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Abstract

Anharmonic phonon-phonon scattering serves a critical role in heat conduction in solids. Previ-

ous studies have identified many selection rules for possible phonon-phonon scattering channels im-

posed by phonon energy and momentum conservation conditions and crystal symmetry. However,

the crystal-symmetry-based selection rules have mostly been ad hoc so far in selected materials,

and a general formalism that can summarize known selection rules and lead to new ones in any

given crystal is still lacking. In this work, we apply a general formalism for symmetry-based scat-

tering selection rules based on the group theory to anharmonic phonon-phonon scatterings, which

can reproduce known selection rules and guide the discovery of new selection rules between phonon

branches imposed by the crystal symmetry. We apply this formalism to analyze the phonon-

phonon scattering selection rules imposed by the in-plane symmetry of graphene, and demonstrate

the significant impact of symmetry-breaking strain on the lattice thermal conductivity. Our work

quantifies the critical influence of the crystal symmetry on the lattice thermal conductivity in solids

and suggests routes to engineer heat conduction by tuning the crystal symmetry.

1



I. INTRODUCTION

Phonon scattering processes play a central role in the atomic-level understanding of ther-

mal transport in semiconductors and insulators1. The intrinsic anharmonic phonon-phonon

scattering, which includes three-phonon, four-phonon and higher-order phonon scattering

processes2, is the mechanism that dominates the behavior of the lattice thermal conductivity

for crystalline semiconductors and insulators around and above room temperature. Exten-

sive theoretical, computational1 and experimental3 efforts have focused on understanding the

anharmonic phonon-phonon scattering processes in detail. Maradudin et al.4,5 established

the anharmonic lattice dynamics framework to predict intrinsic three-phonon scattering rates

in solids6 by creating the third-order anharmonic Hamiltonian and adopting the phonon cre-

ation and annihilation operators in the second quantization formalism of many-body physics.

Recent advancements of first-principles methods, such as the density functional perturbation

theory (DFPT)7 and the finite-displacement approach6 have enabled routine calculations of

the anharmonic three-phonon scattering rates in realistic single crystalline materials. Feng

and Ruan8 further generalized the first-principles calculation to include the four-phonon

scattering process. Combining first-principles calculations of phonon scattering rates with

the phonon Boltzmann transport equation (BTE) solvers, the lattice thermal conductivity

of a wide range of crystalline materials can now be computed with a high accuracy, often

showing excellent agreements with experiments9–13.

In addition to the advancement of first-principles computational methods, an improved

physical understanding of the phonon-phonon scattering, particularly the selection rules

that determine allowed and forbidden scattering channels in a given material, has led to

the rational discovery of materials with desirable thermal transport properties. Many of

these selection rules are imposed by the requirement of energy and momentum conservation

during phonon-phonon scattering events14. One well-known example is the large acoustic-

optical band gaps typically existing in materials with a large mass contrast between con-

stituent atoms that forbid the aao type of phonon scattering processes involving two acoustic

phonons and one optical phonon15. Another example is the “acoustic-bunching” effect, where

overlapping acoustic branches in the phonon dispersion limit the aaa scattering channels in-

volving three acoustic phonons16. Both selection rules have contributed to the unexpected

high lattice thermal conductivity in boron arsenide15 that has been experimentally verified
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recently17–19.

Besides the energy and momentum conservation conditions, the crystal symmetry also

places restrictions on possible phonon scattering channels. For example, symmetry-based

analysis of the selection rules have been extensively used to interpret optical spectro-

scopic measurements involving photon-phonon interactions, such as the Raman and infrared

spectroscopy20. The impact of symmetry-based selection rules on electron-phonon scatter-

ings has also been examined to understand the strain-engineering of charge mobility in

semiconductors21,22 and the electrical transport in two-dimensional (2D) materials23. In the

context of phonon properties and thermal transport, crystal symmetry has been used to

reduce the number of unique interatomic force constants (IFCs) in first-principles phonon

calculations and improve their numerical accuracy24,25. In addition, crystal symmetry can

place contraints on the phonon dispersion relations, which indirectly affect phonon scatter-

ing through energy and momentum conservation conditions26. Furthermore, phonon-phonon

scattering rules that are directly imposed by crystal symmetry have been studied in a few

material systems with special crystal symmetries. For example, the existence of a screw axis

in certain one-dimensional (1D) systems, such as the carbon nanotubes10 and the 1D-chain

compound Ba3N,27 imposes an additional phonon scattering selection rule requiring the con-

servation of a phonon angular momentum. As another example, Lindsay et al.28 discussed

the selection rule for three-phonon scatterings involving flexural phonon modes associated

with the out-of-plane mirror reflection symmetry in 2D materials, which contributes to the

high lattice thermal conductivity of graphene. However, most crystalline materials possess

more crystal symmetries and should have more phonon scattering selection rules imposed

by their full crystal symmetry properties. A natural development, therefore, is to systemat-

ically identify phonon scattering selection rules for a given crystal based on its full crystal

symmetry.

Group theory provides a systematic mathematical framework to analyze the impact of

crystal symmetries on phonon-phonon scattering. To reveal additional phonon scattering se-

lection rules, we first review the three-phonon scattering matrix elements written in complex

normal coordinates for phonon eigenmodes29,30. We then investigate the symmetry prop-

erties of the complex normal coordinates30 and apply the method of space group selection

rules31,32 to derive the phonon scattering selection rules in crystals with symmorphic space

groups. We provide several examples to illustrate how those selection rules can be identified
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based on the group theory and provide justifications for our findings. Our results not only

show good compatibility with the findings in previous research27,28, but also lead to addi-

tional selection rules for phonon scattering channels that have not been discussed before. To

demonstrate the effect of these selection rules, we compare the phonon scattering rates of

forbidden channels and allowed channels in graphene with or without a symmetry-breaking

strain using first-principles simulations. The simulation results agree well with our theoreti-

cal predictions and show that the group theory framework we have generalized can serve as a

valuable tool to search for phonon-phonon scattering selection rules in crystalline materials

and investigate the impact of crystal symmetry on phonon transport. Our result also implies

a potential route towards tuning the thermal conductivity of solids via controlled crystal-

symmetry breaking. We note that the group-theory formalism has been applied to discuss

the thermal conductivity of transition metal dichalcogenides by Cammarata33, however, the

scattering selection rules for phonons with particular wavevectors were not established.

II. THREE-PHONON SCATTERING RATES IN NORMAL COORDINATES

The Hamiltonian of a crystal can be written as the sum of the harmonic part H0 and the

anharmonic parts8,29,34:

H = H0 + H3 + H4 + . . . (1)

The third-order terms are expressed as:

H3 =
1

6

∑
l,κ,α

∑
l′,κ′,β

∑
l′′,κ′′,γ

Φαβγ(lκ, l
′κ′, l′′κ′′)uα

(
l

κ

)
uβ

(
l′

κ′

)
uγ

(
l′′

κ′′

)
. (2)

Here Φ represents the force constant and u is the atomic displacement. α, β and γ are

Cartesian coordinates. l,l′,l′′ and κ,κ′,κ′′ represent the indices for a certain unit cell and a

particular atom within that cell. The atomic displacements u can be expanded in the basis

of the phonon eigenvectors29,30:

uα

(
l

κ

)
=

1√
N
√
Mκ

∑
q

∑
j,ρ

Q

(
q

jρ

)
eκα

(
q

jρ

)
eiq·Rl . (3)

Here N is the number of atoms, Mκ is the mass of the atom κ. q is the phonon wavevector

and j is the phonon branch index. ρ is an extra index labeling degenerate phonon modes for
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a given branch. ρ = 1, . . . , lj and lj is the number of degenerate eigenvectors. eκα
(
q
jρ

)
is one

component of the eigenvector of the phonon mode (q, jρ) associated with the displacement of

atom κ along the direction α. Rl is the coordinate of a unit cell. The expansion coefficients

Q
(
q
jρ

)
are the complex normal coordinates for the phonon eigenmodes. We can transform

Eq. (2) into the following form by rewriting the atomic displacements uα
(
l
κ

)
in normal

coordinates Q
(
q
jρ

)
H3 =

1

6N
3
2

∑
q,j,ρ

∑
q′,j′,ρ′

∑
q′′,j′′,ρ′′

Q

(
q

jρ

)
Q

(
q′

j′ρ′

)
Q

(
q′′

j′′ρ′′

)
×
∑
l,κ,α

∑
l′,κ′,β

∑
l′′,κ′′,γ

Φαβγ(lκ, l
′κ′, l′′κ′′)√

MκMκ′Mκ′′

×eκα
(
q

jρ

)
eκ
′

β

(
q′

j′ρ′

)
eκ
′′

γ

(
q′′

j′′ρ′′

)
eiq·Rl+iq

′·Rl′+iq′′·Rl′′ .

(4)

Eq.(4) can be rewritten in a more compact form for the phonon absorption case (two phonons

merge into a third phonon):

H3 =
1

6N
1
2

∑
q,j,ρ

∑
q′,j′,ρ′

∑
q′′,j′′,ρ′′

V+(qjρ, q
′j′ρ′ , q

′′j′′ρ′′)∆(q + q′ − q′′)

×Q
(
q

jρ

)
Q

(
q′

j′ρ′

)
Q

(
q′′

j′′ρ′′

)∗
,

(5)

where V+(qjρ, q
′j′ρ′ , q

′′j′′ρ′′) and ∆(q + q′ − q′′) are:

V+(qjρ, q
′j′ρ′ , q

′′j′′ρ′′) =
∑
κ,α

∑
l,κ′,β

∑
l′,κ′′,γ

Φαβγ(0κ, lκ
′, l′κ′′)√

MκMκ′Mκ′′

×eκα
(
q

jρ

)
eκ
′

β

(
q′

j′ρ′

)
eκ
′′

γ

(
q′′

j′′ρ′′

)∗
eiq
′·Rl−iq′′·Rl′

(6)

∆(q + q′ − q′′) =

 1 q + q′ − q′′ = K

0 otherwise
(7)

where K can be any reciprocal lattice vector. Eq.(6) and Eq.(7) are extensively used in first-

principles phonon scattering calculations34. The three-phonon absorption rate Γ+
qjρ,q′j′ρ′ ,q

′′j′′
ρ′′

can be expressed as35:

Γ+
qjρ,q′j′ρ′ ,q

′′j′′
ρ′′

=
~π
4

f ′0 − f ′′0
ωqjρωq′j′

ρ′
ωq′′j′′

ρ′′

|V+(qjρ, q
′j′ρ′ , q

′′j′′ρ′′)|2δ
(
ωqjρ + ωq′j′

ρ′
− ωq′′j′′

ρ′′

)
(8)
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where f0 stands for f0(ωλ), the BoseEinstein distribution, and V+(qjρ, q
′j′ρ′ , q

′′j′′ρ′′) can be

viewed as the absorption scattering matrix element of three specific phonons. The two delta

functions in Eq.(7) and Eq.(8) impose the conservation of energy and momentum during the

scattering process. Eq.(5) shows the third-order anharmonic Hamiltonian can be expressed

as a linear combination of triple products of the complex normal coordinates Q with the

coefficient V+(qjρ, q
′j′ρ′ , q

′′j′′ρ′′)∆(q+q′−q′′). In order to derive the scattering selection rules

in the framework of the group theory, we need to find the transformation properties of the

left-hand side and the right-hand side of Eq.(5) from the symmetry perspective. First we

express Eq.(5) as:

H3 =
∑
q,ξ

∑
q′,ξ′

∑
q′′,ξ′′

C+(qξ, q′ξ′, q′′ξ′′)Q

(
q

ξ

)
Q

(
q′

ξ′

)
Q

(
q′′

ξ′′

)∗
. (9)

In Eq.(9), we merge V+(qjρ, q
′j′ρ′ , q

′′j′′ρ′′) and ∆(q+q′−q′′) into one coefficient C+(qξ, q′ξ′, q′′ξ′′).

Here we use ξ instead of jρ to specify each phonon branch at each q for brevity. Similarly,

for phonon emission processes (one phonon splits into two phonons):

H3 =
∑
q,ξ

∑
q′,ξ′

∑
q′′,ξ′′

C−(qξ, q′ξ′, q′′ξ′′)Q

(
q

ξ

)
Q

(
q′

ξ′

)∗
Q

(
q′′

ξ′′

)∗
. (10)

C−(qjρ, q
′j′ρ′ , q

′′j′′ρ′′) is the product of V−(qjρ, q
′j′ρ′ , q

′′j′′ρ′′) and ∆(q− q′ − q′′), where

V−(qjρ, q
′j′ρ′ , q

′′j′′ρ′′) =
∑
κ,α

∑
l,κ′,β

∑
l′,κ′′,γ

Φαβγ(0κ, lκ
′, l′κ′′)√

MκMκ′Mκ′′

×eκα
(
q

jρ

)
eκ
′

β

(
q′

j′ρ′

)∗
eκ
′′

γ

(
q′′

j′′ρ′′

)∗
e−iq

′·Rl−iq′′·Rl′

(11)

∆(q− q′ − q′′) =

 1 q− q′ − q′′ = K

0 otherwise
(12)

III. PHONON SCATTERING SELECTION RULES IN SYMMORPHIC GROUPS

In this paper, we focus mainly on symmorphic space groups, which do not contain sym-

metry operations with fractional translations, such as screw axes and glide planes. In sym-

morphic space groups, the space group G can be expressed as the semi-direct product of the

point group G0 and its normal subgroup A, which for most cases is the translational group

T 31,32,36:

G = A ∧G0. (13)
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Given a phonon wave vector q, all the group elements {R} in G0 that satisfy the following

relation:

Rq = q + K, (14)

will form a subgroup of the point group, which is called the group of the wavevector G0(q).

Here K is any reciprocal lattice vector.

Next we will apply the selection-rule theory for space groups to the phonon absorption

process. It can be shown30 that Q
(
q
ξ

)
transforms in the same way as the phonon eigenvector

e
(
q
ξ

)
. Suppose e

(
q
ξ

)
transforms according to a certain irreducible representation D

(q)(ξ)
G of

the group of the wavevector G0(q), then the triple product Q
(
q
ξ

)
Q
(
q′

ξ′

)
Q
(
q′′

ξ′′

)∗
must transform

according to the direct product of the representations:

D
(q)(ξ)
G ⊗D(q′)(ξ′)

G ⊗D(q′′)(ξ′′)∗

G . (15)

A necessary and sufficient condition for a particular triple product of the complex nor-

mal coordinates to appear in the expansion of H3 [in another word, the coefficient C+ is

nonzero for a particular triple product in Eq.(5)] is that the corresponding character re-

duction coefficient after the ClebschGordan series expansion is nonvanishing30,31, i.e. in the

expansion:

D
(q)(ξ)
G ⊗D(q′)(ξ′)

G ⊗D(q′′)(ξ′′)
G =

∑
n

〈qξ ⊗ q′ξ′ ⊗ q′′ξ′′∗|n〉Γn, (16)

〈qξ ⊗ q′ξ′ ⊗ q′′ξ′′∗|1〉 6= 0. Here n labels different irreducible representations and Γ1 is the

identity representation. For symmorphic space groups, 〈qξ⊗q′ξ′⊗q′′ξ′′∗|1〉 can be calculated

by the following formula31:

〈qξ ⊗ q′ξ′ ⊗ q′′ξ′′∗|1〉 =
1

g′0

∑
{R}

χqξ({R})χq′ξ′({R})χq′′ξ′′({R})∗∆(q + q′ − q′′), (17)

where χqξ is the character of the irreducible representation D
(q)(ξ)
G and R goes through all

the common elements in G0(q), G0(q′) and G0(q′′). These symmetry operations form a

new subgroup, which we denote as G0(q, q′, q′′) and g′0 is the number of elements in this

group. Eq. (17) can be used to determine whether a particular phonon scattering process

is forbidden by the crystal symmetry once the groups of the wavevector G0(q), G0(q′) and
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G0(q′′) for the three participating phonons are specified. We can write down the condition

for a forbidden phonon absorption process as follows:

〈qξ ⊗ q′ξ′ ⊗ q′′ξ′′∗|1〉 = 0. (18)

Following the same procedure, we can get the similar selection rule for phonon emission

processes:

〈qξ ⊗ q′ξ′∗ ⊗ q′′ξ′′∗|1〉 = 0. (19)

These equations show that once we have determined G0(q, q′, q′′) and specified the phonon

branches, the expansion coefficients 〈qξ ⊗ q′ξ′ ⊗ q′′ξ′′∗|1〉 or 〈qξ ⊗ q′ξ′∗ ⊗ q′′ξ′′∗|1〉 can be

readily calculated with the help of group character tables using Eq.(17).

IV. APPLICATION TO 2D SYSTEM: GRAPHENE

In this section, we demonstrate the use of the space-group selection-rule theory elaborated

in the previous section by deriving the phonon-phonon scattering selection rules in graphene.

Graphene’s space group is P6/mmm, and the corresponding point group is D6h, whose

properties are most conveniently studied in terms of the combination of the simpler C6v

subgroup that includes all the in-plane symmetries and the out-of-plane mirror symmetry

σh. Given graphene’s 2D nature, the subgroup G0(q, q′, q′′) always contains σh, and may

have additional in-plane symmetries from C6v. In the following examples, we will only

apply the selection rules for phonon absorption processes since the procedure is the same

for phonon emission processes.

A. Selection Rules Imposed by the Mirror Reflection σh

Since all q in the momentum space are confined in a 2D plane, there are at least two

elements in G0(q, q′, q′′):

G0(q, q′, q′′) = {E, σh}, (20)

where E is the identify operation. In this case, G0(q, q′, q′′) is the point group C1h, which

means any phonon eigenvector e
(
q
ξ

)
must transform according to one of its irreducible repre-

sentations listed in Table 1: ∆1 or ∆2. To be concrete, the eigenvectors of in-plane phonon
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modes (TA, TO and LA, LO modes) remain the same under the mirror reflection σh and

thus belong to the representation ∆1, while the eigenvectors of out-of-plane phonon modes

(the flexural ZA and ZO modes) change sign under σh and thus belong to the representation

∆2.

TABLE I. C1h group character table

E σh

∆1 1 1

∆2 1 -1

Now consider the scattering process involving two in-plane phonons and one out-of-plane

phonon assuming the energy and momentum conservation conditions are satisfied. Then

the eigenvector e
(
q
ξ

)
transforms as ∆1, e

(
q′

ξ′

)
transforms as ∆1 and e

(
q′′

ξ′′

)
transform as ∆2.

Applying Eq. (17), we have:

〈qξ ⊗ q′ξ′ ⊗ q′′ξ′′∗|1〉

=
1

g′0

∑
{R}

χqξ({R})χq′ξ′({R})χq′′ξ′′({R})∗

=
1

2
[χ∆1(E)χ∆1(E)χ∆2(E) + χ∆1(σh)χ∆1(σh)χ∆2(σh)]

=
1

2
[1× 1× 1 + 1× 1× (−1)]

=0,

(21)

so this transition is forbidden. This calculation indicates that two in-plane modes cannot

scatter into an out-of-plane mode. Similarly, we can repeat the calculation for other possible

phonon combinations, which concludes that any three-phonon scattering channels involving

an odd number of out-of-plane phonon modes are forbidden in 2D materials with the out-of-

plane mirror reflection symmetry σh. These selection rules were first analyzed by Lindsay et

al.28 by an explicit symmetry analysis of the scattering matrix elements in graphene, and are

responsible for the reduced scattering of the flexural phonons in graphene. Here we justify

them through our group theory approach. Similarly, the group theory approach can also

reproduce the phonon angular momentum selection rules in 1D chain systems with a screw

axis as discussed in previous work27. We detail the derivation process in Appendix A.
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B. Selection Rules Imposed by In-plane Symmetries

Besides the mirror reflection σh, the in-plane symmetries of graphene, including the six-

fold rotational axis and in-plane mirror reflections, impose additional selection rules on

phonon-phonon scattering. For phonon modes with a generic wavevector q in the momentum

space (not located at any high-symmetry lines or points), the associated group of wavevector

G0(q) is trivial and only contains the identity operation and σh. Therefore, for any scattering

process involving such a generic phonon mode, the in-plane crystal symmetry will not impose

additional selection rules. In other words, the in-plane crystal symmetries will only lead

to additional selection rules on scattering processes involving phonon modes located at

high-symmetry lines and points, where the associated groups of wavevector contain more

symmetry elements and possess nontrivial representations.

FIG. 1. The crystal structure and the Brillouin zone of grpahene. Three phonon modes with

wavevectors along the Γ-M direction in the Brillouin zone of graphene are labeled (q,q′,q′′).

As one example, consider three phonon modes with wavevectors along the high symmetry

path Γ to M (as shown in Fig. 1, excluding Γ and M points), then G0(q, q′, q′′) contains four

elements:

G0(q, q′, q′′) = {E,C2(x), σxz, σh}, (22)

where C2(x) is the π rotation around the x-axis and σxz is the mirror reflection by the

x-z plane. In this case, G0(q, q′, q′′) has the same representations as the point group C2v,
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which means the eigenvector e
(
q
ξ

)
of any phonon mode along this path must transform

according to one of its irreducible representations listed in Table II (∆1 to ∆4). Since all

irreducible representations in this case are one-dimensional, the symmetry properties of the

phonon eigenvectors can be easily analyzed by examining their sign change under a particular

symmetry operation. The typical eigenvectors of different phonon branches along this path

and their respective irreducible representations are shown in Fig. 2.

TABLE II. C2v character table

E C2(x) σxz σh

∆1 1 1 1 1

∆2 1 1 -1 -1

∆3 1 -1 1 -1

∆4 1 -1 -1 1

Consider a scattering channel involving three phonons along the Γ-M path, whose eigen-

vectors belong to the irreducible representations ∆A, ∆B and ∆C , respectively, and we

denote this scattering channel as ∆A � ∆B � ∆C . With the help of the character table

(Table II), we can enumerate the forbidden scattering channels by applying Eq.(17). Since

no phonon modes belong to the representation ∆2 along the Γ-M path in graphene, the

following scattering channels for phonons along the Γ-M path are forbidden by the in-plane

crystal symmetries in graphene:

∆1 �∆1 �∆3 ∆1 �∆1 �∆4

∆3 �∆3 �∆3 ∆3 �∆3 �∆4

∆4 �∆4 �∆3 ∆4 �∆4 �∆4

∆1 �∆3 �∆4 .

(23)

For example, since the channel ∆1�∆1�∆4 is forbidden, so two longitudinal modes cannot

scatter with a transverse mode along the Γ-M direction, even if the energy and momentum

conservation conditions are satisfied. These additional scattering selection rules are imposed

strictly by the crystal symmetry, indicating more restrictions on phonon scattering channels
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FIG. 2. Typical atomic vibrational patterns (eigenvectors) for phonon modes along the Γ-M path

and their corresponding irreducible representation as listed in Table II. The crosses and dots

represent directions into and out from the paper plane.

and thus higher lattice thermal conductivity for materials with higher crystal symmetries.

To gain more physical insights, we explicitly analyze the symmetry properties of the force

constants that are associated with the forbidden channels in Appendix B.

Similarly, we can examine the scattering processes involving phonon modes alont other

high symmetry paths. For example, if all three phonon wavevectors are along the high

symmetry path Γ to K (Fig. 3a), then G0(q, q′, q′′) has four elements:

G0(q, q′, q′′) = {E,C2(y), σyz, σh}. (24)

We note here that there are other possible combinations of phonon modes with the same

G0(q, q′, q′′) structure, as long as each mode’s group of wavevector contains the same four

elements. One example is shown in Fig. 3b. In this case, G0(q, q′, q′′) has the same represen-

tations as the point group C2v, whose character table is given in Table III with irreducible

representations ∆′1 to ∆′4. For these phonon modes shown in Fig. 3, the symmetry proper-

ties of their eigenvectors and the corresponding irreducible representation that they belong

to are listed in Fig. 4. Different from the Γ-M path, all four representations appear along

Γ-K. Thus, the following forbidden processes can be derived using Eq.(17):
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FIG. 3. (a) Three phonon modes with wavevectors along the Γ-K path, whose representations

are listed in Table III. (b) One example of three other phonons possessing the same symmetry

properties as those along the Γ-K path.

TABLE III. C2v character table

E C2(y) σyz σh

∆′1 1 1 1 1

∆′2 1 1 -1 -1

∆′3 1 -1 1 -1

∆′4 1 -1 -1 1
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FIG. 4. Typical atomic vibrational patterns (eigenvectors) for phonon modes along the Γ-K path

and their corresponding irreducible representation as listed in Table III. The crosses and dots

represent directions into and out from the paper plane.

∆′1 �∆′1 �∆′2 ∆′1 �∆′1 �∆′3

∆′1 �∆′1 �∆′4 ∆′2 �∆′2 �∆′2

∆′2 �∆′2 �∆′3 ∆′2 �∆′2 �∆′4

∆′3 �∆′3 �∆′2 ∆′3 �∆′3 �∆′3

∆′3 �∆′3 �∆′4 ∆′4 �∆′4 �∆′2

∆′4 �∆′4 �∆′3 ∆′4 �∆′4 �∆′4

∆′1 �∆′2 �∆′3 ∆′1 �∆′2 �∆′4

∆′1 �∆′3 �∆′4.

(25)

From this list of forbidden scattering channels, we can conclude, for example, TA+TA →

TA is a forbidden process while LA+LA → LA is an allowed process for phonons along the

Γ-K path. We can also observe that the scatterings of phonons along the Γ-K path are more

restricted by the crystal symmetry than those along the Γ-M path given the larger number

of selection rules.

V. IMPACT OF SELECTION RULES ON THERMAL TRANSPORT IN GRAPHENE

In this section, we use the first-principles calculation to verify the phonon scattering

selection rules in graphene. From the discussion in the previous section, when the in-plane

symmetries exist, the group of wavevectors G0(q,q′,q′′) could contain many elements, so
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there will be more selections rules for phonon scattering. On the other hand, once the

crystal symmetries are broken in the x-y plane, the group of wavevectors G0(q,q′,q′′) will

only contain E and σh, so most of the selection rules will be lifted (except for the ones

imposed by σh) as long as energy and momentum conservation conditions are met.

In order to directly verify this conclusion and evaluate the effect of symmetry breaking

on thermal transport in graphene, we simulate a “skewed” graphene with first-principles

methods1, in which the atomic positions are slightly shifted in x-y plane to break all the

in-plane symmetries. The structures of the original graphene unit cell and the “skewed”

graphene unit cell are shown in Fig.7. We note here that, although the “skewed” graphene

structure is artificial, it serves as an extreme example to assess the impact of the symmetry-

imposed selection rules. Experimentally achievable uniaxial strains can affect some, but

not all, of the in-plane symmetries. In practice, a strain gradient can break all in-plane

symmetries but it is difficult to theoretically assess its impact on thermal transport due to

the broken lattice periodicity. The details for the first-principles computation are given in

Appendix D.

FIG. 5. The crystal structures and unit cells of (a) graphene, and (b) “skewed” graphene.

We use first-principles simulation to calculate the mode-specific phonon-phonon scatter-

ing rates and decompose them into contributions from different scattering channels. Strictly

speaking, the symmetry-imposed selection rules only affect phonon modes located at high-

symmetry lines and points in the momentum space. However, it is challenging to only focus

on these special phonon modes in the first-principles simulation due to the lack of suffi-

cient data limited by the sampling mesh. So instead, we compute the scattering rates of all

phonon modes and examine how the scattering rates of the commonly forbidden scattering

15



channels in graphene (such as TA→ ZA+ZA and LA+TA→ LA) change when the in-plane

symmetries are broken in the “skewed” graphene. In Figs. 6a and 6b, we compare the

scattering rates of these two forbidden channels in graphene and “skewed” graphene. We

find that, for the two forbidden channels in graphene, the phonon-phonon scattering rates

increase significantly when the in-plane symmetries are broken in the “skewed” graphene.

In contrast, for the two allowed channels in graphene (LA → ZA+ZA and LA → TA+TA),

there is no apparent order-of-magnitude change of the phonon scattering rates. We further

confirm that the phonon dispersion relations for graphene and “skewed” graphene are sim-

ilar (Fig. 7a). Although it has been shown that small differences in phonon dispersions

can lead to large changes of phonon scattering rates due to the modified phonon scatter-

ing phase space37–39, this effect alone cannot explain the mode-selectivity we observe in

Fig. 6. We further evaluate the impact of the broken in-plane crystal symmetry and the

lifted scattering selection on the lattice thermal conductivity. As shown in Fig. 7b, the

thermal conductivity of the “skewed” graphene (∼2100 W/mK at 300 K) is much lower

than graphene (∼3000 W/mK at 300 K). Given their similar phonon dispersion relations,

we expect that the phonon group velocities and phonon specific heats in both materials

are very similar. In fact, the group velocity of the ZA mode in graphene is lower than

that in “skewed” graphene from the slope of the phonon dispersions shown in Fig. 7a.

Therefore, the enhanced phonon-phonon scatterings should be the main contributor to the

significant reduction of the thermal conductivity (∼30%) in skewed graphene. Although

our calculation cannot directly prove that the broken crystal symmetry is the single factor

contributing to the enhanced phonon-phonon scattering in “skewed” graphene due to the

difficulty in sampling the Brillouin zone, the clear contrast of scattering rates in phonon

scattering channels shown in Fig. 6 demonstrate that the scattering selection rules imposed

by crystal symmetry are at least a significant contributor to the change of the phonon scat-

tering rates, illustrating the important influence of crystal symmetry on the lattice thermal

conductivity. In addition, we note that, although the crystal-symmetry selection rules only

strictly impact the phonons along high-symmetry lines, the continuity of physical quantities

implies that phonons in the proximity of high-symmetry lines and points should also be

strongly influenced by the selection rules. This result suggests that the lattice thermal con-

ductivity in high-symmetry materials can potentially be controlled effectively by external

conditions that break the crystal symmetry. Lastly, we emphasize that the impact of the
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crystal-symmetry-imposed scattering selection rules is not an “on and off” effect. In perfect

graphene, the scattering rates of some phonons located on high symmetry lines and points

are strictly zero due to the selection rules. When the symmetries are broken, the selection

rules are lifted, but it does not mean the scattering rates of these phonons will suddenly

change to high values. The continuity of physical quantities indicate that the change of the

phonon scattering rate will be a gradual process when the lattice is increasingly distorted.

FIG. 6. Phonon-phonon scattering rates for both graphene and “skewed graphene” decomposed

into scattering channels. (a) and (b) show the results for scattering channels that are forbidden by

in-plane symmetry in graphene, while (c) and (d) show the results for allowed scattering channels

in graphene.
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FIG. 7. (a) Calculated phonon dispersion relations of graphene and “skewed” graphene. (b) Cal-

culated lattice thermal conductivity of graphene and “skewed” graphene at different temperatures.

VI. SUMMARY AND DISCUSSION

In summary, we demonstrated that a group-theory-based formalism can be applied to

systematically identify anharmonic phonon scattering selection rules imposed by crystal

symmetry. We showed that this formalism can reproduce known ad hoc selection rules and

lead to new ones. We further examined the impact of crystal symmetry breaking on the

phonon scattering and thermal transport properties of graphene. Although there has been

the qualitative understanding that crystals with higher symmetry tend to possess higher

lattice thermal conductivity, our study quantifies the influence of the crystal symmetry.

Our recent experimental and computational study of the thermal conductivity of epitaxial

gallium arsenide (GaAs) on silicon substrate showed that a small symmetry-breaking in-

plane biaxial strain can significantly reduce the lattice thermal conductivity of GaAs40.

This observation can now be quantitatively understood using the group-theory formalism

here, although the derivation is quite tedious so not provided in this paper (we give a brief

heuristic discussion in Appendix C).

Furthermore, we note that the group-theory formalism here can be generalized to higher-

order scattering processes involving more phonons. For an anharmonic scattering channel

involving N phonons, the Clebsch-Gordon coefficient in Eq.(17) can be calculated in a
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generalized way:

〈N phonon process|1〉 = [
1

g′0

∑
{R}

N∏
i=1

χqiξi({R})‡]∆(
N∑
j=1

(−1)Mjqj)

χqiξi({R})‡ =

 χqiξi({R}) if Mi = 0

χqiξi({R})∗ if Mi = 1

∆(
N∑
j=1

(−1)Mjqj) =

 1 if
∑N

j=1(−1)Mj qj = K

0 otherwise

R goes through all elements in the group G0(q1, q2, . . . , qN).

(26)

While the application of this formula is cumbersome for general crystal symmetries, useful

conclusions can be drawn for simple symmetries. For example, it can be shown from Eq.(26)

that the forbidden scattering channels involving an odd number of flexural phonons imposed

by σh in graphene still applies to higher-order phonon scattering processes, which was also

discussed by Lindsay et al.28.

Compared to materials with symmorphic space groups, it is more difficult to obtain

straightforward selection rules for materials with nonsymmorphic space groups due to the

complexity of their symmetry considerations. This suggests that further research can be

done to generalize the current formalism to lattices with nonsymmorphic space groups.

On a practical level, our result suggests that symmetry-breaking strain should be min-

imized for applications where efficient heat dissipation is desirable40. On the other hand,

breaking the crystal symmetry in a controlled way can serve as a means to tune the ther-

mal conductivity for solid-state thermal switching applications. For this purpose, a strain

gradient can be more effective than uniaxial or biaxial strains.

ACKNOWLEDGEMENT

This work is based on research supported by the National Science Foundation under the

award number CBET-1846927. R. Y. acknowledges the support of a Chancellor’s Fellowship

from UCSB. We acknowledge the use of the Center for Scientific Computing supported by

the California NanoSystems Institute and the Materials Research Science and Engineering

Center (MRSEC) at University of California, Santa Barbara through NSF awards DMR-

1720256 and CNS-1725797.

19



APPENDIX A: SCATTERING SELECTION RULES IN 1D CHAIN SYSTEM

WITH A SCREW AXIS

For 1D helical systems with screw axes such as carbon nanotubes and Ba3N, it is known

that anharmonic phonon scattering is further subjected to selection rules on the phonon

angular momentum27. Here we analyze this selection rule using the group-theory formalism

with Ba3N as an example27, which contains 1D-chain structures with a two-fold screw axis.

The space group of the Ba3N chain can be treated as a symmorphic group because the

helical symmetry group containing the screw axis operation is its normal subgroup. In this

case, since all phonon wave vectors are along the z direction, the group G0(q, q′, q′′) is the

direct product of the helical symmetry group H and C3v group. The character table is given

in Table A-I. Here S is the screw axis operation (π rotation around the chain axis plus a

half-period translation along the chain direction), C3(z) is a three-fold rotation around the

chain axis (z axis), and σv is a mirror reflection operation. Typical phonon eigenvectors for

the acoustic branches and the corresponding representations are given in Fig. A1.

FIG. A1. Typical atomic vibrational patterns (eigenvectors) for phonon modes along the 1D Ba3N

chains and their corresponding irreducible representation as listed in Table A-I.
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TABLE A-1. C3v ⊗H character table

E 2C3(z) 3σv S 2SC3(z) 3Sσv

Γ1 1 1 1 1 1 1

Γ′1 1 1 1 -1 -1 -1

Γ2 1 1 -1 1 1 -1

Γ′2 1 1 -1 -1 -1 1

Γ3 2 -1 0 2 -1 0

Γ′3 2 -1 0 -2 1 0

Due to the space limitation, we will not write down all forbidden processes here. Still,

we can retrieve some general findings: the representations without the prime can be seen to

have chiralily 0 and those with the prime has chirality 1, depending on how they transform

under S. Then the selection rules originated from the phonon chirality (or the conservation

of phonon angular momentum) discussed by Pandey et al.27 can be easily checked. For

instance, using Eq.(17), we can show that the scattering channel

(Γ1 or Γ2) + (Γ1 or Γ2)→ Γ′3 (A-1)

is forbidden, which means two longitudinal or torsional phonon modes cannot scatter into a

transverse phonon mode. This is consistent with the phonon angular momentum rule since

the left-hand side has a total angular momentum of 0 while the right-hand side has a total

angular momentum of 1. Also, we can identify the following forbidden transitions:

Γ1 � Γ1 � Γ2

Γ2 � Γ2 � Γ2

(A-2)

which means, if we only consider scatterings among acoustic phonons, two torsional modes

cannot be scattered into one longitudinal mode, and three torsional modes cannot scat-

ter with each other. These results are all consistent with the phonon angular momentum

selection rule.
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APPENDIX B: SYMMETRY ANALYSIS OF THE FORCE CONSTANTS

Here we provide an explicit symmetry analysis of the relevant force constants to under-

stand the selection rules discussed in the main text. For this purpose, we rewrite Eq.(6) in

the following form:

V+(q∆A, q
′∆B, q

′′∆C)

=
∑
0κ,α

∑
l,κ′,β

∑
l′,κ′′,γ

Φαβγ(0κ, lκ
′, l′κ′′)√

MκMκ′Mκ′′

×eκα
(

q

∆A

)
eκ
′

β

(
q′

∆B

)
eκ
′′

γ

(
q′′

∆C

)∗
eiq
′·Rl−iq′′·Rl′ ,

(A-3)

where ∆A, ∆B and ∆C are the corresponding representations of ξ, ξ′ and ξ′′ in the character

table of G0(q, q′, q′′). Consider the particular forbidden channel for phonons along the Γ-M

path in graphene: ∆1 � ∆1 � ∆4 (two longitudinal phonons scatter with one transverse

phonon). One term in the summation in Eq.(A-3) has the form:

V1 =
Φαβγ([0]2, [1]1, [3]2)√

McMcMc

e2
α

(
q

∆1

)
e1
β

(
q′

∆1

)
e2
γ

(
q′′

∆4

)∗
eiq
′·R[1]−iq′′·R[3] . (A-4)

Here the third-order force constants involve three atoms, whose unit cell indices and atomic

indices inside each unit cell are labeled in Fig. A2. For each term V1, there is always a

corresponding term V2 in the summation with the following form:

V2 =
Φαβγ([0]2, [2]1, [4]2)√

McMcMc

e2
α

(
q

∆1

)
e1
β

(
q′

∆1

)
e2
γ

(
q′′

∆4

)∗
eiq
′·R[2]−iq′′·R[4] (A-5)

Given the reflection symmetry about the x-axis, it is obvious that:

eiq
′·R[1]−iq′′·R[3] = eiq

′·R[2]−iq′′·R[4] . (A-6)

Further, we know that the force constants are related by crystal symmetries in the following

form28,41: ∑
α′β′γ′

Φα′β′γ′([0]2, [1]1, [3]2)Ωα′αΩβ′βΩγ′γ = Φαβγ([0]2, [2]1, [4]2). (A-7)

Here Ωα′α are scalar elements of a matrix representing a symmetry operation. If we take the

symmetry operation to be the mirror reflection about the x-axis (the direction of phonon

wavevectors), the above equation gives: Φxxy([0]2, [1]1, [3]2) = −Φxxy([0]2, [2]1, [4]2). Since

22



FIG. A2. An illustration of the graphene crystal structure, where the three atoms involved in the

force constants used in Eq.(A-4) and Eq.(A-5) are labeled. The vibrational modes of the three

participating phonons are also illustrated.

∆1 modes only have polarizations along the x-direction and ∆4 modes only along the y-

direction, Φxxy are the only force constants contributing to V1 and V2. Therefore, we have:

V1 + V2 = 0. (A-8)

The above analysis shows that for any give term V1 in the summation in Eq. (A-3), it is

always possible to find another term V2 that the sum of these two terms is zero given the

reflection symmetry by the x-axis. Thus, the total sum in Eq.(A-3), namely V+ = 0, must

be zero, confirming that this particular scattering channel is forbidden. Other selection rules

derived in the main text can be understood in a similar manner. Taking TA → ZA+ZA in

Section IV.B for example, we still can find the cancellation of two terms in summation for

V− if we choose the symmetry operator to be mirror reflection about y-axis and therefore

this scattering channel is also forbidden.

APPENDIX C: SIMPLE 3D CRYSTAL APPLICATION

It is also interesting to investigate the effect of symmetry breaking from a group theory

perspective in 3D crystals. For simplicity, we compare two cases here. One is the Brillouin
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zone of a simple cubic lattice, which is a perfect cube. The second is a cuboid Brillouin zone.

This is the case when some strain was applied on the material with a simple cubic structure.

In these two cases, phonons with wave vectors located in the shadow area shown in Fig.

A3 should possess different scattering properties. In case 1, the plane reflection operator

with respect to the shadowed plane that leaves these wavevectors invariant belongs to the

group of wavevectors G0, while in case 2 this reflection operator does not belong to G0 since

it is not an element of the space group G. Thus, some selection rules in case 1 no longer

hold in case 2. For instance, out-of-plane phonon modes in the shadow area will obey the

selection rules similar to flexural phonons in graphene, while in case 2 they will not. A

complete analysis and enumeration of selection rules are tedious but, in principle, can be

done following the formalism introduced in the main text.

FIG. A3. An illustration of Brillouin zones of (a) simple cubic structure (b) cuboid structure and

wavevectors discussed in Appendix C.

APPENDIX D: DETAILS FOR THE FIRST-PRINCIPLES CALCULATION

We applied the first-principles calculations to obtain the phonon properties of the normal

and the “skewed” graphene. The Vienna Ab-initio Simulation Package (VASP)42,43 based

on density functional theory (DFT) were adopt for all simulations. The Perdew-Burke-

Ernzerhof (PBE) of generalized gradient approximation (GGA) was chosen as the exchange

correlation functional44. We used the projector augmented wave (PAW) potentials45,46 to de-
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scribe the core (1s2) electrons, with the 2s2 and 2p2 electrons of carbon considered as valence

electrons47. The kinetic energy cutoff of wave functions was set at 500 eV,47 and Monkhorst-

pack k-mesh 20×20×1 including the Γ point was used to sample the Brillouin zone for both

cases. Vacuum layers with 10Å thickness were used to hinder the self-interactions between

atomic layers arising from the periodic boundary condition. In the calculation of phonon

dispersions, 5× 5× 1 supercells were constructed for both structures. To obtain the phonon

dispersions, we calculated the second-order interatomic force constants employing the finite

displacement method using PHONOPY package48. For the calculations of the lattice ther-

mal conductivity, the anharmonic third-order force constants were computed using the same

supercell and k-mesh. Interactions among atoms up to the fifth nearest neighbor were taken

into account. The convergence of the interaction distance was checked. With the second

and third order force constants, we solved the phonon Boltzmann transport equation (BTE)

by an iterative method using ShengBTE package49. The q-grid mesh density for converged

thermal conductivities in both cases was 100× 100× 1.

∗ bliao@ucsb.edu

1 L. Lindsay, Nanoscale and Microscale Thermophysical Engineering 20, 67 (2016).

2 T. Feng and X. Ruan, in Nanoscale Energy Transport: Emerging Phenomena, Methods and

Applications, edited by B. Liao (IOP Publishing, Bristol, UK, 2020).

3 C. Hua, in Nanoscale Energy Transport: Emerging Phenomena, Methods and Applications,

edited by B. Liao (IOP Publishing, Bristol, UK, 2020).

4 A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962).

5 A. A. Maradudin, A. E. Fein, and G. H. Vineyard, Physica Status Solidi (b) 2, 1479 (1962).

6 D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Applied Physics Letters

91, 231922 (2007).

7 S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, Reviews of Modern Physics 73,

515 (2001).

8 T. Feng and X. Ruan, Phys. Rev. B 93, 045202 (2016).

9 J. E. Turney, E. S. Landry, A. J. H. McGaughey, and C. H. Amon, Phys. Rev. B 79, 064301

(2009).

25



10 L. Lindsay, D. A. Broido, and N. Mingo, Phys. Rev. B 80, 125407 (2009).

11 L. Lindsay, D. A. Broido, and T. L. Reinecke, Phys. Rev. Lett. 109, 095901 (2012).

12 S.-Y. Yue, X. Zhang, G. Qin, S. R. Phillpot, and M. Hu, Phys. Rev. B 95, 195203 (2017).

13 S.-Y. Yue, T. Ouyang, and M. Hu, Scientific Reports 5, 15440 (2015).

14 N. K. Ravichandran and D. Broido, Physical Review X 10, 021063 (2020).

15 L. Lindsay, D. Broido, and T. Reinecke, Physical Review Letters 111, 025901 (2013).

16 J. M. Ziman, Electrons and Phonons: the Theory of Transport Phenomena in Solids (Clarendon

Press, Oxford, 1960).

17 F. Tian, B. Song, X. Chen, N. K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou,

T.-H. Liu, et al., Science 361, 582 (2018).

18 S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang, P. Y. Huang, D. G. Cahill, and B. Lv, Science 361,

579 (2018).

19 J. S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, Science 361, 575 (2018).

20 M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to the Physics of

Condensed Matter (Springer, 2007).

21 M. O. Baykan, S. E. Thompson, and T. Nishida, Journal of Applied Physics 108, 093716

(2010).

22 Y. Sun, S. Thompson, and T. Nishida, Journal of Applied Physics 101, 104503 (2007).

23 E. V. Castro, H. Ochoa, M. Katsnelson, R. Gorbachev, D. Elias, K. Novoselov, A. Geim, and

F. Guinea, Physical Review Letters 105, 266601 (2010).

24 K. Esfarjani and H. T. Stokes, Phys. Rev. B 77, 144112 (2008).

25 A. Togo and I. Tanaka, Scripta Materialia 108, 1 (2015).

26 L. Falkovsky, Physics Letters A 372, 5189 (2008).

27 T. Pandey, C. A. Polanco, V. R. Cooper, D. S. Parker, and L. Lindsay, Phys. Rev. B 98, 241405

(2018).

28 L. Lindsay, D. A. Broido, and N. Mingo, Phys. Rev. B 82, 115427 (2010).

29 M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954).

30 J. L. Birman, Theory of Crystal Space Groups and Lattice Dynamics (Springer, New York,

1984).

31 M. El-Batanouny and F. Wooten, Symmetry and Condensed Matter Physics A Computational

Approach (Cambridge University Press, New York, 2008).

26



32 C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids: Represen-

tation Theory for Point Groups and Space Groups (John Wiley & Sons, New York, 1972).

33 A. Cammarata, RSC Advances 9, 37491 (2019).

34 A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer, Phys. Rev. B 80, 125203 (2009).

35 W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Computer Physics Communications 185, 1747

(2014).

36 M. Lax, Symmetry Principles in Solid State and Molecular Physics (John Wiley & Sons, New

York, 1974).

37 Y. Xia, Applied Physics Letters 113, 073901 (2018).

38 Y. Xia, V. I. Hegde, K. Pal, X. Hua, D. Gaines, S. Patel, J. He, M. Aykol, and C. Wolverton,

Physical Review X 10, 041029 (2020).

39 X. Gu, Z. Fan, H. Bao, and C. Zhao, Physical Review B 100, 064306 (2019).

40 A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, Physical Review Materials 3, 034603

(2019).

41 G. Leibfried and W. Ludwig, in Solid State Physics, Vol. 12, edited by F. Seitz and D. Turnbull

(Academic Press, 1961) pp. 275 – 444.

42 G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

43 G. Kresse and J. Furthmuller, Computational Materials Science 6, 15 (1996).

44 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
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