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We analyze the dislocation content of grain boundary (GB) phase junctions, i.e.,

line defects separating two different GB phases coexisting on the same GB plane.

While regular GB disconnections have been characterized for a variety of interfaces,

GB phase junctions formed by GBs with different structures and different numbers of

excess atoms have not been previously studied. We apply a general Burgers circuit

analysis to calculate the Burgers vectors b of junctions in two Σ5 Cu boundaries

previously simulated with molecular dynamics. The Burgers vectors of these junc-

tions cannot be described by the displacement shift complete (DSC) lattice alone.

We show that, in general, the normal component of b is not equal to the difference

in the GB excess volumes, but contains another contribution from the numbers of

GB atoms per unit area ∆N∗ required to transform one GB phase into another. In

the boundaries studied, the latter component dominates and even changes the sign

of b. We derive expressions for the normal and tangential components of b in terms

of the DSC lattice vectors and the non-DSC part due to ∆N∗ and additional GB

excess properties, including excess volume and shears. These expressions provide a

connection between GB phase transformations driven by the GB free energy differ-

ence and the motion of GB junctions under applied normal and shear stresses. The

proposed analysis quantifies b and therefore makes it possible to calculate the elas-

tic part of the energy of these defects, evaluate their contribution to the nucleation

barrier during GB phase transformations, and treat elastic interactions with other

defects.
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I. INTRODUCTION

Similarly to bulk materials, interfaces can exist in multiple states, or phases, and
exhibit first-order phase transitions.1 Such transitions proceed by nucleation and growth
of a new interfacial structure resulting in a discontinuous change in the excess properties
of the interface.2 For fluid interfacial phases, the conditions of equilibrium and stability
were first derived by Gibbs, who called them interfacial states3 Gibbs showed that an
interface should transform to a state with the lowest interfacial free energy. In order to
describe such transitions within the existing theories of nucleation and phase transfor-
mation, it is necessary to quantify the driving force as well as the nucleation barrier. The
interfacial free energy difference provides the driving force according to Gibbs, while the
excess free energy associated with the line defect separating the two phases is the penalty
for the transformation. A thermodynamic framework quantifying the excess properties
of such line defects and their free energy has been recently proposed.4 The developed
framework is Gibbsian in spirit and makes no assumptions about the atomic details of
the defect structure. It assumes that the energy of this defect is finite, scales with its
length, and is independent of the system size. As a result, the treatment applies to
fluids and some solid systems,5 but cannot be extended to general solid-solid interfaces
without significant approximations.

A grain boundary is a solid-solid interface formed by two misoriented crystals of the
same material. The phase behavior of GBs has recently become a topic of increased
interest due to the accumulating experimental and modeling evidence of phase trans-
formations at such interfaces.1,6–17 The line defects formed between two different GB
phases can have a long range elastic field associated with them. GB disconnections are
examples of such line defects and have been analyzed for different types of interfaces.18,19

Disconnections on GBs and phase boundaries have been investigated by modeling and
experiments.20–26 On the other hand, GB phase junctions have received much less at-
tention since there have only been a few studies of GB structures with two different
connected interfacial phases. At present, the topological nature of these defects and the
magnitude of their Burgers vectors are not well understood. Recent modeling and exper-
imental studies in elemental Cu suggest that the dislocation character of these defects
has a strong effect on the kinetics of GB phase transformations and could explain the
low transformation rates at room temperature.27 The elastic field contribution to the
energy could, in principle, dominate the GB phase nucleation behavior, and play a role
in the interaction of the junctions with other GB disconnections, lattice dislocations and
point defects.

Atomistic simulations have demonstrated first-order transitions in Σ5(210)[001] and
Σ5(310)[001] symmetric tilt GBs in Cu.2 The heterogeneous structures of these two Σ5

GBs, each containing two different phases, are shown in Fig. 1. Both structures were
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obtained by molecular dynamic simulations at T=800K with the boundary connected to
an open surface. In these simulations the surface acts as a nucleation site and a source
of extra atoms or vacancies necessary to grow the new GB phase. Because the cores of
these GB phases are composed of different number of atoms, atoms must be inserted
or removed to transform from one phase to the other.2,28–36 During the transformation
these GB phases are separated by a GB phase junction. The line direction of this defect
is normal to the plane of the image and it spans the periodic dimension of the simulation
block. The transformation was accompanied by the migration of the GB phase junction,
which required diffusion of extra atoms from the surface. These two Σ5 boundaries
provide a convenient model system to analyze the topological character of GB phase
junctions and quantify their Burgers vectors. In this work, we show that GB phase
junctions have a dislocation character, just like regular disconnections, but their Burg-
ers vectors differ from crystallographic DSC vectors since they include a contribution
resulting from the difference in the GB structures. We demonstrate a general Burgers
circuit analysis that quantifies the dislocation content of these defects. We interpret it
in terms of contributions from different excess properties, including excess volume and
shear, and the difference in the number of atoms required to transform one GB phase
into another.

II. METHODOLOGY

A. Closure failure and Burgers circuit construction

Fig. 2 shows why GB phase junctions are expected to have dislocation character and
generate long-range elastic fields. Consider two bicrystals with different GB structures
or phases, as shown schematically in Fig. 2a. Each GB structure has its own excess
properties such as excess volume3,37 and shear.38,39 In addition, the GB cores are com-
posed of a different number of atoms. As a result the two bicrystals are geometrically
incompatible. To form a GB phase junction we need to join the two bicrystals. Fig.
2b shows that this procedure will result in a closure failure. In order to form the junc-
tion using the Volterra operation,40 we elastically strain both bicrystals by appropriate
amounts, so that their bulk lattice planes away from the boundary match. As a result
of this procedure, we form a line defect with a dislocation character, as shown in Fig.
2c.

Based on how the GB phase junction was created in this thought experiment, it is
straightforward to design a Burgers circuit that would quantify the closure failure, i.e.,
the Burgers vector of the defect. We start with the deformed bicrystal shown in Fig. 3
and construct a closed circuit ABCD around the GB phase junction. The corner lattice
points of the circuit coincide with the lattice sites located inside the bulk crystal, far
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away from the GB junction and GB phases. Two vectors AB and CD cross the two
different GB phases, while the other two vectors BC and DA are located inside the
bulk of the two grains and are lattice vectors. To calculate the Burgers vector of the
GB phase junction we measure these vectors in the reference state before the junction
was created. The vectors B′C′ and D′A′ are lattice vectors and their components can
be expressed in terms of the reference bulk lattice parameter. The crossing vectors
should be mapped on the respective reference bicrystals as shown in Fig. 3b. Here,
the references for the crossing vectors are chosen as bicrystals possessing only a single
GB phase so that the crossing vectors will be unaffected by the elastic field of the
GB phase junction. With such a reference, it is always possible to find a pair of of
crystallographically equivalent lattice sites, such as A’ and B’ and thereby measure the
vector A′B′. Alternatively these equivalent lattice sites can be selected in the same
deformed bicrystal but infinitely far away from the junction. The points A, B, C and D
can be chosen arbitrary as long as they enclose the phase junction and their positions
in the reference state are not affected by the GB. In other words, the difference between
any two choices of a given lattice point such as A′ equals a perfect lattice vector, which
also means that the difference between any two choices of the crossing vectors is a DSC
vector. According to the circuit construction, the closure failure, or the Burgers vector
b, equals the sum of the four vectors measured in the undeformed state:

b = A′B′ + B′C′ + C′D′ + D′A′. (1)

Here, we follow start to finish right handed (SFRH) convention. In Section III, we
apply this approach to quantify the dislocation content of GB phase junctions in the
Σ5(210)[001] and Σ5(310)[001] Cu GBs. We describe how to calculate the crossing
vectors A′B′ and C′D′ in the reference bicrystals.

B. Relating normal and tangential components of the Burgers vector to excess

properties of GBs and DSC lattice vectors.

Equation (1) and the circuit procedure described in Sec. (IIA) are sufficient to calcu-
late the Burgers vector of any given GB phase junction.41 The procedure, however, does
not quantify the specific contributions to b from bicrystallography and from the differ-
ence in the GB excess properties. In this section, we express the crossing vectors in terms
of crystallographic properties and GB excess properties and quantify their contributions
to the Burgers vector. Relative normal and tangential displacements of the grains due
to the GB can be described using the deformation gradient formalism.38,39 The proposed
thermodynamic framework enables quantification of the excess shear at GBs and its
relation to the relative translation of the grains. Both the normal and tangential com-
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ponents of the crossing vectors can be derived within this approach and related to the
excess volumes and shears of different GB phases. In the following two subsections we
will first derive the normal Burgers vector component b3 using the well-known definition
of the GB excess volume. In the next section, we derive all three components of b using
the deformation gradient approach proposed in Refs.38,39.

1. Normal component b3

The normal components of the crossing vectors measured in the reference state can
be expressed as a sum of bulk and GB contributions using the familiar definition of the
GB excess volume. The GB excess volume [V ]N is equal to the difference between the
volume of the bicrystal Vbicrystal spanned by the crossing vector and containing N atoms,
and the volume of the bulk crystal containing the same number of atoms divided by the
GB area. The regions spanned by the crossing vectors are shown in Fig. 4a. For two
GB phases α and β we have

[V ]αN · A = V α
bicrystal − Ω ·Nα = A′B′3 · A− Ω ·Nα, (2)

[V ]βN · A = V β
bicrystal − Ω ·Nβ = D′C ′3 · A− Ω ·Nβ, (3)

where Ω is volume per atom in the perfect lattice, A is the GB area and the superscripts
refer to bicrystals with GB phases α and β. A′B′3 and D′C ′3 are the components of the
crossing vectors A′B′ and D′C′ along the GB plane normal. Eqs. (2) and (3) express
the normal components of the crossing vectors in the reference state in terms of the
excess volumes and numbers of atoms per unit area:

A′B′3 = [V ]αN + Ω ·Nα/A, (4)

D′C ′3 = [V ]βN + Ω ·Nβ/A. (5)

Here, both the GB excess volume and the second terms on the right-hand side, Ω·N/A,
have the units of length. To illustrate the physical meaning of the second term, consider
first a region inside a perfect crystal. In this case, Ω·N/A equals the distance between
the corresponding atomic planes, which is a normal component of a lattice vector. On
a DSC lattice formed by two perfect crystals with different orientations, this quantity is
equal to the normal component of a DSC vector. However, for a general bicrystal with
a GB, Ω·N/A is not necessarily a component of a DSC vector because the number of
atoms at the GB is not restricted to be the same as in the lattice. We can now combine
Eqs (4) and (5) with Eq. (1) to derive an expression for b3:
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b3 = (A′B′3−D′C ′3)+(B′C ′3−AD′3) = [V ]αN−[V ]βN+Ω(Nα−Nβ)/A+dsc3 = ∆[V ]N+Ω∆N/A+dsc3 .

(6)
Equation (6) is an analytical expression for the normal component of the Burgers vector
of a GB phase junction. The equation reveals the different factors that contribute to b3.
The first one is the difference between the excess volumes of the two GB phases. The
second term corresponds to the difference in the number of atoms inside the two regions
spanned by the crossing vectors. Finally, the two lattice vectors of the upper and lower
grains contribute the DSC component dsc3 = BC ′3 − AD′3.

We derived Eq. (6) for one particular GB phase junction, but we can use this analysis
to demonstrate that all other possible Burgers vectors of such junctions form a DSC
lattice. In addition, according to Eq. (6) the origin of this lattice is shifted away from
zero in the direction normal to the GB plane by ∆[V ]N +Ω∆N/A. To do so, we consider
all other possible junctions between the same GB phases with different Burgers vectors
and construct the Burgers circuits for each junction such that the crossing vectors A′B′

and C′D′ are the same for all junctions and B′C′ and A′D′ may not be the same.
Then the difference between any two Burgers vectors will be equal to the difference
in B′C′ − A′D′ of the two circuits, which is necessarily a DSC vector since B′C′ and
A′D′ are lattice vectors of different grains. As a result the Burgers vectors of any two
junctions differ exactly by some DSC vector and all admissible Burgers vectors form a
DSC lattice.

So far we assumed that the corners of the circuit were chosen in a general way, as
shown in Fig. 4a. We can now consider some particular choices of the lattice sites A, B,
C and D to relate the terms in Eq. (6) to some measurable properties of GB junctions.
Specifically, consider a circuit shown in Fig. 4b when the lattice vectors BC and AD are
located along atomic planes parallel to the GB plane. These atomic planes are elastically
distorted due to the presence of the dislocation, but they are parallel to each other and
to the GB plane in the reference state. By this choice, B′C ′3 ≡ A′D′3 ≡ 0 setting the
DSC term in Eq. (6) to zero and we obtain

b3 = ∆[V ]N + Ω∆N ′/A. (7)

Here, we define ∆N ′/A as the defect absorption capacity of a GB junction. It is equal
to the difference in the number atoms inside the equivalent volumes located on the two
sides of the junction and bound by the same atomic planes parallel to the GB plane
shown in Fig. 4b. The defect absorption capacity represents the number of atoms per
unit of the GB area absorbed or ejected when the junction moves along the GB.

As a simple illustration, consider the climb of a regular disconnection inside a single-
phase GB. The motion of this disconnection requires a supply of atoms or vacancies with
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the number of the point defects proportional to the normal component of the Burgers
vector, which in this case is a DSC lattice vector.18,19 According to Eq. (7) the defect
absorption capacity of such a disconnection is given by ∆N ′disc/A = b3/Ω = dsc3 /Ω, since
the GB structure on the two sides of the disconnection is the same and ∆[V ]N ≡ 0.
This example also illustrates that different disconnections may have different defect
absorption capacities and the difference is given by a normal component of some DSC
vector divided by the volume per atom. For a general GB phase junction separating
different GB phases, however, the defect absorption capacity is not defined by the DSC
lattice alone, as will be discussed below.

For a given physical system, b3 of a GB phase junction is a well defined, single-valued
quantity. However, any GB phase junction can in principle increase or decrease its
dislocation content and its defect absorption capacity by absorbing or ejecting regular
disconnections. This multiplicity of possible b3 is captured by the second term in Eq.
(7). While the first term, ∆[V ]N = [V ]αN − [V ]βN , is a constant set by the values of the
excess volumes of the two GB phases, the second term, Ω∆N ′/A = Ω(N ′α − N ′β)/A,
represents a set of possible values. When disconnections are ejected or absorbed by the
junction, Ω∆N ′/A term describes the discrete changes in the normal component of the
Burgers vector which occurs in increments dictated by the DSC lattice. For this reason,
it makes sense to further split Ω∆N ′/A in Eq. (7) into contributions described by the
DSC lattice and the smallest in magnitude non-DSC part ∆N∗/A :

b3 = ∆[V ]N + Ω∆N∗/A+ dsc3 (8)

Subtracting Eqs. (7) and (8) we also obtain

∆N ′/A = ∆N∗/A+ dsc3 /Ω (9)

Equation (8) demonstrates that all admissible Burgers vectors of GB phase junctions can
be obtained by constructing a DSC lattice for a given bicrystal and shifting the origin of
this lattice by a non-DSC vector with the normal component given by ∆[V ]N+Ω∆N∗/A.
The in-plane components of this shift vector will be derived in the next section. Eq.
(9) shows that the defect absorption capacity of a junction can change in increments
dictated by the DSC lattice, but may not be reduced to zero in some cases because of
∆N∗. As introduced by Eq (8), Ω∆N∗/A is smaller than the smallest normal component
of a DSC vector min(dsc3 ). It is also defined up to the min(dsc3 ) and can be both positive
and negative.

To illustrate the meaning of the different terms in Eqs. (8) and (9) we consider several
examples. We start again with a regular disconnection as a simplest case when the GB
structure is the same on both sides of the line defect. The Burgers vector is exactly
a DSC lattice vector, as a result ∆N∗/A ≡ 0. In other words, the defect adsorption
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capacity of a regular disconnection is described exactly by the normal components of
the DSC lattice vectors.

In another special case, consider a junction formed by two different GB phases com-
posed of the same number of atoms, meaning that given a bicrystal with one GB phase,
the same bicrystal with a different GB phase can be obtained by rearranging the atoms
in the GB region and changing the relative translations of the grains if necessary without
inserting or removing atoms from the GB core. In this case ∆N∗ = 0 again, but the ex-
cess GB volume difference contributes to the non-DSC part of the Burgers vector normal
component: b3 = [V ]αN − [V ]βN + dsc3 . As a result, differently from regular disconnections,
the origin of the DSC lattice of all possible Burgers vectors of such a junction is not
located at zero. In a general case, however, Ω∆N ′/A term is not equal to a normal
component of a DSC vector or zero and ∆N∗ is not zero.

At this point ∆N∗ was derived through its contribution to the normal shift of the
origin of the DSC lattice of all possible Burgers vectors of a given GB phase junction. We
now turn our discussion to the physical meaning of this quantity. We show that ∆N∗/A
corresponds to the smallest number of atoms or vacancies per unit area required to
transform one GB phase into another. Indeed, out of all possible choices, we can always
select a junction such that the difference b3−∆[V ]N is smaller than the smallest normal
component min(dsc3 ) of any DSC vector, making dsc3 in Eq (8) zero and b3 − ∆[V ]N =

Ω∆N∗/A. For this junction, by definition, ∆N∗ is the difference in the number of
atoms inside two regions containing two different GB phases and can be interpreted as
the number of atoms required to be inserted or removed to transform one GB phase into
another. This number is also the smallest, because any other changes in the number of
atoms that preserve the two given GB structures require insertion or removal of atoms
in the increments of min(dsc3 )/Ω atoms per unit area.

A growing number of modeling studies demonstrated that for many GB transitions
∆N∗ is not zero, some number of atoms must be added or removed to transform one
GB phase to the other. The difference in the number of GB atoms ∆N∗ originates from
the fact that some GB structures cannot be obtained by simply joining two perfect half
crystals: in addition, some fraction of the GB atoms needs to be added or removed from
the GB core and this fraction is different for different GB phases. The importance of
optimizing the number of atoms at GBs has been demonstrated in different GB types
and several different materials systems.2,28–36,42 New computational methods designed
to perform grand-canonical optimization of GB structure have been proposed.43–46

The optimization of the number of atoms in the GB core is related to the atomic
density at the boundary, but it is not uniquely determined by the excess GB volume and
represents an additional GB parameter. Previous studies reported the actual number
of removed or inserted atoms for a given GB cross-section or calculated it per unit
area relative to an idealized reference bicrystal system which is arbitrary.33,36,42 In our
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previous study, we reported a fraction of GB atoms [n] calculated relative to the numbers
of atoms in a bulk plane parallel to the boundary.2 To calculate this quantity for a given
GB, we count the total number of atoms inside a region containing a GB and the number
of atoms in one atomic plane parallel to the GB located inside the perfect crystal. The
fraction [n] was then calculated as a modulo of this two numbers and was divided by
the number of atoms in one plane. The advantage of the quantity introduced in Ref.2

is that it allows to calculate a well defined property related to the numbers of atoms
at GBs without keeping track of the number of atoms inserted or removed during the
process of GB optimization. While this parameter can be readily calculated for twist and
symmetric tilt boundaries for some crystal lattices, it cannot be accepted as a general
descriptor. For example, this quantity cannot be calculated for asymmetric boundaries
with different areal number density of atoms per plane in the different grains. Moreover,
even for symmetric boundaries this descriptor needs to be generalized to work for crystal
lattices with more than one atom per primitive unit cell, such as in diamond or hexagonal
close packed (hcp) lattices. Note that for symmetric tilt GBs the number of atoms per
unit area in one bulk plane is given by min(dsc3 )/Ω. As a result, for such boundaries
the proposed fraction of atoms [n] is exactly equivalent to subtracting out the largest
DSC component and [V ]N from the normal component of a crossing vector of a given
boundary and dividing it by min(dsc3 ), which is analogous to Eq. (9) derived for ∆N∗.
As a modulo, [n] is required to be positive. The advantage of calculating the smallest
non-DSC component of a crossing vector derived in this study instead of [n] is that it
is aslo defined for asymmetric GBs. This non-DSC component can be calculated for
each individual boundary and is related to the excess number of GB atoms per unit area
which we denote as N∗/A relative to the bulk system defined by the subtracted DSC
vector component. By this definition, this number of GB atoms per unit area is defined
up to min(dsc3 )/Ω and can be positive and negative.

In the context of GB phase transformations analyzed in this work, ∆N∗/A, represent-
ing the smallest number of atoms or vacancies per unit of GB area required to transform
one GB phase into another, is a well defined quantity which can be measured for sym-
metric and asymmetric GBs. The derived Eq. (8) relates ∆N∗/A to the non-DSC part
of the normal Burgers vector component of the GB phase junction. In our derivation
leading to Eq. (8), we made no assumptions about the type of the CSL boundary and it
is valid for both symmetric and asymmetric boundaries. We analyze specific examples
of GB phase junctions and calculate ∆N∗ in the atomistic simulation section of this
article.
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2. Deformation gradient treatment of all three components of the Burgers vector

In the previous section we showed that the normal components of all possible Burgers
vectors of a GB phase junction can be described by a DSC lattice with the origin shifted
normal to the GB plane by a vector related to the difference in the excess volumes and
the number of atoms ∆N∗. Since a GB phase junction is a dislocation, it will experience
a Peach-Koehler (PK) force when mechanical stresses are applied.40 This force produces
a driving force for the junction motion i.e., GB phase transformation, and will also
influence the equilibrium coexistence. When tension or compression is applied normal
to the GB plane, the driving force or the work of the PK force per unit area is equal to
the product of the normal component of stress and the normal component of the Burgers
vector.

Another way to describe the same effects is to consider the free energies of the two
phases. Consider a junction between two GB phases with ∆N∗ = 0. The mechanical
stresses normal to the GB plane change the free energies of both grain boundary phases,
with the change proportional to the excess volume of each boundary, as described by the
absorption equation3. This part of the free energy difference due to the normal stress
contributes to the driving force for the GB phase transformation and is given by the
product of the normal component of stress and the difference in the excess volumes. So
far, we have demonstrated that the normal component of the Burgers vector contains
a contribution from the difference in the excess volumes. Thus, the analysis presented
here for the normal component of b provides a connection between these two equivalent
descriptions of the driving force.

In addition to the normal stress, solid interfaces support shear stresses parallel to the
interface plane.47–50 These stresses also result in a PK force on GB phase junction and
change the free energies of the two phases. Excess shear of an interface is an extensive
property that describes how the interface free energy changes with applied shear stress
parallel to the boundary.38 Excess shears and GB free energy as a function of shear
stress have been calculated for different GBs using atomistic simulations.27,39 A recent
study demonstrated a shear stress induced GB transformations as well as equilibrium
coexistence under applied shear stress. Moreover, the coexistence stress was accurately
predicted from the values of the excess shears and the stress dependence of the GB free
energies.27

In this section we derive an expression for all three components of b, including the
tangential components. We show that the origin of this DSC lattice of possible Burgers
vectors is also shifted in the plane of the boundary due to the difference in excess shears.
To do so, we need to express all three components of the crossing vectors in terms of
contributions from the bulk and GB properties, such as the GB excess volume, shear
and the number of atoms. Following Ref.38,39, we assumed that there exists a mapping of
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one grain into the other, which establishes a unique relation between the lattice sites of
the two crystals. This transformation is described by a deformation gradient F. In this
work, we only consider mappings that exclude transformations resulting in GB coupled
motion, which means that F b

i3 components of the deformation gradient are the same for
both grains, where the superscript b indicated the bulk part of the crystals. Specific
examples of excess shear calculations for different GBs can be found in Refs.27,39.

The two-dimensional schematic in Fig. 5 shows how the deformation gradient F can
be used to describe the mapping between a single crystal and a bicrystal with a GB
phase. Here we present equations for one phase (α) and subsequently distinguish GB
phase specific properties by respective super-scripts. We assume that there are lattice
sites, or markers, that can be selected and tracked during an imaginary transformation
of a single crystal in Fig. 5b into a bicrystal shown in Fig. 5c. These lattice sites, labeled
as a, b, c and d define a parallelogram (parallelepiped in three dimensions) which has
different shapes for the sites located in the single crystal and the bicrystal. These shapes,
shown in Figs 5b and e, can be described using deformation gradients Fb and F̄α that
map a common mathematical reference state shown in Fig. 5a on both parallelograms.
This mathematical reference state is used to calculate the deformation gradients only
and should not be confused with the reference state for the Burgers circuit analysis
discussed earlier. Notice that, to describe the transformation from Fig. 5 b to c, we
use an effective deformation gradient F̄α which is calculated based on the positions of
the lattice sites as shown in Fig. 5 e. For three-dimensional systems, these deformation
gradients are given by38,39

F b =


F b
11 F b

12 F b
13

0 F b
22 F b

23

0 0 F b
33



F̄α =


Fα
11 Fα

12 F̄α
13

0 Fα
22 F̄α

23

0 0 F̄α
33

 =


F b
11 F b

12

(
F b
13 +Bα

1A
′
/V

′
)

0 F b
22

(
F b
23 +Bα

2A
′
/V

′
)

0 0
(
F b
33 +Bα

3A
′
/V

′
)
 (10)

where vector Bα shown in Fig. 5 d describes the change in the position of the site b
relative to its position in the single crystal. The coordinate axes are indicated in the
figure. From the formal definition of F̄α by Eq. (10) and Figs 5c and e, it is clear that
its F̄α

i3 components depend on the size of the selected GB region and approach bulk
values when the GB area to volume ratio A′/V ′ decreases. We now recognize that ab∗

is a crossing vector and its components can be expressed by ab∗i=V/AF̄α
i3/F̄

α
33, where

i = 1, 2, 3. There are three excess properties associated with vector Bα: two GB excess
shears [V F13/F33]

α
N and [V F23/F33]

α
N and one GB excess volume [V F33/F33]

α
N = [V ]αN ,

which can be found from the relation38,39
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[V Fi3/F33]
α
N = ab∗i −N/N b

(
F b
i3/F

b
33V

b
)
/A, i = 1, 2, 3, (11)

where as before N refers to the total number of atoms inside the region ab∗c∗d spanned
by the crossing vector ab∗ and N b is the number of atoms in the volume of single crystal
defined by lattice sites a, b, c, and d. For i = 3, Eq. (11) recovers the well known
expression for excess GB volume [V ]N = (V − NΩ)/A. Eq. (11) relates the three
components of the crossing vector to the excess properties of the GB.

We can now apply this equation to GB phases α and β separately and evaluate the
crossing vectors A′B′ and C′D′ in the Burgers circuit analysis:

A′B′i = [V Fi3/F33]
α
N +

(
ΩF b,α

i3 /F b,α
33 N

α
)
/A, i = 1, 2, 3, (12)

C ′D′i = [V Fi3/F33]
β
N +

(
ΩF b,β

i3 /F
b,β
33 N

β
)
/A, i = 1, 2, 3. (13)

Notice that the bulk deformation gradients F b,α and F b,β are not identical, as they
depend on how the lattice sites AB and CD were chosen. It is possible to choose the
same bulk reference state for both GB phases and use the Fα and F β maps to predict the
locations of the sites B′ and C ′. In this case, the A and D corners of the Burgers circuit
can still be selected arbitrarily, but their counterparts in the upper grain are determined
by the deformation gradient F b and the number of atoms in the reference bulk crystal
or V ′/A′. Without loss of generality we assume that the lattice sites in both bicrystals
are chosen such that they are related by the same F b. Then, subtracting Eqs. (12) and
(13) we obtain the following expression for the Burgers vector

bi = ∆[V Fi3/F33]N +
(
ΩF b

i3/F
b
33∆N

)
/A+ dsci , i = 1, 2, 3, (14)

where, as before, ∆N corresponds to the difference in the number of atoms in bicrystals
spanned by the crossing vectors, and the DSC vector appears as a result of adding the
lattice vectors B′C′ and D′A′. Eq. (14) shows that all possible Burgers vectors form
a DSC lattice with the origin shifted by a vector ∆[V Fi3/F33]N +

(
ΩF b

i3/F
b
33∆N

)
/A,

which components contain excess volume, excess shears and a term related to the dif-
ference in the number of atoms. We can further reduce the second term in Eq. (14) to(
ΩF b

i3/F
b
33∆N

∗
)
/A by subtracting out all DSC vectors, which is equivalent to selecting

one of the Burgers vectors closest to the origin of the shifted DSC lattice, and obtain :

bi = ∆[V Fi3/F33]N + (ΩF b
i3/F

b
33∆N

∗)/A+ dsci , i = 1, 2, 3. (15)

Eq. (15) is a vector form of Eq. (8) derived previously for only one component b3. The
first term in Eq. (15) represents the contribution to the Burgers vector from the difference
in excess volumes and excess shears, while the second is related to the the number of
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atoms required to transform one GB phase into another. These two terms containing
properties specific to the two GB phases represent the non-DSC vector by which the
origin of the DSC lattice of all possible Burgers vectors of the junction is shifted relative
to zero.

As discussed previously,38,39 the excess shear as an equilibrium property is not defined
for GBs that move under applied shear stress. As an example, consider symmetric tilt
GBs. When such a GB moves, one grain transforms into the other with a different
shape. Thus the deformation gradients in the two grains are not the same. When such a
boundary does not move, Fb can be assumed to be the same in both grains and a relation
between lattice sites across the GB has to be established to calculate the formal F̄α. One
way to establish this relation is by following the bulk lattice sites during the GB creation
procedure such as the γ-surface approach. For example, Pond and Vitek used this
approach to track relative displacements of the grains and calculated the Burgers vectors
of partial GB dislocations formed by identical GB structures corresponding to different
grain translation vectors.51,52 While this procedure is straightforward if the boundary
structures can be obtained simply by translating and relaxing the adjacent crystals, it
cannot be applied if the adjacent GB phases are composed of different numbers of atoms.

On the other hand, even for boundaries that move by coupled motion, such as sym-
metric tilt boundaries, it is straightforward to calculate the excess shear component
parallel to the tilt axis and use Eq. (15) to predict b along that direction. A recent
experimental and modeling study demonstrated phases of [111] symmetric and asym-
metric tilt GBs in Cu that had different translations along the tilt axis. According to
Eq. (15), GB phase junctions of these boundaries have a screw component along the
[111] tilt axis. GBs with significant grain translations along the tilt axis have been pre-
viously reported53,54 for other boundaries. The translations are typically on the order of
a half of the inter-planar distance. These translations result in large excess shears and
produce junctions that have a large screw component parallel with the tilt axes, such as
the one studied in Ref.27. Quantification of these Burgers vectors using the described
Burgers circuit analysis and Eq. (14) allows one to make predictions about the stability
of metastable states and explain the slow kinetics of GB phase transformations observed
in Ref.27.

III. BURGERS VECTORS OF GB PHASE JUNCTIONS IN Σ5

SYMMETRICAL TILT CU BOUNDARIES

We now apply the methodology described above to analyze two specific GB phase
junctions in the Σ5(310)[001] and Σ5(210)[001] Cu boundaries2 shown in Fig. 1. First,
we calculate the vectors b using the Burgers circuit construction described in Sec. IIA.
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Then we predict b using Eqs (8) and (14) with the GB excess properties summarized in
Table I, and compare the values of b obtained by the two methods.

A. Analysis of the Σ5(310)[001] GB

Figure 6a shows a closed circuit ABCD around the GB phase junction in the
Σ5(310)[001] GB. For convenience, we consider a slice parallel to the tilt axis con-
taining only two atomic planes. The atoms with different coordinates normal to the
page are colored in red and black. Vectors AB and CD cross the Kite and Split Kite
GB structures, respectively. To simplify the analysis, we have chosen the lattice sites
A, B, C and D such that the vectors B′C′ and D′A′ have the same length equal to
10d{310} = 10(a/2)

√
10 in the reference state, where a = 3.615 Å is the fcc lattice

constant.55 Since the two vectors have the same magnitude and opposite signs, they
cancel each other in Eq. (1) and do not contribute to b. The reference bicrystals are
shown in Fig. 6b and c. For these two simulation blocks, the boundary conditions are
periodic in the boundary plane and the stresses inside the bulk crystals away from the
boundary are zero. The exact simulation procedure is not important as long as the
structures of the boundaries match the ones in the two GB phase state. In reality, the
structures generated at 0 K and those taken out from the simulation at T=800K were
not identical. The high temperature structures contain point defects and may have a
somewhat different arrangement of the atoms. Nevertheless, the 0 K and finite temper-
ature structures are very close. Table I summarizes the properties of the different GB
phases calculated at 0 K.2 In this work, we used both the 0 K and the finite temperature
structures to generate the reference bicrystals and obtained the same result within the
expected error of the calculation method.

To map the crossing vectors AB and CD in the deformed state on the vectors A′B′

and C′D′ in the reference state, we follow the lattice planes in both crystals as indicated
by the green lines shown in Fig. 6. The exact choice of the guiding lines is not important
as long as they help to establish the relation between the lattice points A and B on
different sides of the GB. Performing a direct calculation of the components of the
crossing vectors in the reference state, we obtained for the two bicrystals A′B′3 = 22.61

Å, A′B′1 = 0 Å and C ′D′3 = 22.73 Å, C ′D′1 = −d{260} = −0.572 Å. The non-zero C ′D′1
shown in Fig. 6c indicates that in the Split Kite structure the upper crystal is translated
to the right relative to the bottom crystal by the amount of d{260} = a/(2

√
10). At the

same time, the Kite structure is symmetric with A′B′1 = 0 . We can express the normal
components of the crossing vectors in terms of the bicrystal and GB contributions.
A′B′3 = 22.61Å = 39d{260} + [V ]KN and C ′D′3 = 22.73 Å = 39d{260} + [V ]SKN + 0.38d{260},
where d{260} = a/(2

√
10) and represents the shortest distance between two atomic planes

in the crystal parallel to the GB plane. The smallest DSC vector normal to the GB plane
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has the length 2d{260} , as shown in Fig. 7a, as a result even for simple Kite structure
A′B′ − [V ]KNnGB = (0, 0, A′B′3 − [V ]KN ) = (0, 0, 39d{260}) (nGB is the unit vector normal
to the GB plane) is not a DSC vector, which is not surprising because GBs allow for
grain translations parallel to the GB plane. The non-DSC part of the crossing vector
equals to d260 reflects that translation and can be used as a useful GB descriptor. While
all crossing vectors form a DSC lattice, the origin of this lattice is also shifted normal
to the GB plane by d260. Notice that for this boundary A′B′3 − [V ]KN is equal to an
integer number times the smallest normal component of DSC equal to d{260}. The Split
Kite structure cannot be obtained by joining two perfect half crystals and requires an
insertion or removal of a fraction of atoms less than one atomic plane. This is reflected
by the 0.38d{260} terms in the expression for C ′D′3.

Summing up the measured vectors of the circuit using Eq. (1) we obtain the com-
ponents of the Burgers vector of the GB phase junction: b1 = −0.572Å = −d{260} Å,
b3 = −0.121 Å. Since the entire circuit was located in one plane and there were no
grain translations parallel to the tilt axis, b2 = 0 Å. The negative value of b3 indicates
that the bicrystal with the Split Kite structure is effectively thicker than the bicrystal
with the Kite structure. This result may seem counterintuitive since the Split Kite has
a smaller excess volume then the Kite phase according to Table I. To explain this result,
we express the calculated Burgers vector in terms of DSC vectors and the excess GB
properties.

We now apply Eq. (6) to predict the Burgers vector for the junction in the Σ5(310)[001]

GB. The excess volumes and the numbers of atoms in the two GB phases, Kites and
Split Kites, can be found in Table I. TheGB areal number density is expressed as
a fraction of the number of atoms in one lattice plane parallel to the GB. The ex-
cess volume of the Split Kite phase is smaller than that of the Kites, as a result
∆[V ]N = [V ]KN − [V ]SKN = 0.316Å − 0.245Å = 0.071Å is positive, while Ω∆N∗/A =

Ω(NK −NSK)/A = −0.38d{260} = −0.21 Å is negative. Summing up these two contri-
butions we obtain a negative value b3 = −0.14Å, indicating that the bicrystal with Split
Kite structure is indeed effectively thicker than the bicrystal with the Kite structure.
The value of b3 calculated using Eq. (6) also matches the value obtained above using the
Burgers circuit construction within the numerical accuracy. This agreement suggests
that the dislocation content of this particular GB phase junction originates entirely from
the difference in excess properties of the two GB structures i.e., from the difference in
their excess volumes and the numbers of atoms. Indeed, the number-of-atoms term
Ω∆N∗/A = Ω(NK−NSK)/A = −0.21 Å is well defined: during the transformation this
exact amount of atoms per unit of area diffused from the open surface and transformed
the initial Kite phase to the Split Kite phase, as was confirmed in Ref.2. This change
in the number of atoms can be easily evaluated by counting the total number of atoms
inside two regions on the two sides of the GB phase junction, containing the two different
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GB phases with the same area. Such a calculation was performed in the original study.2

In other simulations similar junctions were formed by inserting a controlled number of
atoms into the preexisting parent phase.

The parallel component of the disconnection arises from the relative shift of the
grains parallel to the GB plane, which is different in the two structures. For the given
junction this difference is equal to a DSC vector b1 = −d{260} = −0.57 Å. Note that
b1 is smaller than the shortest DSC vector with the same direction, with has the length
2d{260}. In general, the parallel relative shift for a GB structure is not constrained to be
a DSC vector. The parallel components of the crossing vectors can be expressed as a
sum of DSC vector components and the excess shears at the boundary as described by
Eqs. 14. As was discussed above, symmetric tilt boundaries move under shear in that
particular direction and excess shear becomes ill-defined. For a stationary boundary,
this component of the Burgers vector can be formally interpreted to have a contribution
from the differences in the excess shears and the numbers of atoms of the two GB phases
as described by Eq. (15).

A GB phase junction can change its dislocation content by absorbing or ejecting GB
disconnections with Burgers vectors given by vectors of the DSC lattice. We can consider
such reactions and compare the Burgers vector of the GB phase junction obtained in
MD to other possible valid vectors. The current Burgers vector in the coordinate frame
of the interface simulation is given by bMD = (−d{260}, 0,∆[V ]N − 0.38d{260}), while
the primitive DSC lattice vectors are dSC

1 = (2d{260}, 0, 0), dSC
2 = (d{260},−a/2, d{260})

and dSC
3 = (0, 0, 2d{260}), . Fig. 7a shows the dichromatic pattern constructed for this

bicrystal as well as the primitive DSC lattice vectors.56,57 It is clear, that all possible
disconnection reactions leave the magnitude of the current Burgers vector at best un-
changed. For example, consider an absorption of dSC

1 , which can glide in the boundary.
This dislocation reaction changes the direction of the GB phase junction Burgers vector
to bMD + dSC

1 = (d{260}, 0,∆[V ]N−0.38d{260}), but not its magnitude. Other disconnec-
tion reactions increase the magnitude of the Burgers vector and we conclude, that this
junction formed when the Split Kite structure absorbed extra atoms gives the smallest
Burgers vector possible for this GB.

The analysis of other possible Burgers vectors can be used to explain why the GB
transformation in our simulation proceeded by absorption of extra atoms and not vacan-
cies. We can also predict possible Burgers vectors for vacancy induced transformations.
In the absence of mechanical stresses, the primary driving force for the GB phase trans-
formations is the free energy difference between the Kite and Split Kite phases. The
Split Kite phase can be obtained from Kites by inserting a number of atoms equal to
0.38 fraction atoms in a bulk plane parallel to the boundary. An insertion or removal
of a complete atomic plane (1.0 fraction) accompanied by a required grain translation
restores the original GB structure. Because of this periodicity, the Split Kite phase can
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also be obtained from Kites by removing (1-0.38)=0.62 fraction of atoms, i.e., by insert-
ing this amount of vacancies. In both transformations, we obtain a junction between the
same phases: Kites and Split Kites, but the Burgers vector of the junction is different.
A schematic illustration in Fig. 8 shows how two different junctions between the same
GB phases can be formed by inserting extra atoms or vacancies into the same parent
GB phase.

Using the available GB properties, we can predict the smallest normal component
of the Burgers vector due to this hypothetical transformation due to vacancies. Since
the phases obtained are identical, the excess volume contribution to b3 is the same,
∆[V ]N = [V ]KN − [V ]SKN = 0.071Å. The number of atoms term, on the other hand, has a
different magnitude and sign (Ω∆N∗/A)vacancy = Ω(NK−NSK)/A = (1−0.38)d{260} =

0.35 Å. Summing up the two contributions we obtain bvacancy3 = 0.62d{260} + ∆[V ]N =

0.35 + 0.071 = 0.42 Å, which is larger than the normal component obtained in the MD
simulations. One of the smallest possible Burgers vector with this normal component is
bMD + dSC

2 = (0,−a/2,∆[V ]N + 0.62d{260}), has a much larger magnitude due to the
non-zero component along the tilt axis. The large energetic penalty due to nucleation
of this dislocation makes the transformation by absorption of 0.62 fraction of a plane of
vacancies less likely.

Another valid Burgers vector consistent with the vacancy absorption mechanism is
bMD + dSC

3 = (−d{260}, 0,∆[V ]N + 1.62d{260}). It has a larger normal component com-
pare to 0.62d{260} + ∆[V ]N , but a much smaller magnitude of the total Burgers vector.
Instead of absorbing 0.62 fraction of vacancies to nucleate the Split Kite phase, this
mechanism requites absorbing that fraction of vacancies plus a complete lattice plane of
vacancies. The difference between the two Burgers vectors due to atoms and vacancies
absorption is dSC

3 = (0, 0, 2d{260}), with 2d{260} corresponding two atomic planes, not
one. Thus, the presented analysis makes a prediction about the difference in the trans-
formation of Kite structure into Split Kite by atom and vacancy absorption mechanisms.
The vacancy induced transformation requires about three times larger amount of point
defects to be absorbed per unit of the transformed GB area than the interstitial induced
transformation. Even this smallest Burgers vector consistent with the vacancy induced
transformation mechanism has a magnitude larger than bMD, suggesting that in the
absence of mechanical stresses such a transformation by vacancy absorption is less en-
ergetically favorable compared to the transformation by the absorption of atoms, which
we observed in our MD simulations. When mechanical stresses are applied additional
driving forces appear that can influence the transformation.
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B. Analysis of the Σ5(210)[001] GB

Σ5(210)[001] is another symmetric tilt GB studied in Ref.2. This boundary shows a
first-order transition between Filled-Kite and Split-Kite phases. Generation of both GB
phases requires insertion or removal of atoms. Unlike the Kite phase, they cannot be
obtained using the γ-surface approach, i.e., by simply translating the two grains laterally
with respect to each other and parallel with the GB plane. Figure 9a shows the slice of
the structure containing two atomic planes with atoms colored in red and black according
to their position along the tilt axis. As before, we construct a closed circuit ABCD and
identify the crossing vectors A′B′ and C′D′ in reference bicrystals as shown in Fig. 9.
The calculated components of these vectors in the reference state are A′B′3 = 22.0 Å ,
A′B′1 = 0 Å and C ′D′3 = 22.36 Å, C ′D′1 = 0 Å. Both Filled-Kite and Split-Kite phases
required insertion or removal of atoms and we can express the calculated components as
A′B′3 = 27d{420} + [V ]FKN − 1/7d{420} and C ′D′3 = 27d{420} + [V ]SKN + 7/15d{420}, where
d{420} = a/(2

√
5) = 0.81 Å and represents the shortest distance between two atomic

planes in the crystal parallel to the GB plane. The smallest DSC vector strictly normal
to the GB plane has the length 2d{420}, while d{420} correspond to a smallest normal
component of a vector on the DSC lattice, as shown in Fig. 7b.

Using Eq. (1) and the measured crossing vectors, we obtain the following components
for the Burgers vector: b3 = −0.36 Å and b1 = 0 Å. Similarly to the Σ5(310)[001]

boundary, the entire circuit is located in the same plane in the reference state, so the
component b2 parallel to the tilt axis is also zero. The Burgers vector components
calculated directly using the closed circuit approach can also be interpreted in terms of
the excess properties of the Filled Kite and Split Kite phases. According to Table I, the
difference in the excess volumes is ∆[V ]N = [V ]FKN − [V ]SKN = 0.301Å−0.172Å = 0.129Å,
while the difference in the number of atoms gives Ω∆N∗/A = Ω(NFK − NSK)/A =

−(7/15 + 1/7)d{420} = 0.60 · 0.81Å = −0.49 Å. Adding these two terms we obtained the
normal component of the Burgers vector predicted by the Eq. (6) to be b3 = ∆[V ]N +

∆N∗ ·Ω/A = −0.36Å. Since the relative tangential translation vectors are zero for both
bicrystals, both b1 and b2 are zero. These numbers again match well the components
calculated using the Burgers circuit analysis.

Similar to the first GB phase junction, here, we can also conclude that the obtained
Burgers vector is the smallest possible. Indeed, the current Burgers vector is given by
bMD = (0, 0,∆[V ]N − 0.6d{420}), while the primitive DSC lattice vectors are dSC

1 =

(d{420}, 0, d{420}), dSC
2 = (−d{420}, a/2, 0), dSC

3 = (−d{420}, 0, d{420}). Fig. 7b shows the
dichromatic pattern constructed for this bicrystal as well as the primitive DSC lattice
vectors. Adding of any of these DSC vectors to bMD will not decrease the magnitude of
the resultant Burgers vector of the GB phase junction.

Similarly to the analysis of the Σ5(310)[001] GB, here, we can also consider a hypo-
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thetical transformation in which the Split-Kite phase of this boundary grows via absorp-
tion of vacancies instead of atoms. The excess volume component of b3 remains again the
same ∆[V ]N = [V ]FKN − [V ]SKN = 0.129Å, while the second contribution from atoms be-
comes (Ω∆N∗/A)vacancy = Ω(NFK−NSK)/A = (1−7/15−1/7)d{420} = 0.4d{420} = 0.32

Å. Summing up these two contributions we obtain the smallest normal component
bvacancy3 = 0.129 + 0.32 = 0.55 Å. A possible valid Burgers vector for such a transforma-
tion could be for example bMD + dSC

1 = (d{420}, 0,∆[V ]N + 0.4d{420}), which is also the
smallest Burgers vector consistent with the vacancy induced transformation. Notice that
for this boundary the difference in the normal components of the burgers vector is d{420}
which corresponds to one atomic plane. As a result, there is no significant difference in
the amount of absorbed point defects by both mechanisms: 0.6 fraction of a plane of
atoms is absorbed in one case, and 0.4 fraction of a plane of vacancies in the other.

In MD simulations, both Σ5 boundaries transformed to the Split Kite phase by ab-
sorption of extra atoms, not vacancies. Our analysis indicates that, when extra atoms
are absorbed the two contributions to the Burgers vector from the difference in the
excess volumes and the numbers of atoms have opposite signs resulting in a smaller
Burgers vector of the GB phase junction, making this transformation more energetically
favorable when no external mechanical stresses are applied.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have analyzed the dislocation content of GB phase junctions. Like
dislocations, these line defects generate long-range elastic fields and can interact with
other defects such as regular GB disconnections, dislocations, surfaces and precipitates.
During GB phase nucleation, the elastic interaction between GB phase junctions and
their strain energy contributes to the nucleation barrier. Understanding the Burgers
vectors of these defects is necessary to describe these interactions and to quantify the
nucleation barriers during GB phase transformations. In this study, we have described a
general Burgers circuit approach that allows one to calculate Burgers vectors of junctions
formed by different GB structures composed of different numbers of atoms. We also
derived expressions that relate the components of the Burgers vector to the differences
in the properties of GB phases, including excess volume, excess shears and the numbers
of atoms ∆N∗ required for the GB phase transformation. We showed that, differently
from regular GB disconnections, the Burgers vectors of GB phase junctions are not DSC
vectors. While all allowed Burgers vectors of a GB phase junction form a DSC lattice,
the origin of this lattice is shifted by a non-DSC vector determined by the differences
in the mentioned GB properties and ∆N∗. It has been recognized by prior studies51,52

that the difference between the grain translation vectors creates GB dislocations when
structures with different translation vectors coexist on the the same plane. Pond and
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Vitek simulated partial GB dislocations formed by identical GB structures with different
relative grain translations and defined the Burgers vector of these dislocations as the
difference between their translation vectors.51,52 GB dislocations formed by different
GB structures with different excess properties and numbers of atoms have not been
analyzed. It has also been suggested that the difference in excess volumes of different
GB structures coexisting on the same plane contributes to the normal component of the
Burgers vector.51,52 In this work we have shown that, when two different GB phases are
composed of different number of atoms, the normal component of the Burgers vector
is not equal to the difference in the excess volumes. The difference in the numbers of
atoms required for the GB phase transformation also contributes to b.

We have applied this analysis to GB phase junctions modeled in the Σ5(210)[001] and
Σ5(310)[001] symmetric tilt GBs in Cu. In both boundaries, these junctions are formed
between two GB phases with different structures and different numbers of atoms. The
Burgers vectors were calculated using two separate approaches. In the first one, we used
a straightforward Burgers circuit construction, which characterizes the b components.
In the second approach, we used known values of excess properties of the studied GB
phases to predict the smallest components of the Burgers vectors normal to the GB
plane. The difference in the numbers of atoms was calculated after the transformation
took place. For both GB phase junctions studied, the magnitudes of the Burgers vectors
were found to be the smallest possible and their normal components matched the ones
predicted from the known GB properties. The obtained Burgers vectors had two non-zero
components and one zero component parallel to the tilt axis. The normal component of
the Burgers vector was not equal to the difference in the excess volumes and contained
a second contribution due to the difference in the numbers of atoms ∆N∗ required for
the GB phase transformation. For the Σ5(310)[001] boundary, this later contribution
was larger than the difference in the excess volumes and even had an opposite sign.
For both junctions studied, the contribution to b from the difference in the numbers
of atoms ∆N∗ is significant and cannot be neglected. In our analysis we considered
absorption or ejection of additional disconnections with Burgers vectors dictated by the
DSC lattice and concluded that these reactions cannot further reduce the calculated b.
We also showed that some larger predicted Burgers vectors corresponded to GB phase
transformations that proceed by absorption of vacancies. This analysis could explain
why both GBs transformed by absorbing extra atoms and not vacancies.

The multiplicity of the possible burgers vectors of GB phase junctions formed between
the same GB phases has important implications for GB phase equilibrium and the ki-
netics of GB phase transformations. In elemental fluid systems, interfacial phases in
equilibrium have the same Gibbs free energy, which means that their excess Helmholtz
free energy difference is balanced by the −P∆[V ]N term.3 The later term represents
the mechanical work per unit area done by the pressure P during the transformation.
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This condition is analogous to the co-existence conditions of bulk phases under pres-
sure. Since the excess volume difference is the only interface property that couples to
external stress this coexistence state is unique and is defined by the excess properties of
the interfacial phases. In solid systems, the generalized analog of the −P∆[V ]N term
is the work per unit area of the PK force that acts on the GB phase junction. When
GB phases are in contact with particle reservoirs such as open surfaces that enable the
potential change in the number of GB atoms (or the system is closed but ∆N∗ = 0), the
equilibrium is established when the difference in the excess GB Helmholtz free energies is
balanced by the PK force on the GB phase junction. Since the PK force depends on the
Burgers vector of the phase junction, the equilibrium coexistence between the same GB
phases can be established at different temperatures and stresses depending on the Burg-
ers vector of the junction. Similarly, the driving force for the GB phase transformation
for a given temperature and stress is not determined by the GB phases alone and also
depends on the Burgers vector of the junction. For example, in this work, we considered
different junctions between the same GB phases formed by the insertion of vacancies
and interstitials and showed that the normal components of their Burgers vectors have
opposite signs. When the same stress normal to the GB plane is applied the PK force
will drive these two junctions in opposite directions. Moreover, the ∆N∗ contribution
to the Burgers vector may change the PK force in the way that normal compression no
longer favors the GB phase with the smallest excess volume, as usually expected. These
considerations demonstrate that the dislocation nature of GB phase junctions makes GB
phase transformations richer than similar transformations at interfaces in fluid systems.

The investigation of dislocation properties of GB phase junctions have implications
for our understanding of GB phase transitions. At present, the role of elastic inter-
actions in the kinetics of GB phase transformations is not well-understood. At the
same time, there is growing modeling evidence suggesting that such interactions could
be important.2,27 Recent experimental and modeling study suggested that barriers as-
sociated with the motion of the GB phase junction could be responsible for the slow
kinetics of such transformations and could stabilize metastable GB states. Modeling
studies also showed that nucleation at surface triple junctions is much more effective
than homogenous nucleation even when sources of atoms are not required.27 Nucleation
models that incorporate elastic interactions have been recently developed for regular GB
disconnections to describe GB migration and interactions with triple junctions.58–60 The
present analysis suggests that similar nucleations models should be developed for GB
phase transformations to gain further insight into their energetics and kinetics.
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Structure ∆N∗ relative to Kite phase [U ]N , J/m2 [V ]N , Å

Σ5(310)[001]

Kites (0 K) 0 0.9047 0.316

Split kites (0 K) 2/5 0.911 0.233

Split kites (MD) 0.37 0.920 0.245

Σ5(210)[001]

Kites (0 K) 0 0.951 0.322

Split kites (0 K) 7/15 0.936 0.172

Split kites (MD) 0.46 0.98 0.23

Filled kites (0 K) 6/7 0.953 0.301

Table I. Excess properties of different GB phases calculated in Ref.2 including num-

bers of atoms ∆N∗ relative to Kite phase expressed as a fraction of atoms in a bulk

plane parallel to the GB, excess energy and volume. Σ5(310) and Σ5(210) GBs in Cu

modeled with the EAM potential55. The energies indicate the ground states at 0 K. The zero

fractions of a plane for Kite structures indicate that these GB structures can be created by

joining two perfect half-crystals, while the non-zero fractions indicate that extra atoms have

to be inserted or removed to generate the other GB structures. The fractions of the inserted

atoms are calculated relative to the number of atoms in one atomic plane parallel to the GB.

60 S. L. Thomas, C. Wei, J. Han, Y. Xiang, and D. J. Srolovitz, Proceedings of the National

Academy of Sciences 116, 8756 (2019).
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Split KitesFilled Kites

 Kites Split Kites

a)

b)

Figure 1. Molecular dynamics simulations of structural transformations in a) Σ5(210)[001] and

b) Σ5(310)[001] symmetric tilt GBs in Cu at T=800 K from Ref.2. a) GB phase junction

formed by Filled Kites and Split Kites GB phases. b) GB phase junction formed by Kites and

Split Kites GB phases.The insets show zoomed-in views of the corresponding GB structures

computed at 0 K.
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a)

b)

c)

Figure 2. Closure failure. a) Bicrystals with different GB structures, shown in blue and orange,

have different dimensions in the reference state. b) An attempt to form a GB phase junction

using the reference bicrystals results in a closure failure. The bulk lattice planes cannot be joined

because they generally mismatch. c) GB phase junction is formed by elastically deforming both

bicrystals so the lattice planes in the bulk can be connected. Both GB structures are elastically

distorted compared to a) and b). Here we assume that the system has a finite size. In an

infinitely large system, the blue and orange GB structures would converge to their undistorted

dimensions, shown in a) and b), infinitely far away from the junction. In this construction,

the magnitude of the Burgers vector of the junction depends on the sizes and shapes of the

reference bicrystals shown in a). In general, different Burgers vectors can be obtained between

the same GB phases by changing the bicrystals original dimensions.
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A D

Figure 3. Burgers circuit construction to calculate the Burgers vector of a GB phase junction.

a) A closed circuit is constructed around the GB phase junction. b) The vectors crossing

the different GB structures are measured in the reference state. c) The closure failure in the

reference state gives the Burgers vector of the GB phase junction. The unprimed and primed

letters represent equivalent lattice sites in the deformed and reference states, respectively. The

black circles represent lattice sites.



29

a)

b)

A

B

C

D

A

B C

D

αN

βN

αN ‘‘ βN

α β

α β

Figure 4. a) A general Burgers circuit ABCD around a GB phase junction in the deformed

state. AB and CD are the crossing vectors of the GB phases α and β, respectively. BC

and DA are the lattice vectors of the upper and lower grains, respectively. Their sum in the

reference state is a DSC lattice vector. Nα and Nβ are the numbers of atoms inside the regions

spanned by the crossing vectors. In this case the difference Nβ − Nα depends on the choice

of the corners of the circuit. b) A particular choice of the circuit around the same junction,

with the lattice sites B, C and D, A located on the same lattice planes of the upper and lower

crystals, respectively. These planes run parallel to the GB plane and are indicated by the

dashed lines. They are elastically deformed due to the presence of the dislocation at the GB

phase junction. The quantity ∆N ′/A = (N ′β−N ′α)/A is the defect absorption capacity of this

junction: it represents the number of point defects per unit area which is absorbed or ejected

when the junction moves along the GB.
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x11

x33
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Figure 5. Two-dimensional schematic of a mapping of a region of single-crystalline material to

a bicrystal containing a GB (reproduced from Ref.38). a) Reference state used to calculate the

deformation gradient. b) Actual, deformed state of the single crystal c) Region containing the

GB obtained from the single-crystalline region. d) Superimposed single-crystal and bicrystal

regions showing the displacement vector B. The open circles represent lattice sites labeled a

through d with the prime indicating the reference state and the asterisk indicating the bicrystal.

The parallelogram defined by the vertices a,b, c∗ and d∗ is shown in e). Its mapping on the

reference state in a) defines the deformation gradient F̄α producing the bicrystal region with a

given GB phase α.
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Figure 6. Calculation of the Burgers vector b of phase junction in the Σ5(310)[001] GB using a

closed circuit ABCD. a) Deformed state containing the GB phase junction. The Kite structure

is on the left, while the Split Kite structure is on the right. For convenience, both the BC and

DA vectors are chosen to lie in (310) planes and have the same length in the reference state. By

this choice, their contribution to b is zero. b) and c) show bicrystals with Kite and Split Kite

phases in the reference state. To map the lattice sites A, B, C and D from the deformed state

onto their positions A′, B′, C ′ and D′ in the reference state, we follow (100) planes marked by

green lines. In the Split Kite structure, the lattice points C ′ and D′ are offset by d{260} parallel

to the interface, which is indicated by two vertical black lines. d) The Burgers vector b is equal

to the sum A′B′ + C′D′.
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Figure 7. The dichromatic patterns for bicrystals with a) Σ5(310)[001] and b) Σ5(210)[001]

GBs. The filled and open symbols distinguish the lattice sites belonging to the two different

grains. The lattice sites represented by diamonds are shifted relative to the sites represented

by circles by a/2 normal to the plane of the figure. CSL in-plane edges are a) a/2 < 310 >=

a
√

10/2 and b) a < 210 >= a
√

5, where a is the lattice parameter of fcc Cu55. d{260} =

a/(2
√

10) and d{420} = a/(2
√

5) correspond to the distances between atomic planes inside the

crystals along the directions normal to the planes of the boundaries. Black arrows indicate

the vectors of the DSC lattice: a) dSC
1 = (a/

√
10, 0, 0), dSC

2 = (a/(2
√

10),−a/2, a/(2
√

10)),

dSC
3 = (0, 0, a/

√
10) and b) dSC

1 = (a/(2
√

5), 0, a/(2
√

5)), dSC
2 = (−a/(2

√
5), a/2, 0), , dSC

3 =

(−a/(2
√

5), 0, a/(2
√

5)).



33

GB phase 1 GB phase 2

T

T

a)

b)

add atom
s
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GB phase 1 GB phase 2

Figure 8. Schematic illustration of two GB phase junctions with different Burgers vectors

formed by the same GB phases. For clarity, the upper and lower grains appear to have the

same orientation in this projection. The gray and orange lattice sites represent the different

core structures. The purple lattice sites indicate the GB phase junctions. The black rectangles

indicate the equivalent volumes on the two sides of the junctions, they are bound by the same

lattice planes indicated by the red lines. a) GB phase 2, mimicking the Split Kite phase, is

formed by adding extra atoms to the GB phase 1 (Kite phase). There two additional atoms

in the region on the right, which corresponds to +0.5 fraction of a bulk plane. b) GB phase 2

is formed by adding the same fraction of vacancies to the GB phase 1. While the GB phases

are the same in a) and b) the junctions are different. The defect absorption capacities ∆N ′/A

given by the difference in the numbers of atoms in the equivalent volumes per unit are are also

different for the two junctions.
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Figure 9. Calculation of the Burgers vector b of phase junction in the Σ5(210)[001] GB using

a closed circuit ABCD. a) Deformed state containing the GB phase junction. The Filled Kite

structure is on the left, while the Split Kite structure is on the right. For convenience, the BC

and DA vectors are chosen to lie in (210) planes and are have the same length in the reference

state. By this choice, their contribution to b is zero. b) and c) show bicrystals with Filled Kite

and Split Kite phases in the reference state. To map the lattice sites A, B, C and D from the

deformed state onto their positions A′, B′, C ′ and D′ in the reference state, we followed lattice

planes indicated by the green lines. d) The Burgers vector b is equal to the sum A′B′+C′D′.


