appears in the second order in the self energy, and is
given by

(G2 w13 =[g5%% (wn) i [gg, (wn)]s3
X [ZR (1w g0 (iwn) ER (w113

+(R—->L0—> N/2). (B4)

Substituting (B3), the anomalous Green’s function is given by
(18).

Appendix C: Josephson current
1. Formula

First, the formula of the Josephson current in terms of the
Matsubara Green’s function is reviewed. Let the electric cur-
rent flowing from the chiral edge to the right superconductor
be denoted by IR, and that from the left superconductor to the
chiral edge by I;. We define the Josephson current flowing
from the left to right superconductor by the average of the two
current / = (I + Ir)/2. The current operator through the right
contact is determined by the change of the total electric charge
Nr of the right superconductor by the tunneling operator as
Ir =ie[Ng, Hunnetr]/7. The Josephson current is given by

1=~ [FRGT () - FRGT y pwn)] . (€D
Here, [G;:;.(t, )] = —i (‘I’,(fl(t)(b;ﬁ (")) is the greater Green’s
function between a site m on the superconductors and a site
j on the chiral edge, where W, = (Gt dmya’ l)T and

i = (cjrejpc ]T ! l)T' In an equilibrium, the Fourier trans-
form of the greater Green’s function is related to the equilib-
rium Green’s function through G (w) = (1 - f(w))[GR(w) -
GA(w)], where f(w) is the Fermi distribution function. Since
the retarded (advanced) Green’s function has poles in the
lower-(upper-)half of the complex plane, the integral over
the real frequency is closed by connecting the end points
through a semicircle on the upper-(lower-)half plane, the in-
tegration path of which is indicated by C; (C_). Since poles

mT m



inside the path are those of the Fermi distribution function at
iw, = (2n + Nmip~", where n > 0 for C, and n < 0 for C_,
we obtain

Gt =

or [ do- @) [6"w) - 4w
=i|— deR(w)— Ljf dw G w)| (1 - f(w))
B 27Tl C, 2mi C_

=—ig! Z Gliwy). (C2)

Then the Josephson current is given by

1= ZBthr T*TRGio(iwn) — T*TLG_1 npa(iwn)] . (C3)

2. Perturbative expansion

The Dyson equation for the Green’s function along the chiral
edge is given in (B1), and that between the chiral edge and
superconductors by

TRG0(iwn) = ZR(iwn)Gooliwn), (C4)
TEG_1npliwn) = T4 (wn)GN v pliwn).  (C5)

The leading non-vanishing contribution to the Josephson
current is the combination of the leading contribution to
the Andreev reflection described by (B4) at both supercon-
ductors, which is given by the anomalous components of
ZR(zwn)gedge(lwn)ZR(ia)n). Therefore, the leading order of
(C4) and (CS) that has a finite contribution to the Josephson
current is

R  vR _edgesRy_edge L edge L edge
T7Go = [2%800 218N p[Z 8N jan 22 18N 20

R edge L edge Ly edge R edge
+ 258 N Z 8N n 22 18N 20 800 (Co)

L . yL _edge R edgeR7 edge L edge
T G_inp =X gN/ZO[Z 8w % ]gozv/z2 EN2N/2

ZL]gedge [ZR edgeZR] edge (C7)

[ZL edge
N/20 ON/2’

EN/2NJ2

where the Matsubara frequency in the argument is omitted.
The leading contribution to the Josephson current is given by

/0 _ le lmnnelV |[ARAL| 2(1 . ) Sin O sin 6, Z

h ’8 SC wWn
d i d
x (g5 Tl ol 0% — [g5 e T [ olsse™®)
wz
= , (C8)

X
(Wi + [AR[D)(w7; + |ALP)(wj; + V2)?

where ¢ is defined in (23). The two terms in the parenthesis
of the RHS of (C8) represent the interference between two
current-carrying channels.

In the limit of low-temperature, the summation over the
Matsubara frequency is replaced by the integral 3.,

(,8/27r)/da). Since

edge

d; d;
(8 Tl s ol e s

[gON/2]”[gN/20
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FIG. 10. A periodic function F(a) used in the low-temperature limit
of the Josephson current.

1 1
T2 cos[Nu/v] — cosh[Nw, /v]

(€9)

decays exponentially by an energy of 2zv/N as a function
of the Matsubara frequency w,,, the denominator of the third
line of (C8) is appr0x1mated by assumlng that 27v/N <
IAR@) |, Vs as (w +|ARP)(@;, + AL (@ +V2)? = |[ARALIPV.
Then, the Josephson current is given by (24), where

APTERy R —
T 42 Zcos 2na — cosh z

is a periodic function F(a + 1) = F(a) that takes unity when
a =0and 1/2 when a = 1/2 (Fig. 10).

(C10)

Appendix D: Length and chemical potential asymmetry

When two regions separated by contact points to the two
superconductors have different length and chemical potential
[Fig. 8 (b)], the eigenenergies are determined by scattering
theory of plane waves at two boundaries. Let the coordinate
of the right contact be denoted by j = 0 and that of the left
contact by j = N;. Consider plane waves in the two regions

[ Ae™L (G efoM])
= { e, Gemvony OV
whose Hamiltonian is defined by Hj«2) = vkio) — pi2). The

momenta for an eigenenergy e satisfy vk; —u; = vky— o = €.
Combined with the boundary conditions of the wave function
at j = 0and j = N; given by A = BeoN AefiN1 = BeikaNi|
the eigenenergies are the same as those of the symmetric sys-
tem

2msv
N

where the chemical potential is replaced by g = (u;N; +
trNy)/N. The corresponding momenta are ky; = 27s/N +
(1 = H2)N2/Nv and kog = 275 /N + (2 — u1)N1/Nv.

In the absence of the tunneling to superconductors, the un-
perturbed Green’s function of the electron between the two
contact points is given by

—a (sel), (D2)

€ =

g5 iwn)lin = Z s (N3 (0)—



1 — Ni N- 2nisN| /N
=—Zexp[i’“” Ha Ny 2]6.
N s v N Wy — €
i(iwn+)(N1—=N2)/2
= Lei(ﬂlf,uz)NlNz/Nv ejl(lw Tﬂ)( ! ~2)/ v ’ (D3)
2v sin[N(iw, + f)/2v]
—i(iwy +f)(N1—-N2)/2
[gedge(iwn)]u = ie—i(lll—ﬂz)NlNz/Nve iiwn +A)N=N2)/ v'
oM 2v Sin[NGiw, + 2)/2v]

(D4)
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The unperturbed Green’s function in an asymmetric geometry
is slightly different from that in the symmetric geometry (A2)
by a phase factor depending on the difference of the chemi-
cal potential p; — pp. Substituting the unperturbed Green’s
function into (C6) and (C7), the resulting expression of the
Josephson current is (C8) where u and d¢ are replaced by f
and 0@ defined in (25).
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