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Quantum fluctuations in the effective spin-1/2 layered structure triangular-lattice quantum
Heisenberg antiferromagnet Ba3CoSb2O9 lift the classical degeneracy of the antiferromagnetic
ground state in magnetic field, producing a series of novel spin structures for magnetic fields applied
within the crystallographic ab plane, including a celebrated collinear ‘up-up-down’ spin ordering
with magnetization equal to 1/3 of the saturation magnetization over an extended field range. The-
oretically unresolved, however, are the effects of interlayer antferromagnetic coupling and transverse
magnetic fields on the ground states of this system. Additional magnetic-field-induced phase tran-
sitions are theoretically expected and in some cases have been experimentally observed, but details
regarding their number, location, and physical character appear inconsistent with the predictions of
existing models. Conversely, an absence of experimental measurements as a function of magnetic-
field orientation has left other key predictions of these models untested. To address these issues, we
have used specific heat, neutron diffraction, thermal conductivity, and magnetic torque measure-
ments to map out the phase diagram as a function of magnetic field intensity and orientation relative
to the crystallographic ab plane. For H||ab, we have discovered an additional, previously unreported
magnetic-field-induced phase transition at low temperature and an unexpected tetracritical point
in the high field phase diagram, which coupled with the apparent second-order nature of the phase
transitions eliminates several theoretically proposed spin structures for the high field phases. Our
calorimetric measurements as a function of magnetic field orientation are in general agreement with
theory for field-orientation angles close to plane parallel (H||a) but diverge at angles near plane
perpendicular; a predicted convergence of two phase boundaries at finite angle and a corresponding
change in the order of the field induced phase transition is not observed experimentally. Our results
emphasize the role of interlayer coupling in selecting and stabilizing field-induced phases, provide
new guidance into the nature of the magnetic order in each phase, and reveal the need for new
physics to account for the nature of magnetic ordering in this archetypal 2D spin-1/2 triangular
lattice quantum Heisenberg antiferromagnet.

I. INTRODUCTION

The layered structure transition-metal oxide
Ba3CoSb2O9 is a nearly ideal realization of an isotropic
two-dimensional (2D) spin- 12 triangular-lattice quan-
tum Heisenberg antiferromagnet (TLHAF). The 2D
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triangular arrangement of nearest neighbor Co2+ ions
with effective spin 1/2 frustrates the otherwise expected
classical magnetic ordering of the spins in an applied
magnetic field and its inversion symmetry means that
there is no competing Dzyaloshinkii-Moriya interaction
between nearest neighbor Co2+ ions. As a result, the
magnetic ordering in Ba3CoSb2O9 arises from zero-point
motion that lifts the degeneracy of the classical ground
state [1]. Interlayer coupling leads to long-range order
at a finite temperature at zero field [2] but also alters
the nature of magnetic ordering in an applied field.
For this reason, Ba3CoSb2O9 serves as an experimental
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touchstone for quantum mechanical models of antiferro-
magnetic ordering in 2D materials with weak interlayer
exchange [3, 4].

Of particular interest in Ba3CoSb2O9 are three ques-
tions: (1) how phase transitions between different mag-
netic spin structures are induced by an applied mag-
netic field, (2) what type of spin structure exists in each
magnetic-field-induced phase, and (3) how the phases
and spin structures vary with magnetic field orientation.

In the zero-temperature, isotropic 2D limit, S = 1/2
spins in a frustrated triangular lattice arrange at zero
field in the three-fold degenerate 120◦ coplanar spin con-
figuration shown in Fig. 1 a; in the case of the easy-plane
antiferromagnet Ba3CoSb2O9 studied here, the spins lie
in the easy (ab) plane, normal to the c axis.

(a)                  (b)                    (c)

 (d)                   (e)                   (f) 

FIG. 1. (Color online) Theoretically proposed spin orderings
for the quantum S = 1/2 Heisenberg triangular antiferro-
magnet in the isotropic 2D limit. Structures (a - d) are the
coplanar ‘Y’, ‘UUD’, and ‘V’ co-linear spin ordering favored
by quantum fluctuations, while (e) represents the competing
classically favored non-coplanar 3D cone (umbrella) spin ar-
rangement. Structure (f) represents the alternative high field
coplanar spin ordering Ψ (also referred to as a ‘fan’ struc-
ture). In zero field, theory predicts that the spins order in a
120◦ arrangement within the easy plane ; phase transitions
from the Y (b) to the up-up-down UUD (c) to the V spin
structures (d) occur as the magnetic field is increased [1].

In an externally applied magnetic field, theory predicts
this state will continuously evolve into the first of three
quantum fluctuation stabilized phases: a coplanar phase
in which the spins order in the shape of a Y, as shown
in Fig. 1b. The angle between the two spins forming the
top branches of the Y depends on the strength of the
applied magnetic field [1].

At an applied field equal to approximately 3/10 of
the saturation magnetic field Hs, a phase transition to
the collinear up-up-down (UUD) spin structure shown in
Fig. 1c occurs, one signature of the UUD phase being
a plateau in the magnetization at 1/3 of the saturation
magnetization. In Ba3CoSb2O9 , this plateau is experi-
mentally observed between 10 - 15 tesla for fields directed

within the easy plane [5–7].

The third predicted phase is a different coplanar spin
ordering denoted V : two of the three spins share a com-
mon orientation, thereby forming a rotated V shape, as
shown in Fig. 1d. These three phases are followed by a
final field induced transition at Hs to the fully polarized
state.

Incorporating interlayer exchange and weak in-plane
anisotropy is expected to result in additional ordered
phases at high field, as the spins can now alternate direc-
tions on adjacent layers, and the phase diagram becomes
magnetic-field-orientation dependent [8–14]. A represen-
tative collection of the various spin orderings that have
been proposed to occur when interlayer coupling is taken
into account for magnetic fields aligned with the easy
plane is shown in Fig. 2.

(a)                        (b)                        (c)                           (d)

(e)                        (f)                        (g)                           (h)

(i)                        (j)                        (k)
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FIG. 2. (Color online) Theoretically proposed spin orderings
for a quantum S = 1/2 Heisenberg triangular antiferromag-
net with interlayer coupling in a 2 layer model. Spins 1 - 3
correspond to layer 1; spins 4 - 6 to layer 2. The orderings
are named as follows: (a) the zero field 120◦ structure, (b)
distorted combined Y ,(c) alternating ordered Y, (d) parallel
ordered Y, (e) UUD, (f) V, (g) distorted V, (h) V′, (i) stag-
gered V′, (j) ψ (fan) spin structure. Ordering (k) corresponds
to the classically expected cone (umbrella) phase.

In this article, we report results of specific heat, mag-
netic torque, thermal conductivity, and neutron scatter-
ing measurements on Ba3CoSb2O9 as a function of mag-
netic field intensity and field orientation within the 2D
plane (H||a), normal to the 2D plane (H||c), and as a
function of angle φ for rotations from c (φ = 0◦) to a
(φ = 90◦). We present evidence for additional phase
transitions in both the low and high field limits below
the saturation field Hs. We use thermodynamic and
symmetry-based arguments to constrain the range of pos-
sible spin structures for the high field phase in some cases
ruling out previously assumed configurations and suggest
new physics beyond the standard J − Jz − J ′ weakly in-
layer anisotropic coupled layer model that might account
for our results.
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II. EXPERIMENT

Single crystals of Ba3CoSb2O9 were grown by using
the optical floating-zone technique. Specific-heat mea-
surements Cp(H,T, φ) were carried out on 1.0 and 2.5
mg crystals as a function of temperature, magnetic field,
and field orientation between 0.3 K and 6 K in fields be-
tween 0 and 35 tesla using custom-built single-axis rota-
tion micro-calorimeters [15, 16] cross-calibrated in mag-
netic field to correct for magnetoresistance of the ther-
mometers [17]. The thermal conductivity, κ, was mea-
sured by using a “one heater, two thermometer” tech-
nique [18, 19]. The magnetic torque, τ , was measured by
using a 13-µm-thick CuBe cantilever. The single crys-
tal neutron diffraction measurements were made using a
3He insert at the Cold Neutron Triple-Axis Spectrometer
CG4C at the High Flux Isotope Reactor, with the crystal
aligned on the [HHL] scattering plane and in a vertically
directed magnetic field.

A. Results and Discussion for H||a

We begin with a discussion of our results for the mag-
netic field applied within the easy (ab) plane, parallel
to the a axis. For this orientation, we expect the spins
to remain within the easy plane, starting from the 120◦

easy-plane spin configuration at zero field.

FIG. 3. (Color online) Magnetic-field dependence of the spe-
cific heat as a function of temperature for H||a. Features
corresponding to magnetic-field induced phase transitions are
observed at 6, 10, 15, 24, and 33 T in the low temperature
limit. The 6 T transition has not been previously reported.

The magnetic field dependence of the specific heat
at 0.3 K presented in Fig. 3 for H||a (φ = 90◦ plane-

parallel orientation) reveals a series of magnetic-field-
induced phase transitions, including a previously unre-
ported transition at 6 T, transitions into and out of the
UUD phase at 10 T and 15 T, a sharp rise in the specific
heat followed by a plateau corresponding to a transition
around 24 T, and finally a sharp drop in the specific heat
corresponding to a transition out of the antiferromagnetic
state at the saturation field of 33 T. Additional features
seen in the 0.3 K field sweep may correspond to emerging
transitions but are not resolved at higher temperature.
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FIG. 4. (Color online) Magnetic-field dependence of the ther-
mal conductivity for H||a at temperatures above and below
the zero-field magnetic ordering temperature TN (0) = 3.7 K,
revealing field induced phase transitions from the zero field
paramagnetic T > TN (0) and antiferromagnetic T < TN (0)
states to the UUD spin state.

The magnetic-field-induced phase transition from the
low field orderings to the UUD spin ordering can also be
seen in thermal conductivity measurements κ(H)/κ(0)
for H||a. Figure 4 shows the field dependence for tem-
peratures above 1 K. At temperatures above TN (0) = 3.7
K, an applied magnetic field induces a phase transition
directly from the lower field paramagnetic state into the
UUD spin state (at approximately 7 T for the 4.1 K
trace); the initial field dependence below the zero-field
ordering temperature TN (0) arises from change in spin
orientation within the low field antiferromagnetic state
with applied field. The peak in the thermal conductivity
at still higher magnetic field corresponds to the transition
from this low field state into the UUD spin state (at ap-
proximately 9 T for the 1.95 K trace), in good agreement
with the specific heat results presented earlier.

Below 1 K, two peaks are seen as a function of magnetic
field, as shown in Fig. 5. The first of these occurs between
6 T and 10 T; the second of these begins at 10 T —
the onset of the UUD phase — and continues up to the
maximum measured field of 14 T. These results match
what is seen in our specific heat measurements, further
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FIG. 5. (Color online) Magnetic field dependence of the ther-
mal conductivity for H||a revealing the onset of a new mag-
netic phase between 6 and 10 tesla below 1 K.

supporting our identification of a new low field phase just
below UUD at temperatures below 1 K.

Neutron scattering measurements provide additional
information regarding the low field spin orderings. Tem-
perature dependent measurements at 8 T shown in Fig. 6
reveal the onset of antiferromagnetic order in field at tem-
peratures below 4.5 K followed by a pronounced decrease
in interplanar scattering intensity at temperatures below
1 K. The L dependence of this decrease — much steeper
for the (1/3, 1/3, 1) and (1/3, 1/3, 2) magnetic Bragg
scattering peaks than for the in-plane (1/3, 1/3, 0) scat-
tering peak suggests a change in the periodicity of the
spin order along the c axis at 1 K.

In contrast, NMR measurements as a function of mag-
netic field see only a second-order transition from a low-
field ‘distorted combined Y ’ phase (Fig. 2b) to the UUD
phase [12] (Fig. 2e). Those measurements, however, were
done at 1.6 K, well above the 1 K transition temperature
for this newly discovered phase.

The possibility of a magnetic-field induced phase tran-
sition between two Y phases with differing interplanar
coupling below UUD was predicted in an early study [8]
but the expected temperature dependence appears incon-
sistent with what is observed here experimentally. We
leave the determination of the true microscopic spin or-
dering in this low field phase to future experiments.

We now turn to the higher field phase transitions and
the construction of a phase diagram for H||a. Magnetic
torque τ measurements between 0 T and 35 T at 0.32 K
forH oriented close to the a axis provide a complement to
specific heat measurements over this same field range. As
shown in Fig. 7, taking a first derivative of the magnetic
torque to remove a background term in the measured re-
sponse reveals features at fields corresponding to each of
the phase transitions observed in the specific-heat mea-

2000

1500

1000

500

0

In
te

ns
ity

 [a
rb

]

6543210
Temperature [K]

 1/3 1/3 0
 1/3 1/3 1
 1/3 1/3 2

H || a @ 8 tesla

FIG. 6. (Color online) Intensities of three magnetic Bragg
scattering peaks (1/3, 1/3, 0), (1/3, 1/3, 1), and (1/3, 1/3,
2) at 8 T as a function of temperature for H||a.

surement, including the new transition observed at 6 T.
We focus here, however, on the transition seen here at 24
T. Calculations assuming alternating-layer six-sublattice
spin structures predict, and perhaps only allow, a first or-
der phase transition at this field [8, 12, 13]. The second
order nature of the transition seen here in the specific
heat and magnetic torque, while contrary to prediction,
is nonetheless consistent with earlier evidence from mag-
netization [6], NMR [12], and neutron diffraction mea-
surements [14].

In particular, although sometimes taken in the litera-
ture to provide evidence for a first order phase transition,
magnetization measurements show a continuous M(H)
curve with a peak at 24 T rather than a discontinuity
in M(H) [6]. Further, changes in neutron scattering ob-
served at this field [14] are consistent with either (a) a
first-order transition from a distorted V spin structure
(Fig. 22g) to a V ′ structure [13, 14] (Fig. 22h) or stag-
gered V [12] (Fig. 22i) or (b) a second-order transition to
the Ψ (fan) spin structure (Fig. 22j). Finally, NMR mea-
surements reveal a change in spin ordering corresponding
to a phase transition at this field but are unable to iden-
tify the order of the transition in this particular case [12].
The identification of the 24 T transition as a first order
phase transition has been on the basis of theory, not ex-
periment.

A magnetic phase diagram for H||a constructed from
the results presented above is shown in Fig. 8. In this di-
agram we also mark the location of a possible additional
phase transition at 29 T but stress that this identification
is tentative and at the limit of our resolution for H||a.

Several features emerge in this phase diagram, most
notably the existence of a tetracritical point (at 17 T,
3.8 K) corresponding to the upper vertex of the phase
directly above the UUD phase in field. In Landau mean-
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field theory [21–24], bicritical and tetracritical points
can be found in a number of antiferromagnets in which
the lattice anisotropy is not strong enough to produce
complete spin alignment. Common examples include
spin-flop transitions in which either (a) a single first-
order transition line terminating in a bicritical point
separates a lower-field antiferromagnetic phase and a
spin flop phase (as seen in MnF2 [25]) or (b) a pair of
second-order phase transitions terminating in a tetracrit-
ical point bound an intermediate phase that separates a
low field antiferromagnetic phase and a high field spin-
flop phase (as seen in GdAlO3 [26]).

A third example – particularly relevant here – is when
the weakness of the interlayer coupling in a layered struc-
ture quasi-2D antiferromagnet with in-plane isotropy
leads to a high-field tetracritical point in the magnetic
phase diagram (as previously seen in K2Mn0.978Fe0.022F4

[27]). In layered structure triangular lattice quantum
Heisenberg antiferromagnets such as Ba3CoSb2O9, this
weak interlayer coupling can lead to a field-induced phase
transition that doubles the period of the magnetic struc-
ture along the direction normal to the layer. This hap-
pens, for example, when the spins alternate directions in
alternating layers [4, 8]. If second order, the boundary
between the bounded intermediate phase and the high
field phase and the boundary between the bounded in-
termediate phase and the UUD phase can terminate in
a tetracritical point.

Magnetic phases terminating in a tetracritical point in-
dicate breaking of the rotational symmetry of the ideal
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FIG. 7. (Color online) Magnetic-field dependence of the mag-
netic torque τ at 0.32 K for a Ba3CoSb2O9 sample for H||a
(after scaling for small changes in field orientation). A deriva-
tive of τ has been taken with respect to magnetic field to
remove a background term in the magnetometer response.
Phase transitions observed in the specific heat at 6, 10, 15,
24, and 32 T appear here as extrema and breaks in slope, con-
firming the magnetic nature of these transitions. The dashed
line is a guide to the eye.
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FIG. 8. (Color online) Phase diagram for H||a (φ = 90◦).
Black circles correspond to the locations of phase transitions
observed in this work, blue diamonds to earlier, lower field
specific heat measurement by Zhou et al. [20], and red squares
to NMR measurements by Koutroulakis et al. [12] Hollow
black circles correspond to a possible additional high field
transition more clearly resolved for φ < 90◦.

Heisenberg model, and a symmetry-based argument dic-
tates that the magnetic ordering in the bounded inter-
mediate phase is related to the ordering in the two ad-
jacent phases [4, 21]. In determining the nature of the
high field spin states, it will therefore be convenient to
describe each state in terms of an order parameter mani-
fold [4] representing the symmetries broken by that spin
arrangement.

The three broken symmetries relevant here are (1) the
discrete Z3 symmetry (corresponding, for example, to the
choice of sublattice for the down spin in the UUD state),
(2) the discrete Z2 chiral symmetry associated with clock-
wise or counterclockwise rotation, as in the classical cone
state, and (3) the continuous spin-rotation symmetry
U(1) about the axis parallel to the magnetic field. Since
commensurate coplanar states break both U(1) symme-
try and Z3 symmetry, the order parameter manifold for
both the Y and V spin structures is U(1)×Z3; the corre-
sponding order parameter manifold for the classical cone
(umbrella) state is U(1)× Z2. In contrast, the commen-
surate collinear spin structure in the UUD phase breaks
Z3 symmetry but not U(1) symmetry, so the order pa-
rameter manifold for the UUD phase is Z3.

We can assign an order parameter manifold for the
phase directly above the UUD phase from NMR [12] and
neutron diffraction [14]. These measurements indicate
that the spin structure in this phase is coplanar and com-
mensurate, with order parameter U(1)×Z3; in particular,
NMR results are consistent with the distorted V [12] spin
structure shown in Fig. 2g. As a result, the still higher
field phase above 24 T can be neither a collinear phase,
which is ruled out in the first place by the absence of
a magnetization plateau in this field region, nor an in-
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commensurate non-coplanar phase, but must instead be
either a commensurate coplanar phase (with order pa-
rameter U(1)×Z3) or an incommensurate coplanar phase
(with order parameter U(1)× U(1)).

Models incorporating interplane exchange and intra-
plane exchange anisotropy on high field magnetic order-
ing [12, 13] have focused on the first of these options for
the high-field phase: a commensurate coplanar ordering
with order parameter U(1)×Z3. In particular, for H||a,
most calculations predict this spin ordering [12, 13] just
below the saturation field Hs (see however Ref. [8]).

The specific type of spin ordering is dependent on
the interplane coupling J ′ and easy-plane anisotropy
∆ = 1 − Jz/J , where ∆ = 0 for an isotropic Heisen-
berg antiferromagnet and ∆ = 1 in the XY limit. For
easy-plane anisotropies below a critical threshold ∆c1

the previously proposed V ′ spin structure is expected
whereas for stronger anisotropies, the coplanar Ψ spin
structure occurs. In the absence of interplane exchange
J ′, analysis of a triangular-lattice antiferromagnet with
exchange anisotropy near saturation [10] predicts that
∆c1 = 0.45/S — corresponding to a transition from V ′

to Ψ at Jz = 0.1J for S = 1/2 — but including even a
small non-zero interplance exchange term J ′ enables this
transition to occur for a much smaller degree of in-plane
anisotropy ∆ (larger Jz), with the V ′ spin structure fa-
vored at lower values of J ′ and the Ψ spin structure at
higher values [13] .

An early ESR-based estimate of J ′/J ∼ 0.03 [6] has
been a starting point for most theoretical calculations
but more recent neutron scattering experiments at zero
field [28] and in the UUD state [29] consistently establish
a higher value of J ′/J = 0.052. Similarly, estimates of
Jz/J also vary, ranging from 0.77 [11, 13] to 0.93 [6].
Within existing theory, the numerical estimates used thus
far for J ′ and Jz have led to the expectation that the
high field phase will correspond to the spin arrangement
V ′ rather than Ψ [12, 13]. There are, however, a number
of unresolved discrepancies [12] between experiment and
theory for this particular spin order, raising the question
whether this V ′ identification is accurate.

Following [14], we therefore now consider both the V ′

and Ψ arrangements to see if we can choose between the
two thermodynamically. A key distinction between the
V ′ and Ψ spin structures is this: in the V ′ type spin ar-
rangements, no spins align directly along the direction of
the applied field and the majority spins align at a differ-
ent angle to the applied magnetic field than the minority
spin, whereas in the symmetric Ψ arrangement, one spin
aligns directly with the field while the other two align at
equal angles on either side of the first. The difference in
symmetry between the distorted V , V ′, and Ψ structures
means that the phase transition between the two adja-
cent phases should be first order if between distorted V
and V ′ spin states but second order if between distorted
V and Ψ [14]. On the basis of the evidence presented
here, the spin structure for the phase above 24 T cannot
be the previously theoretically proposed V ′ arrangement

but it could be of the Ψ type.
As an alternative to the Ψ structure, we must also

consider an incommensurate planar phase with order pa-
rameter U(1) × U(1). This would not normally be ex-
pected in a crystal with sixfold symmetry and the only
prior experimental support for this possibility lies in the
NMR data, which although inconclusive, are said to bear
some resemblance to what would result from incommen-
surate structures [12]. Theoretically, however, commen-
surate planar to incommensurate planar phase transi-
tions satisfying U(1) × U(1) have only been predicted
for intraplane spatial anisotropy [4, 10], which is absent
in Ba3CoSb2O9. The experimentally more likely spin or-
dering for this high field phase is therefore Ψ.

Distinguishing definitively between a highly symmet-
ric, commensurate planar spin ordering like the Ψ struc-
ture, an incommensurate planar ordering based on one of
the commensurate structures proposed for the V phase,
or some third yet unconsidered spin structure likely re-
quires new, even higher resolution NMR measurements
than reported to date. The broadening of the 135Ba and
137Ba spectra with field makes such any measurements
challenging, but recent advances in condensed-matter-
NMR compatible high homogeneity high field magnets
may make this feasible [30].

B. Results and Discussion for H||a→ H||c

We turn now to a discussion of the system’s behavior
as a function of magnetic field orientation, for orienta-
tions from H||a to H||c (φ = 90◦ → φ = 0◦). Rotating
the applied magnetic field out of the easy plane from
H||a towards H||c introduces a transverse field compo-
nent that can be expected to distort the coplanar and
collinear states that occur for H||a and alter the expected
locations of the phase boundaries.

In the case of the distorted combined Y spin struc-
ture (Fig. 2b) experimentally confirmed by NMR for H||a
(φ = 90◦) below 10 T at 1.6 K [12], it is predicted that
the spins will continuously deform with changing φ into
the umbrella phase expected for H||c (φ = 0◦). A similar
deformation is expected for the UUD phase. At higher
fields, however, the increasing distortion of the copla-
nar phases introduces the possibility of a magnetic-field-
orientation-induced phase transition instead of a contin-
uous distortion of the H||a spin structure [12].

Our results for the angle dependence of the specific
heat are shown at 0.4 K in Fig. 9 and at 1.0 K in Fig. 10.
For angles near H||a, the predicted locations in field for
the phase boundaries (at T = 0) are in good agreement
with our calorimetric measurements shown here, except
of course for the new transition seen at 6 T and an addi-
tional unexpected transition at 29 T.

In contrast, we find a significant deviation between the-
ory and experiment at lower angles: two-layer model cal-
culations of interlayer coupling predict an experimentally
unobserved field-rotation-induced phase transition due to
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FIG. 9. (Color online) Variation of the specific heat of
Ba3CoSb2O9, at 0.4 K, with magnetic field strength and ori-
entation for magnetic field orientations near H||a. The hor-
izontal axes represents magnetic field strength and magnetic
field orientation φ with respect to the c axis (normal to the
easy plane). The horizontal plane serves as an (H, φ) phase
diagram; the dashed lines on the phase diagram represent
the predictions of T = 0 semi-classical mean-field theory [12].
The solid dots on the phase diagram represent locations of
experimentally observed magnetic-field-induced phase transi-
tions; dashed vertical lines leading from the dots mark the
corresponding features in the data.

the convergence of the lower and upper phase boundaries
of an ‘upper-intermediate-field’ (UIF ) phase the phase
observed between 15 and 24 T for H||a with decreasing
φ. The transition should occur at fields and angles cor-
responding to the termination of phase boundary shown
as a dashed green line at a dashed blue line in Fig. 10.
As a result, the UIF phase should not exist at all be-
low φc = 18◦. Experimentally, however, we find that
the upper and lower boundaries of the UIF phase fail
to converge as a function of φ before φ = 0. It would
be interesting to theoretically investigate how φc varies
with a change in interplane coupling parameter J ′ and/or
inclusion of next-nearest-neighbor exchange terms.

C. Results and Discussion for H||c

Our measurements at H||c are more limited in scope
but still provide some additional insights regarding these
various phase boundaries. The magnetic field depen-
dence of the specific heat between 9 and 35 T for temper-
atures ranging from 0.4 K to 3.7 K — shown in Fig. 11
— reveal magnetic-field-induced phase transitions at low
temperature at 12, 21, 29, and 33 T, the last of these
being the transition at the saturation field Hs. NMR

FIG. 10. (Color online) Variation of the specific heat of
Ba3CoSb2O9 with magnetic field strength and orientation for
magnetic field orientations near H||c (φ = 0) at T = 1 K. The
horizontal axes represent magnetic field intensity and mag-
netic field orientation φ with respect to the c axis. The hor-
izontal plane serves as an (H, φ) phase diagram; the dashed
lines on the phase diagram represent the predictions of T = 0
semi-classical mean-field theory [12]. The solid dots on the
phase diagram represent locations of experimentally observed
magnetic-field-induced phase transitions; dashed vertical lines
leading from the dots mark corresponding features in the data.

measurements at 1.89 K were first to reveal the existence
of the 21 T transition predicted by theory; the same set of
NMR measurements were also the first to raise the possi-
bility of an additional transition somewhere between 27.5
T and 29 T for this field orientation [12].

As before, the magnetic torque measurement for H||c
at 0.32 K shown in Fig. 12 confirms the magnetic charac-
ter of these transitions. Transitions are observed at 12,
21, and 33 T. The additional transition at 29 T seen in
NMR [12] and also in the specific heat is too weak to
resolve above the noise floor here in magnetization.

We present in Fig. 13 a phase diagram constructed
from these measurements. Additional measurements of
thermal conductivity up to 14 T (not shown here) are
consistent with this phase diagram. We also include two
previously reported features in NMR measurements at
1.89 K between 14.5 T and 30 T [12]. The NMR measure-
ments are in good agreement with the specific heat and
magnetic torque results presented here, although the 29
T transition was identified as tentative [12]. For H||c, the
lowest field phase below 12 T was identified as the clas-
sically expected umbrella (or cone) spin structure; mea-
surements at the same temperature in the intermediate
field phase between 12 and approximately 21 T are con-
sistent with the coplanar distorted V state [12] shown in
Fig. 2g). Measurements in the high field phase between
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FIG. 11. (Color online) Magnetic-field dependence of Cp/T
for H||c from 9 T — just below the UUD phase transition
at 12 T — up to the saturation field Hs = 33 T. Features
corresponding to magnetic-field induced phase transitions are
observed at 12, 20, 29, and 33 T at 0.41 K. Lower-field data
was not collected for this field orientation.

21 to approximately 29 T, however, are inconsistent with
the theoretically predicted staggered V (Fig. 2i) spin
structure [12]. The nature of the spin state above 29
T in this orientation has also not been established. A
transition just below Hs to a high field cone phase was
predicted in an early work [8] but has not been repro-
duced in more recent theoretical calculations [10, 12, 13].
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FIG. 12. (Color online) Magnetic-field dependence of the
torque τ at 0.32 K for H||c. Phase transitions observed in
the specific heat for this field orientation at 12, 21, and 33 T
are manifest here as extrema and breaks in slope, confirming
the magnetic nature of these transitions.
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FIG. 13. (Color online) Phase diagram for H||c (φ = 0◦).
Black circles correspond the locations of phase transitions ob-
served in this work, and solid (hollow) red circles represent
transitions definitively (tentatively) identified by NMR mea-
surements [12] at 1.89 K between 14.5 and 30 T.

III. GENERAL DISCUSSION

Our results indicate that the present S = 1/2, two
layer J − Jz − J ′ understanding of the triangular lattice
quantum Heisenberg antiferromagnetic model captures
many aspects of the behavior of Ba3CoSb2O9 but must
now be modified or expanded in some way to account for
the second order nature of the phase transitions observed
here, the unexpected emergence of additional phase tran-
sitions at low temperature, and the evolution of the phase
diagram with field orientation. We suggest three possi-
bilities: relaxing the assumption of an effective S = 1/2
spin system for the Co2+ ions, incorporating next nearest
exchange terms, and other more general modifications of
the alternating layer six sublattice structure used in cal-
culations so far.

First, the magnetic properties of the Co2+ ions
in Ba3CoSb2O9 are associated with a well-separated
Kramers doublet ground state [5], leading to the approx-
imation of Ba3CoSb2O9 as an effective S = 1/2 spin
system. Including higher-order spin-orbital exchanges,
however, alters the expected magnetic ordering [31] in
a related Co2+ easy-plane honeycomb quantum magnet
with significant interplane coupling: CoTiO3. Could in-
cluding higher-order spin-orbital exchanges alter the ex-
pected magnetic ordering in Ba3CoSb2O9 as well?

Second, including a next-nearest intraplane exchange
term J2 as small as J2/J ' 0.07 is known to destroy the
120◦ zero field magnetic ordering otherwise expected for
the S = 1/2 triangular lattice antiferromagnet [32]. It
would be interesting to investigate what happens for a
still smaller non-zero J2 term which preserves the zero-
field ordering [28], if a magnetic field is applied.

Third, present calculations assume an alternating
layer, six-sublattice spin structure for the multilayer



9

triangular lattice quantum Heisenberg antiferromagnet
model. Modifying this could allow periodicities in the
spin structures other than simple aligned/anti-aligned
order, including the possibility of incommensurate or-
der [33]. Since multiple periodicities can have the same
exchange energy [34], the periodicity could then be se-
lected by some other interaction weaker than nearest-
neighbor exchange coupling, such as next nearest ex-
change or dipole-dipole interactions. These have been
seen to lead to differences in the expected magnetic-
field-induced phase transitions [34], an example being the
S = 5/2 triangular lattice compound RbFe(MoO4)2. In
this material, as with Ba3CoSb2O9, two phases appear
below the UUD phase for H||a but only one — the um-
brella phase — for H||c [34–36].

Further experimental work is also needed: the pre-
pandemic experiments presented above necessarily fo-
cused on mapping out the angle dependence of the pre-
viously theoretically expected phase boundaries in the
limited magnet time available, leading us to constrain
the range of most field sweeps for φ 6= 0◦ to fields above
9 T. Post-pandemic, we hope to carry out systematic in-
vestigations of the 29 T feature seen near saturation field
for some field angles as well as the low field umbrella
phase that exists for H||c below 12 T [12], including the
interesting question whether the low field 6 T transition

seen for H||a persists as H → c.
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