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We consider localized topologically non-trivial magnetic textures - skyrmions, antiskyrmions and
bimerons in a thin magnetic film with anisotropic interfacial Dzyaloshinskii-Moriya interaction
(iDMI). We use micromagnetic simulations and analytical consideration for studying of the inter-
nal magnetic structure and stability of these textures. Skyrmion and antiskyrmion become elliptic
and orient along the main axes of the iDMI tensor even for small anisotropy. In contrast, bimeron
(antibimeron) orientation changes fluently with varying the iDMI anisotropy. Depending on the
iDMI anisotropy the bimeron may consist of vortex and antivortex pair or of “hedgehog” state and
antivortex. In experiment the considered iDMI anisotropy can be induced by a strain applied to a
magnetic film. We develop a phenomenological approach to establish the strain-iDMI relation.

PACS numbers: 75.50.Tt 75.75.Lf 75.30.Et 75.75.-c

I. INTRODUCTION

Recently, topologically non-trivial magnetization dis-
tributions rise a lot of attention due to their unique phys-
ical properties and promising applications [1–12]. These
spin textures may appear either in a crystal with broken
inversion symmetry or in an artificial multilayer struc-
ture consisting usually of ferromagnet (FM) and heavy
metal (HM) films [13]. At now, several types of topo-
logical magnetic solitons are known. The most studied
is the skyrmion (Sk) appearing in HM/FM multilayers
with perpendicular magnetic anisotropy [13–18]. In the
absence of external magnetic field the skyrmion is stabi-
lized by the interfacial Dzyaloshinskii-Moriya interaction
(iDMI). The counter-partner of the skyrmion is the an-
tiskyrmion (aSk). While Sk can appear in systems with
isotropic iDMI, the aSk requires the anisotropic iDMI.
They were predicted [19 and 20] and observed [21 and
22] in several crystals (and epitaxial films) with certain
symmetry. In artificial structures HM/FM, aSk can ap-
pear only if the iDMI has opposite sign along different
directions [23 and 24]. So far, fabrication of such films
were not reported and aSk was not observed in artificial
systems. A topological analogue of magnetic Sk in-easy
plain films is magnetic bimeron. Their possible existence
in the films with iDMI was recently theoretically pre-
dicted [25–32].

Using magnetic solitons in applications requires an ef-
fective way of creating, annihilating and moving these
textures in thin films. This is still challenging task
nowadays and many groups are working on the issue
currently. The approach based on spin-polarized cur-
rents [29, 30, 33–40] requires huge current density about
107 A/cm2 making it not relevant for applications. This
motivate people to develop strain and charge mediated
approaches [41–46].

Recently, it was experimentally shown that the iDMI
can be controlled in a wide range with a strain in artifi-
cial magnetic multilayer films [47 and 48]. Since the iDMI
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FIG. 1. Sketch of a ferromagnetic/ferroelectric hybrid struc-
ture. A bimeron is situated in the FM film. A voltage V is
applied across the ferroelectric layer inducing a strain in the
ferromagnetic film affecting the iDMI.

is responsible for stabilization of topological texture, the
strain can be used to manipulate them. Interestingly, the
strain induces not only the iDMI strength variation but
also the iDMI anisotropy. Moreover, under certain strain
the iDMI can have a different sign along different direc-
tions. An isotropic film where Sk may exist can be trans-
formed to the film with strong anisotropic iDMI favour-
ing aSk formation. Therefore it is interesting to study the
behavior of Sk and aSk as a function of iDMI anisotropy.
Note that the anisotropic strain can be induced with elec-
tric field in the hybrid system FM-ferroelectric as shown
in Fig. 1. A FM film hosts topological magnetic structure
and serves as an electrode. Applying a voltage to the FE
substrate one can create a deformation using piezoelec-
tric effect. These deformations are transferred into FM
film and induce the DMI anisotropy.
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A skyrmion is stabilized by the iDMI in artificial mul-
tilayers. In films with isotropic iDMI a Sk represents a
cylindrically symmetric magnetization distribution. The
size of the skyrmion depends on the iDMI strength [49].
For small iDMI (D < Dcol) the skyrmion collapses. The
critical value of iDMI (Dcol) is usually found numeri-
cally. When the iDMI exceeds the energy of the domain
wall (DW), D > Dcr ≈ WDW/π = 4

√
AK/π, a separate

skyrmion experiences runout instability (here A is the ex-
change stiffness and K is the film anisotropy constant).
For intermediate region, Dcol < D < Dcr, a separate
skyrmion can exist.

Skyrmions in the magnetic film with anisotropic iDMI
were discussed in Ref. [50] where stability of a single
Sk depending on the applied magnetic field and iDMI
anisotropy was studied for zero magnetic anisotropy. In
the absence of magnetic anisotropy a Sk is unstable with-
out an external magnetic field. It was shown that iDMI
anisotropy leads to less stable skyrmions. In addition,
the long-range magneto-dipole (MD) interaction was not
taken into account.

A magnetic aSk in an artificial film is less studied theo-
retically. In Ref. [24] the case of magnetic film with iDMI
of opposite sign along x- and y-directions (Dx = −Dy,
where Dx,y are the iDMI coefficients along two orthog-
onal directions in the film plane) was discussed. It was
shown that the aSk is cylindrically symmetric for zero (or
weak) dipole-dipole interaction in this case. The stability
criterion for an aSk as a function of iDMI anisotropy was
not studied.

Bimerons (Bi) may appear due to competing exchanges
without the iDMI interaction as shown in Ref. [27].
Occurrence of a Bi lattice in thin film with in-plane
anisotropy and iDMI was shown in Ref. [26]. Stabiliza-
tion of a single Bi due to iDMI in a thin film with in-plane
magnetic anisotropy was discussed in Refs. [30 and 31].
A stability diagram for a Bi in the isotropic FM layer
was obtained using micromagnetic simulation. Similarly
to Sk and aSk, the Bi exists in a narrow range of iDMI
values. When the domain wall energy becomes negative a
single bimeron disappears transforming to stripe domains
or a magnetic helix. This defines the upper bound for the
iDMI strength. At small enough iDMI the Bi collapses.
Due to isotropy of the film the bimeron consists of a pair
of “hedgehog” state (with positive winding number) and
antivortex (with negative winding number).

In this work we investigate stability and magnetic
structure of localized topologically non-trivial states in
the thin magnetic films as a function of iDMI anisotropy.
We consider skyrmion, antiskyrmion and bimeron us-
ing micromagnetic simulations and semi-analytical ap-
proaches. In our model we take into account all interac-
tions relevant to realistic experimental systems such as
perpendicular anisotropy and long-range MD interaction.

The paper is organized as follows. First, we present the
results of micromagnetic simulations of the stability of
Sk, aSk and Bi in a magnetic film with anisotropic iDMI
in Sec. II. Then, we discuss the main peculiarities of

the stability diagrams using analytical models in Sec. III.
Finally, we discuss a possibility to create the anisotropic
iDMI with electric field and provide a phenomenological
consideration of iDMI-stain relation in Sec. IV.

II. MICROMAGNETIC SIMULATIONS OF
TOPOLOGICALLY NON-TRIVIAL MAGNETIC

TEXTURES IN FILMS

A. The model and micromagnetic simulations
procedure

We consider a thin uniform ferromagnetic film with
saturation magnetization Ms, thickness t, and exchange
stiffness A. The film has a perpendicular (interfacial
or magneto-crystalline) magnetic anisotropy with volume
energy density Wan = −K(mz0)

2, where m is the unit
vector along the film magnetization, z0 is the film nor-
mal and K is the magnetic anisotropy constant, K > 0.
Note that the effective magnetic anisotropy including the
shape contribution, Keff = K − µ0M

2
s /2 (µ0 is the vac-

uum permeability, Keff units are energy/length3) can be
either positive or negative. If Keff > 0 the energy of the
state with uniform out-of-plane magnetization (“OOP”
state) is less than the energy of the state with uniform
in-plane magnetization (“IP” state). There is also iDMI
in the film. Its energy is

WDMI =

= Dx

(

mx
∂mz

∂x
−mz

∂mx

∂x

)

+Dy

(

my
∂mz

∂y
−mz

∂my

∂y

)

.

(1)

Here Dx, Dy are iDMI coefficients along x- and y-axes.
There is no magnetic anisotropy axis in the film plane.
However, the film can be anisotropic due to anisotropic
iDMI (Dx 6= Dy). We study localized nonuniform states
shown in Fig. 2. Here we denote them as skyrmion (Sk),
antiskyrmion (aSk), bimeron (Bi) and antibimeron (aBi).
The Sk and Bi states have the same topology and carry
the same topological charge [51]

Nch =
1

4π

∫

m · ∂m
∂x

× ∂m

∂y
= 1, (2)

The Bi can be obtained from Sk by rotating the mag-
netization by 90 degrees around the y-axis, see Fig. 2.
Such rotation does not change the topological charge of
the system. Antibimeron and aSk have the topological
charge equal to -1. The aBi can be obtained from aSk by
rotating magnetization by 90 degrees.
Below we use the following definitions for (a)Sk and

(a)Bi. By Sk (Fig. 2) we mean a localized magnetic state
with a topological charge +1 and vorticity +1 in a film
magnetized in negative z direction. The localized state
with a topological charge of -1 and vorticity of -1 is con-
sidered as aSk. The localized topologically charged states
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FIG. 2. Localized topological states: Sk and aSk stand for
skyrmion and antiskyrmion, respectively; Bi and aBi stand
for bimeron and antibimeron. The blue and red colors denote
positive and negative values of Mz, respectively.

with +1 and -1 charges in the easy-plane films are con-
sidered as Bi and aBi, respectively. The Bi consists of
closely spaced center and saddle points (Fig. 2, Bi). In
the aBi the magnetization direction mz is opposite at
these points (Fig. 2, aBi).
Micromagnetic simulations are performed utilizing the

OOMMF code [52] to solve the problem of Sk and Bi
stability. This code is based on a numerical solution of
the system of Landau-Lifshitz-Gilbert (LLG) equations
for the magnetization of the system.

∂ ~M

∂t
= −γ( ~M × ~Heff )−

γα0

Ms
[ ~M × ( ~M × ~Heff )], (3)

where M is the magnetization, γ is the gyromagnetic
ratio, α0 is the dimensionless damping parameter, and
Ms is the saturation magnetization. The effective field
~Heff = −δE/δ ~M is a variation derivative of the energy
function. The total energy of the system is defined by

E = Eex + EK + Em + EDM . (4)

The first term Eex is the energy of the exchange interac-
tion. The second term EK is the energy of the uniaxial
anisotropy, Em is the demagnetization energy. Expres-
sions for these terms and corresponding effective fields

FIG. 3. Stability diagram of localized topological states.
Right panel is for isotropic iDMI. Left panel is for anisotropic
iDMI with Dx = −Dy . OOP stands for out-of-plane magne-
tization. IP stands for in-plane magnetization. GIS stands
for globally inhomogeneous state.

have conventional form and can be found in Refs. [53–
55]
The simulated system is the rectangular plate with the

width of 762 nm and the thickness of t = 1 nm which is
typical value for the Co/Pt bilayers. Periodical boundary
conditions in the plane of the film are used. The mesh
element size 1.5 × 1.5 × 1 nm3 is much smaller than the
DW width.
In our calculations we use typical material parameters

for ferromagnetic films with a perpendicular anisotropy.
The stiffness constant is chosen as A = 1.6 · 10−11 J/m
and Ms = 1300 kA/m. We initialize our film introducing
one of the topologically non-trivial configuration as a nu-
cleons and let the system evolve to equilibrium. Depend-
ing on the system parameters the initial state may dis-
appear (collapse) leading to a uniform magnetized state.
Another scenario is when the initial localized magnetic
state experienced runout instability and the system turns
into some globally inhomogeneous state (GIS). In both
these cases we consider the topological texture as un-
stable. If at the end of the magnetization evolution the
localized magnetic texture survives we consider it as sta-
ble.

B. Phase diagram in coordinates (K,D) for
isotropic film

The stability diagram of magnetic film with isotropic
iDMI (Dx = Dy) is shown in the right panel in Fig. 3.
There are several regions in the diagram. A Sk exists
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only in a small sector in the upper right quadrant. This
quadrant corresponds to the out-of-plane effective mag-
netic anisotropy. For fixed magnetic anisotropy there is
a narrow range of iDMI values where a Sk is stable. This
is in agreement with previous studies. The Sk collapses
(Sk→OOP transition) with increasing anisotropy K or
decreasing Dx. The collapse is accompanied by a change
in the topological charge. Therefore, this phase boundary
can be accurately defined. The collapse is not reversible.
Changing K or Dx cannot transform the uniform state
to a topologically charged one.
A Sk experiences runout instability and turns into GIS

with decreasing K or increasing of Dx. This is due to de-
crease of the DW energy in this case. Sk→GIS transition
conserves the value of topological charge. Therefore, this
transformation is reversible. The opposite change ofK or
D values transforms the GIS to a localized Sk. We define
this boundary when a significant Sk expansion occurs.
The upper quadrant of the left panel in Fig. 3 shows

the stability region for an aSk at Dx = −Dy. The region
resembles the one for a Sk. Note that there is no inter-
section of Sk and aSk stability regions and they cannot
coexist in the same film.
Bi and aBi exist only in the bottom part of the diagram

for Keff < 0. In contrast to Sk and aSk, the Bi and
aBi may co-exist in the same film and in both limits
Dx = Dy and Dx = −Dy. When Bi (aBi) collapses,
it irreversibly transforms to the state with uniform in-
plane (IP) magnetization. The transformation to GIS is
reversible.
Note that there is an essential difference between the

pair Sk-aSk and Bi-aBi. The Bi and aBi can be trans-
formed one into another using the system rotation by the
angle π around the x-axis. Therefore, the energy of Bi
and aBi is the same. This is not the case for Sk and aSk:
the system rotation cannot transform Sk to aSk.

C. Stability diagram of skyrmions and
antiskyrmions in films with anisotropic iDMI

To study the influence of the iDMI anisotropy we fix
the K constant and vary iDMI constants Dx and Dy in-
dependently. The stability diagram of skyrmions and an-
tiskyrmions in coordinates (Dx,Dy) is shown in Fig. 4 for
K = 1.16 · 106 J/m3 (Keff = 1.03 · 105 J/m3). All other
material parameters were defined before. The stability
diagram is symmetric with respect to the line Dx = Dy.
This is because the replacement Dx,y → Dy,x is equiv-
alent to rotation of the system by 90 degrees which
does not affect the skyrmions stability conditions. Sim-
ilarly, the diagram is symmetric with respect to the line
Dx = −Dy.
A single Sk can be stable only in the region DxDy > 0

within a narrow “triangle” around the point Dx = Dy =
1 mJ/m2. The case of isotropic film (considered in pre-
vious works) corresponds to the diagonal Dx = Dy. As
we discussed in the introduction there is an upper and

FIG. 4. Stability diagram for a single Sk and aSk in film with
anisotropic iDMI. Single Sk is stable for DxDy > 0. An aSk
exists in the second and fourth quadrants (DxDy < 0) only.
Closed circles and crosses show the boundary points where
Sk or aSk are stable. Open diamonds and stars show the first
points outside of the stability region. OOP stands for out-of-
plane magnetization. GIS stands for globally inhomogeneous
state. Dcr = 4

√
AKeff/π ≈ 1.6mJ/m2 .

lower bounds for iDMI magnitude in this case. If iDMI
is higher than the upper bound a Sk expands and trans-
forms into some GIS. Such a GIS can be a labyrinth do-
main structure or lattice of magnetic bubbles. Below the
lower bound a Sk collapses and the film becomes uni-
formly magnetized.
We introduce the average iDMI strength as D =

√

D2
x +D2

y and the anisotropy as ξan = |Dx|/|Dy|. Us-

ing this definition the case Dx = −Dy is isotropic. When
iDMI is anisotropic (ξan 6= 1) the range of average iDMI
values D in which skyrmions can exist shrinks. For high
enough iDMI anisotropy (ξan > 10 or ξan < 0.1) there is
no iDMI values giving Sk stabilization. However, in the
film with anisotropic iDMI the upper bound for iDMI
along one of the directions is higher than for isotropic
case. So, a single Sk can survive at higher iDMI value.
One can see, that the line for Sk-OOP boundary is practi-
cally straight and have a slope of −1. As for the Sk-GIS
boundary, it’s slope is −1/2 and −3/2. So, the upper
bound for Dx at Dy ≈ 0 is about 1.5 times higher than
critical Dx along the line Dx = Dy.
A single aSk can exist only in the second and forth

quadrants (DxDy < 0) when iDMI has different sign
along different directions. So, a Sk and an aSk cannot
coexist in a thin film according to our simulations. The
region of parameters where an aSk survives also resem-
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FIG. 5. Stability diagram for bimerons (Bi) in film with
anisotropic iDMI. Points show coordinates at which the mag-
netization distributions are simulated in Fig. 6. Closed circles
and stars show the Bi to uniform state transition (collapse).
Open diamonds and closed circles show transition of Bi to the
globally inhomogeneous state (GIS). IP stands for in-plane

magnetization. Dcr = 4
√

A|Keff |/π ≈ 1.25 mJ/m2.

bles a triangle. The upper bound for iDMI strength is
lower for aSk than for Sk. This is related to the difference
of their internal structure. The DW in the Sk is of Neel
type. In the aSk the DW changes it’s type from Bloch to
Neel type as one moves around the aSk. This makes the
MD energy of the DW different for Sk and aSk. The lat-
ter is smaller leading to faster transformation of the aSk
into GIS as we increase the iDMI strength. The stability
of the aSk and Sk is discussed on the base of simplified
model in Sec. III.

D. Stability diagram of Bi and aBi in films with
anisotropic iDMI

Similarly to Sk and aSk, we study the stability of sin-
gle Bi and aBi in the film with anisotropic iDMI. We
simulate a magnetic film with in-plane effective magnetic
anisotropyK = 1.001·106 J/m3 (Keff = −6.1·104 J/m3).
Other parameters are the same as in the previous section.
Figure 5 shows such a diagram in coordinates (Dx,Dy).
A single Bi is stable between the lines resembling ellipses.
Similar to Sk and aSk there is upper and lower critical
values of iDMI strength D for Bi stability. In contrast to
Sk, a single Bi can be stable in all quadrants DxDy > 0
and DxDy < 0. The stability region in the first (third)
quadrant is different from the one in the fourth (sec-
ond) quadrant. The average iDMI D is lower in region

DxDy < 0. This is due to different internal structure of
the DW in Bi in these two cases. The DWs for DxDy < 0
have lower energy since both iDMI and MD energies are
minimized. We discuss this in more details in Sec. IIIG.
The magnetization distribution in Bi for different iDMI
anisotropy is shown in Fig. 6. In all cases the Bi repre-
sents a pair of “saddle” point and “center” point. The
saddle point (which is an antivortex) keeps its structure
for any ratios of Dx an Dy values. Contrary, the helicity
(angle θ between the magnetization and a radius vec-
tor from the center point) of the center point depends on
this ratio. For DxDy > 0 there is a “hedgehog” structure
with θ = 0 (Fig. 6(a-c)) while for Dx = −Dy there is vor-
tex with θ = ±π/2 (Fig. 6(e)). For intermediate values
of Dx an Dy there is a canted structure (0 < |θ| < π/2,
Fig. 6(d)). The ratio of Dx and Dy determines also the
orientation of the Bi. The orientation is characterised by
the vector q which connects the saddle and center points.
It is oriented by the angle φq with respect to the x-axis.
Another important angle characterizing the Bi (φM ) is
the orientation of magnetization far from the Bi. An-
gles φq and φM seems to be related as φq = −φM . For
Dx = Dy the system is isotropic and Bi can have any
orientation. For Dx > 0 and Dy > 0 the Bi is oriented
along the direction of strongest iDMI. For Dx and Dy

of different signs the vector q begin to tilt reaching the
value φq = ±π/4 at Dx = −Dy. In this case, the Bloch
DWs appear in the Bi lowering both MD and iDMI ener-
gies. Importantly, there is no crystallographic anisotropy
in the film plane in the considered system. Therefore, the
uniform magnetization surrounding a Bi can be oriented
in either direction and does not force the Bi to be directed
in a certain way. Due to the rotational degeneracy of the
uniform state, the orientation of the Bi is defined by it’s
DW structure. So, the uniform magnetization surround-
ing a Bi adjusts to the Bi orientation. In real samples
there is always some in-plane anisotropy and DW pin-
ing sites preventing this behaviour. It is interesting to
note that the correlation between Bi orientation and its
internal structure in the film with anisotropic iDMI re-
sembles the correlation between orientation and internal
structure of the equilibrium DW in similar system [56].

The difference between aBi and Bi is due to magneti-
zation direction in the cores of the nodes only. Therefore,
the Bi and aBi have the same energy (for the same sys-
tem parameters). Thus, the stability diagram for a single
aBi is the same as for a single Bi and we do not show it
here. The Bi and aBi can coexist in the same film in
contrast to Sk and aSk.
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FIG. 6. The structure and orientation of a bimeron state for different ratios of Dx and Dy . The specific values of iDMI
constants corresponding to Figs. (a)-(e) are denoted by red dots in Fig. 5. Bottom row shows the orientation of magnetization
far from the Bi (M∞) and the vector connecting “center” and “saddle” points of the Bi (q).

III. ANALYTICAL CONSIDERATION OF
TOPOLOGICAL STATES IN FILMS WITH

ANISOTROPIC IDMI

A. The model

Here we consider the influence of iDMI anisotropy
on shape, internal structure and stability of topologi-
cally non-trivial magnetic textures in a bilayer struc-
ture FM/HM. The properties of these textures are de-
fined by the competition of the several energy contribu-
tions: 1) exchange interaction; 2) magnetic anisotropy;
3) MD interaction; and 4) iDMI. We consider a thin
(thinner than the exchange correlation length) magnetic
film with the thickness t and saturation magnetization
Ms. The film plane is perpendicular to the z-axis. The
magnetization is uniform along the z-direction. The sys-
tem has a uniaxial magnetic anisotropy along the z-axis,
which may occur due to the interfacial effects (as in
Co/Pt films). The anisotropy energy is the same as
in Sec. II A. The exchange energy density is given by
Wex = A((∂m/∂x)2+(∂m/∂y)2+(∂m/∂z)2). The iDMI
is defined by Eq. (1). Besides the demagnetizing factor
the MD interaction leads to two additional contributions
to the soliton energy: i) due to charges in the DW of
the soliton and ii) due to the interaction of the core of
the topological structure (bounded by the DW) with the
surrounding magnetic film (the region outside the DW).

B. Skyrmion model

A single Sk in isotropic film has a circularly symmetric
magnetization distribution. For the anisotropic iDMI we
consider a Sk as an ellipse with two radii, a and b and
the orientation angle α (see Fig. 7). Following Ref. [49],
we consider a Sk with the size larger than the charac-
teristic DW width a, b ≫ ∆ =

√

A/Keff . In this case,
the Sk can be represented as a DW of an elliptical shape.

The DW with the width ∆ is bounded by the dashed
lines in Fig. 7. with the center shown by the blue solid
line. Inside the ellipse the magnetization is uniform and
directed perpendicular to the film plane. Outside of the
ellipse the magnetization looks the opposite direction.
Consider a small part of the Sk DW shown in Fig. 7(c).

The DW is oriented along the local ellipse normal, n.
Note that this normal is not co-directed with the radius
vector r connecting Sk center and the considered local
point. We introduce the angle γ between n and r (see
Fig. 7(b)). The angle between the main ellipse axis and
the considered local point is ϕ. Finally, one can see that
the domain wall is oriented by the angle γ + ϕ+ α with
respect to the x axis. One can find the angle γ as follows

γ = arccot(b2/a2ctg(ϕ))− ϕ. (5)

The length of the considered segment is given by

dl =
rdϕ

cos(γ)
, (6)

where the radius of the ellipse in the considered point is
defined by

r =
ab

√

b2 cos2(ϕ) + a2 sin2(ϕ)
. (7)

The internal structure of the DW for anisotropic iDMI
was considered in Ref. [56], where it was shown that
anisotropic iDMI leads to the formation of mixed type of
DW (intermediate between Bloch and Neel types). The
energy of the DW per unit length is given by

WDW =t

(

2A

∆
+ 2Keff − πD+ cos(θ)−

−πD
−
cos(2(α+ ϕ+ γ)− θ) +

1

2
kΩcos2(θ)

)

,

(8)
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FIG. 7. Sketch of a Sk. The solid blue line corresponds to
zero out-of-plane magnetization. The dashed blue lines show
the DW size ∆. a and b are the ellipse dimensions. The
red arrows show magnetization in the Sk. The vector n is the
normal to the Sk surface (blue line). r is the distance between
the Sk center and the DW. α is the Sk orientation angle. γ is
the angle between the Sk normal n and radius vector r. Rc is
the Sk local curvature radius. (c) shows the internal structure
of the DW of the Sk. θ is the orientation of magnetization
rotation plane.

where the first two terms describe the exchange energy
and the magnetic anisotropy energy. The third and
fourth terms are the iDMI contribution with

D+ =
Dx +Dy

2
, D

−
=

Dx −Dy

2
. (9)

The angle θ defines the orientation of magnetization ro-
tation plane (see Fig. 7(c)). For θ = 0,π one has the Neel
DW, while for θ = ±π/2 the DW becomes of the Bloch
type. The last term in Eq. (8) describes the contribution
from the MD energy of magnetic charges in the DW with
Ω = µ0M

2
s t and k ≈ 0.44.

For isotropic film we have D+ = Dx = Dy and D
−
=

0 and the DW becomes of the Neel type with θ = 0
(when the iDMI is stronger than the MD interaction).
The iDMI anisotropy makes the DW of mixed Bloch-Neel
type.
For given Sk shape the DW orientation (γ + ϕ+ α) is

fixed, therefore we need to minimize the energy in Eq. (8)
with respect to θ only.

∂WDW

∂θ
= 0, (10)

giving θmin(ϕ) the orientation of the magnetization rota-
tion plane in a local DW as a function of the position of
the DW in the Sk. For negligible MD contribution the
angle is given by

θmin = atan

(

2D
−
sin(2(γ + α+ ϕ))

D+ + 2D
−
cos(2(γ + α+ ϕ))

)

. (11)

For non-zero MD interaction (Ω > 0) the analytical so-
lution for θmin is not possible and the angle should be
found numerically.
The total energy of the DW in the whole Sk is found

by the integration over the angle ϕ

W tot
DW = t

∫ 2π

0

dϕ
abWDW(θmin)

cos(γ)
√

b2 cos2(ϕ) + a2 sin2(ϕ)
. (12)

Since the DW in the Sk is bended an additional term
appears in the energy due to the DW curvature. It is
produced by the exchange interaction and is due to mag-
netization derivatives with respect to the angle ϕ. Using
approach of Ref. [49] for a cylindrically symmetric Sk, we
can write for the elliptic Sk

W tot
c = 2tA∆

∫ 2π

0

dϕ
(∂γ/∂ϕ+ 1)r

R2
c cos(γ)

, (13)

where Rc is the curvature radius (see Fig. 7(d)) given by

Rc =
(a2 sin2(ω) + b2 cos2(ω))3

ab
, (14)

with ω being

ω = arctan
(a

b
tan(ϕ)

)

. (15)

The last contribution to Sk energy is due to the long-
range part of the MD interaction. The Sk can be rep-
resented as a domain with opposite magnetization. The
domain presence reduces the MS interaction comparing
to a uniformly magnetized film. For a cylindrically sym-
metric “bubble” domain with the radius r the energy gain
is given by [57]

W round
MD = −πΩt2I(d), (16)

where d = 2r/t and

I(d) =
2

3π
d

(

d2 + (1− d2)
E(v2)

v
− K(v2)

v

)

. (17)

The functions E and K are the complete elliptical inte-
grals and v2 = d2/(1 + d2). For elliptic Sk the energy in
Eq. (16) is transformed to the one obtained in Ref. [57]

W tot
MD =

1

2π

∫ 2π

0

W round
MD (d(ϕ)). (18)

The total Sk energy is

WSk(a, b, α) = W tot
c +W tot

DW +W tot
MD. (19)

Minimizing the energy over parameters a, b and α one
can find the Sk size and orientation.
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C. Critical iDMI for cylindrical skyrmion

For circularly symmetric Sk (a = b) one can analyti-
cally estimate the upper bound for iDMI at which a single
Sk experiences a runout instability. The DW energy is
given by W tot

DW = 2πa(4
√
AKeff−πD+kΩ/2) (we assume

that Dx > kΩ/π). The energy of the DW curvature is
given by W tot

c = 4πA∆/a. While the long-range MD
contribution can not be presented with a simple func-
tion, the derivative of the MD energy with respect to the
Sk radius a can be calculated using an approximate ex-
pression ∂W tot

MD/∂a ≈ −8πΩt(a/t)Nα/3 valid for a ≫ t,
Ref. [58]. In this reference, for the parameter region they
consider N = 0 and α = 1. In our parameters region the
better approximation is given by N = 2/15 and α = 0.92.
Finally, we obtain an equation for equilibrium Sk radius

aSk =

√

2A∆

4
√
AKeff − πD + kΩ/2− 4Ωκ/3

, (20)

where

κ = α

(

3A∆

αΩN

)N/(2+N)

. (21)

The Sk radius diverges when the iDMI coefficients tend
to the critical value

DSk
cr = 4(

√

AKeff + kΩ/8− Ωκ/3)/π, (22)

Divergence of Sk radius means that the Sk is unstable and
transforms into a GIS. One can see that the short-range
part of MD energy of the Sk domain wall increases the Sk
stability range while the long-range MD interaction de-
creases it. The contribution of the long-range MD inter-
action is larger than that of the short-range one. Eventu-
ally, the MD interaction reduces the upper bound of the
Sk stability, since the MD interaction favours a multi-
domain state in a film with perpendicular anisotropy.

D. Critical iDMI coefficients for anisotropic film

For the anisotropic iDMI the simulations show that the
Sk shape is circularly symmetric and the ratio a/b ≈ 1.
Therefore, we find the criterion for Sk stability with
circular shape in a film with anisotropic iDMI. Equa-
tions (13) and (12) are simpler for this case. The en-
ergy of the DW curvature transforms to W tot

c = 4πaA∆.
The long-range MD interaction is defined by Eq. (16).
Eventually, we arrive to the following criterion for the Sk
stability

−δWDW < 4(
√

AKeff − Ωκ/3), (23)

where the energy δWDW is the iDMI and local MD energy
averaged over the Sk domain wall

δWDW=
−1

2

∫ 2π

0

dϕ(D+cos(θ)+D
−
cos(2ϕ−θ)−kΩ

2π
cos2(θ)).

(24)

Here θ depends on ϕ and is defined by minimization of
expression in the integral.
For typical parameters of magnetic multilayers the crit-

ical value of iDMI coefficient are larger than Ω and we
can neglect the last term in Eq. (24). In this case

tan(θ) =
D

−
sin(2ϕ)

D+ +D
−
cos(2ϕ)

. (25)

For isotropic iDMI we obtain Eq. (22). We can also
calculate the critical Dx for strongly anisotropic case of
Dx 6= 0 and Dy = 0. In this case θ = ϕ and we get the
following critical iDMI

Dan
cr = 4(

√

AKeff − Ωκ/3 + kΩ/8)/2. (26)

One can see that Dx for strongly anisotropic iDMI is
approximately 1.5 time larger than the critical Dx for
isotropic case. This is in agreement with our simulations
in Fig. 4.

E. Analytical phase diagram of a single skyrmion
in films with anisotropic iDMI

For arbitrary shape Sk we minimize Eq. (19) over angle
α and sizes a and b numerically to find if skyrmion is
stable or not. The Sk is unstable if energy WSk does not
have a minimum as a function of a and b. The stability
diagram obtained by minimizing Eq. (19) is shown in
Fig. 8. It is calculated for A = 1.6 · 10−11 J/m, Ms =
1300 kA/m, K = 1.2 · 106 J/m3 and film thickness t =
1 nm. The parameters are similar to the ones used in
micromagnetic simulations.
First, we minimize over the angle α and find that α = 0

meaning that the Sk main axes are co-directed with the
main axes of the strain. At that, the short axis is oriented
along the direction with higher iDMI. So, only two pa-
rameters, a and b depend on Dx and Dy. Therefore, the
stability diagram shows the dependence of equilibrium
Sk ellipticity a/b and the Sk energy, WSk as a function of
Dx and Dy. The blue area shows the region where Sk is
unstable. The line between the blue and the multicolor
region corresponds to the upper bound for the iDMI con-
stants. The lower bound can not be obtained using the
continuum model considered above and occurs only in a
discrete model.
Note that replacement Dx,y → Dy,x leads to the trans-

formation a → b, b → a and WSk → WSk. Therefore, we
plot the ratio a/b only in the upper half of the figure and
use the lower part to show the dependence of Sk energy
on iDMI constants.
One can see that the ellipticity is small, (a/b ≈ 1), in

almost all area of the Sk stability. It only increases in a
very close vicinity to the stability line meaning that the
iDMI can be strongly anisotropic while the skyrmion is
still cylindrically symmetric. Therefore, our assumption
about the Sk shape in Sec. III C is valid. Dashed green
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FIG. 8. Ellipticity (upper part) and energy of a single Sk (in
arbitrary units, bottom part) as a function of iDMI constants
along x- and y-directions. Since the substitution Dx,y → Dy,x

does not affect the Sk energy we plot the ellipticity in upper
part and energy in the bottom part. In the blue region a
Sk is not stable. The line splitting blue region and multicolor
region is the upper bound for the iDMI strength. As discussed
in the text the bottom boundary for Dx,y cannot be defined
from the analytical model. So, the data for small Dx,y are
irrelevant for real systems. Dcr = 4

√
AKeff/π. The green

dashed line shows the upper bound for iDMI strength given
by Eq. (23).

line shows the threshold for iDMI constants obtained us-
ing Eq. (23) for cylindrical Sk. One can see that the
model of circular Sk leads to slightly larger threshold for
iDMI coefficient.

Comparing Fig. 4 and Fig. 8 one sees that the stabil-
ity boundaries obtained with analytical model and mi-
cromagnetic simulations are in a qualitative agreement.
Note that the value of anisotropy constant K is close
to the transition between in-plane and out-of-plane mag-
netization orientation. In this region the critical iDMI
is very sensitive to the system parameters. So, small
changes in K or Ms lead to a wide range of values of
parameter Dcr. This could be a reason for discrepancy
between the analytical stability diagram and the one ob-
tained using micromagnetic simulations.

As it was discussed in Sec. II C, the upper bound curve
in (Dx, Dy) coordinates resembles a straight line with
the slope -3/2 (or -1/2). We plot a (dashed red) line
with the slope -3/2 starting from the upper bound point
for isotropic case. At Dy = 0 this line gets exactly to the
upper bound of Sk stability. So, we can conclude that
analytical model leads to a qualitatively similar stability
diagram.

Note that while the shape of a Sk is almost circu-
larly symmetric the orientation of magnetization rotation
plane in a Sk domain wall is not circularly symmetric.
This is due to the anisotropic iDMI and partially due
to the magneto-static interaction. For isotropic case the
DW is the same in all directions. For large enough Dx,y,
it is of Neel type. For strong anisotropy (Dx 6= 0 and
Dy ≈ 0) the DW along the x direction is of the Neel type
and is of the Bloch type along the y direction. So, while
the shape of a Sk is not affected by the iDMI anisotropy
the internal structure is modified.
The Sk energy is also shown as a function of Dx

and Dy. The energy decays with increasing the iDMI
strength. This is because the Sk energy depends on the
DW energy which decreases with increasing the iDMI.
One can see that it decays as a function of average iDMI
strength, D.
While the analytical approach cannot describe the col-

lapse of a Sk, we can still give an explanation of the
Sk-OOP boundary shape. As we mentioned the ratio
a/b ≈ 1 meaning that Sk is practically cylindrically sym-
metric. In this case the iDMI and MD energy are re-
duced to Eq. (24). In this equation however the ori-
entation of magnetization rotation plane is defined by
the competition of the MD and iDMI energies. This
is valid for large Sk with large curvature radius (the
case of Skyrmion→GIS transition). The collapse hap-
pens in the opposite limit when the curvature radius is
very small. In this limit the exchange interaction dom-
inates. It defines the DW internal structure. Due to
the exchange interaction the angle θ becomes fixed in
the whole domain wall lowering the exchange interac-
tion. In this case Eq. (24) simplifies even more leading
to δWDW = −πD+ cos(θ)/2 + kΩcos2(θ)/2. This means
that the Sk-OOP boundary in (Dx,Dy)-plane is defined
by D+ and happens at some line Dx+Dy = const. This
is what we have in numerical simulations in Fig. 4.

F. Anti-skyrmion with anisotropic iDMI
interaction

An aSk exists in the system with iDMI of different
sign along x- and y-directions. As shown in Ref. [24] for
Dx = −Dy the aSk has a circularly symmetric shape.
One can expect that the shape is slightly distorted for
Dx 6= −Dy (similarly to the case of Sk). Therefore, to
study the case of arbitrary iDMI coefficient we consider
an elliptical aSk. The aSk energy (WaSk) has the same
contributions as the Sk one. The aSk DW energy is given
by Eq. (12). The angle θ is found using energy minimiza-
tion. Due to different sign of DMI along different direc-
tions the orientation of magnetization rotation plane θ
behaves differently comparing to a Sk. Angle θ makes
a turn counter-clockwise when ϕ makes a clockwise ro-
tation. The DW curvature energy is given by Eq. (13).
The long-range MD energy is also similar to Sk case and
is given by Eq. (16). This term describes the energy of
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FIG. 9. Ellipticity (lower part) and energy (in arbitrary units,
upper part) of a single aSk as a function of iDMI along the
x- and y-directions. Since the Dx,y → Dy,x change does not
affect aSk energy we plot the ellipticity in lower part and
the energy in the upper part. In the blue region the aSk is
unstable. The line splitting blue region and multicolor region
is the upper bound for the aSk stability. As discussed in the
text the bottom boundary for Dx,y cannot be defined from the
analytical model. So, the data for small Dx,y are not relevant
for real systems. Dcr = 4

√
AKeff/π. The green dashed line

shows the upper bound of iDMI strength given by Eq. (23).

interaction of the internal part of an aSk with the mag-
netic film surrounding the aSk. However, in contrast to
Sk there is an additional contribution to the aSk long-
range MD energy. Due to opposite rotation direction of
the angle θ, magnetic charges in the aSk DW form a
quadrupole magnetic moment. In the present consider-
ation we neglect this term. Performing the same min-
imization procedure for parameters region Dx > 0 and
Dy < 0 we find the stability of an aSk.

Figure 9 shows the stability diagram for an aSk sim-
ilar to Fig. 8 for Sk. All parameters are the same as in
the previous section for Sk. One can see that the upper
threshold is lower comparing to Sk case. This is in agree-
ment with the micromagnetic simulations (Fig. 4). To
understand this we first consider the case of Dx = −Dy.
We also assume that πDx ≫ kΩ/2 which is correct for
iDMI value close to the aSs-GIS transition. In this case
θ ≈ 2ϕ. Introducing this solution into the DW energy
of an aSk we find W aSk

DW = 4
√
AKeff − πDx − kΩ/4.

Comparing this expression to the energy of the Sk DW
(Sec. III C), one can see that the aSk DW energy is lower
than that of Sk by kΩ/4. This is because the magnetic
charges produced by the aSk varies with angle ϕ and give
lower MD energy. In Sk the charge is the same along the
whole DW. The contribution to the aSk energy due to

the DW curvature and long-range MD interaction is the
same as for Sk. Therefore, the critical iDMI value for
aSk is lower. For Dx = −Dy it is given by

DaSk
cr = 4(

√

AKeff + kΩ/16− Ωκ/3)/π. (27)

One can see that the ellipticity of aSk is very small.
So, we can use the circular symmetry to estimate the
upper boundary for iDMI coefficients and Eqs. (23) and
(24) can be used to calculate the critical iDMI for aSk.
The green dashed line in Fig. 9 shows the critical iDMI
obtained using Eqs. (23) and (24) for aSk.

G. Bimerons in films with anisotropic iDMI

While analytical consideration of Bi is more difficult
than for Sk and aSk, the main features of the Bi stability
diagram (obtained in micromagnetic simulations) can be
understood using simplified arguments.
The first peculiarity of the stability diagram (Fig. 5) is

that Bi can exist for both casesDxDy > 0 andDxDy < 0.
This is in contrast to a Sk existing only for DxDy > 0
region (or aSk existing only for DxDy < 0 region). This
can be understood as follows.
Figure 10(a) shows a Bi sketch. To bridge bimerons

shown in Fig. 6 and in the presented sketch, we mention
that the “center” and “saddle” points in Fig. 6 corre-
sponds to the segments with magnetization looking in
positive and negative z-directions in Fig. 10. The Bi can
be represented as two crossed 360-degree DWs. The first
DW (along -45 degrees direction in Fig. 10(a)) has out-of-
plane magnetization component and contributes to iDMI
energy. Lets call it OOP DW. The second DW (directed
by 45 degrees with respect to the x-axis in Fig. 10(a))
is in-plane. Lets call it IP DW. It has zero iDMI en-
ergy. This is due to the fact that the iDMI in thin films
includes spatial derivatives of mz (Eq. (1)), and magneti-
zation rotation in the film plane gives zero average iDMI.
Thus, only OOP DW defines the Bi stability. The Bi can
orient in a way that the OOP DW has negative iDMI en-
ergy. At Dx = Dy the Neel DW is favourable [56] leading
to formation of “hedgehog” state in one of the Bi nodes
(Fig. 10(a)). For Dx = −Dy the iDMI favours the Bloch
DW oriented by 45 degree to the x-axis [56]. Therefore,
the Bi has a vortex node and is oriented by 45 degree. At
that the iDMI contribution is negative and of the same
order as for the case Dx = Dy. So, in both quadrants
the iDMI can stabilized the Bi.
For Sk both DWs in orthogonal directions have out-

of-plane magnetization component giving non-zero iDMI
energy. In the case of DxDy > 0 both DW have nega-
tive iDMI leading to Sk stabilization. But for films with
DxDy < 0, the DWs in perpendicular directions have
iDMI energy of opposite sing “cancelling” each other.
Therefore, the iDMI does not stabilize a Sk in DxDy < 0
region. Similarly, aSk cannot be stabilized by iDMI in
DxDy > 0 region.
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(a) (b)

FIG. 10. Sketch of a Bi. (a) Dx = Dy. (b) Dx = −Dy .

The second peculiarity of the Bi stability diagram is
that the stability region in DxDy > 0 quarter is different
comparing to DxDy < 0 region. In particular, the upper
bound for iDMI coefficients is lower in the DxDy < 0
quadrant. The Bi in the fourth quadrant (DxDy < 0)
consists of the Bloch DWs. These DWs minimize the
iDMI energy as well as the MD energy. At that in the
DxDy > 0 region the DWs are of the Neel type minimiz-
ing only the iDMI energy but not the MD one. So, the
energy of DWs of a Bi in DxDy < 0 quadrant is lower
leading to earlier occurrence of instability as we increase
the iDMI average strength.

IV. DISCUSSION

A. Control of topologically protected textures with
strain

According to recent experiment [47] the iDMI
anisotropy can be induced with anisotropic mechanical
strain in the FM film. The strain can be created with
an electric field in hybrid structures FM/ferroelectric
(FE) as shown in Fig. 1. A voltage (applied to
the FE) induces a deformation of the FE transferred
to the FM film through the interface. The induced
strain in the FM film in the hybrid structure can be
as high as 0.3% [59]. This is a high enough value
for essential variation of the iDMI [47]. Using FE
[Pb(Mg1/3Nb2/3)O3]0.66[PbTiO3]0.34 (PMN-PT) with a
certain cut ([011]) one can induce the anisotropic strain
in the FM film which induces the anisotropic iDMI. Thus,
one can control the iDMI (and therefore topologically
non-trivial magnetic textures) with an electric field.

B. Phenomenological description of the strain
dependent iDMI

In our model we assume that iDMI has a particular
symmetry, C2v. In this section we show using symmetry

arguments that this particular type of iDMI appears in
the strained FM film.
We use an assumption about the system that the spa-

tial inversion is broken at the FM/HM interface (which
is the symmetry reason for iDMI existence). The mag-
nitude of magnetization m(r) in the FM film has a fixed
value and we consider m(r) as a unit vector. The FM
film is thin and m(r) is uniform along the z-direction
(perpendicular to the film plane).
In the most general form the iDMI is described using

Lifshitz invariants

Lijk = mi
∂mj

∂xk
−mj

∂mi

∂xk
. (28)

For uniform magnetization along the z-axis the Lifshitz
invariant Lijz is absent. While there is no spatial in-
version in the system other symmetries may exist. For
zero strain we have reflection planes (xz) and (yz). In this
case only two invariants are non-zero, Lxzx and Lyzy. For
isotropic film the coefficients in front of these invariants
are the same and we get

W
(0)
DMI = D0(Lxzz + Lyzy) =

= D0

(

mx
∂mz

∂x
−mz

∂mx

∂x
+my

∂mz

∂y
−mz

∂my

∂y

)

,

(29)

where D0 is the iDMI strength.
The strain applied to the film adds corrections to

Eq. (29), W
(1)
DMI. The strain is described by the second or-

der tensor u. We convolute it with the Lifshitz invariants
and get

W
(1)
DMI = αijklmuijLklm. (30)

Here αijklm is the 5-th order tensor describing the cou-
pling between strain and iDMI. We consider the isotropic
film with reflection planes perpendicular to the film
plane. In this case many components of the tensor αijklm

are zero. Using the film symmetry we obtain

W
(1)
DMI = κ1uzz(Lxzx + Lyzy)+

+ κ2(uxxLxzx + uyyLyzy) + κ3(uxxLyzy + uyyLxzx)+

+ κ4uxy(Lxzy + Lyzx) + κ5(uxzLxyy − uyzLxyx).

(31)

It is hard to induce uzx or uzy strain components in thin
films. The coordinate system can be always chosen in a
way that uxy = 0. Therefore, below we consider the case
with only uxx and uyy components being finite. In this
case the iDMI interaction is anisotropic and we find

WDMI = W
(0)
DMI +W

(1)
DMI = DxLxzz +DyLyzy =

= Dx

(

mx
∂mz

∂x
−mz

∂mx

∂x

)

+Dy

(

my
∂mz

∂y
−mz

∂my

∂y

)

,

(32)

where

Dx = D0 + κ1uzz + κ2uxx + κ3uyy,

Dy = D0 + κ1uzz + κ2uyy + κ3uxx.
(33)
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V. CONCLUSION

We considered topologically non-trivial magnetic tex-
tures such as skyrmions, antiskyrmions and bimerons in
thin magnetic films with anisotropic iDMI. Using mi-
cromagnetic simulations and analytical consideration we
showed that iDMI anisotropy strongly affects stability,
shape and internal structure of these textures. We obtain
stability diagram of a single Sk and aSk in coordinates
(Dx,Dy). A Sk can be stable when DxDy > 0, and aSk
when DxDy < 0. The iDMI anisotropy reduces the range
of iDMI strength in which these textures can exist. The
iDMI anisotropy also makes Sk and aSk elliptic, however
the ellipticity (ratio of main ellipse dimensions) is not big.
Elliptic Sk and aSk are oriented along the main axes of
the iDMI anisotropy. Due to the iDMI anisotropy the
DW of a Sk and an aSk is reconfigured.

We also defined the stability diagram for a single Bi
and aBi. Both these magnetic textures have the same
stability conditions. In contrast to Sk and aSk, the iDMI
anisotropy does not reduce the range of iDMI strength

where Bi can exist. Therefore, a Bi exists in both re-
gions DxDy > 0 and DxDy < 0. A Bi orientation and
internal structure is also strongly affected by the iDMI
anisotropy. In contrast to Sk and aSk, the Bi (aBi) ori-
entation changes as we change the iDMI anisotropy. De-
pending on iDMI anisotropy the Bi can consist of vortex
and antivortex or of “hedgehog” state and antivortex.
The iDMI anisotropy can be induced and tuned us-

ing strain. We developed a phenomenological theory of
iDMI-strain coupling. In thin films the strain mostly
induces the iDMI anisotropy. However, in specific condi-
tions a new contribution to iDMI energy can be induced
by strain. We consider these effects in a future.
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