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We study direct and indirect magnetoexcitons in Rydberg states in monolayers and double-layer
heterostructures of Xenes (silicene, germanene, and stanene) in external parallel electric and mag-
netic fields, applied perpendicular to the monolayer and heterostructure. We calculate binding
energies of magnetoexcitons for the Rydberg states, 1s, 2s, 3s, and 4s, by numerical integration of
the Schrödinger equation using the Rytova-Keldysh potential for direct magnetoexciton and both
the Rytova-Keldysh and Coulomb potentials for indirect excitons. Latter allows understanding a
role of screening in Xenes. In the external perpendicular electric field, the buckled structure of the
Xene monolayers leads to appearance of potential difference between sublattices allowing to tune
electron and hole masses and, therefore, the binding energies and diamagnetic coefficients (DMCs)
of magnetoexcitons. We report the energy contribution from electric and magnetic fields to the
binding energies and DMCs. The tunability of the energy contribution of direct and indirect mag-
netoexcitons by electric and magnetic fields is demonstrated. It is also shown that DMCs of direct
excitons can be tuned by the electric field, and the DMCs of indirect magnetoexcitons can be tuned
by the electric field and manipulated by the number of hBN layers. Therefore, allowing the possi-
bility of electronic devices design that can be controlled by external electric and magnetic fields and
the number of hBN layers. The calculations of the binding energies and DMCs of magnetoexcitons
in Xenes monolayers and heterostructures are novel and can be compared with the experimental
results when they will be available.

I. INTRODUCTION

After graphene monolayer was successfully isolated and identified in 2004 [1], the rapid study of fundamental
properties and applications in nano- and quantum devices of two dimensional materials has begun [2–5]. Initially, the
main focus was graphene that led to the current vast body of knowledge about the structure, electric, magnetic, and
transport properties of graphene [6, 7]. Despite its uniqueness, graphene has a closed energy gap at K/K ′ points of
the Brillouin zone complicating its application in electronics. As a result, the search and study of other 2D materials
are underway.

Transition-metal dichalcogenides (TMDCs) and Xenes monolayers are among the main focus of the current research
since TMDCs have the direct energy gap and Xenes have the energy gap that can be opened by the perpendicular
electric field at K/K ′ points that can be utilized in the electronics. In this paper, we adopt Xenes definition given
in Ref. [8, 9]. Xenes is a general name given to 2D buckled materials formed by elements from XIV group (First
Generation [10]): silicene (Si), germanene (Ge), and stanene (Sn). In contrast to graphene, other elements from XIV
group have the most stable monolayer form when atoms arranged in the honeycomb pattern where lattices A and B
are offset with respect to the plane of the monolayer [9, 11]. The offset between latices is called the buckling constant
or buckling factor, d0. This unique structure of Xenes makes monolayers sensitive to the external electric field applied
perpendicular to the monolayer allowing to control the band gap size.

The influence of the magnetic field on the excitonic wave function and binding energy of the exciton is well estab-
lished. Excitons in a bulk, double quantum wells or 2D structures in the presence of the magnetic field result in a
possible formation in these structures of quasiparticles called magnetoexcitons. Magnetoexcitons in TMDCs mono-
layers present a great interest since the binding energy of the magnetoexcitons can be tuned by the perpendicular to
the monolayer magnetic field. On one hand, magnetoexcitons in TMDCs monolayers have been extensively studied
in the past few years. For example, the exciton binding energies for Rydberg states are reported in Refs. [12–28], the
Zeeman shift has been considered in Refs. [12–15, 18, 19, 22, 24–26, 29, 30, 35, 37], while the diamagnetic shift was
addressed in Refs. [13, 15, 18, 19, 21, 22, 26, 30–37]. On the other hand, there is a lack of research on magnetoexci-
tons in Xenes monolayers since the synthesis of Xenes monolayers has not been very successful compared to TMDCs
because of Xenes instability in the air [38]. In contrast to graphene, silicene monolayers do not occur in nature.
However, silicene nanoribons were experimentally synthesized on a metal substrate [39, 40] that opened the way for
silicene, germanene, and stanene monolayers being transferred on metal [10, 41–44] and an insulating substrate such
as MoS2 [45] and hexagonal boron nitride (hBN) [46, 47]. Depositing Xenes on a metallic substrate is easier. For
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example, silicene can be grown on Ag (111) [38, 48] or germanene synthesis by dry deposition on Au (111) surface
[42]. However, depositing Xene on a metal significantly alters properties of the Xene monolayer. Depositing Xenes
on hBN is harder, but hBN preserves properties of the Xenes since Xenes and hBN weakly interact [46]. Properties
of Xenes on different substrates are presented in Refs. [9, 46].

Nevertheless, magnetoexcitons in Xenes present a great interest for fundamental research and application in elec-
tronic devices. Out of all Xenes, silicene is most studied [49]. Due to Xenes monolayer unique buckling structure,
electron-hole masses depend on the band gap that in return depends on the perpendicular to the monolayer electric
field. Since the exciton binding energy depends on the reduced mass of the exciton, by applying the electric field the
exciton binding energy can be tuned.

Optical properties of Xenes have been addressed in Refs. [11, 50–52], and magneto-optical properties are studied
in Ref. [53, 54]. Hall effect [48], the valley-locked spin-dependent Seeback effect [55], anomalous quantum Hall effect
[56], and quantum spin Hall effect [57] are being addressed since they are essential for the use of Xenes in nano-
and quantum devices [57–61]. Currently, there is a lack of studies on magnetoexciton binding energies, Zeeman shift,
and diamagnetic coefficients (DMCs) in Xenes monolayers. However, the Landau levels have been addressed in Refs.
[48, 53, 62]. Moreover, a particular interest presents the study of magnetoexcitons formation in a double-layer structure
of Xenes separated by layers of hBN. In such system electrons are confined in one Xene monolayer, while an equal
number of positive holes are located in a parallel Xene monolayer at a distance D away. Thus, the electron and hole
are spatially separated by a dielectric. The system of the charge carriers in two parallel Xenes layers can be treated
as a two-dimensional system without interlayer hopping. In this system, the electron-hole recombination due to the
tunneling of electrons and holes between different Xenes monolayers is suppressed by the dielectric barrier produced by
hBN monolayers that separates the Xenes monolayers. Therefore, the indirect (dipolar) excitons, formed by electrons
and holes, located in two different Xenes monolayers, have a longer lifetime than the direct magnetoexcitons [63]. In
the past 6 years binding energies of Rydberg states of excitons in TMDCs monolayers and heterostructures in the
magnetic field have been intensively studied experimentally and theoretically [12–28], and the diamagnetic shifts were
considered in Refs. [13, 15, 18, 19, 21, 22, 26, 30–37]. This motivates us to focus our study solely on the s Rydberg
states of excitons in Xenes in the magnetic field.

In this paper, we study the dependence of the magnetoexciton binding energy of Rydberg states, 1s, 2s, 3s, and 4s,
on the perpendicular to the monolayer electric and magnetic fields and calculate the diamagnetic coefficients for (i) the
direct A magnetoexcitons in Xenes monolayers and (ii) for the indirect A magnetoexcitons in Xenes heterostructure
formed by two monolayers of the same Xene and separated by N monolayers of hBN. The heterostructure is denoted
as X-hBN-X, and the number of hBN layers is varied between 1 and 6. We numerically solve the Schrödinger equation
for the magnetoexciton in external electric and magnetic fields to obtain eigenfunctions and eigenvalues. Then we
calculate the energy contribution from the magnetic field to the binding energy, as well as its dependence on the
applied electric field. From the energy contribution from the magnetic field to the binding energy, we extract the
DMCs. For the direct exciton, we solve the Schrödinger equation with the Rytova-Keldysh potential [64, 65], and
for the indirect exciton, we solve the Schrödinger equation with the Rytova-Kyldysh and the Coulomb potentials.
This allows to understand the role of screening in Xenes. So, we study the dependence of the binding energy of
indirect magnetoexcitons on the external electric and magnetic fields, as well as on the separation of the Xenes layers
by the layers of hBN. The calculations of the binding energies of magnetoexcitons and DMCs in Xenes monolayers
and heterostructure are reported for the first time. As a result, our study demonstrate a tunability of the energy
contribution of direct and indirect magnetoexcitons by electric and magnetic fields. It is shown that DMCs of direct
excitons can be tuned by the electric field, while the DMCs of indirect magnetoexcitons can be tuned by the electric
field and manipulated by the number of hBN layers. Therefore, we demonstrate a possibility of electronic devices
design that can be controlled by the external electric and magnetic fields and the number of hBN layers.

The paper is organized in the following way. In Sec. II is given the theoretical formalism for the description of
an electron and hole in buckled 2D materials. Here we present the effective mass approach for magnetoexcitons in
buckled 2D materials and the Schrödinger equation for the exciton in parallel electric and magnetic fields, which are
perpendicular to the Xene monolayer. The theoretical consideration of indirect magnetoexcitons in Xenes heterostruc-
ture is given in Subsec. II C. The results of calculations of the energy contribution from the electric and magnetic
fields to the binding energy and diamagnetic shifts of the direct and indirect magnetoexcitons and dependence of the
energy contribution and diamagnetic shifts for indirect magnetoexcitons in Xenes heterostructures on the number of
hBN layers on the external electric field are presented in Sec. III. Conclusions follow in Sec. IV.
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FIG. 1: (Color online) Schematics for magnetoexcitons in Xenes monolayer and heterostructure. (a) A direct magnetoexciton
in the freestanding buckled honeycomb lattice structure of silicene monolayer. (b) A magnetoexciton in silicene encapsulated
monolayer. (c) An indirect magnetoexciton in silicene heterostructure.

II. THEORETICAL FORMALISM

A. Electron and hole in buckled 2D materials

Let us provide an outline of the low-energy model that describes excitons states in Xenes monolayers and het-
erostructures under applied electric and magnetic fields. We are considering an electron and hole in parallel magnetic
B(0, 0, Bz) ≡ B(0, 0, B) and electric E(0, 0, Ez) ≡ E(0, 0, E) fields, which are perpendicular to a Xene monolayer or
heterostructure as it is shown in Fig. 1. Monolayers of silicene, germanene, and low-buckled stanene can be pictured
as honeycomb graphene monolayers but have an out of plane buckling such that the A and B triangular sublattices
are offset with respect to the plane of the monolayer and sit in vertical planes separated by a distance d0. This
distance is known as the buckling constant or buckling factor. The intrinsic sensitivity of Xenes to an external electric
field applied perpendicular to the plane of the monolayer is mounted due to the offset between the two triangular
sublattices. In particular, this asymmetry causes an on-site potential difference to occur between sublattices when
an out-of-plane electric field is applied. The band structure of Xenes in the vicinity of the K/K ′ points resembles
graphene when there is no external electric field; though, the intrinsic gaps of Xenes are significantly larger than that
of graphene. The application of a perpendicular electric field creates a potential difference between the sublattices,
causing a change in the band gap in the monolayer Xenes, which in turn changes the effective masses of the electrons
and holes.

The single-particle spectrum of electronic states in monolayer Xenes in the electric field acting along the z-axis in
the vicinity of the K/K ′ points is described by a two-dimensional (2D) massive Dirac Hamiltonian is given in Ref.
[66] as (~ = c = 1):

Ĥ0 = vF (ξpxτ̂x + py τ̂y)− ξ∆soσ̂z τ̂z + ∆z τ̂z. (1)

In Hamiltonian (1) vF is the Fermi velocity, px and py are the components of momentum in the monolayer xy-plane,
relative to the K points, τ̂ and σ̂ are the pseudospin and real spin Pauli matrices, respectively, 2∆so is the intrinsic
band gap, ξ, σ = ±1 are the valley and spin indices, respectively, and ∆z = ed0Ez ≡ ed0E is the gap induced by the
external electric field Ez ≡ E, acting along the z-axis, where d0 in the latter expression is the buckling constant. As it
follows from Refs. [56, 66, 67], Hamiltonian (1), which describe electronic states in Xenes, is analogous to the 2D Dirac
Hamiltonian for TMDCs monolayers. The first term in Eq. (1) is the same as that of the low-energy Hamiltonian in
graphene [6, 68]. The last term in (1) describes the sublattice potential difference that could arise from the application
of a perpendicular electric field [41, 48, 56, 67], while the spin-orbit coupling [69] with an intrinsic band gap of 2∆so

is given by the second term. The Hamiltonian for the single-particle spectrum of electronic states in monolayer Xenes
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can be obtained by replacing p → p + eA, where A is the vector potential such that A = ∇ × B, where B is the
magnetic field. Using Eq. (1) one may write the low-energy eigenvalues for charge carriers near the K/K ′ points as
[66]:

E(k) =
√

∆2
ξσ + v2F p

2, (2)

where

∆ξσ = |ξσ∆so − ed0E| (3)

is the electric field-dependent band gap at p = 0. We note that when E = 0, the spin-up and spin-down bands of the
valence and conduction bands are degenerate. In other words, spin-orbit splitting only manifests itself at non-zero
external electric fields. At non-zero electric fields, both the valence and conduction bands split, into upper bands
with a large gap (when ξ = −σ), and lower bands with a small gap (when ξ = σ). We call the excitons formed by
charge carriers from the large gap A excitons, and those formed by charge carriers in the small gap B excitons. The
direct bright A and B excitons consist of the electron and hole with parallel spins [70, 71]. There exist two additional
states when the electron and hole have antiparallel spins, but these excitons are optically forbidden and called spin
forbidden dark excitons. The schematic band structure of A and B excitons formation in K and K ′ valleys under
the right- and left-polarized light, respectively, is given in Fig. 2. Following Ezawa [67], we show the case when the
applied perpendicular electric field is bigger than the critical value of the electric field, Ec. When the external field
reaches a critical value Ec = ∆so/(ed0), the lower bands form a Dirac cone at the K/K ′ points. The corresponding
values of the critical electric field for monolayer Xenes are given in Ref. [98]. The conduction and valence bands are
parabolic in the vicinity of the K/K ′ points. One can find the effective mass of charge carriers near the K/K ′ points
as m = ∆ξσ/v

2
F [11, 72]. The effective masses of electrons and holes are the same due to the symmetry between the

lowest conduction and highest valence bands, and can be written as a function of the external electric field in the
following form:

m =
|ξσ∆so − ed0E|

v2F
. (4)

Therefore, it is worth mentioning that the reduced mass of an exciton in Xenes µ = m/2 is a function of the
external electric field E for A and B excitons. Following ab initio calculations [41], which determined that the crystal

FIG. 2: Schematic band structure and electronic dispersions in the silicene monolayer for bright and dark excitons in the K
and K′ valleys when the electric field, E, is perpendicular to the monolayer. The pseudospin is opposite to spin at the K
point. Spin-up and spin-down bands are denoted by red and blue lines, respectively. The yellow shadowed ovals are the bright
excitons and correspond to the lowest optically induced transition between the bands of the same spin at the K and K′ point.
The magenta shadowed oval is the spin-forbidden dark exciton (the second one is not shown). The units of the vertical and
horizontal axes are arbitrary. At point K the right circular polarized light couples to both A and B exciton transitions. At
point K′ the left circular polarized light couples to A and B excitons.
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structure of silicene becomes unstable around 2.6 V/Å, we consider in our calculations external electric fields up to
2.7 V/Å. Analysis of Eq. (4) shows that the value of reduced mass depends on the band gap, Fermi velocity, and
buckling constant. For example, for freestanding silicene, germanene, and stanene 2∆so is 1.9 (1.55) meV [11] ([73]),
33 (23.9) meV [11] ([73]), and 101 (73.5) meV [11] ([74]), while the corresponding Fermi velocities are 6.5 (5.3)×105

m/s [11] ([75]), 6.2 (5.2)×105 m/s [11] ([75]), and 5.5 (4.8 )×105 m/s [11] ([74]). Let us notice that the citations in
parenthesis are related to the data in parentheses. At small electric fields, germanene and especially stanene show
significant differences between the reduced masses of the A and B excitons. The latter is due to their large intrinsic
band gaps. Silicene, which has an intrinsic band gap on the order of a couple of meV, exhibits very little difference
between the reduced masses of A and B excitons, even at relatively small electric fields. At large electric field the
difference between the A and B exciton reduced mass is negligible in silicene and germanene. In all cases, the mass
of the A exciton exceeds the mass of the B exciton.

B. Effective mass approach for magnetoexcitons in buckled 2D materials

Excitonic systems are many-body systems, and the most systematic approach requires the use of quantum field
theory. However, these excitonic systems can be well approximated and treated in the framework of few-body physics.
There are different approaches to solving the two-body eigenvalue and eigenfunction problem in two-dimensions for
interacting electrons and holes [76]. One can start from the effective low-energy single-electron Hamiltonian. As it is
mentioned above, we consider an electron and hole in parallel magnetic B(0, 0, B) and electric E(0, 0, E) fields, which
are perpendicular to a monolayer. Using the low-energy effective two-band single-electron Hamiltonian in the form
of a spinor with a gapped spectrum in the k · p approximation one obtains the two-particle Dirac type equation. In
the case of Xenes starting from Hamiltonian (1) for two independent particles with masses mj and coordinates rj we
obtain product states with single particle wave function ψj(rj) of energy ej from Dirac type equation that reads:

vF

(
−σξ∆so/vF + ed0E/vF ξ∂xj

+Ax(rj)− i∂yj − iAy(rj)
ξ∂xj

+Ax(rj) + i∂yj + iAy(rj) σξ∆/vF − ed0E/vF

)(
ϕ1,j(rj)
ϕ2,j(rj)

)
= ej

(
ϕ1,j(rj)
ϕ2,j(rj)

)
. (5)

In Eq. (5) Ax and Ay are the x and y components of the vector potential. The term related to the electric field
vanishes because it is directed along z-axis. However, the effect of the electric field action is present through the
effective mass term ed0E/vF . The component ϕ1,j of the Dirac spinor satisfies the following equation

1

2mj
[(i∂xj

+Ax,j)
2 + (i∂yj +Ay,j)

2]ϕ1,j =
e2j + v2FBz − (σξ∆so + ed0E)2

2v2Fmj
ϕ1,j (6)

and the second component of the spinor is related to the first as

ϕ2,j(rj) =
vF

ej + vF (σξ∆so + ed0E)2
[
i∂xj

+Ax(rj)− ∂yj + iAy(rj)
]
ϕ1,j(rj) . (7)

This implies that the eigenvalue of the Dirac equation reads ej =
√

2mjv2FEj − ~v2FB + (2∆so + ed0E)2, where Ej
is the eigenvalue of the corresponding Schrödinger equation (6). Under the assumption that the electron and hole
bands are isotropic and parabolic, which is a good approximation for the low-energy spectrum of 2D materials,
this Hamiltonian implies that both the electron and hole single particle states form a single parabolic band. The
corresponding eigenproblem equation reduces to the Schrödinger equation in the effective mass approximation. This
approach is common in the literature to describe excitons in 2D materials. See, for example, Refs. [77–81]. We cite
these works, but the recent literature on the subject is not limited by them. Below, we follow the effective mass
approximation and, therefore, considering the Mott-Wannier excitons [82].

To find the eigenfunctions and eigenenergies of a 2D exciton in Xenes in external parallel electric and magnetic fields,
we write the Schrödinger equation for an interacting electron and hole. Because we are considering the varying electric
field E, which is directed along z-axis, the corresponding term in the 2D Schrödinger equation vanishes. However, the
effect of the electric field action is present through the effective mass. Thus one can write 2D Schrödinger equation
for the interacting electron-hole system in the following form [83]:[

1

2me
(−i∇e + eA(re))

2
+

1

2mh
(−i∇h − eA(rh))

2
+ V (re, rh)

]
ψ (re, rh) = Eψ (re, rh) , (8)

where e and h are the indices referring to the electron and hole, respectively, re and rh are 2D coordinates of the electron
and hole, me and mh are the masses of charge carriers given by Eq. (4), A(re(h)) = B× re(h)/2 is a gauge vector
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potential, V (re, rh), is the potential of interaction between the electron and hole confined in 2D space. The latter
interaction between the electron and hole in three-dimensional (3D) homogeneous dielectric environments is described
by the Coulomb potential, but this interaction is modified in 2D monolayer. This modification is a result of the reduced
dimensionality and includes screening effects. The corresponding potential was first derived in Ref. [64] and a decade
later was independently obtained in Ref. [65]– we refer to it as the Rytova-Keldysh (RK) potential. For almost a
decade the celebrated Rytova-Keldysh potential has been widely used to describe electromagnetic interaction between
charged carriers of few-body complexes in transition-metal dichalcogenides, phosphorene, and Xenes monolayers. The
RK potential is a central potential and the interaction between the electron and hole for direct excitons in a Xene
monolayer has the form [64, 65]:

VRK(r) = −πke
2

2κρ0

[
H0

(
r

ρ0

)
− Y0

(
r

ρ0

)]
, (9)

where r = re − rh is the relative coordinate between the electron and hole. In Eq. (9), e is the charge of the electron,
κ = (ε1 + ε2)/2 describes the surrounding dielectric environment, ε1 and ε2 are the dielectric constants either below
and above the monolayer, in the case of direct excitons in a Xene monolayer, H0 and Y0 are the Struve and Bessel
functions of the second kind, respectively, and ρ0 is the screening length. The screening length ρ0 can be written
as [78] ρ0 = (2πχ2D)/(κ), where χ2D is the 2D polarizability, which in turn is given by [65] χ2D = lε/4π, where ε is
the bulk dielectric constant of the Xene monolayer.

Following Refs. [83–88], in Eq. (8) we introduce the coordinate of the center-of-mass R = mere+mhrh
M and the

relative motion coordinate r = re−rh, where the total mass of the system is M = me+mh, and consider the magnetic
field pointing in z-direction that is perpendicular to the monolayer where the exciton is located, B = (0, 0, B). After
performing the standard procedure for the coordinate transformation to the center-of-mass, the Hamiltonian for Eq.
(8) becomes:

H = − 1

2M

∂2

∂R2
− 1

2µ

∂2

∂r2
+
e2

8µ
(B ×R)2 +

e2µ2

8

(
1

m3
e

+
1

m3
h

)
(B × r)2 − ie

2M
(B × r) · ∂

∂R
−

− ie
2µ

(B ×R) · ∂
∂r
− ieγ

2µ
(B × r) · ∂

∂r
+
e2γ

4µ
(B ×R) · (B × r) + V (r), (10)

where γ = mh−me

mh+me
and µ = memh

me+mh
is the reduced mass. It is worth noting that (10) is written for the case when

masses of the electron and hole are different: mh 6= me. In the case of the Xenes, the masses of electrons and holes
are equal, mh = me = m, and, therefore, γ = 0 and µ = m

2 . The latter leads to a significant simplification of the

Hamiltonian (10). The terms ieγ
2µ (B × r) · ∂∂r = 0 and e2γ

4µ (B ×R) · (B × r) = 0 when γ = 0.

At the next step following Ref. [83, 85, 86] we introduce an operator P̂ , which commutes with the Hamiltonian of
Eq. (8), and is defined as:

P̂ = −i∇R −
e

2
(B × r). (11)

Since P̂ commutes with the Hamiltonian (10), it has the same eigenfunction as Eq. (8). Therefore, one can write the
wave function for the exciton in the magnetic field as [85, 86]:

ψ(R, r) = e[iR·(P+ e
2B×r)]Φ(r − ρ̃0), (12)

where we take into account that γ = 0 and ρ̃0 = 1
eB2 (B × P ). After substituting the wave function ψ(R, r) in Eq.

(8), the Schrödinger equation for the relative motion of the electron and hole reads:

[
P 2

4m
+

e

2m
P · (B × r)− 1

m

∂2

∂r2
+

e2

4m
(B × r)2 − ie

m
(B ×R) · ∂

∂r
+ V (r)

]
Φ = EΦ. (13)

Finally, the equation for a 2D electron-hole pair with zero center-of-mass momentum reads [86, 89]:

[
− 1

m

∂2

∂r2
+

e2

4m
(B × r)2 + V (r)

]
Φ(r) = EΦ(r). (14)

After separating the angular variable, Eq. (15) can be rewritten as:
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[
− 1

m

∂2

∂r2
− 1

m

1

r

∂

∂r
+

e2

4m
(B × r)2 + V (r)

]
Φ(r) = EΦ(r). (15)

Equation (15) describes the Mott–Wanner magnetoexciton in Rydberg states in Xenes. This equation has a long
history of the solution in the case of the electron-hole Coulomb interaction [83–92]. In earlier works, equation for
the Mott–Wanner magnetoexcitons (15) has been previously solved by Wentzel-Krainers-Brillouin method [88], by
numerical integration [90], using Padé approximation based on perturbation expansions about the weak- and strong-
field limits [89, 92]. We cite these early works, but the recent literature on the subject is not limited by them.

To find the binding energy of the direct magnetoexciton in Xenes, we use the code implemented in Ref. [93]. The

code was modified in a way that the Schrödinger equation explicitly includes e2

4m (B × r)2 term and can be solved for
the effective mass m that varies with the application of the external electric field. The latter allows us to numerically
solve Eq. (15), which includes the contribution of electric and magnetic fields. In our numerical calculations, the
maximum number of iterations for calculations of the binding energy is 1012, and increasing this number does not
affect binding energies. The increase of the maximum number of iterations from 1010 to 1012 gives the change of
the binding energy less than 10−3%. The implementation of this code for TMDCs materials in Ref. [37] reproduce
experimental binding energies reported in Refs. [22, 26, 35] within 7%, and theoretical binding energies given in Refs.
[34, 94], obtained using the stochastic variation and the path integral Monte-Carlo methods, respectively, within 1%.
The benefit of our approach is that we can obtain the eigenfunctions and eigenenergies of the magnetoexcitons for
any value of the electric and magnetic fields. In our calculations, we do not have a linear term (the Zeeman shift) [95]
since we consider the Rydberg s states for which B ·L = 0 and we do not consider spin - magnetic field interaction,
S ·B = 0 [95]. Therefore, the energy contribution from the electric and magnetic fields to the binding energy that
we calculate is the diamagnetic shift.

The diamagnetic coefficient has not been reported in the literature for magnetoexcitons in Xenes monolayers. How-
ever, DMCs were calculated and reported for magnetoexcitons in TMDCs monolayers. In contrast to our approach
of calculating the diamagnetic coefficient, in Refs. [19, 22, 35] the authors solve the Schrödinger equation without
magnetic field and treat the magnetic field as the small perturbation. In Ref. [26] authors developed the model for
revealing exciton masses and dielectric properties of the monolayer semiconductors with high magnetic fields by nu-
merically solving the corresponding Schrödinger equation with the RK potential, while in Ref. [22], the corresponding
Hamiltonian was diagonalized to find the DMCs.

C. Indirect magnetoexcitons in Xenes heterostructure

Let us now consider the indirect magnetoexcitons formed by electrons and holes located in two different Xene
monolayers which are separated by N layers of hBN monolayers. Such magnetoexcitons have a longer lifetime than the
direct excitons due to longer recombination time. The electron and hole via electromagnetic interaction V (r), where r
is the distance between the electron and hole in different layers, could form a bound state, i.e., a magnetoexciton, now
in 3D space. Therefore, to determine the binding energy of the magnetoexciton one must solve a two-body problem
in restricted 3D space because the motion in z-direction is restricted. The relative separation r between the electron
and hole can be written in cylindrical coordinates as:

r = ρρ̂+Dẑ. (16)

In Eq. (16), ρ̂ and ẑ are unit vectors. Writing r in cylindrical coordinates allows us to treat the case of direct
excitons in a Xene monolayer and spatially indirect excitons in X-hBN-X heterostructures on equal footing. If we set
D = 0, and Eq. (16) becomes a purely 2D equation, with ρ representing the separation between the electron and hole
sharing the same plane. Throughout this paper, we consider the separation between two Xene monolayers in steps of
calibrated thickness, lhBN = 0.333 nm, corresponding to the thickness of one h-BN monolayer. For spatially indirect

excitons, the relative coordinate r =
√
ρ2 +D2, where D = l + NlhBN, l is the Xene monolayer thickness and N is

the number of hBN monolayers.

We perform calculations using both the RK and Coulomb potentials. This allows a better understanding of the im-
portance of the screening effect in X-hBN-X heterostructures. For indirect excitons, the expressions for the interaction
between the electron and hole in Eq. (15) can be written as:

VRK(
√
ρ2 +D2) = −πke

2

2κρ0

[
H0

(√
ρ2 +D2

ρ0

)
− Y0

(√
ρ2 +D2

ρ0

)]
, (17)
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for the RK potential, and

VC

(√
ρ2 +D2

)
= − ke2

κ
(√

ρ2 +D2
) (18)

for the Coulomb potential. Equations (17) and (18) describe the interaction between the electron and hole that are
located in different parallel Xenes monolayers separated by a distance D. Therefore, one can obtain the eigenfunctions
and eigenenergies of magnetoexcitons by solving Eq. (15) using the potential (9) for direct magnetoexcitons, or using
either potential (17) or (18) for indirect magnetoexcitons.

It is worth mentioning that the RK potential was originally formulated as an explicitly 2D description of the
Coulomb interaction. Nevertheless, there have been recent attempts to apply the RK potential to indirect excitons
in van der Waals heterostructures of 2D materials such as the TMDCs, phosphorene, and Xenes [80, 81, 93, 96–98].
The logic behind considering the RK potential for indirect excitons follows from two considerations: (i) the dielectric
environment is still inhomogeneous, just as in the case of the direct exciton – when the interlayer separation D is
smaller than, or comparable to, the RK potential screening length ρ0 and the excitonic gyration radius

√
〈r2〉 - the

electron-hole interaction potential must account for both the Xene monolayers and the interlayer dielectric, and (ii)

as the interlayer separation D becomes larger than ρ0, the total separation, r =
√
ρ2 +D2, between the electron

and hole necessarily becomes much larger than ρ0, and therefore the RK potential converges towards the Coulomb
potential. Let us emphasize that we are not claiming definitively that the RK potential provides the most accurate
description of the spatially indirect exciton. Therefore, we are comparing the results obtained using VC and VRK
potentials.

III. RESULTS OF CALCULATIONS AND DISCUSSION

We report the energy contribution from the electric and magnetic fields to the binding energy of the magnetoexcitons
in Rydberg states 1s, 2s, 3s, and 4s, in the freestanding silicene (FS Si), germanene (FS Ge), and stanene (FS Sn)
(Fig. 1a), encapsulated silicene (Si type I, Si type II) [46] monolayers (Fig. 1b), and Xenes heterostructure (Fig. 1c) as
a function of the external electric and magnetic fields perpendicular to the monolayer or heterostructure. The results
of calculations of diamagnetic coefficients for excitons in the above mentioned systems and their dependence on the
external electric field are presented as well. The external electric field, E, does not appear in the final Schrödinger
equation that we are solving. However, the dependence of the binding energies and DMCs on the external electric
field enters the Schrödinger equation through the effective masses of the electron and hole.

In our calculations, we vary the external magnetic field in the range from 0 T to 30 T in the increment of 1 T.
We take a value of the external electric field, E, starting above the critical value Ec in the increment of 0.1 V/Å up
to 2.7 V/Å [41]. It is worth noting that at Ec occurs a phase transition in freestanding monolayer Xenes from the
semiconducting phase to the excitonic insulating phase [98] and Ec is unique for each material. Our calculations use
input parameters given in Table I. Parameters of the Xene monolayer depend on the substrate. For example, authors
of Ref. [46] have found that there are nine possible Si-hBN stacking arrangements where interactions between Si
and hBN significantly modify the properties of the Si: increase band gap and decrease Fermi velocity. Out of nine
stacking arrangements given in [46], one arrangement has the lowest band gap and Fermi velocity (Si type I), and one
arrangement has the highest band gap and Fermi velocity (Si type II). Therefore, Si type I and type II parameters
correspond to the upper and lower bounds on the exciton masses, respectively.

TABLE I: Parameters for Xenes. Parameters used to calculate m and the binding energies. FS refers to the freestanding
monolayers (monolayer in a vacuum). κ = ε1+ε2

2
is the average dielectric constant of encapsulating materials. 2∆so is the total

gap between conduction and valence bands; d0 is the buckling parameter; vF is the Fermi velocity; l is the monolayer thickness;
ε is the dielectric constant of the Xenes monolayer. χ2D = lε

4π
[65] is the polarizability.

Si FS Ge FS Sn FS Si (hBN, type I) Si (hBN, type II)
κ 1 1 1 4.89 4.89

2∆so (meV) 1.9 (1.55)[11] ([73]) 33 (23.9) [11] ([73]) 101 (73.5) [11] ([74]) 27 [46] 38 [46]
d0 (Å) 0.46 [101] 0.676 [101] 0.85 [11] 0.46 [46] 0.46 [46]

vF (×105 m/s) 6.5 (5.3) [11] ([75]) 6.2 (5.2) [11] ([75]) 5.5 (4.8) [11] ([74]) 4.33 [46] 5.06 [46]
ε 11.9 16 24 11.9 11.9

l (nm) 0.4 [38] 0.45 0.5 0.333 [46] 0.333 [46]
χ2D(Å) 3.788 5.730 9.549 3.156 3.156
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A. Contributions from external electric and magnetic fields to binding energies of magnetoexcitons

The energy contribution, ∆E , to the binding energy of the magnetoexcitons from the external electric and magnetic
fields at the given electric field is calculating in the following way:

∆E = E0 − E(B,E). (19)

In Eq. (19) E0 is the binding energy of the exciton in the absence of the electric and magnetic fields, while E(B,E)
is the binding energy of the magnetoexciton at some values of the external electric and magnetic fields. The results
of our calculations of energy contribution, ∆E , for direct A magnetoexcitons in freestanding Xenes monolayers are
reported in Fig. 3. In Figs. 3c and 3d that correspond to states 3s and 4s, the end of broken curves indication
dissociation of magnetoexcitons in these states. According to Fig. 3, the energy contribution from the electric and
magnetic fields to the binding energy goes from the highest to the smallest in the following order: FS Si, FS Ge, FS
Sn. The energy contribution due to the varying electric and magnetic fields is negligible for magnetoexcitons in FS Sn
in states 1s, 2s, and 3s and only affects the 4s state. ∆E is significant for FS Si and FS Ge in 1s, 2s, 3s and 4s states
when the electric field Ec < E < 0.5 V/Å and magnetic field B > 10 T; for the states 3s and 4s the contribution
from both electric and magnetic fields to the binding energies of magnetoexcitons almost doubles when Ec < E < 1
V/Å and B > 15 T. When B > 10, the dependence of ∆E on the electric field is very small for all states of the FS
Si, FS Ge, and FS Sn. Therefore, the best range for the tunability of the energy contributions induced by the electric
and magnetic fields for FS Si and Ge are Ec < E < 1 V/Å (corresponds to the small reduced mass of excitons) and
B > 10 T.

Let us now compare the dependence of the energy contribution to the binding energy of direct magnetoexcitons on
the electric and magnetic fields in a freestanding silicene and encapsulated Si type I. The results of calculations for 1s,
2s, 3s, and 4s states are presented in Fig. 4. The direct magnetoexciton in freestanding Si monolayer has a smaller
effective mass, m, than the magnetoexciton in silicene monolayers encapsulated by hBN. Also, the magnetoexciton in
FS Si has the binding energy that is at least four times bigger than binding energies of magnetoexcitons in Si type I.
As a result, magnetoexcitons in Si type monolayer at low values of E dissociate at small values of the magnetic field,
while magnetoexcitons in FS Si monolayers stay bound. It is worth mentioning that there are negligible differences
in ∆E for direct magnetoexcitons in encapsulated Si type I and Si type II for all values of the external electric and
magnetic fields, which is not shown in Fig. 4. In addition, the energy contribution for magnetoexcitons in FS Si is
always larger when the electric field E < 0.6 V/Å and B > 15 T for the 1s and 2s states. The magnetoexcitons
become unbound in 3s and 4s states in encapsulated Si type I monolayer with the increase of the magnetic field even
for very small values of the electric field. Therefore, the difference between encapsulated and FS materials are due to
substrate that gives different electron-hole masses which leads to different binding energies and energy contributions
from the electric and magnetic fields to the binding energies of magnetoexcitons, especially for the 3s and 4s states.
In addition, we note that magnetoexcitons in FS Ge and Si type I monolayers have similar contributions from the
electric and magnetic fields to the binding energy when magnetoexcitons are bound. However, since magnetoexcitons
in FS Ge monolayers have higher binding energies, magnetoexcitons in FS Ge stay bound while magnetoexcitons in Si
type I monolayer in states 3s and 4s at the magnetic field values we examine. This is a notable result that indicates
that the contribution from the magnetic field to the binding energy of the magnetoexciton does not only depend on
the effective mass, m, of electron and hole, but on material other parameters as well. The same kind of the picture
can be observed if one compares the FS Ge and encapsulated Si type I and Si type II.

A careful examination of Table I indicates that there are different values of the Fermi velocity reported in literature
[11, 74, 75] for FS silicene, germanene and stanene. We examined how Fermi velocity affects m and the contribution
from the electric and magnetic fields to the binding energy of the states 1s, 2s, 3s, and 4s. We found effective mass
of magnetoexcitons in FS Si monolayer using vF = 6.5× 105 m/s [11] and vF = 5.3× 105 m/s [75] and calculated the
binding energies of the magnetoexciton. We examine the dependence of the binding energy on vF . Since it appears
in the denominator and is squared, changing vF leads to the higher energy change. By calculating effective mass with
different values of the band gap, the change in effective mass is smaller, and, therefore, the change in the binding
energy is also smaller. Using a smaller value of vF leads to a higher mass since vF appears in the denominator in
Eq. (4). As expected, results with a higher vF have a higher energy contribution. While the difference between
two data sets is relatively small in the state 1s, in the states 2s, 3s, and 4s the difference between two data sets is
significant. This indicates two things. First, the exciton mass in Xenes is sensitive to the parameters of the material.
Second, keeping all parameters the same except for vF indicates that ∆E has a strong dependence on effective mass,
m. Therefore, we can conclude that the binding energy of the magnetoexciton strongly depends on all material
parameters given in Table I.

Let us now consider the energy contribution to the magnetoexcitons binding energy from the electric and magnetic
fields in X-hBN-X. In a heterostructure, Xenes monolayers are separated by N (N=1, 2, 3, 4, 5, 6) hBN monolayers.



10

FIG. 3: The energy contribution to the binding energies of magnetoexcitons in FS monolayers in states 1s, 2s, 3s, and 4s in (a),
(b), (c), and (d), respectively, as a function of squared magnetic field. Data is plotted at three different values of the electric field
for FS Si and FS Ge and at two values for FS Sn. The values of electric field are chosen in the following way: a value above Ec,
another values at which significant energy contribution is present, and one representative value at which energy contribution
converges to zero. The magnetic field, where the dissociation of magnetoexcitons in states 3s and 4s occurs, corresponds to
the end of broken curve.

The binding energies are calculated by using both the RK and Coulomb potentials. The latter allows to demonstrate
the importance of the screening in Xenes heterostructures. A comparison of the RK and Coulomb potentials for an
electron-hole pair in the Xene heterostructure Si-hBN-Si is shown in Fig. 5a. On one hand, according to Fig. 5a, the
RK potential is weaker than the Coulomb potential at small projections, ρ, of the electron-hole distance on the mono-
layer plane, and their difference significantly decreases with the increase of the number of hBN layers. On the other
hand, both potentials converge to each other as ρ and the number of hBN layers increase. From the known asymptotic

properties of the Struve and Bessel functions [99, 100], it is easy to show that lim
ρ→0

VRK
VC

=
πD

2ρ0

[
H0(

D

ρ0

)− Y0(
D

ρ0

)

]
. In

Fig. 5a, the ratio VRK/VC for the Si type I monolayer as a function of the electron hole separation, reh, is presented.

In this case lim
reh→0

VRK
VC

= 0. The results of calculations of the ratio ∆ERK/∆EC for the SI type I monolayer is pre-

sented in Fig. 5b and show that the Rytova-Keldysh potential gives much more contribution to the binding energies
of the magnetoexciton than the Coulomb potential for all range of the magnetic field and when the number of hBN
layers is less than four. As the number of hBN layers increases, the binding energies calculated with both potentials
converge.

In calculations of the contribution of the electric and magnetic fields to the binding energy of magnetoexcitons in
heterostructures, we focus on FS Si, Si types I and II to demonstrate the importance of using physically accurate
parameters. Also, we focus on Si since there are no parameters available in literature for excitons in other encapsulated
Xenes monolayers. The choice is related to the parameters of these materials listed in Table I. From Table I, it is clear
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that the parameters of FS Si differ from those for Si types I and II. We report results for indirect magnetoexcitons
in Si FS and Si types I. In other words, to describe magnetoexcitons in FS Si for the direct magnetoexcitons we
use parameters of FS Si with κ = 1, and for indirect magnetoexcitons we use parameters of FS Si with κ = 4.89.
Therefore, we do not take into account how parameters of the FS monolayer change when it is deposited on hBN. We
did so to demonstrate the importance of using physically accurate parameters of materials since it affects the binding
energies. The results for indirect magnetoexcitons in the states 1s and 2s in FS Si and Si type I are reported in Fig.
6. The calculations are performed for E = 0.3 V/Å using the RK and Coulomb potentials. In contrast to direct
magnetoexcitons, in the heterostructure indirect magnetoexcitons in Si types I and II have higher binding energies
than magnetoexcitons in FS Si. However, indirect magnetoexcitons in FS Si have a much higher energy contribution
from the magnetic field. In overall, we have demonstrated that the energy contribution of magnetoexcitons in the
monolayer and the double-layer heterostructure can be tuned by electric and magnetic fields.

In our discussion, we examine A excitons because they have higher binding energies due to larger reduced masses.
The results for B excitons are very close to the results of A excitons because above E = 0.3 V/Å there is a small
difference between the masses of A and B excitons in the materials we examined. The energy contribution ∆E to
the binding energies of excitons is bigger for the smaller reduced mass of excitons. Because A excitons have bigger
reduced mass, one can consider the results of our calculations as the lower limit for the energy contribution. When two
Xenes monolayers separated by hBN layers are brought together the conduction band minimum and the valence band

(a) 1s (b) 2s

(c) 3s (d) 4s

FIG. 4: The dependence of the energy contribution to the binding energy of direct magnetoexcitons on perpendicular electric
and magnetic fields for freestanding Si and encapsulated Si type I monolayers. The data are plotted for states 1s, 2s, 3s, and
4s, and shown in (a), (b), (c), and (d), respectively. The broken surface edges correspond to the electric and magnetic fields at
which the dissociation of magnetoexcitons occurs.
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FIG. 5: (a) The ratio of the RK to Coulomb potentials for electron-hole interaction in encapsulated Si type I monolayer and
Xenes double-layer heterostructure as a function of the electron-hole separation. In case of the monolayer the VRK potential
converges to the VC potential as the distance between the electron and hole increases. In the case of the Xenes double-layer
heterostructure the VRK converges to VC as the distance between the projected electron and hole and the number of hBN layers,
N , that separate two monolayer increase. (b) The ratio of the energy contributions to the binding energy of magnetoexcitons
obtained using VRK and VC is plotted as a function of the magnetic field for varying number of hBN layers. Calculations are
performed for magnetoexcitons in the Si type I monolayer for the state 1s.

maximum reside in two different layers forming indirect (interlayer) exciton. There are possible different stacking
orders: AA and AB as in TMDCs [102–105]. The A exciton, for which mass is defined by large gap, has the bigger
effective masses, mA, of the electron and hole than the B exciton formed by electron and holes with masses mB :
mA > mB . Thus, the reduced mass of A excitons µA is bigger than the reduced mass of B excitons: µA > µB .
In case of AA stacking, the bright interlayer exciton is formed by the hole from the valence band in K valley of
Layer 1 and the electron from the conduction band in K valley of Layer 2 [105]. So masses of the electron and hole
are equal. In case of AB stacking, because the lower layer is 180◦ in plane rotation of the upper layer [106], band
spins of K valley of Layer 2 are flipped compared to corresponding band spins of K valley of Layer 1. As a result,
the bright interlayer exciton can be formed by the hole with mA in K valley of the Layer 1 and the electron in K
valley of the Layer 2 with mass mB [107–110]. This interlayer exciton has the reduced mass mAmB/(mA + mB).
Thus, mB/2 < mAmB/(mA + mB) < mA/2. So, when the electron and hole reside in separate layers and have
different masses, the binding energy of this interlayer K/K valleys exciton falls between binding energies of interlayer
excitons formed by electron and hole with equal masses. The same reasoning can be extended to the interlayer K/K ′

valleys excitons. Because the energy contribution due to the magnetic field is smaller for the bigger reduced mass,
our calculations for A magnetoexcitons provide the lower limit for ∆E . Therefore, results for direct and indirect B
magnetoexcitons and indirect magnetoexcitons with the reduced mass mAmB/(mA +mB) always give higher ∆E . In
our approach, the results of calculations for ∆E are only affected by the numerical value of the reduced mass, but all
qualitative conclusions remain the same for all types of magnetoexcitons.

B. Diamagnetic shifts

The application of external electric or magnetic fields can give valuable information about the exciton. In particular,
an external magnetic field has two effects on the spectroscopically observed energy levels: the spin splitting of levels,
which is linear with respect to the applied field, and the diamagnetic shift - an increase in energy of levels with
the magnetic field. The diamagnetic shift of an exciton in 2D materials has been studied by many of authors
[13, 15, 18, 19, 21, 22, 26, 30–37]. So far diamagnetic shifts have not been considered in Xenes monolayers or
double-layer heterostructures. It is our goal to extend this work to Xenes. In this paper, we apply the analysis
used to describe diamagnetic shifts in quantum dots and TMDCs. Here we present the framework for Zeeman and
diamagnetic shifts for magnetoexcitons in Xene monolayers and double-layer heterostructures. According to Ref. [31],



13

(a) VRK (b) VC

FIG. 6: The dependence of the energy contributions for indirect magnetoexcitons in FS Si and Si type I on the magnetic field
for varying number of separating hBN monolayers. Calculations are performed using the RK (a) and Coulomb (b) potentials
at E = 0.3 V/Å. The energy contribution for indirect magnetoexcitons in FS Si and Si type I double-layer heterostructures
is plotted as a function of the magnetic field at the varying number of hBN layers. The surface edge tips for the 2s state
correspond to the magnetic field where the dissociation of the magnetoexciton occurs.

when the contribution to the binding energy from the magnetic field is small compared to the binding energy, the
magnetoexciton binding energy, E(B), for A and B excitons can be expanded in Taylor series as:

E(B) = E0 + γ1B + γ2B
2 + ... (20)

In Eq. (20) the magnetic field, and the terms γ1B and γ2B
2 are identified as the valley Zeeman and diamagnetic shifts,

respectively. The expansion of E(B) in terms of B for the magnetoexciton energy given in Eq. (20) is applicable when
E0 > |E(B)−E0|. This expansion is no longer applicable, when E0 ∼ |E(B)−E0|, and needs the consideration of the next
terms in the Taylor series. The valley Zeeman shift contribution to the binding energy is identified as γ1B = −µBgB,
where g and µB are g-factor and Bohr magneton, respectively [13, 15]. In Refs. [18, 19, 22, 26, 35] the valley Zeeman
shift for the magnetoexciton in the monolayer is defined as the energy difference between magnetoexcitons located
at Dirac points K and K ′, −gµBB = E(K) − E(K ′) [18, 19, 22, 26, 35]. The diamagnetic shift contribution to the

binding energy is identified as γ2B
2 = e2B2

8µ〈r2〉 [19, 35], where µ is the exciton reduced mass, e is the charge of the

electron, and 〈r2〉 is the expectation value of r2 over the exciton envelope wave function. γ2 is called the diamagnetic
coefficient, and we denote it as σ. In the case of Xenes the reduced mass is µ = m/2 and the diamagnetic shift

contribution to the binding energy is e2B2

4m〈r2〉 . Experimentally the energy contribution from the diamagnetic shift is

defined as the average transition energy of each magnetoexciton state between points K and K ′, σB2 = E(K)+E(K′)
2

[13, 19, 22, 25, 35]. In TMDCs DMCs are used to determine exciton masses, radius, and dielectric properties of
materials. For similar purposes, σ can be used for excitons in Xene monolayers.

We have calculated the diamagnetic coefficients for A magnetoexcitons in monolayers of FS Si, FS Ge, FS Sn, Si
types I and II for the Rydberg states, 1s, 2s, 3s, and 4s. The DMCs for the direct A magnetoexcitons in the above
materials are reported in Fig. 7. The plotted data takes into account the critical value of E below which the material
behaves like excitonic insulator [98, 111]. In Fig. 7 at the bottom and the top of each graph scales for the electric
field, E, and the corresponding effective mass, m/m0, respectively, are given. In contrast to σ for magnetoexcitons
in TMDCs monolayers reported only for 1s and 2s states in Ref. [37], for magnetoexcitons in Xene monolayers σ can
be calculated for states 1s, 2s, 3s, and 4s. At smaller values of the external electric field E, the dependence of ∆E
on B2 is not linear for magnetoexcotons in states 2s, 3s, and 4s. For direct magnetoexcitons at smaller values of E
higher order terms in Taylor expansion, Eq. (20), need to be considered. As can be seen from Fig. 7, in the states
2s, 3s, and 4s magnetoexcitons have diamagnetic shifts at electric field E > 0.6 V/Å, while the magnetoexciton in
FS Sn has σ for all states when E > Ec.

As can be seen from Figs. 7a and 7b, at the smaller value of E in FS Si and FS Ge, respectively, parameters give
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FIG. 7: The diamagnetic coefficients as a function of the perpendicular electric field for each material in states 1s, 2s, 3s, and
4s. At the bottom of each graph E scale is given, and at the top of each graph m/m0 scale is given.

lower reduced mass which leads to higher energy contribution and higher DMCs. According to Fig. 7, as m increases
the DMCs of direct magnetoexcitons in the examined states and materials decrease and approach 0. The condition
E0 ∼ |E(B) − E0| exists for magnetoexcitons in some materials at low values of E in states 2s, 3s, and 4s, and we
cannot apply Eq. (20) to extract σ from our data. The condition E0 ∼ |E(B)− E0| is prominent in Si types I and II
monolayers because magnetoexcitons in Si types I and II monolayers in states 2s, 3s, and 4s have the binding energies
four times smaller than excitons in corresponding states in monolayers of FS materials. Also as it can be seen from
Fig. 7e, the magnetoexcitons in Si type II in the state 4s has no diamagnetic shift. Note, that magnetoexcitons in Si
types I and II monolayers and double-layer heterostructures have the same energy contribution to the binding energy
and DMCs at the same values of m. However, the magnetoexcitons in Si types I and II have different critical values
of E and have different values of m at the same value of E. On one hand, direct magnetoexcitons in Si types I and II
monolayers at small values of E quickly dissociate when the perpendicular magnetic field is applied to the monolayer.
For example, the magnetoexciton in Si type I (type II) at E = 0.5 V/Å in state 3s dissociates at 11 T (7 T) and in
state 4s at 5 T (3 T). On the other hand, direct magnetoexcitons in monolayers of the FS Xenes in states 2s, 3s, and
4s stay bound at higher values of the magnetic field and satisfy the condition, E0 > |E(B)− E0|, even at small values
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(a) 1s VRK (b) 1s VC

FIG. 8: Diamagnetic coefficients as a function of the perpendicular electric field at varying number of hBN layers that separate
Xenes monolayers. (a) Comparison of the DMCs of the magnetoexcitons in FS Si and Si type I when the Schrödinger equation
was solved with the Rytova-Keldysh potential. (b) Comparison of the DMCs of the magnetoexcitons in FS Si and Si type I
when the Schrödinger equation was solved with the Coulomb potential. The surface edge tips correspond to lower values of the
electric field above which DMCs can be extracted since there is linear dependence between ∆E and B2.

of electric field, E, that correspond to the small mass m and allow us to extract DMCs.
For indirect A magnetoexcitons in the double-layer heterostructure from the calculated binding energies with both

the Rytova-Keldysh and Coulomb potentials, we extracted the DMCs of the magnetoexcitons for FS silicene and Si
type I. The results for DMCs of indirect magnetoexcitons in the double-layer heterostructure of Xenes are shown in
Fig. 8. The comparison of DMCs calculated from binding energies obtained with the RK and Coulomb potentials is
shown only for indirect magnetoexcitons in FS Si and Si type I. Our calculations show that magnetoexcitons in other
Xenes double-layer heterostructures have similar quantitative and qualitaive behavior. As the electric field increases
(the corresponding effective masse of the electron and holes increases) and the number of hBN layers increases the
DMCs decrease and approach zero. The DMCs for indirect magnetoexcitons calculated with VRK and VC potentials
converge with the increase of the electric field, as can be seen from Fig. 8. However, the DMCs obtained by using the
RK potential are higher. Therefore, the choice of interaction potential is important when a few hBN layers separate
the Xene monolayers. Another important effect of the number of hBN layers is that as the distance between Xene
monolayers increases the energy contribution from the magnetic field to the binding energy does not have linear
dependence on B2. More specifically, as the distance between Xene monolayers increases the lowest value of E at
which linear dependence of ∆E on B2 exists increases.

We also analyze the dependence of the ratio σRK/σC , where σRK and σC are diamagnetic coefficients of indirect
magnetoexcitons obtained using the RK and Coulomb potentials, respectively, on the external electric field and
number of hBN layers. The corresponding results are presented in Fig. 9 for the indirect magnetoexcitons in FS Si
for the state 1s and Si type I for states 1s and 2s. For the magnetoexcitons in FS Si in state 2s, there is no linear
dependence of ∆E on B2, and the ratio is not presented. When the external electric field E > 1.8 V/Å, the DMCs for
FS Si and Si type I are close and have the same qualitative dependence on E and number of hBN layers. As a result,
we can conclude that the diamagnetic coefficients can be tuned by the external electric field as well as by changing
interlayer separation by changing the number of hBN layers.

IV. CONCLUSION

We study Rydberg states of direct and indirect magnetoexcitons in monolayers and double-layer heterostructures
of Xenes in the presence of the external perpendicular to the layer electric and magnetic fields. We consider the
freestanding silicene, germanene, and stanene monolayers and Si type I and II encapsulated by hBN monolayers and
Xenes heterostructures. We have calculated the binding energies, the energy contribution from the electric and mag-
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FIG. 9: Ratio σRK/σC for indirect magnetoexcitons in FS Si and Si type I as a function of the electric field. For indirect
magnetoexcitons in FS Si only ratio for 1s state is shown since in state 2s the linear dependence of ∆E on B2 is present only
at very small values of the electric field. For indirect magnetoexcitons in Si type I ratio is shown for states 1s and 2s. Data are
plotted for cases where the number of hBN layers is N=1,2,3. For N > 3 the ratio converges to one for all considered cases.

netic fields to the binding energy, and diamagnetic coefficients for magnetoexcitons in monolayer and heterostructure
of Xenes. We solve the Schrödinger equation with the magnetoexciton reduced mass dependent on the perpendicular
electric field by numerical integration to obtain eigenvalues and eigenfunctions. For the direct magnetoexcitons, the
Schrödinger equation is solved using the Rytova-Kyldysh potential, and for the indirect excitons, the Schrödinger
equation is solved with both the RK and Coulomb potentials.

The contribution from the electric and magnetic fields to the binding energy of the magnetoexcitons in Rydberg
states, 1s, 2s, 3s, and 4s, for freestanding and encapsulated monolayers as a function of the external perpendicular
electric and magnetic fields is analyzed. The analysis of DMCs for magnetoexcitons in above mentioned systems and
their dependence on the external electric field and number of hBN layers are presented as well. Only in monolayer
magnetoexcitons had linear dependence of energy contributions on B2 in states 1s, 2s, 3s, and 4s. The linear depen-
dence of ∆E on B2 is not present for indirect magnetoexcitons in all states. The DMCs for the states 1s, 2s, 3s and 4s
can be calculated only for direct magnetoexcitons in FS Si, FS Ge, FS Sn and Si type I. For indirect magnetoexcitons,
DMCs can be calculated for states 1s and 2s. As the number of layers that separate Xenes monolayers increases,
the binding energies of Rydberg states decrease, and energy contribution from the electric and magnetic fields to the
binding energy for given values of the electric field no longer has a linear dependence on B2. A smaller effective mass
m (small external electric field) leads to a higher energy contribution from the magnetic field to the binding energy
and potentially higher DMCs. However, small m and high energy contribution from the magnetic field to the binding
energy lead to absence of linear dependence of the energy contribution on B2 and, therefore, the DMCs cannot be
extracted.

The most bound direct magnetoexcitons are found in the FS Si monolayer. The magnetoexcitons in FS Si have the
smallest effective and reduced masses out of all materials that we have examined. However, the material constants of
the encapsulating materials also play an important role in determining the properties of excitons in the monolayer and,
therefore, the binding energy of the exciton as can be seen by examining the heterostructure. From our calculation, we
can see that, by taking the magnetoexciton with parameters of FS monolayer and then the encapsulating monolayer
with hBN, magnetoexcitons have smaller binding energies than magnetoexcitons in Si type I monolayer. The indirect
magnetoexcitons are most bound in Si type I monolayer. So we conclude that, while the effective mass has the strong
effect on the binding energy and the energy contribution from the magnetic field to the binding energy, the dielectric
constants of the encapsulating materials also have a significant effect on the binding energy.

The analysis of Xenes parameters shows that Si type I has a smaller gap and Fermi velocity than Si type II, and,
therefore, magnetoexcitons in Si type I monolayer have higher effective mass and binding energies than magnetoexci-
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tons in Si type II. But the magnetoexcitons in Si type II has higher DMCs and higher energy contribution from the
electric and magnetic fields to the binding energy in monolayer and heterostructure since the magnetoexciton in Si
type II monolayer has smaller m than the magnetoexciton in Si type I monolayer at the same value of the electric
field. Thus, the importance of using physically accurate parameters of the material, since they affect the binding
energies and DMCs, is shown.

The comparison of the results for Xenes heterostructure obtained by using the Rytova-Keldysh and Coulomb
potentials shows that VRK and VC converge as the number of layers increases. The binding energies, ∆E , and DMCs
converge as the number of hBN layers increases. The energy contribution to the binding energy of the magnetoexciton
calculated with VRK is higher than the energy contribution calculated using VC when only a few layers separate Xenes
monolayers. The diamagnetic coefficients extracted from the binding energy of the magnetoexciton calculated using
VRK are higher than when VC is used. However, in both cases, the DMCs converge as E and the number of hBN
layers increase. Therefore, the choice of the interaction potential affects the energy contribution from the electric and
magnetic fields and DMCs (when the contribution is linear in B2), and it is important to use appropriate interaction
potential for the system when only a few layers separate magnetoexciton containing monolayers.

Finally, we can conclude that external electric and magnetic fields can be effectively used for tuning their contribu-
tion to the binding energy of both direct and indirect magnetoexcitons in Xenes, while for the Xenes heterostructure
the varying of the number of hBN separating layers provides the additional degree of freedom to tune the binding
energy of indirect magnetoexcitons. The tunability of the diamagnetic coefficients by the external electric field for
both direct and indirect magnetoexcitons and by the change of the number of hBN separated Xenes layers for indirect
magnetoexcitons is also demonstrated. Thus, the tunability of direct and indirect magnetoexcitons properties allows
the design of electronic devices that can be manipulated by the external electric and magnetic fields and the number
of hBN separating Xenes layers in heterostructure.
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transition metal dichalcogenides, Phys. Rev. Materials 2, 014002 (2018).
[72] F. Pan, Y Wang, K. Jiang, Z. Ni, J. Ma, J. Zheng et al., Silicene nanomesh, Sci. Rep. 5, 9075 (2015).
[73] C. C. Liu, W. Feng, and Y. Yao, Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium, Phys. Rev.

Lett. 107, 076802 (2011).
[74] C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-

dimensional germanium and tin, Phys. Rev. B 84, 195430 (2011).
[75] L. Matthes, P. Gori, O. Pulci, and F. Bechstedt, Universal infrared absorbance of two-dimensional honeycomb group-IV

crystals, Phys. Rev. B 87, 035438 (2013).
[76] R. Ya. Kezerashvili, Few-body systems in condensed matter physics, Few-Body Syst. 60, 52, (2019).
[77] O. L. Berman, R. Ya. Kezerashvili, and K. Ziegler, Coupling of two Dirac particles, Phys. Rev. A 87, 042513 (2013).
[78] T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Theory of neutral and charged excitons in monolayer transition

metal dichalcogenides, Phys. Rev. B 88, 045318 (2013).
[79] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Colloquium: Excitons in

atomically thin transition metal dichalcogenides, Rev. Mod. Phys. 90, 021001 (2018).
[80] M. M. Fogler, L. V. Butov, and K. S. Novoselov, High-temperature superfluidity with indirect excitons in van der Waals

heterostructures, Nat. Commun. 5, 4555 (2014).
[81] O. L. Berman and R. Ya. Kezerashvili, High-temperature superfluidity of the two-component Bose gas in a transition

metal dichalcogenide bilayer, Phys. Rev. B 93, 245410 (2016).
[82] G. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev. 52, 191 (1937).
[83] H. Herold, H. Ruder, and G. Wunner, The two-body problem in the presence of a homogeneous magnetic field, J. Phys.

B: At. Mol. Phys. 14, 751 (1981).



20

[84] R. J. Elliott and R. Loudon, Theory of the absorption edge in semiconductors in a high magnetic field, J. Phys. Chem.
Solids 15, 196 (1960).

[85] L. P. GorKov and I. E. Dzualoshinskii, Contribution to the theory of the Mott exciton in a strong magnetic field, Zh.
Eksp. Teor. Fiz. 53, 717 (1967).

[86] Yu. E. Lozovik and A. M. Ruvinsky, Magnetoexcitons in coupled quantum wells, Phys. Rev. Lett. A. 227, 271284 (1997).
[87] M. Shinada and S. Sugano, Optical Absorption Edge in Layer-Type Semiconductors, J. Phys. Soc. Jpn. 20, 1274 (1965).
[88] O. Akimoto and H. Hasegawa, Interband Optical Transitions in Extremely Anisotropic Semiconductors. II. Coexistence

of Exciton and the Landau Levels, J. Phys. Soc. Jpn. 22, 181 (1967).
[89] A. H. MacDonald and D. S. Richie, Hydrogenic energy levels in two dimensions at arbitrary magnetic fields, Phys. Rev.

B 33, 8336 (1986).
[90] M. Shinada and K. Tanaka, Interband Optical Transitions in Extremely Anisotropic Semiconductors. III. Numerical

Studies of Magneto-Optical Absorption, J. Phys. Soc. Jpn. 29, 1258 (1970).
[91] I. V. Lerner and Yu. E. Lozovik, Mott exciton in a quasi-two-dimensional semiconductor in a strong magnetic field, Zh.

Eksp. Teor. Fiz. 78, 1167 (1978).
[92] C. Stafford, S. Schmitt-Rink, and W. Schaefer, Nonlinear optical response of two-dimensional magnetoexcitons, Phys.

Rev. 41, 10000 (1990).
[93] M. N. Brunetti, O. L. Berman, and R. Ya. Kezerashvili, Optical absorption by indirect excitons in a transition metal

dichalcogenide/hexagonal boron nitride heterostructure, J. Phys.: Condens. Matter 30, 225001 (2018)
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