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Random measurements have been shown to induce a phase transition in an extended quantum
system evolving under chaotic unitary dynamics, when the strength of measurements exceeds a
threshold value. Below this threshold, a steady-state with a sub-thermal volume law entanglement
emerges, which is resistant to the disentangling action of measurements, suggesting a connection
to quantum error-correcting codes. We quantify these notions by identifying a power-law decay of
the mutual information I({x} : Ā) ∝ x−3/2 in the volume-law-entangled phase, between a qudit
located a distance x from the boundary of a region A, and the complement Ā, which implies that
a measurement of this qudit will retrieve very little information about Ā. We also find a universal
logarithmic contribution to the volume law entanglement entropy S(2)(A) = κLA + 3

2
logLA which

is intimately related to the first observation. We obtain these results by relating the entanglement
dynamics to the imaginary time evolution of an Ising model, to which we apply field-theoretic
and matrix-product-state techniques. Finally, exploiting the error-correction viewpoint, we assume
that the volume-law state is an encoding of a Page state in a quantum error-correcting code to
obtain a bound on the critical measurement strength pc as a function of the qudit dimension d:
pc log[(d2− 1)(p−1

c − 1)] ≤ log[(1− pc)d]. The bound is saturated at pc(d→∞) = 1/2 and provides
a reasonable estimate for the qubit transition: pc(d = 2) ≤ 0.1893.

Introduction— The study of random unitary circuits
has significantly advanced our understanding of the uni-
versal behavior of entanglement and operator dynamics
in quantum many-body systems[1–12]. Locally accessible
quantum information becomes scrambled under unitary
evolution[13, 14], which typically leads to thermalization,
accompanied by volume-law scaling of the entanglement
entropy[15] in the steady-state. This is consistent with
the idea that entropy should be an extensive property for
thermal systems[16, 17]. It has been recently found that
performing local measurements along with random, local
unitary dynamics can slow down and stop thermalization.
Conditioned on the measurement outcome, the qubit that
has been measured will be projected to a product state,
and disentangled from the rest of the system. When the
measurement rate is high enough, most qubits in the sys-
tem will be disentangled, and the final state will exhibit
area-law entanglement scaling[18–20], a manifestation of
the quantum Zeno effect[21]. Driven by the measurement
rate, the final state of this quantum channel (i.e. the
quantum circuit with measurements) exhibits an entan-
glement phase transition driven by the measurement rate
[21–23], which has attracted much recent interest[24–32].

Progress has been made in understanding this transi-
tion by mapping the problem to the statistical mechanics
model of permutation group elements[23–25, 33], where
the entanglement transition between the volume-law and
area-law phases corresponds to the ordering transition
in this classical lattice “magnet”. The universality of
the entanglement transition remains to be fully under-
stood, due to the difficulty in taking the required replica
limit[24, 25] of the statistical mechanics model.

In this work, we turn our attention away from the
transition point to focus on features of the volume-law

phase. Specifically, what are the key, quantitative prop-
erties of the volume-law phase that ensure its stability
against local measurements? To answer this question, we
propose a “mean-field” description for the measurement-
induced entanglement transition based on the recently
developed entanglement feature formulation for locally
scrambled quantum dynamics[34], which is in line with
the statistical mechanics description of quantum many-
body entanglement[35–37]. This mean-field description
cannot provide a precise description of the critical fluctu-
ations at the transition point; nevertheless, we argue that
it captures the asymptotic entanglement properties away
from the transition. The entanglement feature formalism
provides a powerful tool for studying unitary dynamics
with measurements. Within this formulation, the mean-
field description of the evolution of the second Rényi en-
tropy is Markovian, as it only relies on the second Rényi
entropies for all sub-systems in the previous timestep of
the evolution. These entanglement dynamics can be fur-
ther related to the Floquet dynamics of an Ising model,
whose steady-state properties can be determined by well-
developed theoretical and numerical methods.

Using this solution, we show that the reduction of the
entanglement entropy for a contiguous subsystem after
performing a measurement decays as a power-law in the
distance of the measurement position from the region’s
boundary with an exponent 3/2. This exponent being
larger than 1 is a direct explanation of the stability of the
volume-law phase. It follows from our formalism that the
mutual information between a qudit inside the subsystem
and the exterior decays with the distance from the sub-
system’s boundary in the same power-law fashion. This
exponent does not change as long as the system is deep
in the volume-law phase. We also performed a large-scale
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numerics with a certain random Clifford circuit and ob-
serve a clear power-law decay of the mutual information
which appears quantitatively close to the “mean-field”
results . A further analytical calculation shows that this
power-law decay is intimately related to a logarithmic
sub-leading scaling for the entanglement entropy, which
was first identified in numerical studies of Clifford dy-
namics with measurements by Ref. [26], and was conjec-
tured to be a defining feature of the volume-law phase.
Here, we calculate the coefficient of this subleading fac-
tor analytically and show it to be a universal number
δ = 3/2 deep in the volume law phase. In Ref. [26],
this coefficient was found to be δ ∼ 1.06, albeit near the
critical point. Verifying this second observation in large-
scale numerics with Clifford circuits requires fitting and
is tricky to implement, we do not provide independent
check as we have for the power-law decay. These fea-
tures suggest the quantum error correction (QEC) prop-
erties of these volume-law states, which accounts for their
stability against local measurements. By quantitatively
studying the error-correcting properties of the final state,
we also derive a bound (11) on the measurement rate as
a function of the local Hilbert space dimension, above
which the system must be in an area-law entangled phase.
In previous work [27, 28], other perspectives that relate
the entanglement phase transition to QEC have been dis-
cussed.

Random Quantum Channel Model— We consider the
quantum dynamics of a 1D array of N qudits, each with
Hilbert space dimension d. The quantum dynamics is
modeled by a random unitary circuit with random mea-
surements implemented uniformly, as shown in Fig. 1.
The circuit consists of two-qudit unitary gates Uij,t (act-
ing on qudits i, j at layer t) arranged in a brick-wall
pattern. All gates are drawn from the Haar random
unitary ensemble independently throughout space and
time. After each layer of the unitary gates, measurements
are carried out on every qudit. Each single-qudit mea-
surement can be described by the measurement operator
Mi,t (acting on qudit i at layer t)[38, 39], which is in-

dependently drawn from the ensemble {I} ∪ {
√
dPV |V ∈

U(d)} with the probability measure P (I) = 1 − p and
P (
√
dPV ) = p dV (with dV being the Haar measure)[25],

where PV = V |0〉 〈0|V † represents a random projector in
the qudit Hilbert space. This ensemble can model either
a projective measurement[21, 23] happening with proba-
bility p or a weak measurement[24] with strength p. Both
the unitary operator Uij,t and the measurement opera-
tor Mi,t can be generally denoted as the Kraus operator
Kx,t at different spacetime positions labeled by (x, t) in
general. They together form the quantum channel, de-
scribed by the overall Kraus operator K =

∏
t

∏
xKx,t,

such that the density matrix ρ of the quantum system
evolves by the completely positive trace-preserving map
ρ → KρK†/Tr(KρK†) under the quantum dynamics.
Strictly speaking, our protocol is different from doing

physical measurement. The latter also involves post-
selection based on the probability of possible outcomes.
In the volume-law phase, local scrambling and the low-
density of measurements implies that the probability of
each outcome is identical and the two protocols are ex-
pected to yield similar results. (See Appendix A for de-
tailed verification)[40]
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FIG. 1. The random quantum channel model. Green blocks
are two-qudit Haar random unitary gates. Blue dots are
single-qudit random measurements (which can be either weak
measurements or projective measurements with probability).

Entanglement Feature Formalism— We are interested
in the purity of the reduced density matrix ρA = TrĀ ρ
over all possible subsystem A,

Wρ(A) = Tr ρ2
A = e−S

(2)
ρ (A). (1)

It is directly related to the 2nd Rényi entanglement en-

tropy S
(2)
ρ (A) that quantifies the amount of quantum en-

tanglement between A and Ā in the state ρ (assuming ρ is
pure). To organize this purity data in a more concise way,
we introduce a set of Ising variables [σ] ≡ [σ1, σ2, · · · , σN ]
to label the subsystem A, s.t. σi = −1 (↓) if i ∈ A and
σi = +1 (↑) if i ∈ Ā. ThenWρ(A) can be written as[7, 34]

Wρ[σ] = Tr ρ⊗2Xσ, (2)

where Xσ =
∏
i Xσi is a string of identity Xσi=↑ ≡

and swap Xσi=↓ ≡ operators acting in the duplicated
Hilbert space as specified by the Ising variable σi. The
collection of Wρ[σ] over all Ising configurations [σ] is
called the entanglement feature[7, 41] of the density ma-
trix ρ, which characterizes all the bipartite entanglement
properties of ρ. They can be naturally assembled into a
vector

|Wρ〉 =
∑

[σ]

Wρ[σ] |σ〉 , (3)

called the entanglement feature state[34], with |σ〉 being
a set of orthonormal Ising basis labelled by [σ]. The nor-
malization Tr ρ = 1 implies 〈⇑ |Wρ〉 = 1 for the entan-
glement feature state, where |⇑〉 denotes the all-up state
(∀i : σi = +1). Nevertheless, |Wρ〉 is still well-defined for
unnormalized density matrix ρ following Eq. (2), which
will also be useful in our discussion.

As the state ρ evolves under the random quantum
channel in Fig. 1, the corresponding entanglement feature
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state |Wρ〉 also evolves, which defines the entanglement
dynamics. Ref. 34 pointed out that if the quantum dy-
namics is locally scrambled, the corresponding entangle-
ment dynamics is Markovian and admits a transfer ma-
trix description. More precisely, suppose the Kraus oper-
ator K is randomly drawn from a local-basis independent
ensemble, i.e. the probability P (K) = P (V KV †) is in-
variant under arbitrary local (on-site) basis transforma-
tion V =

∏
i Vi for Vi ∈ U(d), then under the completely

positive map ρ0 → ρ = Kρ0K
†, the corresponding (en-

semble averaged) entanglement feature state evolves as

|Wρ〉 ≡ E
K
|WKρ0K†〉 = ŴKŴ

−1
I |Wρ0〉 = T̂K |Wρ0〉 ,

(4)
where the entanglement feature operator ŴK associated
with a Kraus operator K is defined as[7, 34]

ŴK =
∑

[σ,τ ]

|σ〉WK [σ, τ ] 〈τ | ,

WK [σ, τ ] = TrK†⊗2XσK⊗2Xτ ,
(5)

which captures the entanglement feature of the quantum
channel K among its input and output degrees of free-
doms. Here, ŴI is the entanglement feature operator for
the identity channel, whose inverse is denoted by Ŵ−1

I .
The entanglement dynamics is then determined by the
transfer matrix T̂K = ŴKŴ

−1
I , which solely depends on

the entanglement property of the quantum channel K.
Mean-Field Description— The random quantum chan-

nel model falls in the class of locally scrambled quantum
dynamics, for which Eq. (4) applies. However, Eq. (4)
only provides the average entanglement feature for the
unnormalized state ρ = Kρ0K

†. For the normalized fi-
nal state ρ̄ = ρ/Tr ρ, its average entanglement feature

Wρ̄[σ] = E
K

Tr ρ̄⊗2Xσ = E
K

Tr ρ⊗2Xσ
(Tr ρ)2

, (6)

is still difficult to evaluate. Rigorous treatments have
been developed using the replica trick[23–25, 33, 42].
Nevertheless, we will approximate the average of ratio
in Eq. (6) by the ratio of averages to achieve a simplified
“mean-field” description

Wρ̄[σ] ' EK Tr ρ⊗2Xσ
EK Tr ρ⊗2

=
Wρ[σ]

Wρ[⇑]
=
〈σ|Wρ〉
〈⇑ |Wρ〉

. (7)

In this mean-field treatment, we replace the denominator
(TrKρ0K

†)2 by its expectation value, which ignores both
the correlation between the fluctuation of the numerator
and denominator and the fluctuation of the denomina-
tor itself. The intuition comes from that the random
unitary gates are fast local scramblers, i.e. on-site ther-
malization can be quickly achieved after every layer of
unitaries. Consequently, each single qudit should look
maximally mixed before the measurement and the trace
TrMiρiM

†
i ' 1 is almost independent of the choice of the

measurement operator Mi and the quantum trajectory.
(See Appendix A for detailed check) Although our model
is set up with Haar random unitaries, the approxima-
tion of Eq. (6) by Eq. (7) only requires local scrambling
and should also hold for random Clifford circuits. Since
the Clifford group is a unitary 2-design [43], this further
implies that the dynamics of the purity for the Clifford
circuit and Haar random circuit are identical within our
formalism.

Now the task is to evaluate the transfer matrix T̂K for
the quantum channel. Because Eq. (4) is applicable to ev-
ery Kraus operator Kx,t in the quantum channel, T̂K can

be constructed from each single T̂Kx,t recursively. Follow-
ing Eq. (5), we find (see Appendix C for derivation)

T̂Uij =
(

1 +
d

d2 + 1
(Xi +Xj)

)1 + ZiZj
2

,

T̂Mi
= 1− p

d+ 1
+

pd

d+ 1
Xi,

(8)

where Xi and Zi denote the Pauli-x and Pauli-z oper-
ators acting on site i. Each step of the transfer matrix
(see Fig. 1) is then given by

T̂step =
∏

i

T̂Mi

∏

〈ij〉∈even

T̂Uij
∏

i

T̂Mi

∏

〈ij〉∈odd

T̂Uij , (9)

such that the full transfer matrix of t steps (layers) of
the quantum channel will be T̂K = T̂ tstep. According to
Eq. (4), the final entanglement feature state reads |Wρ〉 =

T̂ tstep |Wρ0〉, from which the 2nd Rényi entropy in the final
state ρ̄ can be retrieved based on Eq. (7),

S
(2)
ρ̄ [σ] = − logWρ̄[σ] ' − log

〈σ|Wρ〉
〈⇑ |Wρ〉

, (10)

where the Ising configuration [σ] labels the entanglement
region. The denominator 〈⇑ |Wρ〉 provides the appropri-
ate normalization to ensure that the entanglement en-

tropy vanishes for empty region, i.e. S
(2)
ρ̄ [⇑] = 0. In the

long-time limit (t→∞), the entanglement feature state
|Wρ〉 converges to the leading eigenvector of the one-step

transfer matrix T̂step, denoted as |Wρ∞〉.
Driven by the measurement strength p, the leading

eigenstate |Wρ∞〉 can undergo a quantum phase transi-
tion that corresponds to the entanglement transition[33].
To see this, we need to calculate |Wρ∞〉 for different
p, which is still a challenging many-body problem. An
important observation is that the entanglement feature
state |Wρ〉 itself is a low-entanglement state[44], even if
its underlying physical quantum state ρ can be highly
entangled. Representing |Wρ〉 as a matrix product state
(MPS)[45] enables us to tackle the problem using well-
developed MPS-based numerical approaches[46–49] (see
Appendix D for algorithm details). We assume that the
initial physical state ρ0 is a random product state, whose
entanglement feature state is |Wρ0

〉 =
∑

[σ] |σ〉, such that
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FIG. 2. Growth of entanglement entropy over a single re-
gion of size |A| on a chain of 50 qubits in (a) the volume-law
phase and (b) the area-law phase. The rainbow colors from
purple to red correspond to the time step from 0 to 20. (c)
The volume-law coefficient f v.s. the measurement strength p
with different qudit dimensions d, where f is extracted in the
thermodynamic limit from the MPS representation of |Wρ∞〉
with bond dimension 16. Dash lines are upper bonds of f by
the quantum Hamming bound d(1−f)N ≥

(
N
pN

)
(d2 − 1) pN .

the entanglement entropy S
(2)
ρ0 [σ] = 0 vanishes for all

entanglement regions. We numerically evolve |Wρ0
〉 by

T̂step and present the growth and saturation of the en-
tanglement entropy in Fig. 2(a,b). We indeed observe
the volume-law (area-law) behavior under small (large)
measurement strength. Without the entanglement fea-
ture approach, it would be hard to directly simulate
the volume-law state in Fig. 2(a) with around 14 bits
of half-system entanglement entropy. As the entangle-
ment feature state converges to |Wρ∞〉 in the long-time
limit, we can extract the volume-law coefficient f , de-

fined via S
(2)
ρ∞(A) = (f log d)|A|. The result is shown in

Fig. 2(c), which clearly exhibits the measurement-driven
entanglement transition for different qudit dimensions d,
where different curves collapse to the same scaling form
f log d ∝ (pc−p)ν with ν = 1 (see Appendix B), implying
the Ising universality class within the mean-field descrip-
tion. Nevertheless, the mean-field theory can not capture
the universality correctly. Recent numerics indicate that
the correct exponent ν should be 1.1 ∼ 1.3[26–29].

Error Correcting Volume-Law States— The result in
Fig. 2(c) indicates that the volume-law phase is stable
against finite strength of measurements. The volume-
law scaling implies that the entropy associated with each
qudit is f log d with f ≤ 1. If a single-qudit measure-
ment of strength p reduced the qudit entropy by pf log d,
then after each layer of measurements, the entropy of a
large region A would be reduced in a volume-law manner
∆S(2)(A) = −(pf log d)|A|, which is irremediable by the

following layer of unitary gates, which only increases the
entropy by an area-law amount ∆S(2)(A) ∝ |∂A| ∼ O(1).
This would imply that the volume-law phase is unsta-
ble against measurements, a paradox posted in Ref. 22.
It was pointed out in Ref. 27 that the solution lies in
the QEC [50, 51] property in the sub-thermal volume-
law state. An example of such volume-law state on N
qudits can be obtained from encoding a Page state of
fN qudits by a layer of local QEC code as in Fig. 3(a),
which dilutes the Page state to a sub-thermal volume-law
state with volume-law coefficient f ≤ 1. In each round
of local measurements, pN qudits will be measured typ-
ically, which effectively introduces errors up to weight
pN . To prevent the measurement from disentangling the
Page state and reducing the entanglement entropy exten-
sively, these errors must be correctable by the subsequent
unitary layer (see Appendix E). Assuming the code is
non-degenerate[28], this requires the syndrome space di-
mension d(1−f)N to be at least as large as the number of
error operators of weight pN ,[52] which yields the quan-
tum Hamming bound[53] d(1−f)N ≥

(
N
pN

)
(d2 − 1) pN ,

see Fig. 2(c). The entanglement transition happens as
f → 0. In the N → ∞ limit, this gives a bound on the
critical measurement rate pc

pc log[(d2 − 1)(p−1
c − 1)] ≤ log[(1− pc)d], (11)

which is plotted in Fig. 3(b). For qubits (d = 2), this
yields pc ≤ 0.1893, the limit of infinite qudit dimension
(d → ∞) yields pc ≤ 1/2, as summarized in Fig. 3(c).
The latter bound is saturated at the known transition
point, corresponding to a bond percolation transition on
the square lattice [23–25].

1 2 3 f N……

1 2 3 N…

Page state

QEC code

(a)

2 4 8 26 29 212
0.1
0.2
0.3
0.4
0.5

p c

d

Upper
Bound

(b)

(c)

Dynamics pc Bound on pc

Haar (d = 2)

Clifford (d = 2)

0.168(5) [29]

0.16 [26]
0.1893

d =∞ 1/2 [23] 1/2

FIG. 3. (a) Assuming the final steady state can be modeled
by a Page state on fN qudits (f ≤ 1) encoded into a quantum
error-correcting code on N qudits, we find (b) a upper bound
on the critical measurement strength pc for different qudit
dimensions d as in Eq. (11), where pc → 1/2 as d → ∞. (c)
Comparison with pc reported in literatures.

To quantify the QEC capacity in the sub-thermal
volume-law state ρ generated by the random quantum
channel, we propose to study the mutual information

Iρ({x} : Ā) = S
(2)
ρ̄ ({x}) + S

(2)
ρ̄ (Ā) − S(2)

ρ̄ ({x} ∪ Ā) be-
tween a qudit at x (inside a region A) and the environ-
ment Ā (assuming Ā is larger than half of the system),
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see Fig. 4(a). In terms of the entanglement feature state
|Wρ〉, we have (see Appendix F for derivation)

eIρ({x}:Ā) =
〈A|Xx|Wρ〉 〈⇑ |Wρ〉
〈A|Wρ〉 〈⇑ |Xx|Wρ〉

, (12)

where |A〉 =
∏
i∈AXi |⇑〉 is the Ising basis state that

specifies the region A. If Iρ({x} : Ā) vanishes, measuring
qudit x in A tells no information about Ā, therefore the
entanglement between A and Ā is unaffected by the mea-
surement, suggesting that the information about Ā has
been scrambled in region A to prevent local readout. It

can be shown that the change of S
(2)
ρ (A) after a measure-

ment of strength p at a qudit at x distance away from
the boundary of A is directly related to Iρ({x} : Ā) in
the weak measurement limit p→ 0 (see Appendix F),

∆S(2)
x (A) ≡ − log

〈A|T̂Mx
|Wρ〉

〈⇑ |T̂Mx |Wρ〉
+ log

〈A|Wρ〉
〈⇑ |Wρ〉

= − pd

d+ 1
Wρ̄({x})

(
eIρ({x}:Ā) − 1

)
+O(p2) ,

(13)

where Wρ̄({x}) is the single-qudit purity (at position x).
We found that the entropy drop depends on the measure-
ment position x: a measurement deeper in the region A
will be less effective in reducing the entropy of A. Our
MPS-based numerical calculation in Fig. 4(b) confirms

that ∆S
(2)
x (A) ∼ −x−3/2(|A| − x)−3/2 indeed follows the

similar behavior as Iρ({x} : Ā).[54] Both fall off with x
in a power-law manner with the exponent 3/2. Given
that the exponent 3/2 is greater than 1, the total en-

tropy drop ∆S(2)(A) =
∑
x∈A ∆S

(2)
x (A) converges to a

constant that does not scale with |A|, which can be bal-
anced by the area-law entropy growth of the following
unitary layer. Therefore the volume-law phase is stable.
In Appendix G, we study the same problem in a certain
random Clifford circuits and also observe the 3/2 expo-
nent established above, which indicates the unversality
of this result.

To develop analytical understanding of the exponent
3/2, we approximate the transfer matrices by T̂Uij '
eJZiZj and T̂Mi

' ehXi . As T̂Uij (T̂Mi
) can drive |Wρ〉 to-

wards the ferromagnetic (paramagnetic) state, the model
still captures the volume-law (area-law) phase given J >
h (J < h). This simplification allows us to solve the lead-
ing eigenstate |Wρ∞〉 of T̂step analytically by mapping
to the Majorana fermion basis χ2i−1 =

∏
j<iXjZi and

χ2i =
∏
j<iXjYi by Jordan-Wigner transformation. In

the fermion language, the entanglement feature Wρ∞(A)
of a single region A corresponds to a two-point strange
correlator[55–57] between free fermion states (see Ap-
pendix H)

Wρ∞(A) = 〈A|Wρ∞〉 = 〈⇑ |iχ0χ2|A|+1|Wρ∞〉 , (14)

which was originally introduced to diagnose symmetry
protected topological (SPT) orders. If |Wρ∞〉 is in the
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FIG. 4. (a) Entanglement region configuration for the mutual
information Iρ({x} : Ā). (b) Measurement-induced entropy

drop ∆S
(2)
x (A) and the qubit-environment mutual informa-

tion Iρ∞({x} : Ā) for the final state of the random quantum
channel (at d = 2, p = 0.1), based on the MPS of |Wρ∞〉 with
bond dimension 64.

topological (trivial) fermionic SPT phase (with respect
to the reference state |⇑〉)[58], the strange correlator
Wρ∞(A) will exhibit a long-range correlation (an expo-
nential decay) with respect to |A|, matching the area-law
(volume-law) entropy scaling. We calculated the strange
correlator deep in the trivial phase with h� J (see Ap-
pendix H), and found

Wρ∞(A) ∝ e−κ|A|

|A|3/2 , (15)

where κ = log(J/h). (The same power-law is derived
in Ref. 59 from a different starting point based on the
capillary-wave theory of entanglement domain walls.)
This unveils an important entanglement feature of the
sub-thermal volume-law steady state ρ∞, namely the
subleading logarithmic correction[26] of the single-region

entanglement entropy S
(2)
ρ∞(A) = κ|A| + 3

2 log |A| with
an universal coefficient 3/2. The free fermion represen-
tation of |Wρ∞〉 enables us to evaluate multi-region en-
tanglement features as multi-point strange correlators,
which can then be decomposed to two-point strange cor-
relators using Wick’s theorem. For example, the factor
〈A|Xx|Wρ∞〉 = −〈⇑ |χ0χ2x−1χ2xχ2|A|+1|Wρ∞〉 on the
numerator of Eq. (12) is a four-point correlator. Apply-
ing the asymptotic solution in Eq. (15), we can confirm

that the measurement-induced entropy drop ∆S
(2)
x (A)

indeed decays with the measurement position as x−3/2

with the universal exponent 3/2, which is crucial to the
stability of the volume-law phase. Finally, we show in
Appendix E 2 that the sub-thermal volume-law state gen-
erated by Clifford unitary gates and random measure-
ments indeed exhibits a power-law dependence of the en-
tanglement drop with the measurement position, due to
the power-law dependence of the stabilizer length dis-
tribution in the steady-state [26], though we are unable
to analytically derive the precise exponent appearing in
the power-law decay (for the case of Clifford rather than
Haar random unitaries). Our discussion reveals the QEC
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capacity of the sub-thermal volume-law state as a multi-
region entanglement feature, which goes beyond the di-
chotomy of area-law v.s. volume-law scaling of the single-
region entanglement entropy, and demonstrates the ad-
vantage of entanglement features in resolving finer struc-
tures of quantum many-body entanglement.

Order Parameter and Bulk Correlations— A natu-
ral question that arises is - how can we measure the
Z2 Ising order parameter 〈Z〉 that appears within our
mean-field description? In fact this is precisely the bulk
order parameter identified in [29, 30], defined as the
entanglement entropy of ancilla qudits, which are maxi-
mally entangled with the physical qudits during the cir-
cuit dynamics. The second Rényi entropy of a single
ancilla is a function of the bulk magnetization 〈Z〉 and
becomes proportional to it near the critical point and for
p > pc. Clearly in the strong measurement phase, the
ancilla is decoupled from the physical qudits and the or-
der parameter vanishes. Also, the second Rényi mutual
information between two (space-time) separated ancillas
is proportional to the connected bulk two point correla-
tion 〈ZiZj〉c[29, 30] near the critial point. Although the
mean-field theory is not expected to correctly capture
the critical fluctuations, nevertheless by way of compar-
ison we note that our Ising model mapping would imply,
near the critical point, 〈Z〉 ∝ (pc − p)β with β = 1/8
and 〈ZiZj〉c = |i − j|−η with η = 1/4, which, perhaps
fortuitously, is close to the reported value in [29].
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Appendix A: Numerical Validation of “Mean-Field” Approximation

In this appendix section, we will provide numerical evidence to support the “mean-field” approximation that
enables us to evaluate the average entanglement entropy in the entanglement feature framework. We will first present
simulation results of the random quantum channel model in finite-size systems, which demonstrate how measurement
and average schemes affect the entanglement entropy calculation. We will then drill down further into the sample-to-
sample fluctuation and reveal how its statistical properties ensure the validity of the “mean-field” approximation.

1. Measurement and Average Schemes

The “mean-field” approximation is central to this work, so we should carefully consider whether it is meaningfully
accurate. To understand what we are comparing, we need to clarify: (a) what should be calculated as the commonly
defined average entanglement entropy and (b) what is being calculated under the “mean-field” approximation. For
this purpose, let us go through the simulation protocol, such that the measurement and average schemes can be
described in a concrete context.

We start with a product state of N qudits (with on-site Hilbert space dimension d), say |Ψ0〉 = |000 · · · 0〉. In the
theoretical discussion, we will keep d general. But in the numerical simulation, we will always focus on the qubit case
(d = 2). We simulate the evolution of the state vector |Ψ〉 starting from |Ψ0〉. In each time step, we apply a unitary
layer followed by a measurement layer as shown in Fig. 1. Note that here the definition of the time step is half of
that in the main text. The purpose is to gain a finer resolution of time, to make better use of the data generated by
the simulation. The unitary layer consists of two-site random unitary gates acting on even (odd) bonds for the even
(odd) time step. Each gate is independently drawn from the Haar random ensemble. The state evolves as

|Ψ〉 →
∏

〈ij〉∈even/odd

Uij |Ψ〉 . (A1)

In the measurement layer, each site will independently decide if a measurement should occur (with probability p) or
not (with probability 1 − p). If the measurement happens, it is implemented as a projective measurement (strong
measurement) in the diagonal basis (Z basis). We define Pαi = |α〉i 〈α|i to be the projection operator that projects
the ith qudit to a particular basis state |α〉i labeled by α = 0, · · · , d − 1. There are two options here regarding the
measurement scheme:

• Physical implementation. In this scheme, we will follow the rule of quantum mechanics. If the measurement
happens on a site i, we will first randomly pick a measurement outcome αi according to the probability p(αi) =
〈Ψ|Pαi |Ψ〉, then the state |Ψ〉 will be projected and normalized

|Ψ〉 → Pαi |Ψ〉√
p(αi)

. (A2)

• Projective implementation (uniform random projectors). In this scheme, the measurement outcome αi will be
drawn with equal probability p(αi) = 1/d regardless of the state |Ψ〉. Then the state |Ψ〉 will be updated as

|Ψ〉 →
√
dPαi |Ψ〉 . (A3)

This is an unphysical process that does not even preserve the norm of the state. Nevertheless, it can still
be simulated on a computer (we will not normalize |Ψ〉 in the simulation). This projective approach is also
the underlying measurement scheme of the “mean-field” approximation, which effectively approximates the
measurement probability p(αi) by 1/d uniformly. It is somewhat reasonable because, after each unitary layer,
the on-site basis has been fully scrambled, so there should not be any preference for any basis state on average,
and all measurement outcomes should appear with equal probability. However, this is only an average statement,
we must analyze the fluctuation on top of it more carefully, which will be presented below.

Following the above procedure, we can simulate the evolution of state |Ψ〉 for many random realizations of the
random quantum channel model. Given an ensemble of quantum states |Ψ〉 (which might not be normalized) collected
from the simulation at a particular time, we can evaluate the average entanglement entropy. We define WΨ(A) to be
the entanglement feature of |Ψ〉 in region A,

WΨ(A) = TrA(TrĀ |Ψ〉 〈Ψ|)2 = e−SΨ(A), (A4)
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regardless of whether |Ψ〉 is normalized or not. In terms of the entanglement feature WΨ(A), we have two possible
average schemes:

• Arithmetic average of entanglement feature WΨ(A)

〈S〉(A) = − ln
EΨWΨ(A)

EΨWΨ(∅) = − ln
EΨe

−SΨ(A)

EΨe−SΨ(∅) , (A5)

where ∅ denotes the empty region and EΨ denotes the arithmetic average over states |Ψ〉 collected from simula-
tion. Note that SΨ(∅) might not be zero since |Ψ〉 might not be normalized, such that the denominator could be
non-trivial. The denominator provides the proper normalization for the arithmetic average of the entanglement
feature. This is the average scheme taken in Eq. (7) for the “mean-field” approximation.

• Geometric average of entanglement feature WΨ(A)

〈S〉(A) = −E
Ψ

ln
WΨ(A)

WΨ(∅) = E
Ψ
SΨ(A)− E

Ψ
SΨ(∅), (A6)

which is also the arithmetic average of entanglement entropy SΨ(A). This is the commonly used definition of
the average 2nd Rényi entropy. The non-trivial “zero-point entropy” EΨ SΨ(∅) is subtracted off in Eq. (A6),
such that the formula applies to the case where the underlying quantum states |Ψ〉 are not normalized.

What we should calculate is the physical measurements with geometric average (phy+geo), but what is being
calculated in the entanglement feature framework is the random projectors with arithmetic average (pro+ari). So
the “mean-field” approximation contains two replacements: (1) replacing the physical measurement by the random
projector and (2) replacing the geometric average by the arithmetic average. The goal here is to compare the resulting
average entropy under these replacements in the numerical simulation. At this point, it will be natural to include the
other two “intermediate” schemes (phy+ari) and (pro+geo) in the comparison as well, such that all together they
complete the four possibilities of both measurement and average schemes. A full comparison could help to pin down
the major source that leads to the deviation between the “mean-field” result and the actual result.

However, it is not very efficient to compare the average entanglement entropy in all possible entanglement regions.
Because for a N -site system, there will be 2N entanglement regions, such that a complete comparison would be
unpractical. It turns out[44] that all the 2N entanglement entropies form a dense continuum in Fig. 5 when S(A)
is collected by the region size |A| (the same size |A| can correspond to many possible regions A that cover the
same number of sites but with different multi-region arrangements). We propose to focus on three representative
entanglement regions: the single-site, the half-system, and the alternating-sites. They are representative regions in
the sense that they are the anchor points that control the overall shape of the continuum. If we understand how these
three cases are affected by different measurement and average schemes, we can pretty much infer similar behavior for
the remaining multi-region entanglement entropies in the continuum.

single-site

half-system

alternating-sites

0 5 10 15 20
0
1
2
3
4
5

A

S
(A
)

FIG. 5. The entanglement entropy continuum. The example is taken from a 20-site qubit system evolved by 30 steps with the
measurement rate p = 0.1. The entanglement entropies are averaged over 100 samples.

2. Numerical Simulation and Scaling Analysis

We perform the numerical simulation of the random quantum channel model (keeping track of the pure state |Ψ〉
explicitly) with either the physical (phy) or the projective (pro) measurement scheme and calculate the evolution of the
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single-site, half-system and alternating-sites entanglement entropies under either the geometric (geo) or the arithmetic
(ari) average scheme. The simulation results are presented in Fig. 6, together with the result of the entanglement
feature (EF) approach by evolving the entanglement feature state. On the overall level, different schemes look similar.
They all capture the growth and the saturation of the entanglement entropy. The oscillatory behavior of the half-
system entanglement entropy has to do with the fact that the entanglement region cuts through two immediate unitary
gates in the even time step but not the odd time step. The pro+ari case shows the most significant fluctuation. But
we can verify that the fluctuation is independent across different samples, such that all schemes have well-defined
average in the large sample-size limit (as the relative error vanishes like n−1/2 with the sample size n → ∞ by the
central limit theorem).
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FIG. 6. Comparison between entanglement feature approach with numerical simulations under different schemes, showing how
average entanglement entropies 〈S〉(A) in three representative regions grow with time t. Simulation is done on a 8-site qubit
system, evolved by 30 steps with the measurement rate p = 0.1. The entropy is averaged over 10000 samples in each batch. 5
batches are used to estimate the 2σ error margin, as indicated by the shaded band.
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FIG. 7. The relative deviation of different measurement and average schemes from the entanglement feature approach. The
simulation data is the same as Fig. 6. The shaded band indicates the 2σ error margin.

We should compare the phy+geo case (i.e. what should be calculated) with the pro+ari case (i.e. what converges to
the EF approach). To zoom in the differences, we set the entanglement feature (EF) result SEF(A) as a reference and
subtract it from all the simulation results 〈S〉(A) to obtain the relative deviation (〈S〉−SEF)/SEF, as shown in Fig. 7.
Several observations can be drawn. Firstly, the pro+ari result fluctuates around the EF baseline and is expected to
converge to the EF result in the large sample-size limit. We notice that for the half-system entanglement entropy, only
the pro+ari result does not show the oscillatory behavior in the relative deviation, implying that there is no systematic
deviation in this case, which is consistent with the fact that the EF approach is describing the large sample-size limit
of the pro+ari scheme (see Ref. 34 for the theoretic proof of this fact). Secondly, all the other schemes have positive
relative deviations, meaning that the EF approach always provides a lower bound for the average entropy (including
phy+geo). Thirdly, it seems that the major gap between phy+geo and pro+ari is generated by switching from the
geometric average to the arithmetic average. Changing the measurement scheme from the physical to projective
implementation has a negligible effect under the geometric average (the underlying reason will be investigated in more
detail later) and a minor effect under the arithmetic average. If we are allowed to redefine the average entanglement
entropy by the arithmetic average of the entanglement feature, then the entanglement feature approach will provide
a much tighter lower-bound. Finally, we can observe that the relative deviation does not grow with time and is
stabilized to a level below 15% (for p = 0.1). The level of deviation is similar to the three representative choices
of entanglement regions. Based on the intuition in Fig. 5 that these three points control the overall shape of the
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multi-region entanglement entropy continuum, we expect all the 2N entanglement entropies to exhibit a similar level
of relative deviation.

N
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FIG. 8. Finite-size scaling of the relative deviation of the simulated entanglement entropy from the EF result. The simulation
is done in qubit systems of different size N using the physical measurement scheme for 100 steps of evolution with measurement
rate p = 0.1. The relative deviation is averaged over on 1000 samples in each batch through out the evolution. 10 batches are
taken to estimate the error margin.

Then how does the deviation level scale with the system size? To answer this question, we perform a finite-size
study of the relative deviation. As shown in Fig. 8, we do not observe a significant or systematic change beyond the
error bar, as the system size enlarges from 6 to 18 by three times. The deviation level remains flat (within the error
range) for all three representative entanglement regions. The conclusion is expected to hold for other entanglement
regions as well. Combining results in Fig. 7 and Fig. 8, we conclude that the entanglement feature approach provides
a lower bound for the average entanglement entropy with a stable relative gap, which does not seem the scale with
both the evolution time and the system size. Thus we demonstrate the “tightness” of the lower bound and the validity
of the “mean-field” approximation. Such relative deviation will affect quantitative measures such as the volume law
coefficient. But we expect that the scaling behaviors are not affected, such as how the measurement-induced entropy
drop ∆Sx(A) ∼ x−3/2 scales with the measurement position x (which we studied in this work).
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FIG. 9. The dependence of the relative deviation on the measurement rate. Data taken from simulations on 8-site qubit systems
over 100 steps of evolution at different measurement rates. The relative deviation is averaged over on 1000 samples in each
batch through out the evolution. 10 batches are taken to estimate the error margin.

Finally, the relative deviation of entanglement entropy is expected to increase with the measurement rate signifi-
cantly. We show the measurement rate dependence in Fig. 9. In the p → 0 limit, when there is no measurement,
the deviation between phy+ari and pro+ari (which is the EF baseline) should vanish exactly, as the measurement
scheme no longer matters. This is confirmed in Fig. 9 (red curves) for all choices of entanglement regions. However,
phy+geo (blue curves) still has a finite deviation, since the two average schemes are still going to make a difference
as long as there are sample-to-sample fluctuations. It turns out that the deviation is very small in the p → 0 limit.
As the measurement rate p increases, the deviations for both phy+geo and phy+ari grow rapidly. Therefore the
“mean-field” approximation and the entanglement feature approach might only apply to the volume-law phase when
the measurement rate p is small. But the approximation will fail for larger p near the entanglement transition or
beyond.
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3. Fluctuation Statistics under Extensive Measurements

Here we further investigate the essential statistical properties in the sample-to-sample fluctuation of the entangle-
ment entropy and the state normalization factor that underlies the “mean-field” approximation. The main assumption
in the approximation is that the fluctuation of the trace of the unnormalized density matrix Tr ρ is uncorrelated with
the fluctuation of the unnormalized entanglement feature Tr ρ⊗2Xσ, such that their averages can be evaluated sepa-
rately on the numerator and the denominator in Eq. (7). To properly check this approximation, we need to consider
the statistics of an extensive number of measurements on the system, because the variance can accumulate over time
(and space) as more measurements are made.

To understand this issue in further details, we step back and revisit the simulation data under the physical measure-
ment scheme, where the state norm is preserved at unity. We can collect the probability p(αI) associated with each
measurement outcome αI in the evolution history, where I = (i, t) labels the measurement instance in the spacetime
(at site i and time t). We multiply these probabilities together to define the outcome probability associated with the
final state |Ψ〉,

pΨ =
∏

I

p(αI) = Tr(E[P,U ]ρ0E[P,U ]†), (A7)

which is the probability for a particular final state |Ψ〉 to occur condition on the realization of all unitary gates and
the assignment of all measurement positions (but not the measurement outcomes). It can be rewritten in Eq. (A7)
in terms of the initial state ρ0 = |Ψ0〉 〈Ψ0| and the time-ordered product E[P,U ] of all the projection and unitary
operators involved in the history:

E[P,U ] = T
∏

I,J

PαIUJ . (A8)

We expect pΨ to decay with time exponentially: as more measurements are performed, the probability that we get a
particular final state will become smaller. This expectation is verified in our simulation, as exemplified in Fig. 10(a).
We find that logd pΨ closely follows the negative number of measurements, i.e. logd pΨ ' −mΨ, where mΨ =

∑
I 1

counts the number of measurements that has been performed to obtain the state |Ψ〉. This is consistent with the
intuition that each measurement roughly contributes a 1/d factor to the outcome probability, such that pΨ ∼ d−mΨ .
This observation motivates the “mean-field” approximation to replace the physical measurement by random projectors
with fixed 1/d outcome probability. However, we must analyze how logd pΨ fluctuates around −mΨ more carefully,
as the deviation may accumulate in time.
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FIG. 10. (a) An example of outcome probability pΨ (in log scale) as a function of time t, plotted on top of the negative number
of measurements. The example is taken from a 8-site qubit system for 50 steps of evolution with the measurement rate p = 0.1.
(b) Examples of the gap ∆Ψ fluctuating with time t. The solid line is the mean of ∆Ψ. The dashed lines are the 1σ deviation
of ∆Ψ. The statistics are collected over 5000 samples. (c) The time dependence of the gap fluctuation σ∆ in double-log plot.
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To this purpose, we define the deviation in the log scale as

∆Ψ = ln
pΨ

d−mΨ
= ln pΨ +mΨ ln d, (A9)

and call it a “gap”. In Fig. 10(b), we show how the gap ∆Ψ drifts and diffuses with time. The drift can be understood
because as pΨ fluctuates around d−mΨ there is a preference to sample |Ψ〉 with an outcome probability greater than
average. This bias will accumulate in time, leading to the drift of the average gap 〈∆〉 in a positive direction. Moreover,
we also observe that the fluctuation of ∆Ψ also broadens in time. The standard deviation σ∆ exhibits a power-law
scaling with time in Fig. 10(c). The power deviates from 1/2, indicating a non-trivial autocorrelation in time, but
we will not further analyze it as it is not essential to our discussion. In conclusion, the deviation between pΨ and
d−mΨ does grow in time (also in system size) as ∆Ψ diffuses, but it does not necessarily mean that the “mean-field”
approximation is getting worse with time (or system size). The “mean-field” approach is not simply about replacing
the measurement outcome probability p(αI) by the uniform 1/d probability. Its validity relies on how the fluctuation
of ∆Ψ is correlated with the fluctuation of entanglement entropy SΨ across samples.

We take a closer look at what happens when we switch the measurement scheme from physical to projective (e.g.
from phy+geo to pro+geo). Let Ephy = {|Ψ〉} be an ensemble of states collected from simulation with the physical
measurement scheme (such that |Ψ〉 is normalized). According to Eq. (A2), the final sate |Ψ〉 is related to the initial
state |Ψ0〉 by

|Ψ〉 =
E[P,U ] |Ψ0〉√∏

I p(αI)
=

1√
pΨ
E[P,U ] |Ψ0〉 , (A10)

where E[P,U ] was defined in Eq. (A8). For each state |Ψ〉, define the entanglement entropy SΨ(A) by Eq. (A4).
As |Ψ〉 is normalized, the “zero-point” entropy SΨ(∅) = 0 vanishes. Let us first consider the geometric average of
entanglement features (i.e. arithmetic average of entanglement entropies), where the average entropy follows from
Eq. (A6)

〈S〉phy(A) = E
Ψ
SΨ(A)− E

Ψ
SΨ(∅) =

1

|Ephy|
∑

Ψ∈Ephy

SΨ(A), (A11)

where |Ephy| denotes the number of samples in Ephy. Now if we switch to the random projector implementation, there
will be two modifications to Eq. (A11):

• The resulting sate |Ψ′〉 is no longer normalized. According to Eq. (A3), the unnormalized state is given by

|Ψ′〉 =
(∏

I

√
d
)
E[P,U ] |Ψ0〉 =

√
dmΨE[P,U ] |Ψ0〉 . (A12)

Comparing with Eq. (A10), |Ψ′〉 and |Ψ〉 differ by a factor: |Ψ′〉 =
√
dmΨpΨ |Ψ〉 = e∆Ψ/2 |Ψ〉. By definition in

Eq. (A4), the factor e∆Ψ/2 will shift the entanglement entropy by −2∆Ψ, such that

SΨ′(A) = SΨ(A)− 2∆Ψ. (A13)

• The outcome probability for the state |Ψ′〉 to occur is deformed, such that the state drawn from Ephy should be
reweighted by d−mΨ/pΨ to match the statistical distribution of Epro. Such as

1

|Epro|
∑

Ψ′∈Epro

SΨ′(A) =
1

Z

∑

Ψ∈Ephy

d−mΨ

pΨ
SΨ′(A) =

1

Z

∑

Ψ∈Ephy

(SΨ(A)− 2∆Ψ)e−∆Ψ , (A14)

where the partition function is Z =
∑

Ψ∈Ephy
e−∆Ψ .

Given these, the average entropy becomes

〈S〉pro(A) = E
Ψ
SΨ(A)− E

Ψ
SΨ(∅) =

1

|Epro|
∑

Ψ′∈Epro

SΨ′(A)− 1

|Epro|
∑

Ψ′∈Epro

SΨ′(∅)

=
1

Z

∑

Ψ∈Ephy

(SΨ(A)− 2∆Ψ)e−∆Ψ − 1

Z

∑

Ψ∈Ephy

(−2∆Ψ)e−∆Ψ

=
1

Z

∑

Ψ∈Ephy

SΨ(A)e−∆Ψ .

(A15)
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Eq. (A15) enables us to calculate the average entanglement entropy for the projective measurement scheme by reweight-
ing the samples from the physical measurement scheme, which forms the basis for us to compare 〈S〉pro and 〈S〉phy.
It becomes clear that ∆Ψ serves as an action that deforms the expectation value of SΨ. To the leading order in ∆Ψ,
the deviation is given by the correlation between ∆Ψ and SΨ evaluated on samples in Ephy,

〈S〉pro =

∑
Ψ∈Ephy

SΨe
−∆Ψ

∑
Ψ∈Ephy

e−∆Ψ

=

∑
Ψ∈Ephy

SΨ(1−∆Ψ)
∑

Ψ∈Ephy
(1−∆Ψ)

+O(∆2
Ψ)

=
〈S〉phy − 〈S∆〉phy

1− 〈∆〉phy
+O(∆2

Ψ)

= 〈S〉phy − (〈S∆〉phy − 〈S〉phy〈∆〉phy) +O(∆2
Ψ).

(A16)
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FIG. 11. Correlation on samples collected in the simulation with physical measurement scheme. The simulation is done on a
8-site qubit system for 50 steps of evolution with the measurement rate p = 0.1. Correlation is analyzed over 50000 samples in
each batch. 4 batches are taken to estimate the error margin.

Despite of the steady growth of the gap fluctuation 〈∆2〉phy−〈∆〉2phy as shown in Fig. 10, the entropy-gap correlation
〈S∆〉phy − 〈S〉phy〈∆〉phy remains small and stable in time as shown in Fig. 11(a) for all representative entanglement
regions. This is a key statistical feature that controls the proximity between 〈S〉pro and 〈S〉phy. The fact that the
correlation is negative also explains why 〈S〉pro is slightly larger than 〈S〉phy, as observed in Fig. 7 (by comparing
pro+geo and phy+geo). Although the perturbative analysis in Eq. (A16) does not immediately tell that all the
higher order terms in ∆Ψ are controlled in a similar manner, nevertheless, the non-perturbative numerical simulation
result in Fig. 7 has already lend support to the convergence of the higher order terms. In conclusion, our analysis
of the sample-to-sample fluctuation under extensive measurements reveals the small entropy-gap correlation, which
enables the replacement of the physical measurement by random projectors and sets the basis for the “mean-field”
approximation.

Now we consider the other average scheme, i.e. the arithmetic average of entanglement features. Following the
same procedure, we can analyze the average entanglement feature under different measurement schemes. Starting
from Eq. (A5), we have

〈W 〉phy(A) =
1

|Ephy|
∑

Ψ∈Ephy

WΨ(A),

〈W 〉pro(A) =
1

Z

∑

Ψ∈Ephy

WΨ(A)e∆Ψ .

(A17)

The partition function here should be Z =
∑

Ψ∈Ephy
e∆Ψ , such that 〈W 〉pro(∅) = 1. To the leading order in ∆Ψ, the

deviation between these two averages is given by the correlation between ∆Ψ and WΨ,

〈W 〉pro = 〈W 〉phy + (〈W∆〉phy − 〈W 〉phy〈∆〉phy) +O(∆2
Ψ). (A18)

As we show in Fig. 11(b), the correlation is also stable in time, which controls the proximity between 〈W 〉pro and
〈W 〉phy. The positive correlation is also consistent with the fact that − ln〈W 〉pro will be smaller than −〈W 〉phy, as
observed in Fig. 7 (by comparing pro+ari and phy+ari).
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Finally, we can compare the two average schemes. We have

− ln〈W 〉 = 〈S〉 − 1

2
(〈S2〉 − 〈S〉2) +O(S3

Ψ). (A19)

On the left-hand-size, − ln〈W 〉 is the entanglement entropy from the arithmetic average of the entanglement feature.
On the right-hand-size, 〈S〉 is the entanglement entropy from the geometric average of the entanglement feature.
Their difference is given by the variance of the entanglement entropy to the leading order. We show in Fig. 11(c) that
the entropy fluctuation is also stable in time.

In conclusion, we numerically check the various correlations in Fig. 11 under extensive measurements over a long
time. We observe that these correlations do not grow with the number of measurements as time evolves, which
supports that the deviations between different measurement and average schemes will remain stable. We expect the
correlations to exhibit the same stability under system-size scaling as well because the major effect of enlarging the
system size is also to increase the number of measurements. Combining these analyses, we demonstrate the essential
statistical features in the sample-to-sample fluctuation that justify our “mean-field” approximation.

Appendix B: Check for the Ising universality

In this section, we check the critical point in our “mean-field” model falls into the Ising universality class.
As shown in Fig. 2, the volume-law coefficient has a discontinuity at a certain critical value of pc, which exhibits

a phase transition. To verify that systems with different qudit dimensions d share the same universality class of the
transition, let us rescale the data and plot f log d as a function of pc−p for p < pc and results are in Fig. 12. Different
curves collapsing with each other implies that they can be captured by the same scaling function F ((pc − p)νL). A
further fitting yields that the critical exponent is ν = 1, which implies that the entanglement transition falls into the
Ising universality class under the mean-field description. Although the actual universality class of the entanglement
transition is beyond Ising, the result here is still meaningful in verifying that the entanglement dynamics can be
approximated by a imaginary time Floquet problem of Ising model, see Eq. (H1).

d = 2

d = 4

d = 8

3.4 (pc - p) + 0.01

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

f
lo
g
d

pc - p

FIG. 12. The volume-law coefficients with respect to the measurement probability for different qudit dimension. The horizontal
axis is pc − p and the vertical axis is f log d, for which pc and log d are chosen for different qudits respectively. All colored
curves collapses for p close to pc. The gray curve is a linear function, which implies the critical exponent is ν = 1.

Appendix C: Entanglement Feature Operators

To construct the transfer matrix T̂K of a Kraus operatorK, we need to first calculate the corresponding entanglement
feature operator ŴK . We direct the reader to Ref. 34, where the entanglement feature operator for the identity operator
ŴI and the two-qudit Haar random unitary gate ŴUij has been calculated. The result is

ŴI =
∏

i

d(d+Xi),

ŴUij = d2(d+Xi)(d+Xj)−
d2(d2 − 1)

2(d2 + 1)
(1− ZiZj)(d2 −XiXj).

(C1)
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With these, we can already construct the transfer matrix for the unitary gate as

T̂Uij = ŴUijŴ
−1
I =

(
1 +

d

d2 + 1
(Xi +Xj)

)1 + ZiZj
2

. (C2)

Here we derive the entanglement feature operator for the single-qudit measurement M , drawn from the ensemble
EM = {I} ∪ {

√
dPV |V ∈ U(d)} (where PV = V |0〉 〈0|V †), equipped with the probability measure P (I) = 1 − p and

P (
√
dPV ) = pdV . By definition

WM [σ, τ ] = E
M∈EM

TrM†⊗2XσM⊗2Xτ

= (1− p) Tr I†⊗2XσI⊗2Xτ + pd2

∫

U(d)

dV TrP †⊗2
V XσP⊗2

V Xτ

= (1− p) TrXσXτ + pd2

∫

U(d)

dV Tr(|0〉 〈0|)⊗2Xσ(|0〉 〈0|)⊗2Xτ

= (1− p)d 3+στ
2 + pd2.

(C3)

In terms of the operator form, we have

ŴM =
∑

[σ,τ ]

|σ〉WM [σ, τ ] 〈τ | = d2 + ((1− p)d+ pd2)X, (C4)

from which the transfer matrix T̂M can be constructed,

T̂Mi
= ŴMi

Ŵ−1
I = 1− p

d+ 1
+

dp

d+ 1
Xi, (C5)

where we have attached the site index i. Putting together Eq. (C2) and Eq. (C5), we obtain the transfer matrices
given in Eq. (8). The transfer matrix for each layer of the quantum channel can be further constructed out of these
basic transfer matrices.

Appendix D: Matrix Product State and Numerical Approaches

1. MPS Representation of Entanglement Feature State

The entanglement feature state |Wρ〉 was introduced to encode the entanglement feature of a many-body state ρ.
But |Wρ〉 itself is also a many-body state of Ising spins. We can further ask what is the entanglement property of
|Wρ〉? Is it an area-law state or a volume-law state? We do not have a full answer for this question in general, but the
current understanding is that even the underlying physical state ρ is volume-law entangled, its entanglement feature
state |Wρ〉 can still be area-law entangled. This can be shown by an explicit construction of the matrix product
state (MPS) representation for the entanglement feature state of the Page state (which is an extreme limit of the
volume-law state with maximal thermalization). Let us consider the following translational invariant MPS ansatz for
the entanglement feature

Wρ[σ] = Tr(· · ·Aσi−1AσiAσi+1 · · · ), (D1)

where Aσ is a matrix specified by the Ising spin σ = ±1. We claim that the following setting of Aσ gives an exact
MPS representation (up to a normalization constant) for the entanglement feature of the Page state

Aσ =

[
dσ/2 0

0 d−σ/2

]
. (D2)

Plugging Eq. (D2) to Eq. (D1), we can show

Wρ[σ] = Tr
∏

i

[
dσi/2 0

0 d−σi/2

]
= d

1
2

∑
i σi + d−

1
2

∑
i σi ,

S
(2)
ρ̄ [σ] = − log

Wρ[σ]

Wρ[⇑]
= − log

d
1
2

∑
i σi + d−

1
2

∑
i σi

d
N
2 + d−

N
2

.

(D3)



18

This precisely matches the entanglement feature of the Page state for N qudits (each of the dimension d). It produces
the volume-law entanglement entropy scaling with maximal volume-law coefficient f = 1. So the Page state entangle-
ment feature admits an MPS representation of bond dimension 2. On the other hand, the product state entanglement

feature Wρ[σ] = 1 can obviously be produced by an even simpler ansatz Aσ =
[
1
]
, which is of the bond dimension 1.

We can see, both the unentangled and maximally-entangled limit of the entanglement feature can be captured by MPS
with low bond dimension. It is conceivable that the MPS ansatz may provide pretty good description for intermediate
states across the entanglement transition as well. It is also expected that the MPS description will fall short at the
transition: as |Wρ〉 becomes critical, the required MPS bond dimension scales with the system size logarithmically.

We use two MPS-based numerical approaches in this work: the time-evolving block decimation (TEBD)
algorithm[46–48] and the variational uniform matrix product state (VUMPS) algorithm[49]. We use the TEBD
algorithm to evolve the entanglement feature state |Wρ〉 in time following entanglement dynamics specified by the
random quantum channel model. We use the VUMPS to find the final entanglement feature state |Wρ∞〉 in the
long-time limit (as the leading eigenstate of the transfer matrix).

2. TEBD Approach

We first introduce the TEBD approach. We study the entanglement dynamics under the random quantum channel
model. The evolution of the entanglement feature state |Wρ〉 → T̂K |Wρ〉 is governed by the transfer matrix T̂K of
the quantum channel K,

T̂K =

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM

TU

TM TM

TU

TM TM

TU

TM TM

T

TM

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

(D4)

which consists of the transfer matrix T̂Uij for the two-qudit unitary gate Uij and the transfer matrix T̂Mi
for the single-

qudit weak measurement Mi. They are arranged in the brick-wall pattern as shown in Eq. (D4). Their expressions
are given in Eq. (C2) and Eq. (C5) respectively. We start with the entanglement feature state of product states
|Wρ〉 =

∑
[σ] |σ〉, which is translation invariant. Because the transfer matrix has a 2-site translation symmetry, we

expect that the resulting entanglement feature state will also respect the 2-site translation symmetry, and can be
described by an MPS ansatz with 2-site unit-cells,

Wρ[σ] = Tr
(∏

j

A
σ2j−1

1 A
σ2j

2

)
= Tr(· · · A1 A2 A1 A2 · · · ). (D5)

The MPS tensors are initialized to

Aσ1 = Aσ2 =
[
1
]
, (D6)

which parameterizes the entanglement feature of product states. We then apply the TEBD algorithm, as described
in Algorithm 1, to evolve the MPS representation of |Wρ〉 in time, where transfer matrices T̂U and T̂M are applied to
|Wρ〉 step-by-step following Eq. (D4).

Algorithm 1 Applying TEBD to evolve the MPS of |Wρ〉

input: T̂U = TU , T̂M = TM - transfer matrices of two-qudit gate T̂U and single-qudit measurement T̂M .

output: |Wρ〉 = Tr(· · · A1 A2 A1 A2 · · · ) - MPS representation of the entanglement feature state after T steps of
evolution (following the brick-wall circuit).

1: procedure TEBD(T )
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2: A1 ←
[[

1
]
,
[
1
]]
, A2 ←

[[
1
]
,
[
1
]]
, X ←

[
1
]

. initialization (start with |Wρ〉 of product states)

3: for t = 1 : 2T do . evolves for T steps

4: ( A1 , A2 , X )← TEBD.iterate( A1 , A2 , X )
5: end for
6: return ( A1 , A2 )
7: end procedure

8: function TEBD.iterate(A1, A2, X)

9: ( A1 , A2 , X )← (A1, A2, X) . import MPS tensors A1, A2 and symmetry operator X

10: A12 ← A1 A2

TU

. apply transfer matrix T̂U

11: U VS ← SVD( A12 ,up to Dcut) . perform SVD up to cutoff dimension Dcut

12: S1/2 ← sqrt( S /max( S )) . normalize singular values and take square root

13: ( A1 , A2 )← ( U S1/2 , VS1/2 ) . construct new MPS tensors

14: ( A1 , A2 )← ( A1

TM

, A2

TM

) . apply transfer matrix T̂M

15: X′ ← round( UU X

σx

) . construct new Z2 symmetry operator

16: ( A1 , A2 )← 1
2 ( A1 + X′X A1

σx

, A2 + X′ XA2

σx

) . impose Z2 symmetry (by symmetrization)

17: return ( A2 , A1 , X′ ) . return with A1, A2 switched
18: end function

One important point is to preserve the Z2 symmetry under the evolution. The entanglement feature for pure states
is Z2 symmetric, i.e. Wρ[σ] = Wρ[−σ]. The symmetry acts on the MPS tensors A1 and A2 as

A1 → X′X A1

σx

, A2 → X′ XA2

σx

, (D7)

where X and X ′ are representations of the Z2 symmetry operator in MPS auxiliary spaces. They must be updated
in each iteration with the MPS tensor. Initially, we start with

X =
[
1
]
, (D8)

which is consistent with the initial setup of A1, A2 in Eq. (D6). As new auxiliary degrees of freedom emerge under
the singular value decomposition, the Z2 symmetry action should be calculated. The idea is to transform the Z2

symmetry action on the old degrees of freedom to the new degrees of freedom by the isometry constructed in SVD.
We can show that the following two constructions are equivalent (assuming that the singular values have no accidental
degeneracy)

X′ = UU X

σx

= V V X

σx

. (D9)

This is the step taken in line 15 of Algorithm 1. The additional round off function is applied to eliminate numerical
error accumulated in the calculation, so as to obtain a precise Z2 symmetry operator X ′ which squares to identity
X ′2 = I precisely. The symmetry is implemented at each iteration by symmetrizing the MPS tensors A1, A2 as shown
in line 16 of Algorithm 1.

As we obtain the MPS tensors A1, A2 after 2T steps of the TEBD iteration (two TEBD iteration correspond to
one step of time-evolution in the quantum channel model), we can calculate the entanglement entropy from the

entanglement feature S
(2)
ρ̄ [σ] = − log(Wρ[σ]/Wρ[⇑]). In particular, if we consider a single entanglement region A of
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size |A| in a system of N qudits, the entanglement entropy is given by

S
(2)
ρ̄ (A) =




− log

Tr(A↓1A
↓
2)|A|/2(A↑1A

↑
2)(N−|A|)/2

Tr(A↑1A
↑
2)N/2

|A| ∈ even,

− log
Tr(A↓1A

↓
2)(|A|−1)/2A↓1A

↑
2(A↑1A

↑
2)(N−|A|−1)/2

Tr(A↑1A
↑
2)N/2

|A| ∈ odd.
(D10)

We follow this approach to calculated the entropy growth in Fig. 2(a,b). The calculation is done with the MPS bond
dimension cutoff at 64.

3. VUMPS Approach

In principle, if we follow the TEBD iteration for infinite steps, the MPS should converge to the leading eigenstate
|Wρ∞〉 of the transfer matrix. However, the TEBD algorithm is not stable under long-time evolution, as the error rate
can not go down due to the SVD truncation at each iteration, hence TEBD is not good for targeting the final state
|Wρ∞〉. The VUMPS algorithm was proposed to avoid SVD truncation by variational optimization. To proceed, we

first rewrite the transfer matrix into a matrix product operator (MPO) form. We notice that the transfer matrix T̂K
in Eq. (D4) can be deformed to the following form

T̂K =

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM

, (D11)

such that the network acquires a one-layer translation symmetry along the time direction. Thus we introduce the
single-layer transfer matrix T̂layer,

T̂layer = · · ·

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM
· · · , (D12)

such that T̂K = T̂ 2T
layer for T steps of evolution. We further notice that each T̂Uij operator comes with a projection

operator (1 +ZiZj)/2, such that only the Z2j−1Z2j = +1 states can survive the projection across neighboring layers.

Thus we can restrict ourselves to the subspace of ∀j : Z2j−1Z2j = +1 and simplify the transfer matrix T̂layer to

T̂layer = · · ·

TU

TM TM

TU

TM TM

TU

TM TM

TU

TM TM
· · ·

= · · · T T T T · · · ,

(D13)

where each yellow triangle denotes a projection operator that projects to the Z2j−1Z2j = +1 subspace. In this way,

the layer transfer matrix T̂layer can be written as an MPO, with the MPO tensor given by

T =

TU

TM TM
. (D14)
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Arranging the legs following the order of up, down, left and right, the four-leg MPO tensor T can be represented in
the following tensor form

T =




[
a 0

c 0

] [
b 0

c 0

]

[
0 c

0 b

] [
0 c

0 a

]



, (D15)

with tensor elements specified by

a =
(d+ 1− p)(d2 + (d− 1)p+ 1)

(d+ 1)(d2 + 1)
,

b =
d2p((d− 1)p+ 2)

(d+ 1)(d2 + 1)
,

c =
d((d− 1)p+ 1)

d2 + 1
,

(D16)

where d is the qudit dimension and p is the measurement strength. They are the only two tuning parameters of the
random quantum channel model. Having specified the MPO tensor T , we can find the MPS representation of the
leading eigenstate |Wρ∞〉 of the layer transfer matrix T̂layer using the VUMPS algorithm as described in Algorithm 2.

Algorithm 2 Applying VUMPS to find the MPS of the leading eigenstate |Wρ∞〉

input: T̂layer = · · · T T T T · · · - MPO representation of the layer transfer matrix.

output: |Wρ∞〉 = · · · AL AL AR ARC · · · - canonicalized MPS representation of the leading eigenstate of the

layer transfer matrix.

1: procedure VUMPS

2: AL ← , C ← , AR ← . initialize MPS tensors

3: while (AL, C,AR) not converge do . iterate to improve MPS tensors

4: ( AL , C , AR )← VUMPS.iterate( AL , C , AR )
5: end while
6: return ( AL , C , AR )
7: end procedure

8: function VUMPS.iterate(AL, C,AR)

9: ( AL , C , AR )← (AL, C,AR) . import MPS tensors
10: while (TL, TR) not converge do

11: TL ← normalize
(

AL

AL

TTL
)

. power iteration to find the leading left-environment tensor TL

12: TR ← normalize
(

AR

AR

T TR
)

. power iteration to find the leading right-environment tensors TR

13: end while
14: while (C,B) not converge do

15: C ← normalize
(TL TR

C

)
. power iteration to find the leading MPS central tensor C
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16: B ← normalize
( TTL TR

B

)
. power iteration to find the leading MPS block tensor B

17: end while

18: AL ← minimize(‖ AL C − B ‖, subject to
AL

AL
= ) . optimize the left-isometry tensor AL

19: AR ← minimize(‖ ARC − B ‖, subject to
AR

AR
= ) . optimize the right-isometry tensor AR

20: ( AL , C , AR )← 1
2 ( AL + XX AL

σx

, C + XX C , AR + XX AR

σx

) . impose Z2

symmetry (by symmetrization)

21: return ( AL , C , AR )
22: end function

The VUMPS works with a canonicalized MPS, meaning that the MPS consists of left-isometry tensors AL, right-
isometry tensors AR and a central tensor C, as follows

|Wρ∞〉 = · · · AL AL AR ARC · · · , (D17)

where little arrows mark the direction of isometry map (mapping from large space into smaller space). The isometry
tensors are initialized to

AL = , AR = , (D18)

where each thin line denotes a 2-dimensional space (i.e. a qubit). The auxiliary space contains n qubits and is of the
dimension 2n, where n is a hyper-parameter that can be adjusted. Larger n (larger bond dimension) will generally
result in better MPS representation. The isometry tensors initially collect the physical legs of n MPO tensors T away
from the center. The little yellow triangle is taken to be a Z2 symmetric qubit state (|0〉+ |1〉)/

√
2, which is introduced

to “ground” the physical legs of MPO tensors more than n steps away from the center. The central tensor C is simply
taken to be an identity operator in the n-qubit auxiliary space. The initial ansatz is such chosen to preserve the Z2

symmetry from the beginning. The symmetry acts on the tensors as

AL → XX AL

σx

, C → XX C , AR → XX AR

σx

, (D19)

where X =
∏n
i=1 σ

x
i is the representation of the Z2 symmetry operator in the auxiliary space. The operator X is fixed

under VUMPS iteration, because VUMPS is a variational approach which does not reshuffle existing basis or generate
new basis. We impose the Z2 symmetry by explicit symmetrization in line 20 of Algorithm 2. A key step in the
algorithm is to efficiently reconstruct AL, AR by solving the optimization problem in line 18, 19 of Algorithm 2. We
direct the reader to Ref. 49 for details about how the solution can be approximately constructed in a robust manner.

4. Extracting Volume-Law Coefficient

As the VUMPS iteration converges, we obtain the tensors AL, C and AR which are needed to construct the
canonicalized MPS state |Wρ∞〉. We can then study all entanglement features of the final state produced by the
random quantum channel. In particular, we can extract the volume-law coefficient f which is defined via the scaling

of entanglement entropy S
(2)
ρ̄∞(A) = (f log d)|A| + · · · in the |A| → ∞ limit. We first solve the eigen problem of A↑L

and A↑R (note that the isometry is assumed to go from the column space to the row space for A↑L and A↑R),

A↑L |λLm〉 = λLm |λLm〉 ,
A↑R |λRm〉 = λRm |λRm〉 ,

(D20)
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where m = 0, 1, 2, · · · labels the eigenvalues in a descending order λL0 > λL1 > λL2 > · · · . In fact, only the first
two eigenvalues will be needed. Due to the Z2 symmetry, the eigenstates of A↓L (A↓R) are related to that of A↑L (A↑R)
as X |λLm〉 (X |λRm〉) by applying the symmetry operator X, and the corresponding eigenvalues must be the same.

There is also a reflection symmetry about the center, which relates the eigenvalues between A↑L and A↑R such that
λLm = λRm = λm. Numerically there is often a slight difference between λLm and λRm due to the numerical error, so
we define λm =

√
λLmλLm as their geometric mean in practice. Given the setup, we can evaluate the entanglement

feature for a region A of size |A| in a system of N qudits,

Wρ∞(A) = 〈+| (A↓ᵀL )|A|/2C(A↑R)(N−|A|)/2 |+〉 , (D21)

where |+〉 specifies the boundary condition for the MPS. The choice of |+〉 will not be important in the thermodynamic
limit (as |A|, N → ∞), because only the leading eigenstate dominates in the end. We only require |+〉 to be a Z2

symmetric state (i.e. X |+〉 = |+〉). For example, |+〉 = (1 + X) |0〉 is a possible choice. Using the Z2 symmetry

property A↓L = XA↑LX and X2 = I, Eq. (D21) can be written as

Wρ∞(A) = 〈+| (XA↑ᵀL X)|A|/2C(A↑R)(N−|A|)/2 |+〉
= 〈+|X(A↑ᵀL )|A|/2XC(A↑R)(N−|A|)/2 |+〉
= 〈+| (A↑ᵀL )|A|/2XC(A↑R)(N−|A|)/2 |+〉 .

(D22)

Here we have assumed that both |A| and N are even in sites, which means that they are integer in unit-cells. In
this way, the entanglement cut will always pass between unit-cells, which simplifies our calculation. For the purpose
of calculating the volume-law coefficient, such choice of entanglement cut does not affect the result. Suppose the
state |+〉 admits the following decomposition |+〉 =

∑
m cLm |λLm〉 =

∑
m cRm |λRm〉 on the eigenstates with some

(unimportant) coefficients cLm and cRm, then Eq. (D22) becomes

Wρ∞(A) =
∑

m,m′

cLmcRm′λ
|A|/2
m λ

(N−|A|)/2
m′ 〈λLm|XC|λRm′〉 . (D23)

The entanglement entropy is given by

S
(2)
ρ̄∞(A) = − log

Wρ∞(A)

Wρ∞(∅) . (D24)

We are interested in its slope with respect to |A|, thus we take the derivative

∂|A|S
(2)
ρ̄∞(A) = −∂|A|Wρ∞(A)

Wρ∞(A)

= −
∑
m,m′ cLmcRm′λ

|A|/2
m λ

(N−|A|)/2
m′ (log λm − log λm′) 〈λLm|XC|λRm′〉

2
∑
m,m′ cLmcRm′λ

|A|/2
m λ

(N−|A|)/2
m′ 〈λLm|XC|λRm′〉

.

(D25)

We take the thermodynamic limit |A|, N →∞ but fix the ratio |A|/N � 1 to be small, Eq. (D25) will be dominated
by the leading power (m = m′ = 0) and the sub-leading power (m = 1,m′ = 0),

∂|A|S
(2)
ρ̄∞(A) = − cL1cR0λ

|A|/2
1 λ

(N−|A|)/2
0 (log λ1 − log λ0) 〈λL1|XC|λR0〉

2(cL0cR0λ
N/2
0 〈λL0|XC|λR0〉+ cL1cR0λ

|A|/2
1 λ

(N−|A|)/2
0 〈λL1|XC|λR0〉)

=
1

2

log(λ0/λ1)
cL0〈λL0|XC|λR0〉
cL1〈λL1|XC|λR0〉 (

λ0

λ1
)|A|/2 + 1

.

(D26)

The behavior of ∂|A|S
(2)
ρ̄∞(A) in the |A| → ∞ limit crucially depends on whether or not cL0〈λL0|XC|λR0〉

cL1〈λL1|XC|λR0〉 vanishes or not.

On general ground, cL0 would not vanish, because it is a boundary condition that is chosen with some arbitrariness.

So it all depends on the inner product 〈λL0|XC|λR0〉. If 〈λL0|XC|λR0〉 = 0, then ∂|A|S
(2)
ρ̄∞(A) = 1

2 log(λ0/λ1). If

〈λL0|XC|λR0〉 6= 0, then as |A| → ∞ the power (λ0/λ1)|A|/2 → ∞ diverges, hence ∂|A|S
(2)
ρ̄∞(A) = 0. Therefore, the

volume-law coefficient is determined by

f = lim
|A|→∞

∂|A|S
(2)
ρ̄∞(A)

log d
=

{
1
2 logd(λ0/λ1) 〈λL0|XC|λR0〉 = 0,

0 〈λL0|XC|λR0〉 6= 0.
(D27)
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Using this formula, we calculated the volume-law coefficient for different measurement strength p and different qudit
dimension d, and the result is shown in Fig. 2(c).

Now we explain our calculation of the measurement-induced entropy drop ∆S
(2)
x (A) and the qudit-environment

mutual information Iρ(x : A). Via the VUMPS algorithm, we have obtained the final entanglement feature state

|Wρ∞〉 as the leading eigenstate of T̂K in Eq. (D4). Note that the last step of T̂K is a layer of T̂M (measurement). The

state prepared by T̂K is not quite what we want, because the qudits have been uniformly measured in the last step,
then further probing the state with local measurement will double the effect of measurement and can not reflect the
actual measurement-induced entropy drop right after the application of unitary gates. In order to prepare a “fresh”
state right after the unitary layer, we apply an additional layer of unitary gate transfer matrix to the MPS state to
construct the following entanglement feature state

|Wρ〉 = · · · AL

TU

AL

TU

AR

TU

AR

TU

C · · · . (D28)

Now we can probe the system with a single-site measurement of strength p. This amounts to applying the transfer
matrix T̂Mx

to |Wρ〉 at site x,

T̂Mx
|Wρ〉 = · · · AL

TU

AL

TU

AR

TU

AR

TU

C

TM

· · · . (D29)

We can then compare the difference of entanglement entropies before and after the measurement in a region A that
encloses the site x,

∆S(2)
x (A) = − log

〈A|T̂Mx
|Wρ〉

〈⇑ |T̂Mx
|Wρ〉

+ log
〈A|Wρ〉
〈⇑ |Wρ〉

. (D30)

As explained in Appendix F, this entropy drop is closely related to the qudit-environment mutual information Iρ({x} :
Ā), defined via

eIρ({x}:Ā) =
〈A|Xx|Wρ〉 〈⇑ |Wρ〉
〈A|Wρ〉 〈⇑ |Xx|Wρ〉

, (D31)

We will leave the explanations of Eq. (D30) and Eq. (D31) to Appendix F and focus on how to evaluate these quantities
from the numerically obtained MPS in this appendix.

To help our calculation, we need to first define the following matrices

ATM↑R = AR

TU

TM
↑ ↑

, ATM↓R = AR

TU

TM
↓ ↓

; A↑↓R = AR

TU

↑ ↓

, A↓↑R = AR

TU

↓ ↑

. (D32)

In fact, they are related by Z2 symmetry: ATM↓R = XATM↑R X and A↓↑R = XA↑↓R X. With these notations, we have

〈⇑ |Wρ〉 = 〈λL0|C|λR0〉 ,
〈⇑ |T̂Mx

|Wρ〉 = λ−1
0 〈λL0|CATM↑R |λR0〉 ,

〈⇑ |Xx|Wρ〉 = λ−1
0 〈λL0|CA↓↑R |λR0〉 ,

〈A|Wρ〉 = λ
−|A|/2
0 〈λL0|C(A↓R)|A|/2|λR0〉 ,

〈A|T̂Mx |Wρ〉 = λ
−|A|/2
0 〈λL0|(A↓ᵀL )(x−1)/2CATM↓R (A↓R)(|A|−x−1)/2|λR0〉 ,

〈A|Xx|Wρ〉 = λ
−|A|/2
0 〈λL0|(A↓ᵀL )(x−1)/2CA↑↓R (A↓R)(|A|−x−1)/2|λR0〉 .

(D33)
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Page state

QEC
A measure

FIG. 13. Five-qubit code toy model.

We have assumed that the region A is embedded in a infinitely large system such that the boundary condition at
the entanglement cuts are given by the eigenstates 〈λL0| and |λR0〉. Here x is an integer labeling the position of the
measurement site with respect to the entanglement cut. We assume that x is odd to avoid more tedious discussion
of the even-odd effect. For the purpose of studying the scaling behavior with respect to x, it is fine to probe only
the odd sites. Given the expressions in Eq. (D33), Eq. (D30) and Eq. (D31) can be evaluated from the MPS tensors

AL, C and AR. Following this approach, we calculated ∆S
(2)
x (A) and Iρ(x : A) at d = 2 and p = 0.1, using the MPS

ansatz with bond dimension 64 (i.e. n = 6). The result is shown in Fig. 3(c).

Appendix E: Argument for Quantum Error Correcting Volume-Law State

In this section, we give a self-consistent argument on the relation between the measurement-doped unitary circuit
and quantum error correction. Our argument is directly motivated by toy examples, including the five-qubit code,
holographic codes, and more general stabilizer codes, but applies more generally without referring to any microscopic
details.

1. Toy examples

In this section, we describes two toy examples of error correcting states. Despite some differences, both construc-
tions produce a sub-thermal volume-law state, the entanglement of which is robust against moderate amount of
measurement.

Five-qubit code The first toy example is constructed by taking a Page state and encode each qubit into five qubits
by the 5-qubit QEC code, as depicted in Fig. 13. The state exhibits a volume-law entanglement with f = 1/5 on
average and is stable against any measurement that acts on less than three qubits in every 5-qubit group. The QEC
layer protects the quantum information of the Page state from being accessed by local measurements, hence the
entanglement entropy can remain unchanged under measurements.

From this example, it is clear that such behavior is only possible in the sub-thermal volume-law state with f < 1,
because it is those (1 − f) fraction of qubits that serve as the syndrome bits to enable QEC encoding of the Page
state. Noticing that the code distance for the whole layer is only three, this state is not robust against probabilistic
measurement. We need different blocks to have correlation, which inspires the next example.

Holographic code The second toy example is constructed by a random tensor network (RTN). Consider a system
of N qudits (each qudit is of Hilbert space dimension d), the Page state of these qudits admits a simple RTN
representation as shown in Fig. 14(a), where all physical legs are connected to a big random tensor Tα1α2···αN in the
center. More precisely, the random tensor T discribes the coefficient of the Page state when it is represented on a set
of many-qudit basis states,

|ΨPage〉 =

N∏

i=1

d∑

αi=1

Tα1α2···αN |α1〉 ⊗ |α2〉 · · · ⊗ |αN 〉 , (E1)

where each tensor element in T is randomly drawn from independent Gaussian distributions. Now we protect the
Page state by one additional layer of matrix product operators (MPO) as shown in Fig. 14(b).

|Ψsub-Page〉 =

N∏

i=1

d1∑

βi=1

ÔβNβ1
Ôβ1

β2
· · · ÔβN−1

βN
|ΨPage〉 , (E2)
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where Ôβiβi+1
=
∑
αi,α′i

|αi〉Oβiβi+1αiα′i
〈α′i| is the operator acting on the ith qudit as specified by 4-leg tensors of the

form Oββ′αα′ and is also randomly drawn.

T

d
ΨPage〉 =(a)

T

O

d
d1
d2

Ψsub-Page〉 =(b)

FIG. 14. Random tensor network representations of (a) Page states and (b) sub-Page states. The qudit dimension is d. Bond
dimensions of the matrix product operator are specified by d1 and d2, assuming d1 > d > d2.

As the tensors are random, the only relevant parameters of the MPO are its bond dimensions. As specified in
Fig. 14(b), we require the bond dimensions to satisfy the hierarchy d2 < d (modeling introducing extra ancilla) and
d1 > d (modeling a few layers of local unitary circuit) The resulting state, called the sub-Page state in our discussion,
is by construction sub-thermal and is robust against projective measurement.

Let us consider a subsystem, which is denoted by the red arrow in Fig. 15, and the measurement on it. For the
Page state, any single measurement will disentangle the qudit from the rest of the system, and the entanglement cut
will redirect itself to go through the projection operator, therefore the entropy drops by log d, as shown in Fig. 15 (a).
However, for the sub-Page state, the entanglement cut will remain unchanged as shown in Fig. 15 (b). If d1 is
sufficiently large such that we have 2 log d1 > log d2, any attempt to cut through the projection operator will have
more cost more, as shown in Fig. 15 (c). In this case, the measurement does not result in any drop of the entanglement
entropy. So the central page state can be protected from local measurements just by a layer of MPO with sufficiently
large bond dimension d1 >

√
d2. We can treat this layer of MPO as a QEC encoding circuit (in fact, random tensors

are asymptotically perfect, meaning that they automatically approximate QEC codes). This model works as long as
d2 < d, i.e. the volume law fraction f = log(d2/d) < 1.
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FIG. 15. Response to the measurement for (a) the Page state and (b) the sub-Page state. The case shown in (c) is prohibited
as long as d1 >

√
d2.

2. General argument

In this section, we provide the general argument on why the final state can be understood by error correction. As
depicted in Fig. 3 (a), we assume that the volume-law piece of the entanglement entropy of the final state completely
comes from that of the input Page state. Namely, the QECC layer, regarded as a unitary transformation from the
tensor product of the Page state and ancilla |ψ〉 ⊗ |0 · · · 0〉 to the final state |χ〉, does not increase the entanglement
entropy of the original state by a volume-law amount. This locality constraint leads to the assumption that any large
enough subsystem A can have stabilizers that only have support on A.

This provides a natural mechanism to protect the entanglement from measurement, which is explained as follows.
Let us call the final state |χ〉 = TQECC |ψ〉 and consider the reduced density matrix for a large enough subsystem A.
When measurements of of t qubits happen in A, we can decompose the corresponding projection operator into a sum
of Pauli strings as

Pi1Pi2 · · ·Pit = N
(
I +

∑

s

csOs
)
, (E3)
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where N is a normalization factor and Os represents a Pauli string with weight equal or less than t. Accordingly, the
purity of ρA after the measurement can also be written as the following sum

Tr ρ2
A,after =

∑

Oi,Õi

χ〉

χ〉

χ〉

χ〉

O1

O

1

O2

O

2

A
A

=
∑

O,Õ

χ〉

χ〉

O

χ〉

χ〉

O


A
A

, (E4)

where we introduce O = O1Õ1 and Õ = O2Õ2. Now we assume O and Õ are detectable errors, which implies that
they anti-commute with at least one stabilizer. When O and Õ are deep in the bulk of A, such stabilizers are fully
supported in A (they exist by assumption) and we can have for example

χ〉

χ〉

O

χ〉

χ〉

O


A
A

=

χ〉

χ〉

O

χ〉

χ〉

O


S

A
A

= −

χ〉

χ〉

O

χ〉

χ〉

O


S

A
A

= −

χ〉

χ〉

O

χ〉

χ〉

O


A
A

for Õ 6= I, which directly shows that such kind of terms vanishes. Similar calculation is true for O. The exceptions
are when O or Õ are near the boundary of A and the stabilizers may have support in both A and Ā. It is easy to see
that this argument still holds when the measurement is in Ā or both A and Ā.

More rigorously, we may consider a stabilizer QECC that can correct for any weight-t Pauli error. Consider the
reduced density matrix for a subsystem A in the codespace ρA ≡ TrĀ(Πcodespace) where Πcodespace is the projector
onto states in the codespace. We now perform m ≤ t single-qubit measurements in the Pauli basis, so that the new
reduced density matrix is given by σA ∝ ΠAρAΠA, where ΠA is a product of m single-qubit projectors in the Pauli
basis. We may expand ΠA as

ΠA =
1

2m


1 +

2m−1∑

j=1

Ej


 . (E5)

where {Ej} are Pauli operators. As we prove in the following section, the second Rényi entropy S(2)(ρA) ≡
− log2 Tr(ρ2

A) is related to the entanglement for the same subsystem, after performing these m single-qubit mea-
surements in the Pauli basis, as

S(2)(σA) = S(2)(ρA)− log2[1 + nA] (E6)

where nA is the number of Pauli operators in the set {Ej} that have syndromes which cannot be determined by
performing measurements of stabilizers that are exclusively within the A subsystem. Assuming that the stabilizers
have a finite average size, the quantity nA will scale exponentially in the number of measurements that are performed
near the boundary of region A, so that the right-hand side of Eq. (E6) will only provide an area-law correction to the
Rényi entropy.

If we roughly use pN as the number of measurement in each round, then the code distance has to be larger than
pN . Notice that the length of the stabilizers is not tightly constrained by the code distance. Therefore, although the
code distance is macroscopic, the stabilizers can still have a microscopic length for our argument to work.
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For this mechanism to continue work, all the errors have to be corrected by the next layer of unitary evolution,
namely all the Pauli strings in the measurements are correctable errors. Therefore, the code distance has to be larger
than 2pN . If we assume the code distance is exactly 2pN (as well as the code being non-degenerate), then we can
derive the Hamming bound shown in the main text.

Eq. (E6) can also be used to argue for the power-law decrease in the entanglement entropy when performing a
measurement a distance x from the boundary of a subsystem, in the sub-thermal volume-law phase that is obtained
for Clifford dynamics with measurements in the Pauli basis. This is because Eq. (E6) also holds for any stabilizer
state in which a single-qubit measurement has no overlap with the stabilizer group. Consider a semi-infinite region
A. For the sub-thermal volume law state generated by random Clifford dynamics with measurements, let p(x) be
the probability that a single-qubit measurement, performed a distance x from the boundary of A commutes with
all operators that stabilize the state, and that lie entirely within in the A subsystem. From Eq. (E6), the average
entanglement entropy drop after this measurement is exactly

∆S(x) ≡ [1− p(x)] log2(1) + log2(2)p(x)

= p(x). (E7)

Therefore, if p(x) falls faster than 1/x, then the the entanglement drop after performing a finite density of measure-
ments will be a constant.

We estimate p(x) using the known stabilizer length distribution P (`) in random Clifford circuits, with measurements
in the Pauli basis [26]. In the volume-law phase, it is known [26] that P (`) = α(p)`−2 + s(p)δ(`− (L/2)) in a system
with size L. We now consider a region A defined by the interval [1, |A|], and we perform a measurement at a position
x such that 1 � x � |A| where we perform a single measurement. The number of stabilizers that are contained
entirely within A, and that have “crossed” the position x, i.e. that have their left endpoint yL < x and their right
endpoint yR > x is

N(x) ≡
∫ x

0

∫ |A|

x

dyL dyR P (|yL − yR|) = α ln(x) +O(x/|A|) (E8)

The probability that all of these stabilizers commute with the single-qubit measurement is exponentially small in
the number of stabilizers, which gives an estimate of p(x) ∼ e−N(x) = x−α. This then gives the power-law decay
∆S(x) ∼ x−α for the entanglement with the distance that the measurement is performed, from the boundary. The
precise exponent for this power-law behavior cannot be determined without knowing more detailed properties of the
stabilizers. For example, if we assume that the stabilizers drawn from the distribution P (`) have equal probability of
acting as a Pauli X, Y , Z, or the identity I at site x, then the probability p(x) = 2−N(x) = x−α ln(2).

3. Proof of Eq. (E6)

Let the tensor T be the encoding of a state on k qubits into a state on N qubits with a stabilizer quantum error-
correcting code (QECC). We assume that this encoding is a valid quantum error-correcting code (QECC) with code

distance d; the code can then correct for any Pauli error of weight t ≤ b(d − 1)/2c. Since T : C2k → C2N is a valid
encoding map for a QECC, it is isometric T †T = 12k×2k .

We now consider the density matrix

ρ ≡ TT † (E9)

which is a projector onto the codespace of the QECC. We further bipartition the N spins into an A subsystem, and
its complement Ā, and define the reduced density matrix ρA ≡ TrĀ(TT †). If G is the Pauli stabilizer group for the
QECC, then the reduced density matrix may be equivalently written as

ρA =
1

DA

∑

g∈GA
g (E10)

where GA is the subgroup of G, consisting of elements of the stabilizer group that act as the identity operator on Ā,
and DA is the Hilbert space dimension of the A subsystem.
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Now, let ΠA be a product of single-qubit projection operators in the Pauli basis, on m ≤ t spins in the A subsystem.
We may expand ΠA as a sum of Pauli operators as

ΠA =
1

2m


1 +

2m−1∑

j=1

Ej


 . (E11)

We refer to the Pauli operators {E} appearing in this expansion as “errors”. Since m ≤ t, each of these errors are
correctable, and we observe that

Tr(Ejρ) = 0 Tr(EiEjρ) = 0 (i 6= j) (E12)

As a result, the reduced density matrix for the state, after performing these measurements is

σA ≡
ΠAρAΠA

〈Φ|ΠA|Φ〉
= 2mΠAρAΠA (E13)

The purity of σA may be expanded as

Tr(σ2
A) = Tr(ρ2

A) + 2
∑

j

Tr(EjρA) +
∑

i,j

Tr(EiρAEjρA)

We observe that Tr(EjρA) = 0 due to Eq. (E12).
We evaluate the final term as follows. First, we observe that Tr(EiρAEjρA) = 0 if either Ei or Ej is an error with

an localizable syndrome, i.e. an error that can be detected via syndrome measurements that act exclusively in the A
subsystem. Let Ei be a localizable error; then there is an element h ∈ GA, such that {h, Ei} = 0. As a result,

Tr(EiρAEjρA) = Tr(EihρAEjρA)

= −Tr(hEiρAEjρA) = −Tr(EiρAEjρA) (E14)

so that Tr(EiρAEjρA) = 0. If both Ei and Ej cannot be localized, then both errors commute with the stabilizer
subgroup GA, and

Tr(EiρAEjρA) = Tr(EiEjρ2
A) = δij Tr(ρ2

A) (E15)

In the last line, we have again used Eq. (E12). Therefore, we conclude that the second Rényi entropy S(2)(σA) ≡
− log2 Tr(σ2

A) after the measurements is

S(2)(σA) = S(2)(ρA)− log2[1 + nA] (E16)

where nA is the number of errors in {Ei} whose syndromes cannot be localized to the A subsystem.

Appendix F: Entropy Drop and Qudit-Environment Information

We propose the qudit-environment mutual information Iρ({x} : Ā) = S
(2)
ρ̄ ({x}) + S

(2)
ρ̄ (Ā) − S

(2)
ρ̄ ({x} ∪ Ā) as

a measure of the QEC capacity of the sub-thermal volume-law state. Note that the entanglement entropies are
evaluated with respect to the normalized density matrix ρ̄ = ρ/Tr ρ, such that

e−S
(2)
ρ̄ (A) = Wρ̄(A) =

Wρ(A)

Wρ(∅)
=
〈A|Wρ〉
〈⇑ |Wρ〉

, (F1)

where |A〉 =
∏
i∈AXi |⇑〉 is the Ising basis state for region A (i.e. σi =↓ if i ∈ A and σi =↑ if i ∈ Ā). Using Eq. (F1),

it can be shown that

eIρ({x}:Ā) = eS
(2)
ρ̄ ({x})+S(2)

ρ̄ (Ā)−S(2)
ρ̄ ({x}∪Ā)

=
e−S

(2)
ρ̄ ({x}∪Ā)

e−S
(2)
ρ̄ ({x})e−S

(2)
ρ̄ (Ā)

=

〈A|Xx|Wρ〉
〈⇑|Wρ〉

〈⇑|Xx|Wρ〉
〈⇑|Wρ〉

〈A|Wρ〉
〈⇑|Wρ〉

=
〈A|Xx|Wρ〉 〈⇑ |Wρ〉
〈A|Wρ〉 〈⇑ |Xx|Wρ〉

,

(F2)
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which explains Eq. (12).
Consider making a measurement at position x in region A. Suppose the measurement is described by the operator

Mx, its effect on the entanglement feature is implemented by acting the corresponding transfer matrix T̂Mx to the
entanglement feature state |Wρ〉 → T̂Mx

|Wρ〉. According to Eq. (F1), the entanglement entropy of region A after the
measurement is given by

S(2)
x (A) = − log

〈A|T̂Mx
|Wρ〉

〈⇑ |T̂Mx |Wρ〉
, (F3)

where the denominator 〈⇑ |T̂Mx |Wρ〉 provides the appropriate normalization for the entanglement feature state. There-
fore the entropy drop after measurement should be defined as

∆S(2)
x (A) = − log

〈A|T̂Mx |Wρ〉
〈⇑ |T̂Mx

|Wρ〉
+ log

〈A|Wρ〉
〈⇑ |Wρ〉

, (F4)

which is the definition given in Eq. (13).

To derive the relation between the measurement-induced entropy drop ∆S
(2)
x (A) and the qudit-environment mutual

information Iρ({x} : Ā), we start with the definition in Eq. (F4),

∆S(2)
x (A) ≡ − log

〈A|T̂Mx
|Wρ〉

〈⇑ |T̂Mx |Wρ〉
+ log

〈A|Wρ〉
〈⇑ |Wρ〉

= − log
〈A|1− p

d+1 + pd
d+1Xx|Wρ〉

〈⇑ |1− p
d+1 + pd

d+1Xx|Wρ〉
+ log

〈A|Wρ〉
〈⇑ |Wρ〉

= − log
〈A|1 + pd

d+1−pXx|Wρ〉
〈⇑ |1 + pd

d+1−pXx|Wρ〉
+ log

〈A|Wρ〉
〈⇑ |Wρ〉

= − log
(

1 +
pd

d+ 1− p
〈A|Xx|Wρ〉
〈A|Wρ〉

)
+ log

(
1 +

pd

d+ 1− p
〈⇑ |Xx|Wρ〉
〈⇑ |Wρ〉

)
,

(F5)

where we have used inserted the definition of T̂Mx in Eq. (C5). Assuming p is small in the weak measurement limit,

we expand ∆S
(2)
x (A) in power series of p,

∆S(2)
x (A) = − pd

d+ 1

( 〈A|Xx|Wρ〉
〈A|Wρ〉

− 〈⇑ |Xx|Wρ〉
〈⇑ |Wρ〉

)
+O(p2)

= − pd

d+ 1

〈⇑ |Xx|Wρ〉
〈⇑ |Wρ〉

( 〈A|Xx|Wρ〉 〈⇑ |Wρ〉
〈A|Wρ〉 〈⇑ |Xx|Wρ〉

− 1
)

+O(p2)

= − pd

d+ 1
Wρ̄({x})

(
eIρ({x}:Ā) − 1

)
+O(p2),

(F6)

where
〈⇑|Xx|Wρ〉
〈⇑|Wρ〉 = Wρ̄({x}) = e−S

(2)
ρ̄ ({x}) is the single-qudit purity (at position x). We have used Eq. (F2) to introduce

the exponentiated mutual information eIρ({x}:Ā). In the volume-law phase, a rough estimate is S
(2)
ρ̄ ({x}) = f log d,

hence Wρ̄({x}) = d−f , therefore

∆S(2)
x (A) = −p

(
eIρ({x}:Ā) − 1

) d1−f

d+ 1
+O(p2), (F7)

which justifies the relation of Eq. (13). If x is deep in region A, the mutual information Iρ({x} : Ā) is expected to be

small. In the limit of Iρ({x} : Ā) → 0, the entropy drop ∆S
(2)
x (A) directly proportional to the mutual information

Iρ({x} : Ā),

∆S(2)
x (A) ' −p d

1−f

d+ 1
Iρ({x} : Ā). (F8)

The more the qudit x can inform about the complement region Ā, the more entropy drop will be produced by
measuring it.
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Appendix G: Stability of the Volume-Law Phase in Hybrid Clifford Circuits

In this section, we study the stability of the volume-law entangled phase that emerges in a certain random Clifford
circuit with projective measurements. The particular dynamics that we consider are generated by starting with a state
of N spin-1/2 degrees of freedom that are initialized in a product state in the Pauli Y basis. The spins are subject to
nearest-neighbor, two-site CNOT gates; the “control” qubit is chosen randomly whenever it is applied. These Clifford
dynamics generate a high degree of entanglement when acting on states in the Pauli Y basis, as indicated by the blue
curve in Fig. 16a, which shows the growth and saturation of the half-system von Neumann entanglement entropy
after averaging over realizations of these unitary circuits for N = 200 spins. The von Neumann entanglement is given
as S(t) = Tr[ρA log2 ρA], where A is a subsystem of size N = 100, so that the saturating value of the entanglement
entropy is nearly maximal.
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FIG. 16. In the absence of measurements, the Clifford dynamics consisting of CNOT gates applied to an initial product
state in the Pauli Y basis leads to the rapid growth of the entanglement. The saturation of the half-system von Neumann
entanglement entropy S = Tr[ρ log2 ρ] to near-maximal values for a system of N = 200 spins is shown in (a). In the presence
of measurements in the Pauli basis, and after evolving the initial state for O(N) timesteps, we probe the reduction in the half-
system entanglement entropy after performing measurements at a distance x from the boundary of the subsystem. This is related
to the qudit-environment mutual information, as described in the main text. The decay of this change in the entanglement
appears qualitatively similar to the power-law behavior ∆S(x) ∼ x−3/2 for the values of the measurement probabilities shown.

We now include projective measurements in the dynamics. A single timestep of these “hybrid” dynamics now
includes a round of two-qubit CNOT gates followed by single-qubit measurements in the Pauli basis. The measurement
of each spin is done independently, and with probability p. For sufficiently small p, the entanglement entropy appears
to saturate to values that are consistent with a volume-law scaling of the entanglement (e.g. the green curve in
Fig. 16a). In the steady-state – after a number of timesteps scaling polynomially in N – we consider the change
in the half-system entanglement entropy, after performing a single-qubit measurement at x ∈ [0, N/4], where the
position of the measurement x is relative to the closest boundary of the subsystem. The decrease in the von Neumann
entanglement after performing this measurement is averaged over O(104) realizations of these dynamics to produce
the data in Fig. 16b. This averaged entanglement drop appears to be qualitatively close to the power-law behavior
∆S(x) ∼ x−3/2 predicted by the entanglement feature description of the volume-law entangled steady-state. This
behavior is supposed to emerge when ξ � x � N , where ξ is the correlation length in the Ising model description
of the entanglement dynamics, which is very small deep in the volume-law entangled phase. Without knowledge of
the precise scaling of the qudit environment mutual information when x/N ∼ O(1), we are unable to quantitatively
extract the power-law behavior and determine if this power depends on the measurement probability p within the
volume-law entangled phase.

Appendix H: Fermionic Gaussian State Approximations

In this section, we give an analytical calculation of the exponent 3/2 using the free fermion approximation. We
start by analyzing the transfer matrices T̂Uij and T̂Mi

in Eq. (8). Recall that the entanglement is mapped to Ising
spin correlation in the entanglement feature formulation. The unitary gate entangles the nearby sites together, hence
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T̂Uij generally promotes the ferromagnetic correlations between neighboring Ising spins. The on-site measurement

disentangles the qudit from its environment, hence T̂Mi generally breaks the Ising correlation and disorder the spin.
Therefore, it is reasonable to approximate T̂Uij ' eJZiZj and T̂Mi

' ehXi by the imaginary time evolution of Ising
coupling and transverse field terms respectively. This approximation allows us to simplify the entanglement dynamics
to an imaginary time Floquet problem of quantum Ising model, which can then be mapped to a free fermion Floquet
problem and solved analytically. In this way, we can obtain the exponent 3/2 analytically. In the simplified model,
the one-step transfer matrix for the entanglement feature state reads

T̂step =

N∏

i=1

eJZiZi+1

N∏

i=1

ehXi , (H1)

where N is the system size assuming the periodic boundary condition. We keep a finite N to regulate the calculation
and take the thermodynamic limit (N →∞) in the end. The relative ordering between T̂Uij and T̂Mi

does not change

results qualitatively. Here, we put T̂Uij on the left side of T̂Mi , as contrary to the ordering in Eq. (9), such that it
prepares a final state suitable for studying the measurement effect. Eq. (H1) imitates a Trotterized (1+1)D transverse
field Ising model in the imaginary-time and can be exactly solvable by a Jordan-Wigner transformation

χ2j−1 =
∏

1≤i<j
XiZj , χ2j =

∏

1≤i<j
XiYj , j = 1, 2, · · · , N , (H2)

with χ1 = Z1 and χ2 = Y1. The Z2 symmetry operator
∏
iXi of the Ising spins is also the fermion parity operator

of the Jordan-Wigner fermions. Since the Ising model is restricted to the Z2 even sector, the fermions are also in the
ZF2 even sector with the anti-periodic boundary condition. The transfer matrix rewritten in terms of fermions is

T̂step = exp


iJ

N∑

j=1

χ2jχ2j+1


 exp


ih

N∑

j=1

χ2j−1χ2j


 , χ2N+1 = −χ1 . (H3)

We can diagonalize the transfer matrix using the fermion formalism in the momentum space. We first define the
momentum-space fermion operators ck,A and ck,B with two sites (labeled by A and B) per unit cell,

χ2j−1 =
1√
N

∑

k

eijkck,A , χ2j =
1√
N

∑

k

eijkck,B . (H4)

The momentum takes the values in k ∈ [−π, π) with k = 2π
N

(
s+ 1

2

)
, s ∈ Z. For simplicity, N is fixed to be an even

number in order to avoid the k = π mode. Notice that ck,A/B are complex fermions with the k < 0 modes being

related to the k > 0 modes by c−k,A = c†k,A and c−k,B = c†k,B , so that the k < 0 modes can be excluded to avoid
double counting. As a result, the transfer matrix cast in the momentum space can be factorized into a product of
each momentum mode

T̂step =
∏

k>0

exp
(
−c†khJk ck

)
exp

(
−c†khhkck

)
=
∏

k>0

T̂ (k) , (H5)

where we have defined ck =
(
ck,A
ck,B

)
and

T̂ (k) = exp
(
−c†khJk ck

)
exp

(
−c†khhkck

)
,

hJk = J (sin kσx − cos kσy) ,

hhk = hσy.

(H6)

Different momentum modes can be diagonalized separately. Let us introduce

ak = cosh J coshh− eik sinh J sinhh , bk = cosh J sinhh− eik sinh J coshh . (H7)

Then the leading eigenvalue of T̂ (k) is given by

λk,+ = Re ak +
√
|bk|2 − (Im ak)2, (H8)
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and the corresponding leading eigenstate can be written as

|Wρ∞〉 ∝
∏

k>0

|λk,+〉 =
∏

k>0

(
Akc

†
k,A +Bkc

†
k,B

)
|vac〉 .

Ak = ib∗k , Bk = i Im ak +
√
|bk|2 − (Im ak)2 ,

(H9)

with |vac〉 being the vacuum state of ck,A/B . One can check that |Wρ∞〉 always has an even fermion parity and thus
is indeed a legitimate entanglement feature state (respecting the Ising symmetry Z2 in the spin language). It will be
useful mention that in the limit of h = 0, the state |Wρ∞〉 reduces to

|Wh=0〉 ∝
∏

k>0

(−ie−ikc†k,A + c†k,B) |vac〉 , (H10)

which corresponds to |Wh=0〉 = |⇑〉 + |⇓〉 in the spin language, because the transfer matrix contains only the Ising
coupling term

∏
i e
JZiZi+1 in this limit, whose leading eigenstate is the ferromagnetic cat state.

Having found the leading eigenstate |Wρ∞〉 of the transfer matrix T̂step, we can evaluate the entanglement feature
in any region A by

Wρ̄∞(A) =
〈A|Wρ∞〉
〈⇑ |Wρ∞〉

, (H11)

where |A〉 =
∏
i∈AXi |⇑〉 encodes the region A and |⇑〉 is the all-up state in the Ising language. To proceed, we notice

that the Z2 symmetry of the state |Wρ∞〉 allows us to replace |⇑〉 by its Z2 symmetric form |⇑〉+ |⇓〉 = |Wh=0〉 without
affecting the result. This amounts to the following replacements

|⇑〉 → |Wh=0〉 ,

|A〉 =
∏

i∈A
Xi |⇑〉 →

∏

i∈A
Xi |Wh=0〉 = Zi0

( ∏

i0<i<i1

Xi

)
Zi1 |Wh=0〉 = iχ2i0χ2i1−1 |Wh=0〉 ,

(H12)

where we have assumed the region A to be a single segment strictly between sites i0 and i1 (assuming i1 > i0, such
that |A| = i1− i0− 1 counts the size of A). In the above derivation, we are free to insert the Zi0Zi1 operator because
the state |Wh=0〉 = |⇑〉 + |⇓〉 has fully correlated that Zi0Zi1 |Wh=0〉 = |Wh=0〉. Then the string operator dressed
by the Z operators can be translated to the fermion bilinear operator following Eq. (H2). Plugging Eq. (H12) into
Eq. (H11), we arrive at

Wρ̄∞(A) =
〈Wh=0|iχ2i0χ2i1−1|Wρ∞〉

〈Wh=0|Wρ∞〉
. (H13)

which explains Eq. (14) by taking i0 = 0 and i1 = |A|+ 1. One can also choose to insert any of the four combination
of Zi0/Zi0−1 and Zi1/Zi1+1 and they yield different fermion operators by by construction give the same result. This
gauge choice comes from the fact that |Wh=0〉 appears on the left of the correlator. Note that we denote the numerator
of Eq. (H13) by Wρ∞(A) = 〈Wh=0|iχ2i0χ2i1−1|Wρ∞〉, which is the unnormalized entanglement feature.

Given the fermion Gaussian states |Wρ∞〉 in Eq. (H9) and |Wh=0〉 in Eq. (H10), it is straightforward to evaluate
Wρ̄∞ in Eq. (H13), and in the thermodynamic limit, the result reads

Wρ̄∞(A) =
i

2π

∫ π

−π
dkRke

ik|A| , Rk =
Im(ÃkB

∗
k)

|Ãk|2 + Re(ÃkB∗k)
, (H14)

where Ãk = ieikAk = −eikb∗k. Let us compute the integral using the contour integral method. We rewrite Rk as a
function of z = eik as follows

R(z) = i
P2(z)− sinh J sinhh

√
P4(z)

eJ sinhh(z2 − 1)
,

P2(z) = 2 sinh J coshhz − cosh J sinhh(z2 + 1) ,

P4(z) = (z − z1)(z − z2)(z − z3)(z − z4) , 0 < z1 < z2 < 1, z1z4 = z2z3 = 1 .

(H15)
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FIG. 4: (a)Comparison between the exact result of SA, the approximated result using contour integral and the
asymptotic expansion of that. The parameter for the plot is J = 1, h = 2/5. The constant C is chosen asp

(z3�z̄)(z4�z̄)

1�z̄2 with z̄ = z1+z2

2 being the middle point of the integration range. (b) We generate the entanglement
data using Eq. (D15), fit it by c1 + c2LA + c3 log LA and study c3’s dependence on LA. It can be seen that c3

exponentially converges to 3/2 as predicted by Eq. (D18).

Inside the contour, the integrand does not have any pole but the branch cut [z1, z2]. By the Cauchy’s integral theorem,
we can deform the contour to enclose only the branch cut [z1, z2]. Along the deformed contour, P2(z) is analytical
and thus can be ignored. We have arg(z � z1) = 0, arg(z � z2) = arg(z � z3) = arg(z � z4) = ⇡ above the branch
cut and arg(z � z1) = 0, arg(z � z2) = arg(z � z3) = arg(z � z4) = �⇡ below the branch cut. Consequently, we can
convert the contour integral to the following ordinary integral

W⇢1(A) =
sinh J

⇡eJ

Z z2

z1

dx

p
(x� z1)(z2 � x)(z3 � x)(z4 � x)

1� x2
xLA�1 . (D13)

When the system is deep in the volume-law phase, J � 1 � h, z1 ⌧ z2 ⌧ 1 and the (z3 � x)(z4 � x) and 1 � x2

factors are both of order O(1) during the whole integral. Therefore, we approximate them by a constant, which can
be fixed by comparing with the exact result, namely

W⇢1(A) ⇡ sinh J

⇡eJ
C

Z z2

z1

dx
p

(x� z1)(z2 � x)xLA�1 . (D14)

The rest of integral is the hypergeometric function. Recalling the Euler’s formula, we have

W⇢1(A) =
sinh J zLA

1 z2

4eJLA(LA + 1)
C

✓
1 +

z1

z2

◆
F

✓
�1

2
, 1� LA, 1, 1� z2

z1

◆

�
✓

(1 + 2LA) + (1� 2LA)
z2

z1

◆
F

✓
1

2
, 1� LA, 1, 1� z2

z1

◆� . (D15)

This provides a good approximation to the exact result, as is shown in Fig. 4. To compute the large LA expansion of
the above expression, we need the asymptotic expansion of the hypergeometric function F (↵, �; �; z) with respect to
a large positive �. Let us recall the definition of (Gaussian) Hypergeometric functions

F (↵, �; �; z) =

1X

n=0

(↵)n(�)n

(�)n

zn

n!
, (a)n =

�(a + n)

�(a)
. (D16)

If we assume the expansion is interchangable with the infinite sum, then (�)n can be replaced with its large � expansion
which leads to

F (↵, �; �; z) ⇠
1X

n=0

(↵)n

(�)n

(�z)n

n!
= M(↵, �;�z), (D17)

FIG. 17. (a)Comparison between the exact result of SA, the approximated result using contour integral and the asymptotic

expansion of that. The parameter for the plot is J = 1, h = 2/5. The constant C is chosen as

√
(z3−z̄)(z4−z̄)

1−z̄2 with z̄ = z1+z2
2

being

the middle point of the integration range. (b) We generate the entanglement data using Eq. (H19), fit it by c1 +c2|A|+c3 log |A|
and study c3’s dependence on |A|. It can be seen that c3 exponentially converges to 3/2 as predicted by Eq. (H22).

P4(z) is a four-th order polynomial with two of its zeros sitting inside the unit circle and the other two sitting outside.
When writing

√
P4(z), we implicitly define the two branch cuts to be [z1, z2] and [z3, z4] so that one is inside and the

other one is outside the contour. The whole integral can be written as

Wρ̄∞(A) =
i

2π

∮

|z|=1

dz
P2(z)− sinh J sinhh

√
P4(z)

eJ sinhh(z2 − 1)
z|A|−1 . (H16)

Inside the contour, the integrand does not have any pole but the branch cut [z1, z2]. By the Cauchy’s integral theorem,
we can deform the contour to enclose only the branch cut [z1, z2]. Along the deformed contour, P2(z) is analytical
and thus can be ignored. We have arg(z − z1) = 0, arg(z − z2) = arg(z − z3) = arg(z − z4) = π above the branch
cut and arg(z − z1) = 0, arg(z − z2) = arg(z − z3) = arg(z − z4) = −π below the branch cut. Consequently, we can
convert the contour integral to the following ordinary integral

Wρ̄∞(A) =
sinh J

πeJ

∫ z2

z1

dx

√
(x− z1)(z2 − x)(z3 − x)(z4 − x)

1− x2
x|A|−1 . (H17)

When the system is deep in the volume-law phase, J � 1 � h, z1 � z2 � 1 and the (z3 − x)(z4 − x) and 1 − x2

factors are both of order O(1) during the whole integral. Therefore, we approximate them by a constant, which can
be fixed by comparing with the exact result, namely

Wρ̄∞(A) ≈ sinh J

πeJ
C

∫ z2

z1

dx
√

(x− z1)(z2 − x)x|A|−1 . (H18)

The rest of integral is the hypergeometric function. Recalling the Euler’s formula, we have

Wρ̄∞(A) =
sinh J z

|A|
1 z2

4eJ |A|(|A|+ 1)
C

[(
1 +

z1

z2

)
F

(
−1

2
, 1− |A|, 1, 1− z2

z1

)

−
(

(1 + 2|A|) + (1− 2|A|)z2

z1

)
F

(
1

2
, 1− |A|, 1, 1− z2

z1

)] . (H19)

This provides a good approximation to the exact result, as is shown in Fig. 17. To compute the large |A| expansion
of the above expression, we need the asymptotic expansion of the hypergeometric function F (α, β; γ; z) with respect
to a large positive β. Let us recall the definition of (Gaussian) Hypergeometric functions

F (α, β; γ; z) =

∞∑

n=0

(α)n(β)n
(γ)n

zn

n!
, (a)n =

Γ(a+ n)

Γ(a)
. (H20)
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If we assume the expansion is interchangable with the infinite sum, then (β)n can be replaced with its large β expansion
which leads to

F (α, β; γ; z) ∼
∞∑

n=0

(α)n
(γ)n

(βz)n

n!
= M(α, γ;βz), (H21)

where M(a, b; z) is the confluent hypergeometric function. As a result, the large parameter expansion of F (α, β; γ; z)
can be reduced to the large argument expansion of M(a, b; z) and we have

Wρ̄∞(A) ≈ sinh J z2

2eJ
√
π
C

(
z2

z1
− 1

)1/2

z
|A|
1 e(1−z1/z2)|A||A|−3/2 , (H22)

The behavior of Eq. (H22) is also plotted in Fig. 17(a) as a comparison. The discrepancy only comes from the
inaccurate exponential factor in Eq. (H22) while the power-law factor turns out to be true as verified in Fig. 17(b) as
well as in the main text.
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