
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Unconventional Majorana fermions on the surface of
topological superconductors protected by rotational

symmetry
Junyeong Ahn and Bohm-Jung Yang

Phys. Rev. B 103, 184502 — Published  3 May 2021
DOI: 10.1103/PhysRevB.103.184502

https://dx.doi.org/10.1103/PhysRevB.103.184502


Unconventional Majorana Fermions on the Surface of Topological Superconductors Protected by
Rotational Symmetry

Junyeong Ahn1, 2, 3, 4, 5, ∗ and Bohm-JungYang1, 2, 3, †

1Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
2Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
3Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Korea

4RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
5Department of Applied Physics, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan

(Dated: April 21, 2021)

Topological superconductors are exotic gapped phases of matter hosting Majorana mid-gap states on their
boundaries. In conventional three-dimensional topological superconductors, Majorana in-gap states appear in
the form of spin-1/2 fermions with a quasi-relativistic dispersion relation. Here, we show that unconventional
Majorana states can emerge on the surface of three-dimensional topological superconductors protected by ro-
tational symmetry. The unconventional Majorana surface states are classified into three different categories: a
spin-s Majorana fermion with (2s + 1)-fold degeneracy (s ≥ 3/2), a Majorana Fermi line carrying two dis-
tinct topological charges, and a quartet of spin-1/2 Majorana fermions related by fourfold rotational symmetry.
The spectral properties of the first two types, which go beyond conventional spin-1/2 fermions, are unique to
topological superconductors and have no counterparts in topological insulators. We show that unconventional
Majorana surface states can be obtained in the superconducting phase of doped Z2 topological insulators or
Dirac semimetals with rotational symmetry.

Topologically stable gapless surface states are the hallmark
of three-dimensional (3D) topological insulators (TIs) and
topological superconductors (TSCs) [1]. One common feature
of such surface states is that they appear as spin-1/2 fermions
with a quasi-relativistic dispersion relation. According to
the recent classification of TI surface states using wallpaper
groups [2], gapless surface states of TIs always have the form
of Dirac or Weyl fermions locally, while their global band
structure can take various forms [2–4]. However, as crys-
talline systems do not have Lorentz symmetry, there is no fun-
damental reason forbidding more exotic dispersion relations.
Indeed, the discovery of exotic low-energy excitations in bulk
semimetals and bulk nodes of superconductors, such as spin-
1 and spin-3/2 fermions [5–9], nodal lines [10–12] and nodal
surfaces [13, 14], have shown that unconventional fermionic
excitations protected by crystalline symmetries can emerge in
bulk crystals. Also, in contrast to TI surface states, symmetry-
protected surface Majorana fermions (MFs) of TSCs have not
yet been exhaustively characterized. Considering that TSCs
have particle-hole symmetry that is absent in TIs, the surfaces
of TSCs may host unusual fermions, which go beyond spin-
1/2 fermions on TI surfaces.

Here, we show that unconventional MFs emerge on the
surfaces of TSCs protected by n-fold rotation Cn and time-
reversal T symmetries. By analyzing all possible realizations
of anomalous surface states, we find that rotation-protected
TSCs feature three types of surface MFs, two of which ex-
hibit characteristic energy spectra that have no counterparts in
TIs. The first type takes the form of higher-spin Majorana
fermions (HSMFs), which generalize the spin-3/2 fermion
in semimetals [5–8] when the superconducting pairing func-
tion is invariant under Cn (we call this even-Cn pairing) [see
Fig. 1(a)]. As higher-spin states cannot be realized on the
boundaries of TIs with any wallpaper symmetry groups [2],

they are unique to TSCs. Furthermore, the HSMF cannot ex-
ist in the bulk of isolated two-dimensional (2D) nodal super-
conductors because their protection requires an anomalousCn
symmetry representation. On the other hand, when the pairing
function changes sign under Cn=2,6 (we call this odd-Cn=2,6

pairing), a doubly charged Majorana Fermi line (DCMFL),
carrying both zero-dimensional (0D) and one-dimensional
(1D) topological charges, appears [Fig. 1(b,d)]. While the 0D
topological charge indicates the local stability of the DCMFL,
the 1D topological charge guarantees its global stability [14].
Finally, when the pairing function changes its sign under
C4 (odd-C4 pairing), a quartet of Majorana fermions (QMF)
with twofold degeneracy appears on a C4 invariant surface
[Fig. 1(c)] This is a superconducting analog of the C4 rota-
tion anomaly that was recently proposed in TIs protected by
Cn and T symmetries [15]. We show that all three types can
appear when superconductivity emerges in doped Z2 TIs or
Dirac semimetals with T and Cn symmetries.

To convey the main ideas concisely, we focus on spin-orbit
coupled systems below. However, our theory is also applica-
ble to spin-rotation-symmetric and spin-polarized systems, as
explained in detail in the Supplemental Material (SM) [16].
Our surface-state classification is consistent with previous
bulk classifications [17–20], which shows that we have ex-
hausted all possible anomalous surface states.

Formalism.— We consider the mean-field Hamiltonian for
superconductors in the Bogoliubov-de Gennes (BdG) formal-
ism, Ĥ = 1

2

∑
k Ψ̂†kHBdG(k)Ψ̂k, where

HBdG(k) =

(
h(k) ∆(k)

∆†(k) −σyht(−k)σy

)
, (1)

and Ψ̂ = (ĉk, ĉ
†
−kiσy)t is the Nambu spinor in which ĉk/ĉ

†
k

are electron annihilation/creation operators. The superscript
t denotes the matrix transpose. h(k) is the normal-state
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FIG. 1. Majorana boundary states of rotation-protected topological
superconductors in 3D. The top panel shows the symmetry of the
pairing function under Cn rotation: (a) even-Cn=2,3,4,6, and (b,c,d)
odd-C2,4,6. The middle shows the real-space geometry of the sys-
tem. Here, the z-axis is the rotation axis. Red regions host gap-
less Majorana fermions. The characteristic surface spectra on Cn-
invariant surfaces are shown at the bottom. In (a), only the spectrum
with a fourfold degenerate point is shown for clarity, but arbitrary de-
generacy can be protected. The red arrow in (b,d) indicates the zero
energy where the MFL exists.

Hamiltonian, and the superconducting pairing function ∆(k)
satisfies ∆(k) = −σy∆t(−k)σy due to the Fermi statis-
tics. This BdG Hamiltonian has particle-hole P symmetry
PHBdG(k)P−1 = −HBdG(−k) where

P =

(
0 −iσy
iσy 0

)
K, (2)

which satisfies P 2 = 1. We use italic (calligraphic) symbols
to indicate the symmetry operator of the BdG Hamiltonian
(normal-state Hamiltonian).

Let us assume that the normal state has Cn symmetry about
the z-axis, so that Cnh(k)C−1

n = h(Rnk), where Rnk in-
dicates the momentum after Cn rotation of k. When ∆(k)
is an eigenfunction of Cn, i.e., Cn∆(k)C−1

n = λ∆(Rnk),
HBdG is symmetric underCn ≡ diag[Cn, λCn] which satisfies
CnP = λPCn. Namely, CnHBdG(k)C−1

n = HBdG(Rnk).
Now we suppose that the normal state has time rever-

sal symmetry T h(−k)T −1 = h(k), under T = iσyK.
When the pairing function is also time-reversal-symmetric,
i.e., T ∆(k)T −1 = ∆(−k), the BdG Hamiltonian is symmet-
ric under T = diag(T , T ). Consistency with Cn invariance
requires λ = λ∗ for T -preserving pairing, because T Cn =
CnT . Accordingly, CnP = ±PCn in T -symmetric super-
conductors, such that the pairing is either even-Cn (λ = 1)
or odd-Cn (λ = −1). For our analysis below, it is conve-
nient to define the chiral symmetry operator S = iTP satis-
fying CnS = ±SCn and S2 = 1. The commutation relations
shown here are generally valid, independent of basis choice.
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FIG. 2. Bulk topology and surface higher-spin Majorana fermion.
(a) C2z-invariant lines in the 3D Brillouin zone, which are located at
(kx, ky) = (0, 0), (π, 0), (0, π), and (π, π), respectively. (b) The
1D winding number and chirality of edge states in a C2-invariant
line. When the winding numbers w± in the C2 eigensector with
eigenvalues ±i are nonzero, |w±| Majorana zero modes appear at
both edges. The sum of the chirality (the eigenvalue of the chiral
operator S) of the zero modes is +w± on one edge and −w± on
the other edge. (c). Spin-3/2 fermion appearing at (kx, ky) = (0, 0)
of a C2-symmetric surface Brillouin zone. Its fourfold degeneracy
originates from the nontrivial winding numbers w+ = −w− = ±2
of the line at (kx, ky) = (0, 0).

Higher-spin Majorana fermions (HSMFs).— Let us first
consider the surface states of TSCs with even-Cn pairing char-
acterized by the relation CnP = PCn, focusing on the n = 2
case. On a C2-invariant surface, the simplest form of the sur-
face states is the twofold degenerate MF with a linear disper-
sion relation, protected by chiral symmetry. More explicitly,
when we take the representation S = σz and T = iσyK
with Pauli matrices σx,y,z , a Majorana surface state can be de-
scribed by the Hamiltonian Hs(kx, ky) = vxkxσx + vykyσy ,
which carries a winding numberw = sgn(vxvy) = ±1, where
w = (i/4π)

∮
`
dk · Tr

[
SH−1

s ∇kHs

]
is defined along a loop

` surrounding the node at k = 0. The total winding number
of surface MFs is protected by chiral symmetry, so it is robust
independent of C2 symmetry.

To obtain surface states that require C2 symmetry for their
protection, let us consider a four-band surface Hamiltonian
describing two overlapping MFs with opposite winding num-
bers: Hs(kx, ky) = kxσx + kyρzσy , which is invariant under
S = σz and T = iσyK. Then, possible C2 representations
commuting with S and T , and satisfying (C2)2 = −1, are
C2 = −iρzσz and C2 = −iσz = −iS. In the former case, a
mass term mρyσy opens the gap on the surface. On the other
hand, in the latter case, no mass term is allowed, so the gap-
less spectrum is protected. In fact, the fourfold degeneracy at
k = 0 is enforced by the representation C2 = ±iS because

Hs(k) = −SHs(k)S−1 = −C2Hs(k)C−1
2 = −Hs(−k),

(3)

so that Hs(k = 0) = 0. This type of symmetry-enforced de-
generacy is possible only on the surface of a TSC because
C2 = ±iS is an anomalous representation that mixes the
particle-hole indices, which is impossible in an ordinary C2

representation of the bulk states.
The fourfold degenerate point disperses like spin-3/2

fermions [5–8] because the degeneracy is lifted away from
the C2-invariant momentum k = 0. In fact, the represen-
tation C2 = ±iS can generally protect 2n-fold degenerate
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points with an arbitrary natural number n, which we call spin-
(2n− 1)/2 MFs (or more generally, HSMFs).

We can understand the corresponding 3D bulk topology of
HBdG using the 1D topology on C2-invariant lines [Fig. 2(a)],
as shown in Ref. [20]. From this, the origin of the anomalous
representation C2 = ±iS on the surface can be found. Let
us recall that, in 1D systems with winding number w, w zero
modes with positive (negative) chirality appear on one (the
other) edge [21, 22] [see Fig. 2(b)]. On C2-invariant lines, the
winding numbers w± can be defined in two distinct sectors
with C2 eigenvalues ±i, respectively. As time reversal sym-
metry imposes that w+ + w− = 0 [16], w+ = −w− ∈ Z
is the remaining invariant on a C2-invariant line, which natu-
rally leads to the anomalous representation C2 = ±iS at its
edge. This guarantees the protection of degeneracies at the
C2-invariant momentum on the top and bottom surfaces, as
shown in Fig. 2(c). As the total winding number is zero, the
degeneracy at zero energy is lifted away from theC2-invariant
momentum. Similarly, HSMFs in TSCs with even-Cn=3,4,6

pairing can be protected by the 1D winding number defined in
each Cn eigensector [16].

Doubly charged Majorana Fermi lines (DCMFLs).— Next,
we consider odd-C2 pairing characterized by C2S = −SC2.
Odd-C6 pairing also falls into this category. In these cases,
no HSMF is allowed [16]. Instead, surface states appear at
generic momenta. Since k-local symmetries C2T and C2P
satisfy (C2T )2 = (C2P )2 = 1, gap nodes appear as lines,
i.e., Majorana Fermi lines (MFLs), at generic momenta [14].

To understand the anomalous MFL, let us consider a Dirac
fermion on a C2-invariant surface of a TI described by the
Hamiltonian hD = −µ + kxσx + kyσy invariant under C2 =
−iσz and T = iσyK. Then, there is a unique odd-C2 pair-
ing function ∆(kx, ky) = [∆ · k + O(k3)]σz that gives the
following surface BdG Hamiltonian

HBdG(kx, ky) = kxτzσx + kyτzσy − µτz + ∆ · kτxσz,
(4)

which is symmetric under C2 = −iτzσz , T = iσyK, and
P = τyσyK where τx,y,z are the Pauli matrices for particle-
hole indices. Gap does not open at zero energy, and an MFL
appears along |k| =

√
µ2 + (∆0 · k)2 [Fig. 3(a)]. The MFL

does not disappear by tuning µ and ∆0, and, in fact, by any
continuous deformations preserving the bulk gap. Therefore,
a single MFL of this type can appear as the characteristic sur-
face state of odd-C2 TSCs.

The stability of the above MFL is due to its two Z2 charges.
If we choose a basis in which S = diag[1N×N ,−1N×N ] and
C2T = K,

HBdG(k) =

(
0 O(k)

O†(k) 0

)
, (5)

where O(k) is real-valued. The 0D topological charge is de-
fined by the sign change of detO(k) across the MFL, while
the 1D topological charge is defined by the winding number of
the matrix O(k) around a loop surrounding the MFL [14, 23]
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FIG. 3. Single Majorana Fermi line on a C2-invariant surface of su-
perconductors with odd-C2 pairing. Shaded regions indicate the bulk
energy spectrum of the BdG Hamiltonian. Red and blue lines origi-
nate from the electron and hole surface bands, respectively. The spec-
trum is shown along the kx direction, but the spectrum looks similar
along the ky direction. (a) Surface band structure near a DCMFL. (b)
Surface band structure a MFL with trivial 1D charge. Different sta-
bilities of MFLs in (a) and (b) can be understood from the stability of
the parent normal-state Fermi surfaces corresponding to the red line.

Since O(k)
∆→0−−−→ h(k), the topological stability of an MFL

is inherited from the topological property of the normal-state
Fermi surface. The nontrivial 0D charge guarantees that a
small perturbation does not gap the Fermi surface and is com-
mon to all Fermi surfaces (thus to all MFLs). On the other
hand, only the MFL arising from the Fermi surface of a sin-
gle Dirac fermion carries a nontrivial 1D topological charge
(inherited from the π Berry phase of a Dirac fermion) and is
robust against any continuous deformations [ Fig 3].

Since a DCMFL is realized by odd-Cn=2,6 pairing, it ac-
companies gapless hinge states between side surfaces, as
shown in the middle panel of Fig. 1(b,d). These hinge states
can be understood in terms of the p-wavelike (for odd-C2 pair-
ing) or f -wavelike (for odd-C6 pairing) symmetry of the pair-
ing function in real space: when the pairing function changes
sign on the side surfaces, gapless hinge states appear as do-
main wall states [16].

Quartet of Majorana fermions (QMF).— We again consider
the surface Dirac fermions of TIs, but with an odd-C4 pair-
ing function. As (C2T )2 = 1 and (C2P )2 = −1, nodes
now appear as points at generic momenta [14]. There are
two possible C4 representations for odd-C4 pairing: C4z =
iτxσze

−iπ4 σz and C4z = τze
−iπ4 σz . In both cases, the pairing

term has the form

δH∆ = ∆1(k)τx + ∆2(k)τxσx + ∆3(k)τxσy, (6)

where the ∆1τx term is a potential mass term that anticom-
mutes with the Dirac Hamiltonian τz⊗hD. The representation
C4z = iτxσze

−iπ4 σz allows a mass term ∆1 = m, thus giv-
ing trivial surface states. On the other hand, C4z = τze

−iπ4 σz

forbids such a constant mass term. In this case, pairing terms
split the fourfold degeneracy at k = 0 into four MFs with
twofold degeneracy, as shown in Fig. 1(c).

In contrast to HSMFs and DCMFLs, P and S symmetries
do not play a critical role in the protection of the QMF, so
the surface structure is similar to that in TIs with Cn sym-
metry [15]. While the presence of S symmetry promotes the
Z2-valued Berry phase of each twofold degenerate MF to the
integer-valued winding number, the stability of the MFs as a
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whole still has a Z2 character [16]. In the case of odd-C4

pairing, as the winding numbers of MFs related by C4 sym-
metry have opposite signs [16], the total winding number of
all MFs is zero. However, MFs carry another Z2 topological
charge instead, indicating their stability when they merge at a
C4-invariant momentum [15, 16]. A QMF is robust because
this Z2 charge is nontrivial.

Similar to the case of DCMFL, the QMF accompanies gap-
less hinge states between gapped side surfaces, as shown in
Fig. 1(c). The appearance of hinge states can be attributed
to the d-wavelike symmetry of the pairing function in real
space [16].

Lattice model.— To demonstrate our theory, we consider
the following model Hamiltonian describing a doped Z2 TI or
Dirac semimetal,

h1 = −µ+ (4− 2 cos kx − 2 cos ky − cos kz)ρz + sin kxρxσz

− sin kyρy + (3 sin kz(cos ky − cos kx) +m0 sin kz)ρxσx

+ (− sin kz sin kx sin ky +m1 sin kz)ρxσy, (7)

where ρi=x,y,z and σi=x,y,z are Pauli matrices for orbital and
spin degrees of freedom, respectively. This is symmetric un-
der time reversal T = iσyK and mirror operations Mx =
iσx, My = iρzσy , and Mz = iσz . This model describes
a C4z symmetric Dirac semimetal when m0 = m1 = 0.
Nonzero m0 and m1, which breaks C4z , Mx and My sym-
metries, opens a gap at bulk Dirac points leading to a Z2

TI [24, 25].
We first consider even-C2z pairing. When µ is small, as

the k = (0, 0, kz) line is the only C2-invariant line crossing
the Fermi surface, we need a 1D TSC with w+ = −w− = 2
along the k = (0, 0, kz) line to observe a HSMF on the bound-
ary. If we choose a pairing function ∆(k) = ∆e sin kzσz , the
resulting BdG Hamiltonian along the k = (0, 0, kz) line is
HBdG = −µτz−cos kzρzτz +∆e sin kzσzτx, where τi=x,y,z
are Pauli matrices for particle-hole indices, andm0 = m1 = 0
is assumed for simplicity. From this 1D Hamiltonian, we ob-
tain w+ = −w− = 2 for C2z = −iρzσz [16]. The associated
surface spectrum with a spin-3/2 fermion at (kx, ky) = (0, 0)
on theC2z-invariant surface is shown in Fig. 4(a). When other
even-C2 pairing terms dominate, nodal or topologically trivial
superconductors can also be obtained [16].

On the other hand, in the case of odd-C2 pairing, as the
presence of a single Dirac fermion on the surface is key for ob-
serving a DCMFL, any odd-C2 pairing can induce a DCMFL,
thus realizing aC2-protected TSC as long as the bulk gap fully
opens. The surface spectrum for ∆(k) = ∆oρx is shown
in Fig. 4(b). Here, we need both m0 and m1 to be nonzero
to obtain a fully gapped TSC; otherwise, bulk Dirac points
protected by either C4 symmetry [24, 25] or mirror symme-
try [26] appear. In addition to DCMFLs, we obtain helical
Majorana hinge states on side surfaces [Fig. 4(c)].

To describe an odd-C4 TSC with QMF, we need a model
whose Fermi surface does not cross C4-invariant lines; oth-
erwise, the bulk gap does not fully open for odd-C4 pairing.
Hence, instead of Eq. (7), we consider the following model
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FIG. 4. Boundary Majorana surface states in lattice models. (a) Spin-
3/2 MF obtained from Eq. (7) with µ = 0.5, m0 = m1 = 0 and
even-C2 pairing ∆e = 0.5. (b) A DCMFL on a C2 invariant surface
obtained from Eq. (7) with µ = 0.5, m0 = m1 = 0.3 and odd-C2

pairing ∆o = 0.3. (c) The helical hinge state (red color) for odd-
C2 pairing obtained from the same Hamiltonian used in (b). (d) A
quartet of spin-1/2 MFs obtained from Eq. (8) with µ = 0.2, M =
1.5, λSO = 0.1, ∆x2−y2 = ∆xy = 0.5, and ∆δ = 0.1. Associated
hinge states (red color) are shown in (e). The splitting of the four
C4z-related hinge spectra and small gap at zero energy are finite-size
effects, which decrease exponentially as the size of the system grows.
The energy spectra in (a), (b), and (d) are calculated with 40 unit cells
along the z direction and periodic boundary conditions along the x,
y directions. (c) and (e) are calculated with 20× 20 unit cells along
the x and y directions, and periodic boundary conditions along the z
direction.

Hamiltonian for a doped Z2 TI,

h2 =− µ+ sin kzρy + (M −
∑

i=x,y,z

cos ki)ρz

+ λSO(sin kxρxσy − sin kyρxσx), (8)

where λSO indicates spin-orbit coupling. h2 is symmetric un-
der T = iσyK, Mx = iσx, My = iσy , Mz = iρzσz ,
and C4z = e−i

π
4 σz . If we take |µ| larger than the gap in-

duced by λSO, the system has a torus-shaped Fermi surface,
which is a characteristic of nodal line semimetals. As this
Fermi surface does not cross a C4z-invariant line, a fully
gapped TSC can be obtained by introducing an odd-C4z pair-
ing. If we consider ∆d(k) = ∆x2−y2(cos ky−cos kx)ρyσz+
∆xy sin kx sin kyρx+∆δ(sin kxρxσy+sin kyρxσx), the bulk
and side-surface gap fully opens and QMF (hinge states) ap-
pears on the top surface (side hinges) [Fig. 4(d,e)].

Discussion.— Our model study shows that doped Z2 TIs
having a band structure of massive Dirac semimetals are
promising candidates for rotation-protected TSCs. Au2Pb is
such a material [27–29]. It has an orthorhombic symmetry
and shows a fully gapped superconductivity below 1.2 K [27].
While this system has been proposed as a TSC, this cannot be
a Fu-Kane Z2 TSC because it does not have Fermi surfaces
enclosing a time-reversal-invariant momentum [28, 30–32].
On the other hand, it is more likely that Au2Pd is a rotation-
protected TSC hosting either HSMF or DCMFL. Detailed ex-
perimental studies on pairing symmetry and superconducting
surface spectrum are desired to test the scenario we propose.
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Optical responses may be able to distinguish HSMF and
DCMFL because DCMFL can show subgap optical responses
down to zero photon energy while other MFs show zero op-
tical response [51]. Finding other characteristic physical re-
sponses of unconventional MFs will be a promising future di-
rection.

Interaction and disorder effects on new MFs can be an inter-
esting subject. In the case of HSMFs, the Z classification will
reduce to Z8, because the winding number in each eigenspace
will take a Z8 value in interacting systems [33–36]. It is an
open question whether further modification of the classifica-
tion will occur. Also, while crystalline-symmetry-protected
states are stable against averaged disorder [41–43], the fate of
them under strong disorder needs to be studied further.
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