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We perform density functional theory (DFT) calculations of five solid phases and the liquid phase
of tin. The calculations include cold curves of the five solid phases, phonon calculations in the quasi-
harmonic approximation over a range of volumes for each solid phase, and DFT-based molecular
dynamics (DFT-MD) calculations of the liquid phase, including calculations of the melt curve using
the Z method. Using the DFT results, we construct a tabular multiphase SESAME equation of
state for tin, referred to as SESAME 2162. Comparisons to experimental data are made and show a
high level of agreement in isobaric data, isothermal data, shock data, and phase boundary measure-
ments, including measurements of the melt curve. The 2162 EOS will be useful for hydrodynamics
simulations and has been designed with an eye toward hydrodynamics simulations that incorporate
materials strength models and allow for modeling of the kinetics of phase transitions.

I. INTRODUCTION

Tabular equations of state (EOS) are important for
both a basic understanding of materials properties and
for hydrodynamics applications. As hydrodynamics
codes are developed to incorporate materials strength
models1,2 and to account for kinetic effects in simulating
phase transitions,3–5 the need for an accurate underlying
multiphase EOS becomes increasingly important. Here
we focus on the development of a new tabular multiphase
SESAME6,7 EOS for tin, referred to as SESAME 2162.
The EOS can be thought of as a successor to the pre-
vious tin EOS, SESAME 2161.8 The new EOS includes
four solid phases and the liquid phase.

To generate SESAME 2162, we performed density
functional theory (DFT) calculations of the solid phases
of tin and the liquid phase, including static lattice en-
ergy (cold curve) calculations, phonon calculations in the
quasi-harmonic approximation, and DFT-based molecu-
lar dynamics (DFT-MD) calculations of the liquid phase,
including calculations of the melt curve. These calcu-
lations provide data in regions of the state space where
experimental data is unavailable and thereby help to con-
strain construction of the final EOS. The DFT calcula-
tions are particularly useful for determining phase bound-
aries of the high pressure solid phases, the high pressure
(& 75 GPa) melt curve, and isotherms in the liquid phase,
which have not been measured experimentally.

Tin is known to exist in at least 5 different solid phases,
summarized in Table I. Throughout, we refer to the
phases by their corresponding Greek letter. Note that
the α, β, and γ naming conventions are all standard.
Here we also use δ to refer to the bcc phase, which has
infrequently been referred to as the σ phase in the past,9

and we use ε to refer to the hcp phase. The Greek letters
are chosen in ascending order according to the pressure
at which each phase becomes stable.

Although we performed DFT calculations for all five
solid phases, we include only the β, γ, δ, and ε phases in
the 2162 EOS, since the α phase is only stable below

room temperature and at pressures below 1 GPa10–12

with limited accessibility in compressive and shock ex-
periments, which are the main focus of hydrodynamics
codes that use the EOS. In addition, the transition from
β → α is slow and therefore unlikely to show up in ex-
periments.13,14

phase lattice type space group space group # # atoms/cell
α diamond Fd3̄m 227 2
β bct I41/amd 141 4
γ bct I4/mmm 139 2
δ bcc Im3̄m 229 1
ε hcp P63/mmc 194 2

TABLE I. Summary of the crystal structures and space groups
of the 5 known solid phases of tin. Greek letters are used
to refer to the phases in ascending order, from low to high
pressure. DFT calculations are performed using a mixture
of primitive and conventional unit cells, with the number of
atoms per cell indicated in the last column.

Many experiments have been performed on tin,
including isobaric measurements,15–22 isothermal dia-
mond anvil cell (DAC) measurements,23–32 shock ex-
periments,33–40 dynamic compression experiments,41 and
measurements of the solid-solid phase boundaries.42–45

Measurements of the phonon dispersions for the α, β,
and γ phases have been also been made.46–51 In addi-
tion, the melt curve has been measured in a variety of
different ways, including shock-induced melt52–56 and re-
sistive and/or laser heating in a DAC or compressive
piston.57–64 The available melt curve data show a large
variability in the range of measurements. More recently,
studies on liquid spallation and fragmentation have also
been performed.13,65,66 In addition, a wide range of theo-
retical calculations of tin have been performed, including
DFT-based cold curve calculations,67–76 phonon calcula-
tions,77–80 and molecular dynamics calculations,81–84 and
a variety of equations of state for tin have been proposed
over the years.8,85–88

The rest of the paper is organized as follows: in Sec. II,
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we provide an overview of OpenSesame, the program
used to generate SESAME 2162. In Sec. III we provide
details on the calculations of the cold curves and phonon
calculations of the solid phases, and of the DFT-MD cal-
culations of the liquid phase. We also describe how these
calculations are used to determine an initial set of pa-
rameters for models used in OpenSesame to construct
the 2162 EOS. In Sec. IV, we discuss how the parame-
ters from DFT are modified (when necessary) to obtain
agreement with experimental data and create the 2162
EOS. We show comparisons of the 2162 EOS to a va-
riety of experimental measurements, including isobaric
data, isothermal DAC data, shock data, solid-solid phase
boundary measurements, and measurements of the melt
curve. While we only summarize the main results here,
a more comprehensive description of the process used to
incorporate DFT calculations into materials models used
in OpenSesame, as well as a more detailed description of
how model parameters are adjusted to fit to experimental
data, is provided in Ref. 89.

II. OVERVIEW OF OPENSESAME

The OpenSesame software is a useful tool for gener-
ating tabular materials equations of state. The mul-
tiphase capability in OpenSesame7 relies on individual
phase EOS tables and evaluates the phase with the lowest
Gibbs free energy at a given temperature and pressure.
Mixed phases are handled in a self-consistent manner, as
described below. The multiphase capability allows for
an arbitrary number of materials phases to be included
in the final EOS table. For the individual phase tables,
OpenSesame uses a decomposition of the total Helmholtz
free energy F (V, T ) for each phase into three pieces,

F (V, T ) = Fcold(V ) + Fion(V, T ) + Fel(V, T ), (1)

where Fcold is the energy associated with a cold curve
(T = 0 static lattice energy), Fion is the free energy
associated with ionic motion, and Fel is the electronic
free energy. OpenSesame uses a variety of simple materi-
als models to inform on these three contributions to the
free energy, making it necessary to determine model pa-
rameters from the DFT calculations and/or experimental
data. In constructing the 2162 EOS, we first determined
model parameters entirely from DFT calculations, as dis-
cussed in Sec. III. Because the DFT calculations resulted
in an EOS that was not in perfect agreement with exper-
imental data, small modifications to the model parame-
ters were made, as described in Sec. IV.

Model parameters for the solid phases determined by
DFT are outlined in Sec. III. In Sec. III A, we discuss cold
curve calculations that inform directly on Fcold, which we
treat with a Vinet-Rose model.90 In Sec. III B, we show
how phonon calculations can be used to determine pa-
rameters in the Debye model91, which informs on Fion

for the solid phases. The Debye model relies on the De-
bye frequency νD, or equivalently the Debye temperature

ΘD = hνD/kB . Also necessary for Fion is a Grüneisen
model, also discussed in Sec. III B, that provides infor-
mation about the volume dependence of the Debye fre-
quencies. DFT-based phonon calculations allow for the
determination of all parameters relevant to the Debye
and Grüneisen models for the solid phases. The remain-
ing term Fel is determined using the Thomas-Fermi-Dirac
(TFD) method92–95 and does not require additional pa-
rameterization from DFT calculations.

For the liquid phase, the same decomposition in Eq. 1
is used. The liquid free energy is defined with respect
to that of a reference solid phase, which we denote Frs.
This may be one of the actual solid phases, or may be
hypothetical. We define a scaling temperatature Tsc(V ),
which marks the transition from solid-like to liquid-like
behavior. For T ≤ Tsc, the liquid free energy Fl is related
to that of the reference solid by a constant entropy shift
∆S and a volume-dependent energy shift ∆Fcold(V ),

Fl(V, T ) = Frs(V, T )−∆ST + ∆Fcold(V ); T ≤ Tsc(V ),
(2)

where Frs is parameterized the same way as the other
solid phases. For T > Tsc(V ) the excess specific heat is
assumed to be a function of the scaled temperature

cV (V, T )/NkB = f(T/Tsc(V )) + 3/2 , (3)

with f(1) = 3/2 and f(x) → 0 as x → ∞. Eqs. 2 and
3 allow one to determine the free energy at all tempera-
tures,

Fl(V, T ) =Fl(V, Tsc(V ))− Sl(V, Tsc(V ))(T − Tsc(V ))

−
∫ T

Tsc

dT2

∫ T2

Tsc

dT1
cV (V, T1)

T1
; T > Tsc(V )

(4)

The details of the T -dependence of cV are described in
Ref. 96. We define Tm(V ) = ∆Fcold(V )/∆S. Then
the volume dependence of the two functions Tsc(V ) and
Tm(V ) is given by

−d lnTm(V )

d lnV
= 2Γm(V )− 2/3 (5)

−d lnTsc(V )

d lnV
= 2Γrs(V )− 2/3 (6)

where the Grüneisen parameters Γm and Γrs have the
same functional form as those of the solid phase De-
bye temperatures, as given in Eq. 11, discussed in the
next section. Note that the effective Grüneisen param-
eter for Tsc as defined in Eq. 6 must be the same as
the Debye Grüneisen parameter for the reference solid,
Γrs = −d ln θrs/d lnV , in order for the pressure to reach
the ideal gas limit at high temperature.97

The liquid free energy has, in addition to the standard
solid phase parameters, two additional parameters for the
volume dependence of Γm, as well as ∆S and reference
values for Tm and Tsc. This somewhat complicated for-
mulation was adopted to facilitate creating liquid models
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that obey standard Lindemann scaling97 in the case of
a single solid phase. For that case, the reference solid
is the actual solid phase, the various Grüneisen parame-
ters are the same, and the reference values of Tm and Tsc
are the same and are equal to the melting temperature
at the reference volume. The earlier SESAME 2161 tin
EOS was made with the liquid “normal” in this sense
with respect to the high pressure γ phase. For SESAME
2162, there are more solid phases, we have more data on
the high pressure melting curve, as well as DFT-MD data
on the liquid EOS, and thus were not able to adopt this
simplification. When developing the 2162 EOS, we ex-
plored three options for determining a cold curve for the
liquid, as described in Ref. 89. Because melt is possible
from the β, γ, and δ phases of tin across a wide compres-
sion range, we determined a cold curve that interpolates
across the three solid phases, also described in Ref. 89.

In the construction of SESAME 2162, we produce an
equilibrium table that includes mixed phase regions. The
mixed phase regions are defined by the following set of
equations,

Pa(Va, T ) = Pb(Vb, T )

Ga(Va, T ) = Gb(Vb, T )

λaVa + λbVb = V

λaEa(Va, T ) + λbEb(Vb, T ) = E (7)

where a and b denote the two coexisting phases, P , G,
V , and E are the pressure, specific Gibbs free energy,
volume, and internal energy, respectively, and λa denotes
the mass fraction of phase a. For the great majority of
states, there are no solutions to the conditions (Eqs. 7)
satisfying 0 ≤ λi ≤ 1 and

∑
i λi = 1, and the state

is a pure phase with the lowest Helmholtz free energy
at the given V and T . The algorithm for constructing
equilibrium tables is described in Ref. 7.

The initial set of model parameters determined from
DFT calculations provide a useful starting point for the
determination of the OpenSesame model parameters de-
scribed above. However, some adjustments are needed
to agree fully with experimental data. The adjustments
made are described in Sec. IV.

III. DFT CALCULATIONS

A. Cold curves

All DFT calculations were computed using the Vi-
enna ab-initio Simulation Package (VASP),98–101 ver-
sion 5.4.4. All calculations use the projector aug-
mented wave (PAW) method102,103 using either 14 va-
lence states, 4d105s25p2 (cold curves and phonons) or 4
valence states, 5s25p2 (DFT-MD of the liquid). The cold
curves were computed by relaxing the structures with
multiple restarts to ensure convergence of the atomic po-
sitions and lattice constants. The relaxations were per-
formed using the Methfessel-Paxton scheme104 with a 400

FIG. 1. Cold curves for the β (blue) and γ (orange) phases
of tin using the AM05 (solid lines) and PBE (dashed lines)
exchange-correlation functionals. Experimental DAC data
are from Refs. 23–25.

eV plane-wave energy cutoff. Subsequently, total energy
calculations were performed using fixed ions and lattice
constants with tetrahedral integration of the Brillouin
zone and a 520 eV plane-wave energy cutoff. We also
computed cold curves of tin using the all-electron code
RSPt105 with different relativistic treatments106,107 and
found the results to be in close agreement with the VASP
results, indicating the adequacy of using PAW method for
treatment of the core states.

Cold curves were computed using the AM05108 and
PBE109 exchange-correlation functionals. As shown in
Fig. 1, the AM05 results for the β and γ phases are in
very close agreement with experimental room tempera-
ture DAC measurements from Refs. 23–25 (note that the
phase transition from β to γ occurs at approximately 8.5
g/cm3), whereas the equilibrium density ρ0 predicted by
PBE is substantially lower. For this reason, we chose
to use the AM05 functional to determine the initial set
of 2162 model parameters, which include the AM05 cold
curves, AM05 phonon calculations, and DFT-MD cal-
culations using AM05. The only exception to this are
DFT-MD calculations of the melt curve using the Z
method110–112, which were computed separately using
the PBE functional.113. We present the melt curves only
in P -T space (see Fig. 4). These results should be ex-
pected to be quite similar to what would be obtained
using the AM05 functional, since the primary difference
between AM05 and PBE is an offset in the density, while
the pressure as a function of the compression ρ/ρ0 for the
two functionals are quite similar, as can be seen in Fig. 1
and as verified by highly similar bulk moduli computed
from the cold curves (see Ref. 89 for details).

The Vinet-Rose cold curve model was used to fit to the
AM05 data of each phase. The results for ρ0, E0, B, and
B′ = dB/dP are provided in Table II. Note that for cold



4

curve calculations of the β, γ, and ε phases, the lattice
constants are allowed to relax at each volume to allow for
a volume-dependent c/a ratio. In the case of the β and ε
phases, c/a remains relatively constant over the full com-
pression ranged studied, varying by only a few percent
across a compression range of approximately 0.9 to 3.0.
On the other hand, the γ phase shows a large variation
in the c/a ratio, starting at c/a = 0.88 at ρ0 = 7.53
g/cm3 and converging to c/a = 1 above 9.38 g/cm3,
thereby indicating that the bcc δ phase has the lower
energy above a compression ratio of approximately 1.25.
The γ-δ phase transition is observed to occur between
10.5–11 g/cm3 (compression of approximately 1.4–1.45)
in recent isothermal DAC measurements,29 which is in
agreement with the compression range at which the en-
thalpies of the γ and δ phases computed using the AM05
cold curves cross. Additional details regarding cold curve
comparisons and the enthalpy are provided in Ref. 89,
and comparisons of the room temperature 2162 isotherms
to experimental DAC data are provided in Sec. IV.

We also point out that at non-zero temperatures, the
electronic free energy Fel can be determined through the
use of Fermi smearing in DFT calculations. This is anal-
ogous to cold curve calculations, but with the Fermi
smearing width set according to the temperature kBT .
Although this can provide useful information, we did
not see any appreciable differences in the resulting phase
boundaries when including Fermi smearing to treat the
electronic free energy at a range of temperatures and
volumes. In OpenSesame, the electronic free energy is
treated with the TFD model,92–95 which works over a
wide range of densities and temperatures. Similar to
the use of Fermi smearing, the TFD method results in
only small quantitative differences in the resulting solid-
solid phase boundaries, thereby indicating that the TFD
method can safely be used for the solid phases of tin.

B. Phonons

Phonon calculations were performed in the quasi-
harmonic approximation114 using a frozen phonon su-
percell approach in VASP. The Phonopy115 package was
used to generate supercells and atomic displacements for
each solid phase. The plane-wave energy cutoff, k-mesh
size, and supercell size were tested at the AM05-predicted
equilibrium volume for each phase individually to ensure
structural stability of each phase and to ensure a con-
verged phonon density of states. We use a minimum 350
eV plane-wave energy cutoff for each solid phase and used
the method of Methfessel and Paxton104 to sample the
Brillouin zone. We use a smearing width of 0.2 eV for all
phases except the δ phase, where we use a smearing width
of 0.6 eV. The smearing widths are chosen to ensure that
no imaginary frequency modes appear in the phonon dis-
persions116,117 (see the Supplemental Material118 for de-
tails). In all calculations we determine the k-mesh of
the Brillouin zone using a Γ-centered Monkhorst-Pack119

FIG. 2. Phonon densities of states g(ν) for the different phases
of tin at their respective equilibrium volumes using the AM05
functional.

scheme. The supercells were constructed using the prim-
itive or conventional cells listed in Table I, including a
54 atom cell with a 6 × 6 × 6 k-mesh (α phase), a 64
atom cell with an 8× 8× 6 k-mesh (β phase), a 54 atom
cell with an 8 × 8 × 8 k-mesh (γ phase), a 64 atom cell
with a 6 × 6 × 6 k-mesh (δ phase), and a 54 atom cell
with a 10 × 10 × 7 k-mesh (ε phase). At volumes below
the equilibrium volume, we use the same k-mesh size to
ensure that results remain converged with respect to k-
mesh size. The phonon densities of states g(ν) for each
phase at their respective equilibrium volumes are shown
in Fig. 2. Comparisons of the phonon dispersions and
densities of states to experimental data are provided in
the Supplemental Material.118

The phonon calculations provide a rigorous way to de-
termine model parameters in OpenSesame used to con-
struct the full tabular EOS. We use the Debye model91

and the ‘generalized CHART D’ Grüneisen model120

within OpenSesame to construct the 2162 EOS. Typically
moments of g(ν) are used to determine the Debye fre-
quencies of the solid phases.96,121 For tin, we found that
the zeroth moment typically gave free energies F (T ) that
matched the phonon free energy well over a wide range
of temperatures and volumes, whereas the free energy
predicted using first and second moments to determine
the Debye frequencies did not match the phonon F (T )
results very well. At the same time, evaluation of the
zeroth moment can be prone to numerical errors when
a very small and otherwise negligible density of states is
present around zero frequency (see Ref. 89 for details).
This motivated us to develop an alternative method for
determining the Debye frequencies for each phase and
each volume based on a minimization scheme, motivated
by matching the Debye free energy to the phonon free en-
ergy as closely as possible. Given the phonon or Debye
density of states g(ν), the free energy at fixed volume V
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phase ρ0 (g/cm3) E0 (J/g) B (GPa) B′ ΘD (K) Γref Γ′ref
β 7.336 (7.4375) 0 52.74 (58.0) 5.369 161.0 1.98 (2.42) -1.31
γ 7.525 6.04 (36.0) 52.32 5.344 121.7 2.48 (2.45) -1.82 (-2.20)
δ 7.561 12.55 (54.0) 52.64 5.383 114.2 (117.5) 2.54 (2.51) -1.73 (-2.10)
ε 7.531 3.05 (44.1) 52.68 5.291 121.1 (124.6) 2.51 (2.48) -1.85 (-2.24)

liquid (7.470) (24.0) (52.7) (5.540) (131.0) (2.45) (-3.50)

TABLE II. Model parameters used to construct the 2162 EOS. The DFT-calculated values using the AM05 functional are
displayed first. If modifications were made to the parameter to better agree with experimental data, the final value used in the
2162 EOS is listed in parentheses next to the DFT-calculated value. Note that ΘD, Γref , and Γ′ref for each phase are calculated
at a reference density chosen to be ρref = 7.581 g/cm3 for all phases. All liquid parameters are listed in parentheses because
there is not a unique way to determine the values strictly from DFT calculations. The values chosen are ones that were found
to best agree simultaneously with the DFT-MD data in Fig. 4 and Hugoniot data in the liquid phase in Fig. 8. Also note that
we use the liquid-specific reference parameters Tm = Tsc = 580 K, Γm = Γrs = 2.45, and ∆S = 0.9 kJ/g/K.

is

F (T ;V ) =

∫ ∞
0

g(ν)

(
1

2
hν+kBT ln

[
1−e−hν/kBT

])
dν. (8)

We choose the Debye frequency νD via the minimiza-
tion procedure

min
νD
‖FD(T ;V )− Fph(T ;V )‖2, (9)

where FD is the Debye free energy, Fph is the
free energy from phonon calculations, ‖f(T )‖22 =∫ Tmax

0
f2(T )dT denotes the L2 norm, and we use Tmax =

4000 K. The solution is obtained via a least-squares rou-
tine. Note that we determine νD over a range of volumes,
resulting in νD(V ) for each solid phase. The determina-
tion of νD in this way leads to very close agreement of FD
and Fph over a wide range of volumes and temperatures,
as shown in Fig. 3. In Fig. 3, the solid lines are computed
using the Debye model, while the dots are computed from
phonon calculations. We find close agreement at low and
high temperatures, with slightly poorer agreement at low
temperatures for small volumes. Also note that the νD
determined using the minimization scheme above were in
very close agreement with the zeroth moment results in
cases where the zeroth moment results were not prone to
numerical evaluation errors. The advantage of the min-
imization approach is that it is not prone to the same
numerical difficulties.

The calculation of νD(V ) for each phase provides a set
of points that can be used to fit an analytical form that
corresponds to a particular Grüneisen model in OpenS-
esame. In this case, we use the form

νD(V ) = νref x
−A exp

{
−B(x− 1)− C

2
(x2 − 1)

}
(10)

where x = V/Vref and Vref is a reference volume close
to the equilibrium volume of each phase, to determine
parameters for the Grüneisen model. Here the parameter
A is chosen to be 2/3, while B and C are determined by
fitting Eq. 10 to the Debye frequencies. The Grüneisen
parameter Γ = −d ln νD/d lnV is then

Γ(V ) = A+Bx+ Cx2. (11)

FIG. 3. Free energy as a function of temperature for the
γ phase computed from phonon calculations (dots) and the
corresponding Debye model fit (lines) using Eq. 9 over a range
of different volumes.

With this form for Γ and fixed A, there are effectively
two parameters that determine the Grüneisen model for
each phase, B and C, and these are determined from
DFT data by fitting Eq. 10 to DFT-calculated νD(V )
points. Note, however, that in OpenSesame, B and C are
not used, but instead the Grüneisen parameter Γ and its
derivative Γ′ ≡ dΓ/d ln ρ are specified at a reference vol-
ume Vref (or equivalently, reference density ρref). There-
fore, rather than specifying the Grüneisen model through
B and C, we use Γref ≡ Γ(ρref) and Γ′ref ≡ Γ′(ρref), with
values listed in Table II. The Debye temperature ΘD is
also specified at the same reference density ρref . For the
2162 EOS, ρref = 7.581 g/cm3 is chosen for all phases,
which is within 1% of the equilibrium density ρ0 deter-
mined from the DFT cold curve calculations. Also note
that the form of Γ in Eq. 11 is only used for V ≤ Vref .
Above Vref , another form for Γ is used to prevent Γ from
diverging in the expansion region well below solid densi-
ties, such that Γ → 1 as V → ∞ (see Ref. 89 for addi-
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tional details). The values of ΘD(ρref), Γref , and Γ′ref for
each phase are shown in Table II. Values not in parenthe-
ses are the values computed directly from DFT calcula-
tions, while values that were changed to fit to experimen-
tal data (discussed in Sec. IV) are shown in parentheses.

The advantage of phonon calculations is that they pro-
vide a way to determine an initial set of Debye frequen-
cies and Grüneisen model parameters in OpenSesame to
generate the full tabular EOS. Additional details on the
process used to fit to DFT data are provided in Ref. 89.

C. DFT-MD

All DFT-MD simulations were performed in VASP.
We used an NV T ensemble with a Nosé-Hoover thermo-
stat122,123 to determine liquid isotherms and an NV E
ensemble to determine the melt curve using the Z
method.110–112

For the NV T simulations, we used the AM05 func-
tional, a plane-wave energy cutoff of 250 eV, a 2 fs time
step, and 4 electrons in the valence with the PAW method
used to treat the core states. All simulations used 250
atoms in a cubic cell (a 5 × 5 × 5 supercell of the con-
ventional bcc δ phase) and the Brillouin zone was rep-
resented using the Γ point only. A series of simulations
were run at different volumes and temperatures. Fermi
smearing was used for all simulations, setting the smear-
ing width according to the fixed temperature of each sim-
ulation. Each simulation was started using the atomic
positions of a liquid state that was generated from a sep-
arate DFT-MD simulation in which the solid δ phase was
allowed to melt at 10,000 K over a period of time. The
resulting liquid structures were then used as the initial
structures at each V, T . A total of 8 ps were used to
determine the resulting pressure, with the first 4 ps ne-
glected to allow enough time for the system to equilibrate
(see the Supplemental Material118 for details regarding
equilibration time). The pressure was then determined
through a time average of the last 4 ps using a block av-
eraging procedure (see the Supplemental Material118 for
details). Additional details on the DFT-MD calculations
are provided in Ref. 89.

Fig. 4 shows liquid isotherms computed in DFT-MD
(dots), along with the isotherms used for the resulting
2162 EOS (lines). Error bars are not included with the
points because the statistical errors in the pressure are
small enough to fit within the dots on the plot (see the
Supplemental Material118 for details). The isotherms
help to constrain both the parameters controlling the
thermal response and parameters associated with the liq-
uid in OpenSesame. The benefit of these DFT-MD sim-
ulations is that they provide the best available data for
isotherms in the liquid phase, since very little experimen-
tal data is available in this region of the state space. The
resulting 2162 EOS fit is shown in the same figure, with
overall good agreement with the DFT-MD data. Some
discrepancies of the 2162 EOS and the DFT-calculated

FIG. 4. Isotherms from DFT-MD simulations of the liquid
phase (dots) with a comparison to the 2162 EOS (lines).

are present, which is a result of having to determine liq-
uid model parameters that simultaneously fit the DFT-
MD data and experimental Hugoniot data in the liquid
phase, as described in Sec. IV. We also point out that the
process for determining model parameters for the liquid
phase is more involved than that of the solid phases. We
leave this discussion for Sec. IV, with additional details
provided in Ref. 89.

For the Z-method simulations used to determine the
melt curve, we used an NV E ensemble with the PBE
functional and the PAW method in VASP. Since the sim-
ulations were performed at high-PT conditions, we used
accurate PAW potentials where the semi-core 4d states
were treated as valence states, so that each Sn atom in-
cluded 14 valence electrons per atom (4d, 5s, and 5p
orbitals). The valence states were represented with a
plane-wave energy cutoff of 300 eV.

For all Z method calculations involving non-cubic cells,
we first relaxed the structure to determine its unit cell
parameters; those unit cells were used for the construc-
tion of the corresponding supercells. We used systems
of sizes 512 (4 × 4 × 8) for the β phase, 504 (6 × 6 × 7)
for the γ phase, and 512 (rhombohedral 8 × 8 × 8 with
θ = 109.5 deg.) for the δ phase. Only the Γ-point was
used to represent the Brillouin zone in each case. Full
energy convergence (to ∼ 1 meV/atom) was verified by
performing short runs with 2 × 2 × 2 and 3 × 3 × 3 k-
point meshes and by comparing their output with that
of the run with a single Γ-point. The Z-method NV E
runs were 15,00020,000 timesteps, with a time step of 1
fs. These points were then used to determine an analytic
form for the melt curves of each solid phase, which are
presented in the Supplemental Material.118 The full melt
curve is the envelope of the three melt curves for each
individual phase and is shown in Fig. 5. The Z-method
calculations provide the best available data for the high
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FIG. 5. Phase diagram of tin. (a) A wide range of the state space with the principal Hugoniot (blue line) and principal adiabat
(orange line). Experimental data of the melt curve are from Refs. 52, 53, 59, and 64. The data of Bernard & Maillet are MD
simulations discussed in Ref. 81. (b) A narrow range of the state space around the β-γ-liquid triple point. Experimental data
are from Refs. 42 and 43.

pressure (& 75 GPa) portion of the melt curve, which ex-
tends beyond currently available experimental data. In
addition, the calculations can be considered a fully ab-
initio prediction of the melt behavior of the β, γ, and δ
phases (see the Supplemental Material118 for details).

IV. RESULTS

The DFT results presented in Sec. III provide a way
to determine an initial set of parameters for models used
in OpenSesame. This initial set of parameters provides
a good starting point, but the DFT data will not in gen-
eral agree perfectly with experimental data. The rea-
sons for this have primarily to do with uncertainty in
the exchange-correlation functional used in DFT, as well
as inherent uncertainties in experiments. Different ex-
periments can give significantly different results, mak-
ing it necessary to prioritize certain experimental results
based on reasonable criteria when constructing the EOS.
In this section, we briefly describe the process used to
adjust model parameters determined from DFT data to
fit experimental results, with a focus on the resulting fit
to experimental data. The final values before and after
fitting are shown in Table II, where values not in paren-
theses are determined directly from DFT and values in
parentheses indicate that the value was adjusted to agree
with experimental data. A more detailed description of
this process can be found in Ref. 89.

A. Phase diagram

We first review the overall phase diagram in P -T space
in the final 2162 EOS, shown in Fig. 5. The phase dia-
gram generated from DFT data alone does not fit per-
fectly with experimental data, but the qualitative fea-
tures are correct, as described in Ref. 89. The primary
tool for adjusting the location of the phase boundaries
in pressure is by adjusting the cold curve equilibrium en-
ergies E0 = Fcold(V0). The DFT-predicted values and
adjusted values (in parentheses) are shown in Table II,
where the energy is relative to E0 of the β phase. Al-
though the changes appear to be relatively large, there
are two important reasons for this. First, it is not possi-
ble with GGA xc functionals to simultaneously predict
correct atomization energies and bond lengths;124 the
prediction of both is only possible within a meta-GGA
framework. The GGA AM05 functional used for DFT
calculations in Sec. III gives very accurate predictions
of bond lengths for tin, but was not designed with the
goal of obtaining accurate relative values of E0 between
phases, but instead to correctly describe surface effects in
solids. Second, adjusting E0 does not change any proper-
ties that depend on derivatives of the energy, making E0

the most straight-forward parameter to use to adjust the
relative locations of the phase boundaries in P -T space.

Several points regarding the phase diagram should be
noted. First, the β-γ phase boundary was modified
from the SESAME 2161 EOS to be located at slightly
lower pressures. The 2161 EOS originally determined the
phase boundary based on shock Hugoniot data, which in-
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cluded some kinetic effects associated with hysteresis in
the β → γ phase transition. With recent developments
in modeling the kinetics of phase transitions in hydro-
dynamics codes, it is now important to place the phase
boundary at the location of static experiments so that
the kinetic effects associated with the β-γ phase transi-
tion can be accounted for in the kinetic models, rather
than in the EOS. This allows the reverse transformation
(γ → β) to properly include kinetic effects, as well. The
β-γ phase boundary and the β-γ-liquid triple point are
shown in Fig. 5b with comparisons to experimental data
from Refs. 42 and 43. The 2162 EOS is in close agreement
with the experimental data near the triple point and with
the β-γ phase boundary. The higher pressure parts of the
phase boundary are also in close agreement with phase
diagrams reported previously in Refs. 10, 11, and 88.

We also point out that the slope of the γ-δ and δ-ε
phase boundaries in Fig. 5a are determined entirely from
DFT data. One challenge in determining the γ-δ phase
boundary lies in the fact that the γ phase cold curves
should in principle be computed in such a way that the
lattice is allowed to relax at each volume. This leads
to a c/a ratio that converges to 1 as the volume is de-
creased, indicating that the δ (bcc) phase becomes lower
in energy. Although in principle this is the correct way
to treat the γ phase, in practice this makes it very dif-
ficult to determine a well-defined γ-δ phase boundary.
At elevated temperatures the Gibbs free energy G(P ) of
the γ and δ phases are nearly coincident near the phase
boundary, making it difficult to numerically determine
the pressure P associated with the transition at elevated
temperatures. The ambiguity in defining a phase bound-
ary is also borne out in experiments. In particular, Sala-
mat et al. find in Ref. 29 evidence of the emergence of
body-centered orthorhombic (bco) phase(s) near the γ-δ
phase transition at room temperature. This finding indi-
cates that near the phase boundary, the relative energy
differences between bct, bco, and bcc structures are small
enough that the presence of local strains within different
grains of the sample can lead to the local stabilization
of different phases. These results provide insight into the
fundamental difficulty of defining a clear phase boundary
in this region of the state space, rather than indicate a
fundamental failure in the DFT calculations.

In order to address the difficulties associated with
defining the γ-δ phase boundary, we ultimately used a
DFT cold curve for the γ phase in which the c/a ratio is
kept fixed at the equilibrium (zero pressure) value. This
allows for more contrast in the enthalpies (at T = 0) and
the Gibbs free energies (T > 0) near the phase boundary
and therefore alleviates difficulties associated with the
numerically ambiguous phase preference near the phase
boundary.

Another point regarding the ε phase is also worth men-
tioning. The experimental evidence for the emergence of
the ε phase is relatively limited, but DAC experiments
by Salamat et al. (Ref. 28) show a clear transition to the
ε phase at room temperature above 150 GPa. Nonethe-

less, these experiments do not provide information about
the slope of the phase boundary in P -T at these high
pressures, making the DFT-predicted phase boundary
the best currently available data we have. The DFT re-
sults clearly indicate a positive slope in Fig. 5a which
is also in qualitative agreement with experiments per-
formed by Lazicki et al. (Ref. 41) involving dynamic com-
pression of tin up to pressures around 1 TPa. In Ref. 41,
no evidence of the ε phase is found, however it is noted
that very high temperatures are achieved during com-
pression, which may mean that the (P, T ) states probed
in experiments are located above the δ-ε phase boundary
that we compute using DFT. Furthermore, Lazicki et al.
postulate that strain rates in their compressive experi-
ments may be too fast to observe nucleation and growth
of the ε phase. New compressive experiments would help
to shed light on these issues and on the location of the
phase boundary.

One final point regarding the melt curve is important.
Many measurements of the melt curve have been made
using a variety of experimental techniques, with a large
amount of scatter in the data. Due to the degree of vari-
ability, it is necessary to choose a subset of experimental
results to guide the EOS construction. For the 2162 EOS
we have focused on recent experiments by La Lone et al.
(Ref. 59) which measure melt on shock release using a
combination of pyrometry, reflectance, and velocimetry
techniques to determine the location of the melt curve in
(P, T ) space. These results are shown in Fig. 5a, where
the red lines indicate upper and lower limits of uncer-
tainty in the measurements. We also include laser-heated
DAC data by Schwager et al. (Ref. 64), shock-induced
melt data by Mabire & Héreil (Refs. 52 and 53), and clas-
sical molecular dynamics (MD) simulations of the melt
by Bernard & Maillet (Ref. 81). Note that the calcula-
tions of Bernard & Maillet use an interatomic potential
optimized by fitting to DFT-MD simulations. We also
show the melt curve predicted by our Z method calcula-
tions in Fig. 5, which are in very close agreement with the
2162 EOS and with experimental data. Comparisons to
other experiments can be found in Ref. 89. It is also im-
portant to point out that the melt curve of the 2162 EOS
is located at slightly higher temperatures than the previ-
ous 2161 EOS, based primarily on the experimental data
provided in Fig. 5 and also on a trend towards consen-
sus that the melt curve lies at higher temperatures than
what is shown in the 2161 EOS below ∼ 50 GPa.59,88

The melt curve is determined primarily by the liquid
phase parameters, shown in Table II, in addition to val-
ues of liquid-specific parameters Γm,Γrs, Tm, Trs, and ∆S,
described in Sec. II. For these liquid-specific parameters,
we use the values Γrs = Γm = 2.45, which is the same
as the adjusted Γref value for the γ phase, as well as
Tm = Trs = 580 K and ∆S = 0.9 kJ/g. Note that all
parameters for the liquid phase in Table II are shown in
parentheses because there is not a unique way to deter-
mine the parameters from DFT calculations. The liquid
phase parameters are the least straight-forward to adjust,
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FIG. 6. Comparison of the 2162 EOS to experimental isobaric data along the 1 bar isobar. (a) The bulk modulus B(T ) and
shear modulus G(T ) are computed from temperature-dependent elastic constant data in Ref. 15. (b) The density ρ(T ) in the β
phase (below 505 K) and in the liquid phase (above 505 K) are compared to experimental data from Refs. 16–19. Experimental
data from Ref. 20 are compared with the 2162 EOS for (c) the entropy S(T ) and (d) the heat capacity at constant pressure
Cp(T ).

and we provide a brief overview of how these parameters
were determined below (additional details are provided
in Ref. 89). First, because the melt curve extends across
the β, γ, and δ phases, it was necessary to construct a
cold curve that interpolated between these three phases.
This was done by stitching together P (ρ) for the β and
γ phases near the T = 0 transition density (the δ phase
is left out because the γ and δ P (ρ) curves are nearly
overlapping at high density), so that an ‘effective’ cold
curve that interpolates between phases could be used.
The resulting cold curve has a slightly lower ρ0 than the
β, γ, and δ phases, as shown in Table II. The values of B
and B′ are also determined from fitting the Vinet-Rose
model in this way. The parameters E0 and ΘD for the liq-

uid phase mainly influence the location of the melt curve
in P -T space. Because there is no straight-forward way
to determine these parameters directly from DFT data,
the adjustment was done mostly through trial-and-error
fitting to the experimental data of melt curve measure-
ments. Lastly, the Grüneisen parameter Γref was initially
chosen to be the same as Γref of the γ phase. However,
this resulted in pressures that were slightly too high at
elevated temperatures in both the DFT-MD data (Fig. 3)
and in the shock Hugoniot data (Fig. 8). Lowering this
value by ∼ 2% allowed for better agreement in both the
DFT-MD results and the shock Hugoniot results. As
described in Sec. IV D, lowering this value changed the
location of the phase boundaries in Fig. 5 slightly. We
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FIG. 7. Room temperature isotherm for the 2162 EOS with a comparison to experimental data over (a) the full range of
experimental data and (b) near the β-γ phase transition. Experimental data are from Refs. 23–29.

therefore reduced Γref of the solid phases by the same
ratio as was used for the liquid phase to restore the accu-
racy of the phase boundaries. Note that Γ′ref of the liquid
phase primarily controls the curvature of the melt curve
at high pressures. We determined the value Γ′ref = −3.5
in Table II by fitting to the melt curve at high pressure.
Because this value was relatively higher than that of the
solid phases, Γ′ref of the solid phases were decreased to
retain the shapes of the phase boundaries at high pres-
sures.

B. Isobaric data

When adjusting model parameters in OpenSesame to
create the 2162 EOS, we started with isobaric data. As
described in Ref. 89, the isobaric data generally allows
for some constraints to be placed on model parameters
of the phases that are stable at atmospheric pressure. For
tin, this includes the β and liquid phases.

In Fig. 6, we show a variety of isobaric data at 1 bar
and at temperatures above and below the β-liquid phase
boundary. In Fig. 6a the temperature dependent bulk
modulus B(T ) of the β phase is shown with compar-
isons to experimental data determined from Kammer et
al. (Ref. 15). Kammer et al. measured the elastic con-
stants of β tin at different temperatures, and from those
measurements it is possible to estimate the bulk modulus
B and shear modulus G, as described in Ref. 89. Using
the data of Kammer et al., we found that at T = 0,
B = 58 GPa, which can be compared to the AM05 result
of B = 52.7 GPa, as found by fitting the E-V points to a
Vinet-Rose model.90 Because the DFT result is slightly

low, we modified the value to B = 58 GPa (see Table II),
which provides a constraint that reduces the number of
remaining model parameters that need to be adjusted.

In Fig. 6b, we show the density along the 1 bar isobar
with comparisons to experimental data from Refs. 16–19.
The 2162 EOS matches very well in the β phase below
melt, and lies in between the data of Alchagirov et al. and
Wang et al. in the liquid phase. Due to the constraint on
B at T = 0, we were able to determine the equilibrium
density of the β phase, ρ0 = 7.437 g/cm3 based on the
ρ(T ) data in Fig. 6b. This value is roughly 1.2% higher
than the AM05-predicted value of 7.344 g/cm3 (see Ta-
ble II) and 7.2% higher than the PBE-predicted value of
6.939 g/cm3. The other piece that we adjusted slightly to
fit to the isobaric ρ(T ) data is Γref , shown in Table II. The
combination of ρ0, B, and Γref together control the slope
and initial value of ρ(T ), and these values were found to
give good agreement with data shown in Fig. 6b.

We also show the entropy (Fig. 6c) and heat capacity
at constant pressure (Fig. 6d) with comparisons to data
from Hultgren et al. (Ref. 20). Very close agreement
is shown between the experimental data and the 2162
EOS. No additional adjustment of model parameters was
necessary to provide good agreement for the β phase.

C. Isothermal data

The next step in the EOS construction is to look at
isothermal DAC data at room temperature. A variety of
DAC experiments have been performed over the years,
and we focus specifically on data from Refs. 23–29. In
Fig. 7 we show a comparison of the 2162 EOS to these
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FIG. 8. Comparison of the 2162 EOS to shock experiments along the principal Hugoniot. The Us-up relations are shown over
(a) a wide range of shock speeds including the liquid phase and (b) over a narrow range of shock speeds focusing on the solid
phases. The pressure P (ρ) along the Hugoniot is shown over (c) a wide range of pressure and (d) a narrow range of pressure
focusing on the solid phases. Experimental data are from Refs. 33–38.

experimental results. Note that due to the high level
of agreement of the AM05 cold curves with DAC data
(Fig. 1), it was possible to use the AM05 cold curves
directly and without any adjustments, aside from the β
phase which was modified slightly based on isobaric data.
The benefit of using the DFT data for the cold curves is
that it provides a more precise way to define the cold
curves than using the DAC data directly, due to the lim-
ited range of ρ, P data available from DAC experiments
for each phase. The limited range of data available will
introduce uncertainty in the fitted parameters. The ben-
efit of the DFT calculations is that a wider range of ρ, P
can be used to more precisely determine cold curve pa-
rameters for each phase, which then translates to less

uncertainty in the solid phase properties throughout the
phase diagram. The unmodified cold curve parameters
are shown in Table II.

In Fig. 7a, we show results over a wide range of den-
sity, which spans all four solid phases included in the
EOS, with the β-γ transition occurring at roughly 9 GPa,
the γ-δ transition occurring at roughly 48 GPa, and the
δ-ε transition occurring at roughly 156 GPa. The ex-
periments of Salamat et al. (Refs. 28 and 29) are more
recent and are the most precise data available, and the
2162 EOS shows a high level of agreement with these re-
sults, particularly in the β and γ phases at low pressure,
as shown in Fig. 7b. Note that small discrepancies can
be seen in the δ phase in Fig. 7a, where the 2162 EOS
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is slightly lower in pressure than the results of Salamat
et al.. This is interesting due to the fact that the dis-
crepancies start to appear at the onset of the γ-δ phase
transition. In the experiments of Ref. 29, Salamat et
al. find evidence for the emergence of bco phases, indi-
cating that the γ (bct), δ (bcc), and bco phases are all
accessible in this region of the state space and that the
observed stable phase may be influenced by small local
strains present in the samples. For the purposes of the
EOS, we did not try to address all of these issues, but
rather relied on the AM05-calculated values, since this
provided a concrete way for determining model parame-
ters without leading to significant discrepancies with the
available experimental data.

D. Shock data

The final piece of experimental data we consider is
shock data. Fig. 8 shows a comparison of the 2162 EOS
to experimental shock measurements from Refs. 33–38.
Note that the principal Hugoniot is shown in Fig. 5a. In
Figs. 8a-b we show the U

S
-u

P
relations along the principal

Hugoniot, where panel (a) shows a wide range of shock
speeds into the liquid phase and panel (b) is zoomed in
to focus on the solid phases. The 2162 EOS is in good
agreement throughout. Note that in panel (b), the β → γ
phase transition is shown to initiate at lower shock speed
than the data points of the Marsh et al. (1980) results.
As mentioned previously, this is due to the fact that some
hysteresis associated with the phase transition is included
in the shock data. The goal of the 2162 EOS is to place
the phase boundaries at their equilibrium values and al-
low for hydrodynamics codes to capture the kinetic ef-
fects associated with phase transitions. We also point
out that the γ-δ phase transition is very subtle, but can
be seen at U

S
≈ 4.2 km/s in panel (b). This is not ex-

pected to be a large effect since the γ phase exhibits a
shear deformation to the δ phase along the phase bound-
ary. One interesting remaining question is if there is any
noticeable change in material strength through this phase
transformation.

In Figs. 8c-d, we show the corresponding pressure de-
pendence P (ρ) along the Hugoniot. The 2162 EOS is
again in good agreement with the experimental data
through the three solid phases and into the liquid.

The results of Fig. 8 did not require any additional
adjustments to the solid phases, but did require adjust-
ments to the Grüneisen parameters of the liquid phase.
Originally, the liquid phase was constructed using the
same Γref and Γ′ref values as the Γ phase. However, we
found that this value of Γref caused U

S
to be slightly too

high at large u
P

in Fig. 8a and also caused the pressure
to be slightly too high at high densities in Fig. 8c. In or-
der to address these issues, we lowered Γref for the liquid
phase from 2.48 to 2.45 (see Table II), a change of roughly
2%, which brought the Hugoniot down in both U

P
and

P and resulting in the agreement with experimental data

shown in Fig. 8. However, because of these adjustments,
the solid-solid and solid-liquid phase boundaries in Fig. 5
also changed to be in worse agreement with experimental
data. To address this, we ended up decreasing the Γref

values of the γ, δ, and ε phases by the same ratio as was
used for the liquid phase (see Table II), which restored
the agreement of the phase boundaries with experimental
data.

V. CONCLUSION

We have described the construction of a new multi-
phase SESAME EOS for tin, referred to as SESAME
2162. The new EOS includes four solid phases and the
liquid phase. We performed DFT calculations using the
AM05 exchange-correlation functional of the four solid
phases and the liquid phase, including cold curve and
quasi-harmonic phonon calculations of the solid phases
and DFT-MD calculations of the liquid phase. The DFT
calculations greatly aid in constraining the model pa-
rameters used in OpenSesame to generate the resulting
2162 EOS. In particular, the DFT calculations provide
the best available data for the slopes of the high pres-
sure solid-solid phase boundaries, the high pressure melt
curve, isotherms for the high temperature liquid phase,
and the high pressure solid cold curves. Because model
parameters determined from DFT alone are not in exact
agreement with experimental data, slight adjustments of
model parameters determined by the DFT calculations
are required. We presented the results of the 2162 EOS
construction with comparisons to a wide range of exper-
imental data, including isobaric data, isothermal data,
shock data, measurements of the triple point and solid-
solid phase boundaries, and measurements of the melt
curve. The 2162 EOS shows an overall high level of agree-
ment with these experimental results. In addition, in re-
gions of the state space where experimental data is lim-
ited or does not exist, the DFT calculations provide the
best available information on material properties. Look-
ing forward, it will be important to develop new methods
for EOS construction, such as automated EOS generation
based on both DFT and experimental data. At the same
time, uncertainty quantification of EOS will be impor-
tant. We expect that the process used to generate the
2162 EOS can be used to inform on both uncertainty
quantification and methods for automatic EOS genera-
tion, as described in more detail in Ref. 89.
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77 Björn Wehinger, Alexëı Bosak, Giuseppe Piccolboni,
Keith Refson, Dmitry Chernyshov, Alexandre Ivanov,
Alexander Rumiantsev, and Michael Krisch, “Diffuse
scattering in metallic tin polymorphs,” Journal of Physics:
Condensed Matter 26, 115401 (2014).

78 JM Rowe, BN Brockhouse, and EC Svensson, “Lattice
dynamics of white tin,” Physical Review Letters 14, 554
(1965).

79 SH Chen, “Group-theoretical analysis of lattice vibrations
in metallic β-sn,” Physical Review 163, 532 (1967).

80 Pasquale Pavone, Stefano Baroni, and Stefano de Giron-
coli, “α ↔ β phase transition in tin: A theoretical study
based on density-functional perturbation theory,” Physi-
cal Review B 57, 10421 (1998).

81 S Bernard and JB Maillet, “First-principles calculation of
the melting curve and hugoniot of tin,” Physical Review
B 66, 012103 (2002).

82 Lin Zhang, Ying-Hua Li, Yu-Ying Yu, Xue-Mei Li, Yun
Ma, Cheng-Gang Gu, Cheng-Da Dai, and Ling-Cang
Cai, “General construction of mean-field potential and its
application to the multiphase equations of state of tin,”
Physica B: Condensed Matter 406, 4163–4169 (2011).

83 R Ravelo and M Baskes, “Equilibrium and thermody-
namic properties of grey, white, and liquid tin,” Physical
Review Letters 79, 2482 (1997).

84 Laurent Soulard and O Durand, “Observation of phase
transitions in shocked tin by molecular dynamics,” Jour-
nal of Applied Physics 127, 165901 (2020).

85 Francois Buy, Christophe Voltz, and Fabrice Llorca,
“Thermodynamically based equation of state for shock
wave studies: application to the design of experiments on
tin,” in AIP Conference Proceedings, Vol. 845 (American
Institute of Physics, 2006) pp. 41–44.

86 GA Cox, “A multi-phase equation of state and strength
model for tin,” in AIP Conference Proceedings, Vol. 845
(American Institute of Physics, 2006) pp. 208–211.

87 KV Khishchenko, “Equation of state and phase diagram
of tin at high pressures,” in Journal of Physics: Confer-
ence Series, Vol. 121 (IOP Publishing, 2008) p. 022025.

88 GA Cox and Michael Andrew Christie, “Fitting of a multi-
phase equation of state with swarm intelligence,” Journal
of Physics: Condensed Matter 27, 405201 (2015).

89 Daniel A Rehn, Carl W Greeff, Daniel G Sheppard,
and Scott D Crockett, Using density functional the-
ory to construct multiphase equations of state: tin
as an example, Tech. Rep., LA-UR-20-29170 (2020).
doi:10.2172/1711355.

90 Pascal Vinet, John R Smith, John Ferrante, and James H
Rose, “Temperature effects on the universal equation of
state of solids,” Physical Review B 35, 1945 (1987).

91 P. Debye, “Zur theorie der spezifischen wrmen,” Annalen
der Physik 344, 789–839.

92 ED Chisolm, Thomas–Fermi–Dirac theory as calculated
in the EOS-production programs Grizzly and Opensesame,
Tech. Rep. (Report no. LA-UR-05-2297, Los Alamos: Los
Alamos National Lab, 2003).

93 Llewellyn H Thomas, “The calculation of atomic fields,”
in Mathematical Proceedings of the Cambridge Philosoph-
ical Society, Vol. 23 (Cambridge University Press, 1927)
pp. 542–548.

94 Enrico Fermi, “Un metodo statistico per la determi-
nazione di alcune priorieta dellatome,” Rend. Accad. Naz.
Lincei 6, 32 (1927).

95 Paul AM Dirac, “Note on exchange phenomena in the
thomas atom,” in Mathematical Proceedings of the Cam-
bridge Philosophical Society, Vol. 26 (Cambridge Univer-
sity Press, 1930) pp. 376–385.

96 E Chisolm, S Crockett, and D Wallace, Extending the
CCW EOS I: Extending the Cold and Nuclear Contribu-
tions to High Compression, Tech. Rep. (LA-UR-03-7344,
Los Alamos National Laboratory, 2005).

97 Richard Grover, “Liquid metal equation of state based on
scaling,” The Journal of Chemical Physics 55, 3435–3441
(1971).

98 Georg Kresse and Jürgen Hafner, “Ab initio molecular
dynamics for liquid metals,” Physical Review B 47, 558
(1993).

99 Georg Kresse and Jürgen Hafner, “Ab initio molecular-
dynamics simulation of the liquid-metal–amorphous-
semiconductor transition in germanium,” Physical Review
B 49, 14251 (1994).

100 Georg Kresse and Jürgen Furthmüller, “Efficiency of ab-
initio total energy calculations for metals and semiconduc-
tors using a plane-wave basis set,” Computational mate-
rials science 6, 15–50 (1996).

101 Georg Kresse and Jürgen Furthmüller, “Efficient itera-
tive schemes for ab initio total-energy calculations using a
plane-wave basis set,” Physical review B 54, 11169 (1996).
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