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Measurements of thermal diffusivity in several insulators have been shown to reach a Planckian
bound on thermal transport that can be thought of as the limit of validity of semiclassical phonon
scattering. Beyond this regime, the heat transport must be understood in terms of incoherent
motion of the atoms under strongly anharmonic interactions. In this work, we propose a model
for heat transport in a strongly anharmonic system where the thermal diffusivity can be lower
than the Planckian thermal diffusivity bound. Similar to the materials which exhibits thermal
diffusivity close to this bound, our scenario involves complex unit cell with incoherent intra-cell
dynamics. We derive a general formalism to compute thermal conductivity in such cases with
anharmonic intra-cell dynamics coupled to nearly harmonic inter-cell coupling. Through direct
numerical simulation of the non-linear unit cell motion, we explicitly show that our model allows
sub-Planckian thermal diffusivity. We find that the propagator of the acoustic phonons becomes
incoherent throughout most of the Brillouin zone in this limit. We expect these features to apply to
more realistic models of complex insulators showing sub-Planckian thermal diffusivity, suggesting a
multi-species generalization of the thermal diffusivity bound that is similar to the viscosity bound
in fluids.

I. INTRODUCTION

Despite the diversity of strongly interacting quantum
materials, the low energy response of such systems is
mostly found to be described by weakly interacting ex-
citations. Paradigmatic examples of these are the quasi-
particles in Fermi liquid theory or Goldstone bosons such
as phonons or magnons [1]. Notable exceptions to this,
in the form of so-called incoherent metals [2, 3], have
been proposed in the form of non-Fermi liquids [4–7] and
Bose metals [8], though definitive experimental evidence
for such phases is lacking. Signature of incoherent metals
were discovered experimentally in high-Tc superconduc-
tors [9–13], where linear-T resistance appears and per-
sists beyond the Mott-Ioffe-Regel limit [14] where the
mean free path becomes smaller than the Fermi wave-
length. Surprisingly, the linear-T resistance is also ob-
served at apparently low temperatures [2]. Such a scal-
ing is in direct contradiction to the T 2 behavior expected
from the low temperature limit of Boltzmann scatter-
ing transport of Fermi liquid quasiparticles [15] from
electron-electron interaction. On the other hand, if the
electrons are assumed to scatter from other low-energy
excitations with a scattering rate τ−1s , then the con-
ductivity of a material in the semiclassical approxima-
tion is expected to follow the Drude formula σ ∝ ω2

pτs
[3, 16], where ωp is the plasma frequency. The existence
of well-defined quasiparticles, which are the crucial ingre-
dients for Boltzmann theory, are expected to be meaning-
ful when their lifetime induced energy broadening ~τ−1
is smaller than the energy of the quasiparticles. Since
the typical energy of quasiparticles are of order kBT ,
this leads to the suggestion of a minimal conductivity
σ > ω2

pτP where τP = kBT/~ is the Planck scattering
time [3]. Interestingly, a significant number of systems
presents conductivity near the minimal limit [2, 17–19].

The description of transport in such systems requires a
fully quantum mechanical treatment, which has inspired
significant theoretical effort [20–24].

These ideas have been extended [21] beyond the semi-
classical regime to relate more general transport coef-
ficients such as momentum, charge and heat diffusion
to viscosity bounds that had been proposed based on
holographic methods [25]. A similar instance of uni-
versal diffusion bound described by fundamental phys-
ical constants is also discovered in liquid systems [26–
28]. In fact, the heat or thermal diffusion coefficient in
incoherent metals, where quasiparticles are absent, was
studied extensively [29–34] and was shown to be related
to the scrambling time [35], which is be bounded by
λ−1L ≥ 2πkBT/~ whose form is close to the Planckian
time τP . A complication of measuring thermal diffusion,
as was done in cuprate superconductors in the bad metal
regime [36, 37] is that it contains contributions from both
phonons and electrons. The thermal diffusivity contribu-
tions from electrons and phonons in materials approach-
ing the Planckian bound are expected to be described by
the form

DP = v2sτP (1)

where vs is the sound velocity or the Fermi velocity de-
pending on the relevant carrier [37]. Accordingly, we re-
strict our discussion to crystalline systems with a well-
defined sound velocity in this work. Correlating the ther-
mal diffusion and charge diffusion measurements leads
to the conclusion that that the electron and phonon be-
haves like a soup where both contribute to the thermal
transport in an incoherent way [37]. A simpler testing
ground for these ideas are provided by the thermal dif-
fusion in insulators where the thermal diffusion is con-
tributed exclusively by phonons. In this case it has been
proposed [38, 39] that Eq. 1 provides a lower bound for
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thermal diffusivity for temperatures at or above the or-
der of Debye temperature TD. Interestingly, this bound
appears to be reached for insulators with complex unit
cell [38, 39]. Such slow thermal diffusivity has been at-
tributed to be a signature of quantum chaos [40].

Recently, Mousatov et al. [41] have pointed out that
the diffusivity bound (Eq. 1) can be understood to be
a consequence of the fact that the sound velocity vs is
bounded by the melting velocity vM . This suggests that
the thermal diffusivity in complex oxides where vs ap-
proaches vM could approach the bound in Eq. 1. It is also
possible that this thermal diffusivity bound motivated by
the connection [21] to the viscosity bound is modified for
complex insulators. This is because the viscosity bound
has been shown to be lowered in multi-component flu-
ids [25].

In this paper, we study the thermal diffusion in a model
of a strongly anharmonic crystal and show that in certain
parameter regimes the thermal diffusivity can drop be-
low the Planckian bound given in Eq. 1. To simplify the
problem, we will assume that the temperature T of the
system is high enough that the dynamics of the atoms
in the crystal can be approximated as classical. How-
ever, Planck’s constant ~ enters through the requirement
that all phonon frequencies must be below kBT/~. The
model we consider has a unit cell with a large number
of atoms with very anharmonic interactions that lead
to incoherent intracell atomic dynamics. We will show
that these modes contribute negligibly to heat transport,
while contributing to heat capacity in a way similar to
Einstein phonons [42]. This reduces the thermal diffu-
sivity of the system. In Sec. II, we will first discuss
the complex phonon system in the context of Boltzmann
transport theory and show that thermal diffusivity must
obey the Planckian bound (Eq. 1) as long as all phonons
are well-defined in the system. In Sec. III, we derive
an expression for thermal diffusivity of lattice systems
with strongly anharmonic intra-cell dynamics connected
by weakly anharmonic springs. In Secs. IV and V, we
construct and simulate an example of the model discussed
in Sec. III and demonstrate the breaking of the Planckian
thermal diffusivity.

II. THERMAL DIFFUSION IN THE
BOLTZMANN REGIME

The thermal transport of a complex phonon system
in the classical regime is qualitatively captured by the
Boltzmann transport theory in many cases. Under the
relaxation time approximation, the thermal conductivity
κ, as derived by Peierls [43], takes a form similar to that
from kinetic theory,

κ =
1

d

∑
~q,λ

C(~q, λ)v2(~q, λ)τ(~q, λ) (2)

where d is the dimension, ~q and λ are the wave vector and
mode index, respectively. C is the specific heat per unit

volume, v is the mode velocity, and τ is the relaxation
time. In the classical regime, all normal modes satisfy
equipartition principle. That is, T > ~ωmax where ωmax
represents the highest phonon frequency in the system,
and C(~q, α) can be approximated by kB/V . In this case,
the thermal diffusivity Dth ≡ κ/

∑
~q,λ C(~q, λ) is given by

Dth =
1

Nd

∑
~q,λ

v2(~q, λ)τ(~q, λ), (3)

where N represents the number of modes.
The central assumption behind the Boltzmann formal-

ism requires the phonons to be well-defined. Therefore,
the scattering rate τ−1 should not exceed the frequency
spacing between different modes. Assuming equal level
spacing, this further imposes a lower bound on τ(~q, λ),

τ(~q, λ) >
N

ωmax(~q)
> NτP , (4)

where the second inequality comes from the classical re-
quirement with ωmax(~q) being the highest optical phonon
frequency with momentum ~q. That is, the distribution
is classical equipartition rather than Bose-Einstein dis-
tribution. τP ≡ ~/kBT is the Planckian time. Plugging
in Eq. 4 to Eq. 2 and taking the fastest phonon velocity
to be the longitudinal sound velocity vs, we can deduce a
lower bound for thermal diffusivity within the Boltzmann
regime,

Dth >
1

d
v2sτP ∼ DP . (5)

Therefore, the energy diffusion obtained from Boltz-
mann transport of phonon will be bounded by the
Planckian diffusivity [21, 36, 39].

III. THERMAL TRANSPORT WITH
INCOHERENT INTRA-CELL DYNAMICS

To go beyond Boltzmann regime, we consider a lat-
tice model with highly non-linear intra-cell dynamics as
illustrated in Fig. 1(a). The unit cells are coupled to
each other through weakly anharmonic springs acting
on an external degrees of freedom ~r = (rx, ry, rz) to
form a 3d lattice. Such a model can be considered as
a more tractable version of atomic motion in insulators
with complex unit cell where thermal diffusivity close to
the Planckian limit has been reported [40], which will be
elaborated in Sec. VI.

The spring force on the ith unit cell (circles in Fig.
1(a)) is written as

~F (i) =
∑

α∈{x,y,z}

~f(i, α)− ~f(i− α, α) (6)

where ~f(i, α) represents the force from the spring to the
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α direction of site i

~f(i, α) = −k(~ri − ~ri+α) +A
∑

u∈{x,y,z}

(ru,i − ru,i+α)
2
û

(7)

with spring constant k and weak cubic anharmonicity A.
Next, at finite temperature T , we assume the intra-cell
dynamics to be described by the response function χ.
That is,

~ri(t) =

∫
dt′χ(t− t′)~fi(t′) (8)

where ~fi represents a force acting on ~ri and χ(t) = 0 for
all t < 0. Note that since the center of mass motion of
the unit cell is decoupled from any intra-cell motion, the
acoustic phonons at long wavelength will not be damped
efficiently by the intra-cell dynamics. This is the reason
for having to introduce A in Eq. 7, which in turn leads to
damping of the acoustic modes. In principle, Eqs. 6, 7,
and 8 constitute the equations of motion for the unit cells
and one can determine the trajectories ~ri(t) by solving
them self-consistently.

As mentioned in Sec. II, the Boltzmann formalism
does not apply in regimes with ill-defined phonons such
as the case of strongly anharmonic intra-cell interactions.
In this case, one can instead use the Green-Kubo for-
mula [44] given by

κ =
1

kBT 2

∫ ∞
0

dτ
∑
n

〈qi,α(t)qi+n,α(t+ τ)〉 . (9)

where qi,α represents the heat flux in the α direction at
site i which can be written as the rate of energy transfer
across the spring connecting sites i and i+ α,

qi,α = −
~f(i, α) ·

(
~̇ri + ~̇ri+α

)
2

. (10)

A crucial assumption for the consistency of Eq. 10 is that
the average power absorbed by the spring

q̃i,α = −~f(i, α) ·
(
~̇ri − ~̇ri+α

)
(11)

vanishes. This is clearly satisfied by the conservative
force in Eq. 7.

Ultimately, the combination of Eqs. 6, 7, and 8 is
a complex non-linear system of equations that requires
numerical molecular dynamics to solve [45, 46]. How-
ever, in the limit of weak anharmonicity, the anhar-

monic part of the force on a spring i.e. ~fA(i, α) =

A
∑
u (ru,i − ru,i+α)

2
û can be approximated as being

random and uncorrelated ~fA(i, α) ≈ ~η(i, α). The mean
value of ~η(i, α, t) contributes to thermal expansion [47]
and can be set to zero by shifting the lattice constants.
The variance of ~η will be determined self-consistently by
solving the combination of Eqs. 6, 7, and 8 at finite T

(see App. B). A random stochastic driving force in a
spring would violate the vanishing of the average power
q̃ absorbed by the spring. This is remedied by adding
a damping term with a coefficient λ determined by the
fluctuation-dissipation theorem as

〈ηu(i, α, t)ηv(j, β, t
′)〉 = 2λkBTδu,vδi,jδα,βδ(t− t′).

(12)

where u, v ∈ {x, y, z} represents the different components
of the ~η. The anharmonic part of the force approximated
as the combination of random and damping terms is writ-
ten as:

~fA(i, α) ≈ −λ(~̇ri − ~̇ri+α) + ~η(i, α, t). (13)

The above equation together with Eqs. 7 and 8 are now
linear so that the correlation functions of the position
are Gaussian. The distribution is then completely deter-
mined by the 2-point correlation function 〈ru,i(0)rv,j(t)〉,
which can be found by solving Eq. 6, 7, 8, 12, and 13 in
a self-consistent way.

Within the Gaussian approximation for the position
distributions, the higher order correlation functions in
Eq. 9 can be expanded, using Wick’s theorem, into
products of 2-point correlation functions, or particu-
larly, position-position power spectrum, Sxx(~q, ω) ≡∑
j

∫
dτe−i(~q·~rij−ωτ) 〈rx,i(t)rx,j(t+ τ)〉 (See App. A

for details). According to fluctuation-dissipation theo-
rem [48], Sxx(~q, ω) is related to the imaginary part of the
response function by

Sxx(~q, ω) =
2kBT

ω
Im [D(~q, ω)] (14)

where D(~q, ω) is the response function in frequency-
momentum space defined by

~r(~q, ω) = D(~q, ω)~F (~q, ω). (15)

As shown in App. B, the response function D can be
approximated by that of a damped phonon system which
is written as:

D(~q, ω) =
1

χ−1(ω) + 4(k − iωλ)
∑
u∈{x,y,z} sin2 qu/2

.

(16)

The damping coefficient λ , which scales linearly in T (as
derived in the appendix), is related to the anharmonic
force through fluctuation-dissipation theorem [48].

IV. SHELL-BALL MODEL FOR UNIT CELL

The response function χ in Eq. 8 in the last section is
determined by the structure of the complex unit cell in
Fig. 1. In this section, we consider a specific model for
the complex unit cell consisting of N identical balls with
mass m contained in a spherical shell of radius R with
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FIG. 1. (a)Schematics of our cubic lattice. The orange lines
represent non-linear springs. Each unit cell is composed of
free balls (green circles) of mass m moving within a finite
mass M spherical shell of radius R, as illustrated in (b).
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FIG. 2. (a) The velocity auto-correlation function for N =
40 from simulation with 5 × 106 collisions (red open circle).
Blue dashed line is the inverse Fourier transform of the fit in
the momentum space, as shown in (b). (b) Velocity-velocity
power spectrum (red open circle) and rational fit to the data
(blue dashed line).

mass M as illustrated in Fig. 1. Within each shell, the
balls act as point masses that do not interact with each
other and move freely until colliding to the shell, which
we assumed to be elastic.

The shell-ball unit cell is studied by direct simulation.
N point masses with a total kinetic energy of 3NkBT/2
are placed randomly inside a spherical shell of radius R.
The shell velocity is inferred by ~vcom = 0. Next, we allow
the balls to collide with the shell following energy and
momentum conservation between the two. After each
collision, the updated shell velocity as well as the time
of collision are recorded. These data can then be used to
calculate the velocity probability distribution and veloc-
ity auto-correlation function. The total number of colli-
sions is up to 5×106 to reach statistical equilibrium after
a warmup of 105 collisions.

In this work, we will choose units so that kBT = 1
and m = 1. The radius R is chosen to be 10 which
is much larger than the thermal de Broglie wavelength
λth =

√
2π/mkBT and the shell mass M is chosen to

be M = m = 1. Fig. 2 is the simulation result for
N = 40 balls. The red open circles in Fig. 2(a) show
the average over the velocity auto-correlation functions
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FIG. 3. Real and imaginary parts of the response function
χ(ω) of the shell coordinate to an external force for N = 40
balls.

of the shell along x, y, and z relative to the center of
mass. By taking the Fourier transform, we obtain the
velocity-velocity power spectrum as shown in Fig. 2(b).
As expected, there is only one broad peak which locates
at around the collision frequency of a single ball with the
shell. This suggests that the intra-cell motion is mostly
incoherent. To get a functional form for the power spec-
trum, we perform a rational-function fit on the data in
Fig. 2(b). The resulting fit and its inverse Fourier trans-
form are plotted as blue dashed line in Fig. 2(b) and Fig.
2(a), respectively.

As shown in App. C, the velocity distribution of the
shell is Gaussian. Therefore, we expect the response of
the shell coordinate ~r to external forces to be linear, con-
sistent with Eq. 8. Using fluctuation-dissipation the-
orem on S0

xx(ω) = S0
vv(ω)/ω2 and the Kramer-Kronig

relation, we can obtain the imaginary and real parts of
the response function χr(ω) of the relative coordinate
~rshell − ~rcom,

Im [χr(ω)] =
ω

2kBT
S0
xx(ω)

Re [χr(ω)] =
1

π

∫ ∞
−∞

dω′
ω′Im [χr(ω)]

ω′2 − ω2
. (17)

Taking the center of mass motion into account, the re-
sponse function of the shell coordinate to external force
is given by

χ(ω) = − 1

(N + 1)ω2
+

N

N + 1
χr(ω). (18)

The real and imaginary parts for χ with N = 40 balls are
shown in Fig. 3 where the divergence at ω → 0 comes
from the contribution of the center of mass motion.
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V. THERMAL DIFFUSIVITY OF THE
SHELL-BALL MODEL

A. Acoustic Phonons in the Shell-ball Model

In the limit of the highly overdamped complex shell-
ball model discussed in Sec. IV, the heat transport turns
out to be dominated by acoustic phonons. From the
Boltzmann transport equation Eq. 2, the transport prop-
erties of the acoustic phonons are determined by their
dispersion ω(~q) and damping rate τ−1(~q). In the limit
of weak damping, the acoustic mode is described by a
phonon dispersion relation

ω(~q) =

√
4k
∑
u sin2 qu/2

N + 1
(19)

with a broadening or inverse lifetime

τ−1(~q) =
2λ
∑
u sin2 qu/2

N + 1
. (20)

Note that the damping is quadratic in the long-
wavelength limit, which is consistent with the Akhiezers
damping [49]. However, microscopically, we considered
the acoustic phonon to be underdamped, or ωτ > 1. This
contrasts the regime for Akhiezer’s mechanism (ωτ <<
1), which is needed for the viewpoint of static lattice dis-
tortion at the timescale of relaxation. The choice of k
and λ is restricted by the assumptions of our framework.
That is, the acoustic phonon cannot be overdamped by
λ, or τ−1(~q) < ω(~q), and the acoustic phonon frequency
cannot exceed kBT = 1. By substituting Eqs. 19 and 20
to the constraints above, we get the following conditions
for the spring constant k and damping constant λ:

6λ

N + 1
<

√
12k

N + 1
< 1, (21)

where the extreme case of ~q = (π, π, π) is taken.
For our numerical computation, we choose a set of pa-

rameters consistent with the constraint i.e. k = 2 and
λ = 2 for N = 40 balls used in the calculation of chi
in Fig. 3. In Fig. 4(a), we plot the imaginary part of
the phonon Green’s function D(~q, ω) along ~q ‖ (1, 1, 1)
in frequency-momentum space. As can be observed in
bright color, the phonon Green’s function exhibits a sin-
gle coherent mode, while all the other degrees of freedom
are incoherent. A vertical cut along q = 0.8, as indi-
cated by the red dashed line, is shown in 4(b). Besides
the coherent Lorentzian peak, we can observe a broad
background contributed by the incoherent modes around
frequencies close to the peak in Fig. 2(b). Next, the real
and imaginary part of the corresponding poles, denoted
by ωs, is shown in 4(c) and 4(d). First, we confirm that
the frequency and lifetime is in the desired regime by
satisfying |Im[ωs]| < Re[ωs] < 1. Next, they fit to the
analytic form in Eqs. 19 and 20 (orange dashed line) at
long wavelength, where the motion is mostly in-phase.

This further confirms that this mode possesses the prop-
erties of the sound mode. In fact, the coherence of sound
mode at long wavelength is expected due to the transla-
tional symmetry in our system.

B. Sub-Planckian Thermal Diffusivity

We are now ready to compute the thermal diffusivity of
the shell-ball model. By plugging in the position-position
power spectrum Sxx(~q, ω) = (2kBT/ω)Im[D(~q, ω)] into
Eqs. 9 and 10, we can obtain the thermal conductivity
κ. Next, according to equipartition principle, the specific
heat per unit cell is 3NkB/2. This gives the thermal
diffusivity of our system Dth = 2κ/3NkB . On the other
hand, since a coherent sound mode exists, the Planckian
thermal diffusivity DP ≡ v2sτP is well-defined.

DP =
k

N + 1
. (22)

For the parameter set considered here (N = 40, k = λ =
2), the resulting Dth ≈ 8.13 × 10−3, which is below the
Planckian bound DP ≈ 4.88 × 10−2. As a result, we
have demonstrated a system with sub-Planckian thermal
diffusion.

The mechanism for breaking the Planckian bound here
is quite simple. Thermal diffusivity is defined as Dth =
κ/cv. For an N -degree-of-freedom unit cell, the specific
heat per unit volume scales with N . However, since the
phonon Green’s function shows only one coherent peak
(See Fig. 4(b)) corresponding to the acoustic mode, the
optical phonons are incoherent. This is a direct conse-
quence of the highly non-linear intracell dynamics. Due
to the small relaxation time, these optical modes does not
contribute significantly to the thermal conductivity and
we expect the majority of the heat current to be carried
by acoustic phonons. In this case, the thermal conduc-
tivity κ is only related to N implicitly through the sound
velocity κ ∼ vs(N)2. As a result, the scaling of thermal
diffusivity with N is roughly Dth ∼ vs(N)2/N . There-
fore, we expect such scenario could attain Dth/DP that
scales with inverse the number of balls and sub-Planckian
thermal diffusion will appear in the large-N regime.

VI. DISCUSSION AND CONCLUSIONS

The shell-ball model discussed here may be instructive
for understanding the experimental results on Planck-
ian thermal diffusion in materials with complex unit cells
with a large number of atoms. In Ref. [40], it has been
pointed out that the insulators which presents thermal
diffusivity close to DP , such as the perovskites, usually
exhibit complex unit cells. On the other hand, the in-
sulators with simple unit cell usually have much larger
value for Dth/DP . This observation is consistent with
our model, where the heat diffusivity is suppressed by the
large cv from the large degrees of freedom N within each
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FIG. 4. (a) Logarithm of the imaginary part (color) of the
phonon Green’s function in the frequency-momentum space
for ~q ‖ (1, 1, 1), where a coherent mode is visible. (b) The
vertical cut of (a) along q = 0.8. (c) and (d) Blue solid lines:
Real and imaginary part of the poles ωs(q, q, q) along q ‖
(1, 1, 1) that corresponds to the peaks in (a). Orange dashed
lines: The corresponding analytic form from Eqs. 19 and 20.

unit cell, while the heat conductivity κ does not scale
linearly with N . Our model, unlike most holographic
models, presents a low energy spectrum described by the
coherent acoustic phonons. At low temperature, the ther-
mal energy is carried by these excitations, leading to ef-
ficient heat diffusivity well above the Planckian bound.
However, as we show, higher temperatures spread out the
energy to higher frequency incoherent modes that are not
efficiently transmitted, which results in suppressed heat
diffusion below the Planckian bound. At intermediate
temperature where some of the optical phonons are not
thermally activated, we expect quantum behaviors to ap-
pear. Similar mechanism has been suggested in Ref. [40]
to account for the appearance of ~ in the thermal diffusiv-
ity above Debye temperature. In addition, the intra-cell
dynamics in our model is chaotic by nature due to strong
non-linearity. This can also be connected to the proposal
raised in Ref. [40] that the optical phonons in the Planck-
ian materials likely exhibit chaotic dynamics. Finally,
the scenario presented above suggests a smaller bound
for thermal diffusivity that is roughly DP /N . This be-
havior is consistent with the suppression of the viscosity
bound in multi-component fluids [25]. Given the degrees
of freedom in the unit cell of the Planckian materials, this
is only within one order of magnitude to the measured
Dth. Therefore, we expect our discussion in Sec. II to
be a useful aspect to explain the Planckian diffusion in
experiments.

Recently, Ref. [41] has suggested a diffusion bound

based on the melting temperature. Specifically, the melt-
ing temperature TM would give rise to a velocity upper
bound vM which then forces a lower bound to the phonon
lifetime by using l/vM , where l is the phonon mean free
path. If we introduce a melting temperature TM to our
shell-ball lattice, a bound on the characteristic frequency
ω0 =

√
k/N + 1 < TM will appear so that the energy

scale from quantum fluctuation on the springs does not
cause the lattice to melt. The appearance of this bound
can affect the Planckian diffusion bound (Eq. 1) in two
possible ways. First, there will be a bound on the sound
velocity which is given by aω0. However, considering
the ratio Dth/DP , since the sound velocity affects both
Dth and DP in the same way, it does not influence the
breaking of Planckian diffusivity. Secondly, the bound
on ω0 will also set an upper bound for the phonon fre-
quency ω(~q). To stay in the regime where the acoustic
phonons are well-defined, the momentum-dependent re-
laxation time τ(~q) will be bounded from below. Never-
theless, since the melting temperature should be a prop-
erty of the intercell bond, such bound on lifetime should
not depend on the internal property of the unit cell. As
a result, the thermal diffusivity should still scale as 1/N
as the number of intra-cell degrees of freedom increases.

The mechanism for sub-Planckian heat diffusivity here
constitutes of large number of uncorrelated phonons that
contributes to entropy but not heat transport. It is inter-
esting to note that these ingredients can also show up in
amorphous solids or glasses. Nevertheless, the disorder
in these systems does not guarantee fast thermalization.
Specifically, one can imagine the appearance of many har-
monic modes in a disorder system that does not relax
energy. In contrast, due to the strong nonlinearity of our
system, the energy in a phonon excitation would relax
rapidly to equilibrium. In the regime above the Ioffe-
Regel limit, we believe the breaking of Planckian bound
to be also possible in amorphous solids or glasses follow-
ing the mechanism presented in our system. In fact, the
possibility of reaching the Planckian bound has been dis-
cussed in Ref. [39]. However, thermal conductivity simu-
lations of such systems require sophisticated method [50].
The model we present here utilizes the timescale separa-
tion between intercell and intracell motion, enabling the
perturbative approach. Therefore, it can be simulated in
a straightforward way.

Even though the mechanism for sub-Planckian heat
diffusivity here is rather simple in the sense that it arises
from an extra contribution to heat capacity from opti-
cal phonons, this mechanism involves transport of heat
without the presence of well-defined waves. The anhar-
monic nature of interactions of the balls in the shell can
be viewed as a strongly interacting (although classical)
phonon system which is very inefficient in carrying the
stored entropy. Understanding the temperature depen-
dence of our results would require us to go to lower tem-
peratures where some of the higher frequency dynamics
would ”freeze” out as the Bose-Einstein distribution re-
places the equipartition theorem. However, this regime
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is beyond the validity of our formalism and provides
an opportunity for studying quantum chaotic dynamics.
In this case, it becomes a difficult quantum many-body
problem where the present approach is invalid.
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Appendix A: Thermal conductivity in terms of
two-point correlation functions

The Green-Kubo formula for thermal conductivity κ is
written as

κ =
1

kBT 2

∫ ∞
0

dτ
∑
n

〈qi,α(t)qi+n,α(t+ τ)〉 (A1)

where qi,α is the heat flux in the α direction at site i

qi,α = −
~f(i, α) ·

(
~̇ri + ~̇ri+α

)
2

. (A2)

As mentioned in the main text, for the spring force
~f(i, α), we use the linearized form,

~f(i, α) = −k(~ri − ~ri+α)− λ(~̇ri − ~̇ri+α) + ~η(i, α) (A3)

Due to the isotropy, we can simply pick α = x without
loss of generality. Furthermore, the contributions to κ
in Eq. A1 from motion in the x, y, z directions are the
equal. This enables us to rewrite κ as

κ =
3

kBT 2

∫ ∞
0

dτ
∑
n

〈
qxi,x(t)qxi+n,x(t+ τ)

〉
(A4)

where

qxi,x = [−k(rx,i − rx,i+x)− λ(vx,i − vx,i+x) + ηx(i, x)]

× (vx,i + vx,i+x) (A5)

with v = ṙ. As discussed in App. B, our system shown
linear behavior. By Wick’t theorem, we can simplify
quartic terms in the average to products of two-point
correlation functions. Using time-reversal symmetry, the

non-vanishing terms are

〈qxi,x(t)qxi+n,x(t+ τ)〉 =

k2{[2Cxx(n, τ)− Cxx(n− x, τ)− Cxx(n+ x, τ)]

× [2Cvv(n, τ) + Cvv(n− x, τ) + Cvv(n+ x, τ)]

+[Cxv(n− x, τ)− Cxv(n+ x, τ)]

× [Cvx(n− x, τ)− Cvx(n+ x, τ)]}
+λ2{[2Cvv(n, τ)− Cvv(n− x, τ)− Cvv(n+ x, τ)]

× [2Cvv(n, τ) + Cvv(n− x, τ) + Cvv(n+ x, τ)]

+[Cvv(n− x, τ)− Cvv(n+ x, τ)]

× [Cvv(n− x, τ)− Cvv(n+ x, τ)]}
+2λkBTδn,0δ(τ)[2Cvv(0, 0) + Cvv(−x, 0) + Cvv(x, 0)].

(A6)

where CAB(n, τ) ≡ 〈Ai(t)Bi+n(t+ τ)〉 and the last term
corresponds to the contribution from η. Substituting Eq.
A6 into Eq. A4 and performing a Fourier transform, the
thermal conductivity can be represented as

κ =
12

kBT 2

∫
~q,ω

ω2(k2 + ω2λ2) sin2 qx [Sxx(~q, ω)]
2

+
6λ

T

∫
~q,ω

ω2(1 + cos2 qx)Sxx(~q, ω) (A7)

where
∫
~q,ω
≡
∫

d3q
(2π)3

dω
2π and the relations Svv = ω2Sxx,

Sxv = iωSxx, and Svx = −iωSxx are applied.

Appendix B: Effective Damping from Cubic
Anharmonicity

To work in the regime where the internal force de-
scribed by χ is linear, we consider the spring force from
thermal fluctuation to be weaker than the force φ from
intra-cell dynamics, that is, k · kBT <

〈
φ2
〉
. In the har-

monic limit (A→ 0), the response function in momentum
space defined by is given by

D0(~q, ω) =
1

χ−1(ω) + k (~q)
, (B1)

where χ(ω) is the Fourier transform of χ(t), k(~q) =
4k
∑
u∈{x,y,z} sin2 qu/2 is the spring force in momentum

space. Since the center of mass coordinate of each unit
cell is free from the intra-cell force, there will be well-
defined acoustic phonon peaks in D0 at long wavelength.

From a perturbative picture, the appearance of anhar-
monicity gives rise to broadening in these coherent peaks
through an effective damping force, −λ

∑
α∈{x,y,z}(2~̇ri−

~̇ri+α − ~̇ri−α) on ~ri. At finite temperature, the anhar-
monic force can be thought of as a driving force on the
harmonic oscillator. At a timescale larger than the cor-

relation time of the anharmonic force ~fA(i, α), one can
approximate the anharmonic force by a stochastic ran-
dom force ~η(t) with correlation function given by

〈ηu(t)ηv(t
′)〉 = gδu,vδ(t− t′) (B2)
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where g is the fluctuation strength that is given by the

correlation function of ~fA(i, α),

g =

∫ ∞
−∞

dτ
〈
fAu (i, α, t+ τ)fAu (i, α, t)

〉
0
−
〈
fAu (i, α, t)

〉2
0
.

(B3)

where 〈·〉0 denotes expectation values taken in the har-
monic limit. Due to the isotropy, u can be taken as either
the x, y, or z component of the non-linear force in Eq. 7.
By applying Wick’s theorem, g can be written in terms
of the power spectrum in the following integral form.

g = 32A2

∫
dω

2π
I(ω)I(−ω),

I(ω) =

∫
d3q

(2π)3

 ∑
u∈{x,y,z}

sin2 qu
2

S0,xx(~q, ω). (B4)

The effective damping λ is then given by the following
form according to fluctuation-dissipation theorem [48]:

λ =
g

2kBT
(B5)

Note that since g is quartic in displacements (Eq. B3),
according to the Wick’s theorem and the equipartition
principle, we expect g to scale as T 2. Together with
Eq. B5, the scaling of damping is λ ∼ T . In the lin-
ear response regime, including the effect of λ into the
D0(~q, ω) gives the full response function,

D(~q, ω) =
1

D−10 (~q, ω)− 4iωλ
∑
u sin2 qu/2

=
1

χ−1(ω) + 4(k − iωλ)
∑
u sin2 qu/2

(B6)

where u sums over x, y, z.

Appendix C: Velocity Distribution of the Shell-ball
Unit Cell

During our simulation, the shell motions between colli-
sions are free. Therefore, within the time interval ti+1−ti

between the ith and (i + 1)th collisions, the shell veloc-
ity ~vi = (vx,i, vy,i, vz,i) is a constant. In this case, it is
straightforward to define the velocity distribution as

Pα(v) =
∑
i

ti+1 − ti
T

δ(vα,i − v) (C1)

where α ∈ {x, y, z} labels the components of the veloc-
ity and T = tf − t0 is the total time. To get a smooth
probability distribution, we broaden the δ functions by
Lorentzians with width Γ = 0.5. The result for N = 40,
number of collisions = 5 × 106 is shown in Fig. 5. As
can be seen, the velocity distributions in the x, y and
z directions match with each other, indicating that our

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
v

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Px(v)
Py(v)
Pz(v)

FIG. 5. Velocity probability distribution of the shell coordi-
nate in different directions for N = 40 obtained from simula-
tion with 5×106 collisions. The distribution functions match
with each other and exhibit Gaussian shapes.

simulation has reached statistical equilibrium. More im-
portantly, the Gaussian nature of Pα(v) validates the ap-
plication of linear response theorem on the shell coordi-
nate ~ri in the main text.
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