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We theoretically study the spectrum induced by one and two magnetic impurities near the bound-
ary of a one-dimensional nanowire in proximity to a conventional s-wave superconductor and extract
the ground state magnetic configuration. We show that the energies of the subgap states, supported
by the magnetic impurities, are strongly affected by the boundary for distances less than the su-
perconducting coherence length. In particular, when the impurity is moved towards the boundary,
multiple quantum phase transitions periodically occur in which the parity of the superconducting
condensate oscillates between even and odd. We find that the magnetic ground state configuration
of two magnetic impurities depends not only on the distance between them but also explicitly on
their distance away from the boundary of the nanowire. As a consequence, the magnetic ground
state can switch from ferromagnetic to antiferromagnetic while keeping the inter-impurity distance
unaltered by simultaneously moving both impurities away from the boundary. The ground state
magnetic configuration of two impurities is found analytically in the weak coupling regime and
exactly for an arbitrary impurity coupling strength using numerical tight-binding simulations.

I. INTRODUCTION

Magnetic impurities on conventional superconductors
exhibit many interesting properties. One such example
is the appearance of localized states within the supercon-
ducting gap. These states, known as Yu-Shiba-Rusinov
(YSR) states,1–3 are induced via the exchange interac-
tion between a magnetic impurity and the superconduc-
tor. The YSR states have been well studied theoreti-
cally4–23 and observed experimentally in bulk s-wave su-
perconductors by scanning tunneling microscopy (STM)
techniques24–37 as well as in proximitized semiconducting
nanowires with quantum dots by transport measurement
techniques38–43. Recently, these states have attracted re-
newed interest in the context of magnetic atomic chains.
The YSR states induced by the individual impurities in
a magnetic chain can hybridize to form a subgap energy
band that can host Majorana bound state (MBS)44–60.
The zero-energy bias peaks has been recently observed in
such chains61–65. However, the formation of such MBSs
critically depends on the magnetic order inside the spin
chain. This magnetic order is itself determined by the ef-
fective exchange interaction between the impurities that
is mediated by the underlying superconductor.

When the exchange interaction is small compared to
the Fermi energy, the effective interaction between two
magnetic impurities (see Fig. 1) in such a system is
mediated via the quasiparticles in the superconductor
and, is well-described by the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction66–91. The RKKY interac-
tion between two spin impurities located inside the bulk
of the system results in the magnetic ordering of the
Heisenberg-type in the absence of spin-orbit interaction

and depends only on the relative angle between the im-
purity spins, ensuring that the ground state magnetic
configuration is either ferromagnetic (FM) or antiferro-
magnetic (AFM). As the sign of the effective exchange
interaction oscillates as a function of the inter-impurity
distance, the magnetic ground state, likewise, oscillates
between FM and AFM ordering. When the exchange
interaction between the impurity and quasiparticles is
increased beyond the Fermi energy of the superconduc-
tor, the approximations invoked by the RKKY interac-
tion break down and the the ground state of the mag-
netic impurities departs from such a simple description.
This is because (1) the coupling of the impurities to the
quasiparticles can no longer be treated perturbatively
(as known from gapless systems84) and (2) the YSR
states can be close to the chemical potential and thereby
strongly renormalize the superconducting gap under the
impurity17.

However, a description of magnetic impurities close
to the boundaries of realistic finite-size samples received
very little attention so far. Studies of this type are par-
ticularly relevant for low-dimensional systems, where the
superconductivity is induced via the proximity effect by
a bulk superconductor, because both the longer range
of the RKKY interaction and reduction or absence of a
power-law decay of the YSR wavefunctions. Motivated
by this, in this work we study how the boundary of such
proximitized superconducting systems modifies the en-
ergy of the YSR states and, subsequently, the magnetic
ground state. In the following, we consider one and two
magnetic impurities placed close to the boundary of an
effective semi-infinite one-dimensional (1D) superconduc-
tor, see Fig. 1. Such a 1D system is particularly suitable
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FIG. 1. One-dimensional nanowire with superconducting gap
aligned along the x axis with two magnetic impurities with
classical spins S1 and S2 separated by the inter-impurity dis-
tance x12 = x2−x1. The impurity spins are exchange coupled
to the quasiparticles in the nanowire. This gives rise to YSR
subgap bound states (not shown) and effective interactions
between the magnetic impurities which are both affected by
the boundaries of the nanowire.

for our analysis as (1) we are able to obtain analytic re-
sults for the YSR energies and the RKKY interaction and
(2) we expect an enhancement of the boundary effects in
such 1D set-ups as compared to magnetic impurities em-
bedded in two- and three-dimensional superconductors92.

For one magnetic impurity, we find a position-
dependent energy of the induced YSR bound state. Con-
sequently, for sufficiently strong exchange interaction, the
superconducting condensate undergoes multiple quan-
tum phase transitions as the distance to the boundary
is changed. For two magnetic impurities, we find phase
transitions between the FM and AFM ground state by
changing only the distance to the boundary and keeping
the inter-impurity distance fixed. In the weak exchange
interaction limit, we analytically show that by tuning the
inter-impurity distance appropriately, the effect of the
boundary can occur even when the impurities are deep
in the bulk of the nanowire. When the exchange interac-
tion between the impurity and quasiparticles is large and
cannot be treated within the RKKY framework, we find
the magnetic ground state numerically and again observe
a similar dependence of the ground state configuration on
the distance to the boundary. In this limit, the contri-
butions from both the quasiparticle states and the YSR
bound states become crucial in determining the ground
state of the system.

The outline of the paper is as follows. In Sec. II, we
introduce a continuum Hamiltonian of an effective 1D
superconductor hosting the magnetic impurities and find
the Green’s function in the presence of the boundary
analytically. We first describe the analytical results for
the YSR energy of a single magnetic impurity in a semi-
infinite superconductor in the Sec. II A. This is followed
by a study of the RKKY interaction between two mag-
netic impurities in a semi-infinite 1D superconducting
wire in Sec. II B. Next, using a discretized Hamiltonian
corresponding to the continuum model, we numerically
include contributions to the total energies of both the

subgap YSR states and the supragap quasiparticle states
to determine the ground state configuration in Sec. III.
Though the ground state configuration is primarily de-
termined by the contribution from the bulk states, we
show that the YSR states dominate in determining the
phase boundary between the FM and the AFM phases
in the limit of large exchange interaction. Finally, we
present a summary of our results.

II. ANALYTICAL RESULTS

We consider two classical magnetic impurities placed
on a 1D wire, aligned along the x-axis, in proximity to an
s-wave superconducting (SC) substrate, see Fig. 1. The
impurities S1 and S2 are located at a distance x1 and x2
from the boundary of the wire, respectively. The inter-
impurity distance is denoted by the relative coordinate
x12 = x2 − x1.

The system is described by the Hamiltonian, H =
H0 + Himp, which is a sum of the kinetic term, of the
superconducting pairing term, and of the exchange term
describing coupling between the spins of magnetic impu-
rities to the electrons in the 1D wire,

H0 =
1

2

∫
dx Ψ†(x)

[(
− ~2

2m

d2

dx2
− µ

)
τz + ∆τx

]
Ψ(x)

≡ 1

2

∫
dx Ψ†(x)H0Ψ(x) , (1)

Himp =
JS

2

∑
n=1,2

Ψ†(xn) sn · σΨ(xn)

≡ 1

2

∑
n=1,2

Ψ†(xn)H(n)
impΨ(xn) , (2)

respectively, and H0 and H(n)
imp are referring to the

corresponding Hamiltonian densities. The Pauli ma-
trices σx,y,z (τx,y,z) operate in spin (Nambu) space.
The Hamiltonian is written in a basis which corre-
sponds to the four-component Nambu operator Ψ(x) =

[ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑]
T , where ψσ(x) is the electron field op-

erator with spin σ =↑, ↓. Here, µ denotes the chemical
potential, ∆ is the superconducting pairing strength (in-
duced by the proximity effect) and J denotes the strength
of the exchange coupling between magnetic impurities
and the electrons in the superconducting wire. We as-
sume J > 0 without loss of generality such that the ex-
change interaction is antiferromagnetic. The magnitude
S of the impurity spin is much larger than unity so that
quantum spin-fluctuations are negligible and, therefore,
S is treated as a fixed classical spin vector. Although
we are going to focus on the case of identical magnetic
impurities, which is substantially simplifying our analyti-
cal expressions, the directions of the magnetic impurities,
sn = (sin θn cosφn, sin θn sinφn, cos θn), can be different.
We also note that, due to the spin rotation symmetry
of the system, the magnetic ground state depends only
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on the relative angle between two impurity spins. It is
a straightforward task to generalize our model to treat
magnetic impurities of different strengths.

The full Green’s function, G = (E + i0+ −H)−1, cor-
responding to the energy E, where i0+ represents an in-
finitesimal small imaginary shift in energy, is written in
position representation as G(x1, x2;E) = 〈x1|(E + i0+−
H)−1|x2〉.

In the absence of impurities, the unperturbed Green’s
function G0 is obtained by replacing H by H0. For a
translational invariant 1D SC, i.e. in the absence of
boundaries, we find G0(x2, x1;E) ≡ G0(x12;E), with

G0(x;E) = −iπνF
[ E + ∆τx√

E2 −∆2
cos(kFx)

+iτz sin(kF |x|)
]
e−|x|/ξE , (3)

where we have assumed that the energy E is counted
from the chemical potential and |E| ≤ ∆. Here, ξE =√

∆2 − E2/~vF is the exponential decay length due to
the gap, vF the Fermi velocity, and νF = m/(π~2kF ) the
1D density of states (per spin) at the Fermi energy of the
metallic (gapless) phase, with kF the Fermi wavevector.
Below, we will also need the Green’s function for ener-
gies |E| � ∆. In this case, we can just use the Green’s
function for gapless systems

G0
0(x;E) = −i m

~2(k + i0+)
eik|x|, (4)

where k =
√

2m(E + µ). We note that in 1D there is
no power-law decay prefactor in terms of |x| in above
Green’s function (with and without gap) in contrast to
higher dimensions18.

In a semi-infinite 1D wire with a boundary at x = 0,
the wave function ψb,σ(x) must satisfy vanishing bound-
ary conditions at x = 0. Hence,

ψb,σ(x) =
1√
2

[ψσ(x)− ψσ(−x)] , (5)

where ψσ(x) is the wave function in the bulk. Con-
sequently, using the eigenstates, H0ψn = Enψn, for
the Green’s function representation, G0(x1, x2;E) =∑
n(E + i0+ − En)−1ψ∗n(x1)ψn(x2), we see that the

Green’s function for the semi-infinite system has the cor-
responding form,

Gb(x1, x2;E) = G0(x12;E)−G0(X;E), (6)

where X = x2 + x1. We note that the Green’s functions
are diagonal in spin-space as the Hamiltonian H0 is spin-
independent.

A. Single Magnetic Impurity

We first explore the energy of the YSR state induced by
a single magnetic impurity in the vicinity of the bound-
ary. In this case, as there is no contribution from the
RKKY interaction, we focus only on the renormalization
of the YSR energy. In the standard case of a magnetic
impurity located deeply inside the bulk of a 1D system,
the energy of the YSR bound states is well-known1–3 and
given by ±Ēs, where Ēs = ∆(1 − α2)/(1 + α2), with
α = πνFJS.

In the presence of a boundary, we start from the
Dyson equation18, G = G0 + G0VG, with V =∑
n=1,2H

(n)
impδ(x − xn). Taking position-state matrix el-

ements of this equation, and keeping only one impurity
at a distance x1 to the boundary of the 1D SC, we find

G(x1, x;E)(1 − G0(x1, x1;E)H(1)
imp) = G0(x1, x;E). For

vanishing boundary conditions, G0(x1, x1;E) is given by
Gb(x1, x1;E). The subgap bound state energy Es is then
found from the pole of G(x1, x;E) and thus must satisfy

the equation det[1−Gb(x1, x1;Es)H(1)
imp] = 0.

Assuming the coherence length being weakly depen-
dent on the YSR energy, i.e. ~vF /

√
∆2 − E2 → ~vF /∆

in the exponent of Eq. (3), we obtain the YSR bound
state energy Es after a straightforward calculation:

Es
∆

=
1− α2 + 2α2 cos(2kFx1)A− α2A2√

(1 + α2)2 + 4α4A2 +A4α4 − 4α2A[1 + (1 +A2)α2] cos(2kFx1) + 2A2α2(1 + α2) cos(4kFx1)
, (7)

where A = e−2x1/ξsc and ξsc = ~vF /∆ is the supercon-
ducting coherence length.

For the impurity sufficiently away from the boundary,
x1 � ξsc, this expression considerably simplifies, reduc-
ing to the bulk expression for the bound state, Ēs, with
an exponentially small correction that exhibits Friedel
oscillations induced by the boundary:

Es
∆
≈ 1− α2

1 + α2
+

4α2

(1 + α2)2
cos(2kFx1)e−2x1/ξsc . (8)

In Fig. 2, showing only the positive energy solutions,
we consider two typical cases: α � 1 and α ≈ 1. If
the impurity is relatively weak, α � 1, the YSR state
energy is inside the superconducting gap and still away
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FIG. 2. The energy of the YSR state Es/∆ [see Eq. (7)] as
a function of the distance kFx1 of the impurity away from
the boundary for (a) α = 0.55 and (b) α = 0.96. The energy
Es oscillates around its bulk value. (b) If the YSR energy is
close to zero energy for a magnetic impurity placed far away
from the boundary, then moving it closer to the boundary can
induce a quantum phase transition and change the occupancy
of the YSR bound state. The coherence length is fixed to
kF ξsc = 40.

from zero energy if the impurity is placed far away from
the boundary, see Fig. 2(a). Close to the boundary, the
YSR energy oscillates around the bulk value Ēs with the
period given by λF /2, where λF = 2π/kF is the Fermi
wavelength. If the impurity is stronger, α . 1, the YSR
energy is close to but still above zero energy for impuri-
ties far away from the boundary, see Fig. 2(b). Moving
the impurity closer to the boundary drives the YSR state
to a negative energy [due to the second term in Eq. (8)]
which induces a quantum phase transition of the ground
state from even parity to odd parity8–12,17. As the en-
ergy continues to oscillate between positive and negative
values as the impurity approaches the boundary, the sys-
tem undergoes a series of quantum phase transitions in

which the parity of the ground state oscillates. The par-
ity change occurs at positions x1 for which Es(x1) = 0.
From Eq. (7) we see that this is the case if x1 > 0 satisfies
the transcendental equation

cos(2kFx1) =
1

2
e−2x1/ξsc − 1− α2

2α2
e2x1/ξsc . (9)

From this expression we conclude that the quantum
phase transitions are possible for values of α close to one.
Generally, Eq. (9) has multiple solutions, see Fig. 2(b).
Evidently, the parity of the ground state can be chosen
by appropriate positioning of a magnetic impurity with
respect to the boundary. We note that in this work we
have neglected the local effect of the magnetic impurity
on the superconducting order parameter, which should be
determined self-consistently12,18. In this case, the YSR
energy will change discontinuously at zero energy.

B. Two Magnetic Impurities

Next, we consider two identical magnetic impurities lo-
cated at positions x1 and x2, respectively. There are now
two energetic contributions which we need to consider:
One are the YSR energies of the bound states associated
with each impurity, and the other one is the RKKY inter-
action between the two magnetic impurities transmitted
by the electrons of the superconductor. First, the en-
ergy spectrum, generally, contains two in-gap YSR states.
Similarly to the single impurity case, the two-impurity
YSR energies can be found by determining the poles of
the Green’s function dressed by scattering from two im-
purities. Using again the Dyson equation, we readily find
that the energies must satisfy the following equation:

det
{

1− [1−H(1)
impGb(x1, x1;Es)]

−1H(2)
impGb(x1, x2;Es)[1−H(2)

impGb(x2, x2;Es)]
−1H

(1)
impGb(x2, x1;Es)

}
= 0. (10)

Although far away from the boundary, x1, x2 � ξsc, the
solution of this equation can be found analytically17, the
analysis is considerably more complicated when the im-
purities are near the boundary of the wire. We thus post-
pone a discussion of this case to Sec. III where we solve
the problem exactly within a tight-binding approach.

Second, we turn now to the RKKY interaction, which
is valid when the exchange coupling J is weak, and Himp

can be treated perturbatively. In this case, the YSR
states are near the gap edge and their energies and cor-
relations can be neglected.

Following the usual RKKY type of analy-
sis66–83,85–88,90,91, we find an effective exchange in-
teraction between magnetic impurities si located at

positions xi, i = 1, 2, given by the following expression:

HRKKY
1,2 = − (JS)2

π
Im

∫ EF

−∞
dE Tr

[
(s1 · σ)

×Gb(x1, x2;E)(s2 · σ)Gb(x2, x1;E)
]
, (11)

where EF is the Fermi energy and Tr is the trace over
the electron spin degrees of freedom. When the distance
between the impurities is smaller than ξsc, the supercon-
ducting correlations can be neglected and, using Eq. (6)
with Eq. (4) we find that Eq. (11) reduces to

HRKKY
1,2 =

2m(JS)2

π~2

[
F (x12) + F (X)− 2F (x2)

]
s1 · s2,

≡ 2m(JS)2

π~2
Fsum(x1, x2) s1 · s2, (12)
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FIG. 3. Colour plot of the RKKY coefficient Fsum as a func-
tion of x2/λF on the x-axis and x1/λF on the y-axis, where
λF = 2π/kF is the Fermi wave-length. The red (yellow) color
denotes the region in which Fsum is negative (positive) and
hence the ground state is FM (AFM). The green dotted line
and the blue dashed line parallel to the diagonal are two lines
of constant x12, while X remains constant along the black
dash-dotted line perpendicular to them.The figure exhibits
oscillations between the FM and AFM ground state along the
constant x12 lines, unlike the conventional RKKY interaction
obtained far away from boundaries.

where F (x) = Si(2kFx) − π/2, with Si(y) denot-
ing the sine integral function. λF = 2π/kF is the
Fermi wavelength and The asymmetric dependence of
the RKKY Hamiltonian on x1 and x2 originates from
our assumption x2 ≥ x1, i.e. x12 ≥ 0. Evidently,
the interaction between the impurity spins is of Heisen-
berg type. The ground state configuration is ferromag-
netic for Fsum < 0 and antiferromagnetic for Fsum > 0.
Although F (x) oscillates, upon averaging over a Fermi
wavelength, we expect F (x12) to be generally a domi-
nant term in Eq. (12) as F (x) scales inversely with the
distance x and x12 ≤ x2 ≤ X. For distances greater
than the coherence length ξsc, the RKKY interaction is
exponentially suppressed. When the impurities are lo-
cated far away from the boundary while remaining close
to each other such that x1, x2 � ξsc � x12, F (X) and
F (x2) can be neglected and Eq. (12) takes the usual form
of the RKKY interaction in the absence of the bound-
ary effects66–68,70,71,73,93,94 with the position dependence
given by HRKKY

1,2 ∝ F (x12) s1 · s2.

In Fig. 3, we plot Fsum(x1, x2) as a function of x1
and x2, where the red (yellow) regions denote Fsum < 0
(Fsum > 0) indicating a FM (AFM) ground state. The

lines parallel to the diagonal x2 = x1, i.e. x12 = 0, are the
regions of constant x12, while X remains constant along
the lines parallel to the anti-diagonal, x2 = −x1. In the
region around the line x12 = 0, the RKKY coefficient
Fsum does not change sign along the constant x12 lines,
implying no transition in the ground state spin configu-
ration as x12 is unaltered. This arises from the fact that
for x12 → 0, the RKKY Hamiltonian HRKKY

1,2 defined
in Eq. (12) is dominated by F (x12). Therefore, near
these points in parameter space, the ground state config-
uration is only a function of x12, similar to the conven-
tional RKKY interaction in the absence of boundaries.
However, with increasing magnitude of x12, |F (x12)| de-
creases and even goes through zero and, as a consequence,
the two other terms F (X) and F (x2) in Eq. (12) become
significant. The interplay between these terms can then
induce oscillations in Fsum, even along lines of constant
x12. In particular, for large x12, e.g. |x12| = 2.6λF (green
dotted line in Fig. 3), the transitions between the FM
and the AFM phases upon changing X are particularly
pronounced. Evidently, these transitions in the magnetic
ground state are solely due to the boundary effects whose
contributions are encoded in the terms F (X) and F (x2)
in the RKKY Hamiltonian. Conversely, for some values
of x12, e.g. the blue dotted line in which |x12| = 1.75λF ,
the ground state configuration is independent of X. We
always observe oscillations between the FM and the AFM
phases along the lines of constant X (black dash-dotted
line in Fig. 3) as F (x12) generally dominates over F (X).

Qualitatively, one can easily interpret Fig. 3 in the
limit x1, x2, x12 � λF , in which Si(2kFx) − π/2 ≈
cos(2kFx)/2kFx, wherein we can make use of the follow-
ing approximation73

Fsum ≈
cos(2kFx12)

2kFx12
+

cos(2kFX)

2kFX
− cos(2kFx2)

kFx2
. (13)

If the inter-impurity distance x12 is chosen such that
2kFx12 ≈ (2n + 1)π/2, where n is an integer, then
F (x12) ≈ 0. Thus, at such values of the inter-impurity
distances, the RKKY coefficient Fsum will be dominated
by the boundary induced terms F (X) and F (x2). The
green dotted line in Fig. 3 corresponds to |x12| = 2.6λF
(n ≈ 10). Hence, as x1 and x2 are modified keeping
x12 unaltered, oscillations in the ground state configu-
ration can be seen along this line, originating from the
interplay between F (X) and F (x2) in Eq. (13). On the
other hand, when 2kFx12 ≈ nπ, |F (x12)| is a local max-
imum and hence dominates over the other two terms in
Eq. (13). The blue dashed line with |x12| = 1.75λF in
Fig. 3 satisfies this condition (n ≈ 7) and the ground
state exhibits the predicted behaviour.

III. NUMERICAL RESULTS

In this section we depart from an analytical analy-
sis and use a tight-binding Hamiltonian description of
our two impurity system. This allows us to go beyond
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the small J limit to find numerically the energies of
hybridized YSR states and to determine the magnetic
ground state of the two impurities for any value of J .

The tight-binding Hamiltonian has the following form:

H0 = −t
∑
n,σ

c†n,σcn+1,σ −
µl
2

∑
n,σ

c†n,σcn,σ

+
∑
n

∆c†n,↑c
†
n,↓ +H.c.,

Himp =JS
∑
n

c†nsn · σ(δn,n1
+ δn,n2

)cn. (14)

where cn =
[
cn,↑, cn,↓

]T
and cn,σ is the annihila-

tion operator acting on an electron with spin σ =↑, ↓
at a lattice site n = x/a, a being the lattice spac-
ing; t is the hopping amplitude, µl denotes the chem-
ical potential and J denotes the exchange interaction
strength between the impurity and the substrate. We
have identical magnetic impurities, while the spin direc-
tions sn = (sin θn cosφn, sin θn sinφn, cos θn) of the mag-
netic impurities can be different, as also considered previ-
ously. The spin-rotation symmetry of the system ensures
that the magnetic ground state depends only on the rel-
ative angle θ = θ2 − θ1 between the impurity spins. The
total number of lattice sites is N . We define a quan-
tity J̃ = JS which we will use later in our calculation
to simplify the representation of results. As usual, the
tight-binding description is just the discretized version
of the continuum Hamiltonian H given in Eq. (2), and as
such the lattice spacing a has no relation to an atomistic
structure, it is just a discrete length chosen sufficiently
small such that the numerics converges and the tight-
binding description becomes an accurate approximation
of the continuum model.

A. Single Magnetic Impurity

We first check our results for a single impurity dis-
cussed in Sec. II A using the above tight-binding Hamil-
tonian. The energy of the YSR bound states are calcu-
lated numerically by diagonalizing the lattice Hamilto-
nian and plotted as a function of the dimensionless dis-
tance x1/a between the impurity and the boundary. We
choose µl = −1.9t and ∆ = 0.005t, which corresponds
to a Fermi wave length λF ≈ 20a and a superconduct-
ing coherence length ξsc ≈ 126a, respectively. Here, we
choose the chemical potential to be close to the bottom
of the band. In this case, the Fermi wavelength λF � a,
and the lattice model is a good description of the contin-
uum: the deviation from the quadratic dispersion due to
the higher-order terms is negligible. The superconduct-
ing gap ∆ is chosen to be much smaller than the Fermi
energy to be in the regime typical for realistic systems
where ξsc � λF . In Fig. 4(a) and (b), we plot the YSR
bound state energy as a function of distance x1 awy from
the boundary for J̃ = t and J̃ = 0.644t, respectively. We
choose our parameters such that for impurities far away

10 60 160 210
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0.8
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10 60 160 210
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FIG. 4. The figure shows YSR energy Es/∆ as a function of
the distance x1/a of the impurity away from the boundary

for (a) J̃ = 0.644t and (b) J̃ = 1.0t. We used the following
values of the parameters: N = 1000, µl = −1.9t, ∆ = 0.005t.
As the impurity approaches the boundary, the YSR energy
oscillates with a periodicity of λF /2 around its value obtained
deep inside the bulk. The amplitude of oscillations decay
exponentially due to the presence of the superconducting gap.
In Fig. (b), close to the boundary, the YSR energy crosses the
chemical potential indicating the quantum phase transition.

from the boundary the energy of the corresponding YSR
states are the same as in Fig. 2 for the continuum case.
Evidently, at these values of J̃ , the energy of the YSR
states lies close to the middle of the superconducting gap
for impurities placed far away from the boundary. Hence,
these J̃ values correspond to the limit of strong coupling
with α being close to one. As the impurity is moved closer
to the boundary, we observe oscillations in the YSR en-
ergies around their bulk values. The oscillations have a
periodicity of λF /2 with an exponentially decaying am-
plitude of the form e−x1/ξsc originating from the super-
conducting gap, in accordance with the analytical result.
In Fig. 4(b), the YSR energy lies close to zero when the
impurity in placed deeply inside the bulk of the system
and oscillates around zero as the impurity is placed closer
to the boundary. Evidently, this indicates the quantum
phase transitions, in which the parity of the ground state
of the system changes as the impurity-boundary distance
is altered. These features, observed numerically, are in
very good agreement with the analytical results for the
YSR energies presented in Fig. 2.

B. Hybridization between the YSR states

Next, we investigate how the closeness to the boundary
affects the YSR energies of two magnetic impurities and,
thus, the magnetic ground state of the system. In previ-
ous studies, it has been observed that, far away from the
boundary, the total energy of such a system is extremized
when the impurities are collinear17. In this study, we also
focus on ferromagnetic and antiferromagnetic configura-
tions. First, we consider two impurities aligned ferromag-
netically with equal exchange coupling strengths. Due to
the spatial overlap between the YSR states created by
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FIG. 5. The energies Es for two YSR states (blue and red)
for (a) the FM configuration and (b) the AFM configuration
of the magnetic impurities as a function of the distance x1/a
between the first impurity s1 and the boundary for a fixed
inter-impurity distance x12 = 28a. Note that in (a) the two
YSR states are strongly hybridized whereas this is not the case
in (b). In (a) the hybridized energy levels of the YSR states
oscillate around their bulk value with an increasing amplitude
of oscillation close to the boundary. The YSR energies for the
AFM configuration in (b) do not hybridize with each other
but exhibit oscillations induced by the boundary. Each of
the YSR energies oscillates with a different amplitude as they
originate from impurities sitting at different distances from
the boundary. The various parameters are chosen as J̃ = 1.0t,
N = 1000, µl = −1.9t, and ∆ = 0.005t.

the two impurities, their energy levels split, lifting the
initial twofold degeneracy17,49. We numerically calcu-
late the energy of the hybridized YSR states for different
positions of the impurities with respect to the bound-
ary, keeping the inter-impurity distance fixed to the value
x12 = 28a for J̃ = 1.0t. Here, we choose J̃ to be large
such that we work in the strong coupling limit in which
the hybridization between the YSR states is substantial.
In Fig. 5(a), the energy Es of two YSR states is plot-
ted as a function of the distance x1/a. We find that the
boundary effects influence the hybridization between the
YSR states leading to oscillation of the energy levels with
a λF /2 periodicity, similar to the single impurity system.
As the impurity-boundary distance increases, the am-
plitude of oscillation decays exponentially with a decay
length of ξsc. In the case of AFM orientation, the YSR
wavefunctions are orthogonal to each other, which keeps
the YSR energy levels degenerate when impurities are
far from the boundary. As the impurities approach the
boundary, the YSR energies corresponding to each impu-
rity exhibit oscillations with a periodicity of λF /2 caused
by the boundary effects described above in the case of a
single impurity. The amplitudes of the oscillations of the
YSR energies are different as the impurities are located
at different distances from the boundary. The presence of
boundary, thus, lifts the degeneracy of the YSR energies
as shown in Fig. 5(b).

C. Magnetic Ground State of Two Impurities

The ground state energy of the system is dependent
on the relative angle θ between the magnetic impuri-
ties. The total energy of the system Eg(θ) = Eqp(θ) +
EYSR(θ) is calculated by summing over all the negative
energy states, i.e. all the energies below the chemical
potential9,15. Generally, Eg(θ) can be divided into two
contributions: EYSR(θ) coming from the YSR states and
Eqp(θ) coming from the quasiparticle states. The ground
state energy difference between the collinear configura-
tions of the impurities is given by δEg = Eg(0) − Eg(π)
where θ = 0 (θ = π) denotes a FM (AFM) configura-
tion, respectively. For δEg > 0 (δEg < 0), the ground
state of the system is AFM (FM). In this section, we in-
vestigate how the ground state configuration depends on
the impurity positions x1 and x2 as well as on the ex-
change interaction strength J̃ . We also pay attention to
the relative contributions of the YSR and quasiparticle
states. The former should dominate at longer distances
since the YSR states do not have a power-law decay in
one dimension. As such, we analogously define δEYSR =
EYSR(0)− EYSR(π) and δEqp = Eqp(0)− Eqp(π).

In Fig. 6, we plot δEYSR [panels (a) and (d)], δEqp

[panels (b) and (e)], and δEgr [panels (c) and (f)] as a

function of x1 and J̃ , for two different values of the inter-
impurity distance x12; the preference of the FM (AFM)
ground state is indicated by red (yellow) patches in the
figure. In the first row of Fig. 6, we choose x12 = 28a
such that 2kFx12 ≈ (2×n+1)π/2 with n = 5. According
to our analysis of the RKKY interaction in Sec. II B, the
boundary effects should be relatively strong for x12 satis-
fying such a condition. Here, we investigate numerically
such boundary effects for various values of the exchange
interaction strength J̃ . We start with small values of J̃ at
which the YSR energies lie close to the superconducting
gap edge and then increase J̃ to reach the strong coupling
limit.

In Fig. 6(a), the magnitude of δEYSR is negligibly small

for small J̃ . With increasing J̃ , we observe oscillations
in δEYSR between the FM (red) and the AFM (yellow)
configurations as a function of x1 and with a periodicity
of λF /2. Further increase in J̃ reduces such oscillations
in δEYSR as a function of x1. Moreover, the relative size
of the red (FM) region shrinks as the impurities move
away from the system boundary as shown in Fig. 6.

The salient features in the Fig. 6(a) can be understood
as follows by considering the energies of the YSR states:
When J̃ is small, the YSR energies lie close to the gap
edge, and, consequently, the energy difference between
the FM and AFM configurations is small. With increas-
ing J̃ the YSR states move deeper inside the supercon-
ducting gap. The boundary-induced hybridization be-
tween these states then results into oscillations in the
YSR energies around zero as a function of x1, thereby
giving rise to phase transitions between the FM and
the AFM configurations with varying impurity-boundary
distances17. As we keep on increasing J̃ , the YSR ener-
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(d) (e) (f)

FIG. 6. The energy differences δEYSR (left panel), δEqp (middle panel), and δEg (right panel) between FM and AFM

configuration as a function of x1/a along the x axis and J̃/t along the y axis. In the first and second row of the figure, the
inter-impurity distance is x12 = 28a and 40a, respectively, such that 2kFx12 is approximately an odd integer multiple of π/2 in
the first row and an integer multiple of π in the second row. The red (yellow) patches indicate a FM (AFM) configuration of
impurities. The magnetic configuration alternates between the FM and AFM phases with a periodicity of λF /2. The amplitude
of oscillations decay exponentially as a function of x1 due to the presence of the superconducting gap ∆. The blue dashed line
in the figures denote the exponentially decaying envelope function. The phase diagram for the total magnetic ground state is
a sum of the contributions coming from the YSR and the quasiparticle states. Evidently, the oscillations in δEg is observed for
a larger range of J̃ in Fig. 6(c) than in Fig. 6(f) in the second row, indicating the stronger effect of boundary when 2kFx12 is
an odd-integer multiple of π/2. The various parameters are chosen as µ = −1.9t, ∆ = 0.005t, and N = 500.

gies move back towards the gap edge, thus again reducing
the oscillations between the FM and the AFM phases.
To analyze the decay in the relative phase space of the
FM phases as x1 increases, we perform a curve fitting of
the envelope function [shown by the blue dashed curve
in Fig. 6(a)] obtained by connecting the topmost points
of the phase boundary between the red and yellow re-
gions. We find that the envelope is an exponentially de-
caying function of x1 with a decay length of order of ξsc.
This feature originates from the exponential decay of the
boundary-induced hybridization between the YSR states
as discussed in Sec. III B.

Next, in Fig. 6(b), we plot δEqp to analyze the con-
tribution of the quasiparticle states to the total energy.
Here too, the magnetic configuration oscillates between
the FM (red) and AFM (yellow) phases as a function of

x1. For small values of J̃ , we observe strong boundary-
induced oscillations in δEqp around zero. As we increase

J̃ , the oscillations between FM and AFM phases get
suppressed and the magnetic configuration becomes al-
most independent of the impurity-boundary distance x1.

With further increase in J̃ , δEqp again exhibits oscilla-
tion around zero as a function of x1, similar to that in
the small J̃ limit.

To understand the origin of the oscillations in δEqp,

we first note that at small values of J̃ , the exchange
interaction between the impurities is of the RKKY
type. At inter-impurity distances satisfying the condi-
tion 2kFx12 = (2n + 1)π/2, the RKKY Hamiltonian in
Eq. (12) is independent of x12 and depends only on
the boundary induced RKKY coefficients as described
in Sec. II B, thus giving rise to the strongest boundary
effect for this choice of x12. The phase oscillations have
a periodicity of λF /2 as also predicted by the RKKY
interaction. The envelope function marked by the blue
dashed line in Fig. 6(b) exhibits exponential decay as a
function of x1, induced by the presence of the supercon-
ductivity. We also obtained that for very large values
of J̃ , the oscillation amplitude of δEqp decays and the
preferable magnetic configuration is an AFM ordering,
independent of x1 values.

Finally, in Fig. 6(c) we plot the energy difference δEg
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including both the subgap YSR states and the bulk
quasiparticle states. The phase diagram is a compos-
ite of the contributions coming from both YSR states
and quasiparticles. Evidently, the phase boundary be-
tween the magnetic configurations is largely determined
by the YSR states14. This arises from the fact that at
2kFx12 = (2n+ 1)π/2, the strongest term F (x12) in the
RKKY interaction expression, mediated by the quasipar-
ticle states, goes to zero. As a result, the boundary-
induced effect in the RKKY interaction is substantially
overpowered by the contribution from the YSR states,
which do not have any power law decay prefactor in one-
dimensional systems. In Fig. 6(c), for small values of J̃ ,
the oscillation in δEg around zero is negligible, showing
a weak effect of the boundary on the magnetic ground
state. With increasing J̃ , the ground state configura-
tion begins to alternate with λF /2 periodicity, as also
seen in the phase diagram of δEYSR in Fig. 6(a). We ob-
serve an expansion of the FM ground state in phase space
compared to that in Fig. 6(a), arising from the bulk con-

tributions to the total magnetic ground state. As J̃ is
increased further, the oscillations in δEg decrease similar
to the small exchange limit and an AFM orientation of
the impurities is favoured. We find that for large x1, the
phase diagram is mostly determined by the YSR states
since the quasiparticle contributions decay as a power law
with increasing impurity-boundary distances whereas the
YSR contribution does not. Here also, the envelope func-
tion denoted by the blue dashed curve in the figure is an
exponentially decaying function of x1. Our results re-
emphasize the fact that the YSR states play a crucial
role in determining the correct ground state configura-
tion, thereby making it important to include both the
YSR states and the quasiparticle states while finding the
magnetic ground state.

In the second row of Fig. 6, we choose x12 = 40a such
that 2kFx12 = n × π with n = 2. In this regime of x12,
the effect of boundary on the ground state configuration
is minimal in the RKKY limit discussed in Sec. II B. In
Fig. 6(d) for δEYSR, the energy difference between the
FM and the AFM configurations is negligible at small
values of J̃ , similar to the phase diagram in Fig. 6(a)

for x12 = 28a. With increasing J̃ , the energy difference
exhibits oscillations around zero with a significant am-
plitude and a periodicity of λF /2. These oscillations in
δEYSR arise from the boundary-induced hybridization of
the YSR states whose energies lie deep inside the super-
conducting gap at such J̃ values. With further increase in
J̃ , the oscillations in the magnetic configuration become
negligible as the YSR states go back to the gap edge,
similar to the YSR physics discussed for x12 = 28a. The
envelope (blue dashed line) obtained by connecting the
critical points of the phase boundary as discussed above
is an exponentially decaying function of x1, as also ob-
served in the previous regime.

In Fig. 6(e), we show the energy contribution δEqp

coming from the quasiparticle states. We do not ob-
serve any oscillation in δEqp around zero as a func-

tion of x1, indicating a suppression of the boundary ef-
fect. To analyze this, we first recall that for small val-
ues of J̃ , the exchange interaction between the impuri-
ties is governed by the RKKY Hamiltonian in Eq. (12).
At inter-impurity distance satisfying 2kFx12 = nπ, the
x12-dependent RKKY coefficient F (x12) dominates over
the boundary-induced coefficients F (X) and F (x2) in
Eq. (12), thereby suppressing the boundary effect at this
regime of x12. We checked our results for very large val-
ues of J̃ and find that such behavior of δEqp is not limited

to small J̃ values but instead holds for the entire range
of J̃ within the checked parameter range.

Finally, in Fig. 6(f), we plot the energy difference δEg

calculated from the total energies of two competing mag-
netic ground states. In this regime too, both the YSR
states and the quasiparticle states contribute significantly
to the total energy δEg. For small J̃ values, δEg exhibits
some oscillations between the FM and the AFM ground
states as a function of x1 but these oscillations vanish
completely upon increasing J̃ . The oscillations in δEg

originate from the interplay between the YSR and the
bulk contributions to the total magnetic ground state.
Unlike the previous regime where the YSR contribution
tends to dominate over the bulk, here the bulk contribu-
tion is of the same order as the YSR contribution since
the strongest term F (x12) in the RKKY interaction at-
tains the maximum magnitude at this regime. There-
fore, the phase boundary in the phase diagram of δEg

does not closely follow that of δEYSR. As J̃ increases,
the bulk contribution overpowers the YSR contribution,
leading to the decay in the oscillations in δEg. We also
observe that the oscillations in the ground state config-
uration at small values of J̃ vanish with increasing x1.
This arises from the fact that the boundary dependent
RKKY coefficients F (X) and F (x2) decay with increas-
ing x1, whereas F (x12) remains unaltered, resulting in an
increasing magnitude of Fsum = F (x12)+F (X)−2F (x2)
as a function of x1. Hence, the bulk contribution begins
to dominate over the YSR contribution leading to the de-
cay in the oscillations in δEg as the impurities are moved
away from the boundary.

Next, to explore how the ground state configuration
deviates from the one predicted by the RKKY analysis
(see Fig. 3), we calculate the magnetic ground state as

a function of x1 and x2 for J̃ = 0.05t [weak coupling
regime, Figs. 7(a), (b), and (c)], 0.5t [intermediate cou-
pling regime, Figs. 7(d), (e), and (f)], and 1.5t [strong
coupling regime, Figs. 7(g), (h), and (i)]. The red and
yellow patches denote the FM and AFM configurations,
respectively.

In the first row of the figure, we use J̃ = 0.05t. In
Fig. 7(a), the energy difference δEYSR for the YSR states
is presented. Again, δEYSR exhibits oscillations around
zero energy along the lines of constant x12, arising from
the boundary-induced hybridization of the YSR states.
The phase diagram has similar patterns along the con-
stant x1 and the constant x2 lines, respectively, indicat-
ing the symmetric nature of the boundary effect as a



10

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. The energy differences δEYSR (left panel), δEqp (middle panel) and δEg (right panel) as a function of x1/a along

the x-axis and x2/a along the y-axis. In the first, second, and third row, J̃ = 0.05t, 0.5t, and 1.5t respectively. The red
regions in the phase diagrams indicate a FM configuration while the yellow regions indicate an AFM one. The energy difference
δEYSR exhibits oscillations around zero along the lines of constant x12, originating from the boundary-induced hybridization
between the YSR states. The plots for δEqp also show similar oscillations except close to the region x12 ≈ 0. Both the YSR
states and the quasiparticle states contribute significantly in the phase diagram of δEg for the total magnetic ground state.
When |x12| < λF , the phase diagram of δEg is governed by the quasiparticle contribution, while beyond this regime, the YSR
contribution dominates. The other parameters are fixed as µ = −1.9t, ∆ = 0.005t, and N = 500.

function of the impurity-boundary distance. In Fig. 7(b),
we show the energy difference δEqp for the quasiparticle

states at J̃ = 0.05t. We observe transitions between the
FM and AFM configurations along the constant x12 lines.
However, close to the region x12 ≈ 0, there is no tran-
sition in the magnetic configuration if x12 is unaltered.
These features look similar to that in the phase diagram
in Fig. 3 for the RKKY limit of the exchange interaction.

This is due to the fact that at such a small value of J̃ ,
the exchange interaction mediated by the quasiparticle
states is of the RKKY type.

Finally, in Fig. 7(c), we plot the energy difference δEg

between two magnetic ground states obtained by calcu-
lating the total energy of the system. The phase diagram
is obtained from a sum of the YSR and the quasiparticle
contributions, being mostly governed by the quasiparti-
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cle states for |x12| . λF and by the YSR states beyond
that limit. As a result, we do not observe much oscilla-
tions in the ground state configuration along the constant
x12 lines around x12 = 0, similar to that in Fig. 7(b) for
the quasiparticle states. With increasing inter-impurity
distance, the RKKY interaction decays as 1/kFx12 but
the YSR states, not having any power law decay in 1D,
contribute significantly in determining the total magnetic
ground state. Thus, for |x12| > λF , we observe oscilla-
tions in the ground state configuration along the con-
stant x12 lines, exhibiting a strong boundary effect in
this regime. It is interesting to note that even for such a
small J̃ , the YSR states play an important role in deter-
mining the total magnetic ground state, thereby making
it necessary to consider both the YSR and the quasipar-
ticle states while calculating the magnetic ground state
of impurities, even in the limit of weak exchange interac-
tion.

In the second row of the figure, we choose J̃ = 0.5t.
The energy difference δEYSR, plotted in Fig. 7(d), ex-
hibits oscillations around zero along the constant x12
lines except when x12 ≈ 0. To understand this feature,
first note that the YSR energies lie deep inside the su-
perconducting gap at such a large value of J̃ . For inter-
impurity distance x12 ≈ 0, the strong hybridization be-
tween these YSR states push their energies close to the
superconducting gap edge. Hence, the energy difference
δEYSR does not exhibit any oscillation around zero along
this constant x12 line17. In Fig. 7(e) we plot δEqp for the

same value of J̃ = 0.5t. Close to the region x12 ≈ 0,
we do not observe pronounced oscillations in the mag-
netic configuration along the constant x12 lines, similar
to that in Fig. 7(b) for weak J̃ . As the magnitude of
x12 increases, the magnetic configuration starts oscillat-
ing between the FM and the AFM phases as shown in
the figure. However, the number of constant x12 lines
along which the oscillations occur is much less compared
to that in Fig. 7(b). This behaviour is consistent with the
features seen in Fig. 6(b), where we observe less oscilla-
tions between different magnetic configurations in δEqp

for such a strong value of J̃ .
Finally, Fig. 7(f) shows the total ground state energy

difference δEg, which is a sum of the YSR and the quasi-
particle contributions as also seen previously. Similar to
the features in Fig. 7(c), the phase diagram of δEg is
dominated by the bulk contributions for |x12| . λF and
thus does not exhibit oscillations in the magnetic config-
uration in a region around x12 = 0. Beyond x12 = λF ,
the YSR contribution wins over the bulk one and, as a
result, the phase diagram of δEg is similar to the one of
δEYSR in Fig. 7(d).

To conclude, we increase J̃ further and in the last row
of Fig. 7, we have J̃ = 1.5t. At such a large value of the
exchange interaction, the YSR states again move towards
the superconducting gap edge. The boundary-induced
hybridization gives rise to oscillations in the magnetic
configuration between the FM and the AFM phases as
seen in Fig. 7(g).

In Fig. 7(h) obtained from the quasiparticle energies,
there is no oscillation along the constant x12 lines close to
the region x12 ≈ 0, as also seen above. With increasing
x12, we find that the oscillations between the two mag-
netic configurations occur only along the lines satisfying
the condition 2x12kF = (2n+ 1)π/2. The phase diagram
for δEg in Fig. 7(i) gets contributions from both the YSR
and the quasiparticle states as seen above for two other
values of J̃ . The magnetic ground state follows the quasi-
particle states for x12 smaller than λF , and beyond that
δEg is dominated by the YSR contribution as shown in
Fig. 7(i).

IV. CONCLUSIONS

We investigated the effects of a boundary on the YSR
states and on the magnetic ground state of two classical
spins in a 1D superconductor. We showed the change in
the hybridization between the YSR states as the impu-
rities move close to the boundary. For small exchange
interaction strength (between impurity spin and electron
spins) compared to the Fermi energy, we calculated the
RKKY interaction between the magnetic impurities in a
semi-infinite system. The RKKY interaction, not only
depends on the inter-impurity distance, but also on the
distances of the impurities from the boundary. It is there-
fore possible to drive a phase transition between different
magnetic ground state configurations by solely changing
the impurity-boundary distances. While it is expected
that the boundary will induce Friedel oscillations in the
wavefunctions, the possibility that this leads to a phase
transition is rather surprising and interesting. We also
found that depending on the distance between the mag-
netic impurities, the boundary effect can be suppressed
or enhanced. Thus, the inter-impurity distance acts as
a tuning parameter of the boundary-induced physics.
Next, we numerically explored the boundary effect for
small exchange interactions and away from this limit.
Our numerical plots exhibit phase transitions occurring
as a function of the impurity-boundary distances, similar
to the analytical results for weak coupling. Moreover, the
distinctive features of the boundary effects, dependent
on the choice of the inter-impurity distance, also remain
unaltered in the limit of strong exchange interactions.
We observe that the numerically obtained phase diagram
demonstrates that the energy difference between the FM
and the AFM ground state is governed by the sum of
both the YSR and the quasiparticle contributions. Our
findings thus re-emphasize the importance of including
both the YSR bound states and the quasiparticle states
when determining the total magnetic ground state. It is
straightforward to generalize our results to account for
spin-orbit interactions in a 1D system as it can be easily
absorbed into the tilt of one of the spin impurities by
making use of the position-dependent gauge73, resulting
in magnetic configurations that are not collinear. We also
note that, if the Fermi surface is more complicated and
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consists of multiple Fermi points coming from different
bands, as is the case, for example, for carbon nanotubes,
we expect beating patterns80 that will make the phase
diagram even richer. Our findings can be tested exper-
imentally e.g. in atomic chains, where additional mag-
netic impurities can be placed closed to the end of the
chain61–65. Alternatively, one can use graphene nanorib-
bons with magnetic impurities100–102. The spin configu-
ration can be probed by spin-resolved STM tips. In addi-
tion, the spin susceptibility could be measured by using
source-probe techniques99. Finally, we note that the pre-
dicted behavior of the YSR states can be also observed
in semiconducting nanowires with proximity-induced su-
perconductivity, where the presence of the YSR states

was demonstrated in recent experiments38–43.
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50 K. Pöyhönen, A. Westström, J. Röntynen, and T. Ojanen,
Phys. Rev. B 89, 115109 (2014).

51 I. Reis, D. J. J. Marchand, and M. Franz, Phys. Rev. B
90, 085124 (2014).

52 A. Heimes, D. Mendler, and P. Kotetes, New J. Phys. 17,
023051 (2015).

53 S. Hoffman, J. Klinovaja, and D. Loss, Phys. Rev. B 93,
165418 (2016).

54 G. M. Andolina and P. Simon, Phys. Rev. B 96, 235411
(2017).

55 K. Björnson, A. V. Balatsky, and A. M. Black-Schaffer,
Phys. Rev. B 95, 104521 (2017).

56 O.A Awoga and A. M. Black-Schaffer, Phys. Rev. B 97,
214515 (2018).

57 D.-J. Choi, et al., Rev. Mod. Phys. 91, 041001 (2019).
58 R. Pawlak, S. Hoffman, J. Klinovaja, D. Loss, and E.

Meyer, Progress in Particle and Nuclear Physics 107, 1
(2019).

59 A. Theiler, K. Björnson, and A. M. Black-Schaffer, Phys.
Rev. B 100, 214504 (2019).

60 M. Mashkoori and A. Black-Schaffer, Phys. Rev. B 99,
024505 (2019).

61 S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J.
Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani,
Science 346, 602 (2014).

62 M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W.
Heinrich, and K. J. Franke, Phys. Rev. Lett. 115, 197204
(2015).

63 R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, S. Kawai,
T.Glatzel, D. Loss, and E. Meyer, npj Quantum informa-
tion 2, 16035 (2016).

64 B. E. Feldman, M. T. Randeria, J. Li, S. Jeon, Y. Xie,
Z. Wang, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,
Nature Physics 13, 286 (2017).

65 H. Kim, et al., Sci. Adv. 4, eaar5251 (2018).
66 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
67 T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
68 K. Yosida, Phys. Rev. 106, 893 (1957).
69 G. Giuliani and G. Vignale, Quantum Theory of the

Electron Liquid (Cambridge University Press, Cambridge,
UK, 2005).

70 P. Bruno, Phys. Rev. B 52, 411 (1995).
71 N. F. Schwabe et al., Phys. Rev. B 54, 12953 (1996).
72 R. Egger and H. Schoeller, Phys. Rev. B 54, 16337 (1996).
73 H. Imamura, P. Bruno, and Y. Utsumi, Phys. Rev. B 69,

121303(R) (2004).
74 P. Simon and D. Loss, Phys. Rev. Lett. 98, 156401 (2007).
75 B. Braunecker, P. Simon, and D. Loss, Phys. Rev. Lett.

102, 116403 (2009).
76 A. M. Black-Schaffer, Phys. Rev. B 81, 205416 (2010).
77 S. Chesi and D. Loss, Phys. Rev. B 82, 165303 (2010).
78 B. Braunecker, G. I. Japaridze, J. Klinovaja, and D. Loss,

Phys. Rev. B 82, 045127 (2010).
79 E. Kogan, Phys. Rev. B 84, 115119 (2011).
80 J. Klinovaja, and D. Loss, Phys. Rev. B 87, 045422

(2013).
81 T. Meng, P. Stano, J. Klinovaja, and D. Loss, Eur. Phys.

J. B 87, 203 (2014).
82 C.-H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Phys. Rev

B 92, 235435 (2015).
83 M. V. Hosseini and M. Askari, Phys. Rev. B 92, 224435

(2015).
84 M. Schecter, M. S. Rudner, and K. Flensberg, Phys. Rev.

Lett. 114, 247205 (2015).
85 C.-H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Phys.

Rev. B 97, 125432 (2018).
86 O. M. Yevtushenko and V. I. Yudson, Phys. Rev. Lett.

120, 147201 (2018).
87 V. Kaladzhyan, A. A. Zyuzin, and P. Simon, Phys. Rev.

B 99, 165302 (2019).
88 G. C. Paul, S. K. Firoz Islam, and A. Saha, Phys. Rev. B

99, 155418 (2019).
89 H. F. Legg and B. Braunecker, Scientific Reports 9, 17697

(2019).
90 E. Kogan, C 5 14 (2019).
91 A. M. Tsvelik and O. M. Yevtushenko, Phys. Rev. B 100,

165110 (2019).
92 P. Stano, J. Klinovaja, A. Yacoby, and D. Loss, Phys.

Rev. B 88, 045441, (2013).
93 Y. Yafet, Phys. Rev. B 36, 3948 (1987).
94 V. I. Litvinov and V. K. Dugaev, Phys. Rev. B 58, 3584

(1998).
95 A. A. Abrikosov, Fundamentals of the Theory of Metals,

Vol. 1 (Elsevier, Amsterdam, 1988).
96 D. Aristov, S. Maleyev, and A. Yashenkin, Z. Phys. B

102, 467 (1997).
97 V. M. Galitski and A. I. Larkin, Phys. Rev. B 66, 064526

(2002).
98 M. Valentini, et al., arXiv:2008.02348v2 (2020).
99 P. Stano, J. Klinovaja, A. Yacoby, and D. Loss, Phys.

Rev. B 88, 045441 (2013).
100 J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S.

Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X.
Feng, K. Muellen, and R. Fasel, Nature 466, 470 (2010).

101 O. Groening, S. Wang, X. Yao, C. A. Pignedoli, G. Borin
Barin, C. Daniels, A. Cupo, V. Meunier, A. Narita, K.
Muellen, P. Ruffieux, and R. Fasel, Nature 560, 209
(2018).

102 S. Kawai, S. Nakatsuka, T. Hatakeyama, Remy Pawlak,
T. Meier, E. Meyer, and A. S. Foster, Science Advances
4, eaar7181 (2018).


