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We have observed the effect of pseudo magnetic field originating from the polaritonic analog of
spin-orbit coupling (TE−TM splitting) on a polariton condensate in a ring shaped microcavity. The
effect gives rise to a stable four-leaf pattern around the ring as seen from the linear polarization
measurements of the condensate photoluminescence. This pattern is found to originate from the in-
terplay of the cavity potential, energy relaxation and TE-TM splitting in the ring. Our observations
are compared to the dissipative one-dimensional spinor Gross-Pitaevskii equation with the TE-TM
splitting energy which shows good qualitative agreement.

I. INTRODUCTION

Over a decade has passed since the first demon-
stration of Bose-Einstein condensation of exciton-
polaritons in a semiconductor microcavity [1, 2]. It
stands out as a unique platform for exploring physics
of out of equilibrium systems. Recent reports on the
observation of thermal equilibration [3, 4] on one
hand have triggered interest in studying equilibrium
physics in non-hermitian systems, while on the other
have shown promise for making devices based on po-
lariton condensates which operate near equilibrium.
Such a feat been achieved in microcavities with Q
> 105, allowing several collision events between po-
laritons to distribute energy and thermalize in their
lifetime [3–6].

These systems also naturally offer a way for de-
scribing a pseudo-spin 1/2 Bose gas [7]. The order
parameter of a polariton condensate is described by
a two-component complex valued spinor, which is
connected to the electric polarization of the polari-
tons in the microcavity [8]. In the presence of a
non-aligned magnetic field the spin of the polaritons
is precessing similarly to the spin of an electron in
a magnetic field. It turns out that for a quantum
well embedded inside a semiconductor microcavity,
a small but non-negligible momentum dependent ef-
fective magnetic field is present which lies in the
plane of the quantum well. This has been used to
realize a polaritonic analog of extrinsic [9] as well as
intrinsic [10] spin Hall effect. In contrast to the elec-
tronic systems where the spin Hall effect gives rise
to a spin current and no mass transport, the optical

spin Hall effect is realized by actual transport of po-
laritons while the spin of the polaritons precess as
they move.

In this paper we address how the two spinor com-
ponents of a gas of highly excited trapped polaritons
evolve following a quench in a long lifetime (≈ 200
ps) microcavity. The trapping potential is created
by patterning the top mirror of the GaAs microcav-
ity in the shape of a ring. The polaritons in the
ring maintain the same long lifetime (≈ 200 ps),
high quality (Q > 105) and low disorder as in the
two-dimensional planar microcavity used previously
[3, 5, 11–13]. With the presence of a unidirectional
gradient in the energy of the polaritons, the circular
symmetry of the ring is broken, giving rise to a rigid
rotor potential. Combined with a momentum depen-
dent effective magnetic field in the trap, this results
in intrinsic optical spin Hall effect as the polaritons
are transported to the region with the lowest energy
in the trap. We map the spin of the condensed po-
laritons in the ring using space- and time- resolved
spin-polarized spectroscopy.

The rings are fabricated by etching the top dis-
tributed Bragg reflector (DBR) of this microcavity
in the shape of rings of width (the difference of the
outer and the inner radii) 15 µm and radius (aver-
age of outer and inner radii) 50 µm. Further details
may be found in the previous papers [13–15]. Across
the typical dimensions of the ring, the thickness of
the microcavity varies which leads to a cavity energy
gradient (≈ 7−9 meV/mm). The cavity gradient ef-
fect is similar to an artificial gravity for the polari-
tons making the rings look tilted on the potential
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energy plane. Due to the analogy to gravity, here
we will refer to the point of highest potential energy
as the “top” of the ring, and the point of lower po-
tential energy, on the opposite side of the ring, as
the “bottom”. The effect of the artificial gravity on
the spin-polarized polaritons have been theoretically
studied in Ref. [16].

II. EXPERIMENT

The top of the rings are non-resonantly pumped
(Epump ≈ 1710 meV which is at least 100 meV
higher than the energy of the lower branch polari-
tons at the point of excitation) with a mode-locked
Ti:sapphire laser with a pulse repetition rate of 76
MHz, a pulse width of ≈ 2 ps, a spot size of ≈ 15 µm
on the sample and incident at an angle of ≈ 45◦ from
the plane of the sample with more than 90% linear
polarization. Due to the high angle injection, the
pump spot is not circular on the plane of the sam-
ple and creates asymmetry in the direction of the
polaritons streaming from the pump spot. Photolu-
minescence (PL) from the rings was collected using
a microscope objective with a numerical aperture
(NA) of 0.40 and imaged onto the entrance slit of
a spectrometer. The image was then sent through
the spectrometer either to a standard charged cou-
pled device (CCD) chip located at one of the exit
ports of the spectrometer for time integrated imag-
ing, or onto a Hamamatsu streak camera located
at the other exit port for time-resolved imaging.
All measurements were performed by cooling the
microcavity to low temperature (below 10 K) in a
continuous-flow cold-finger cryostat. A sketch of the
experimental setup is shown in Fig. 1.

The non-resonant optical pulse excites a popula-
tion of free electrons and holes at the top of the ring
which undergo rapid thermalization, turning into ex-
citons. Excitons further relax down in energy and
reach the anti-crossing spectral region of the pho-
tonic and excitonic dispersion branches, forming a
dense polariton gas (see, for example, Tassone et
al. [17]), which above a critical density undergoes
non-equilibrium Bose-Einstein condensation. This
non-equilibrium condensate streams out ballistically
from the excitation spot and fills the entire ring,
while also dropping in energy as it moves in the
ring. As shown in Fig. 2 (c) the polaritons are ini-
tially formed with a large blue-shifted energy at the
pump spot which rapidly red shifts with time. This
is followed by a spectrally narrow emission which
slowly drops in energy, asymptotically approaching
the k|| = 0 lower polariton energy at this location.
The initial blue shift seen at the pump spot is due to
the interaction of polaritons with the exciton cloud.

The rate of energy drop of the polaritons measures
the rate at which the exciton cloud decays. By the
time the polaritons arrive at the bottom of the ring
trap it has already undergone considerable energy re-
laxation (≈ 2 meV). The energy- and time- resolved
image from the bottom in Fig. 2 (c) shows that as
the occupation density of the polaritons increases,
the spectral linewidth of the emission narrows indi-
cating build up of coherence in the bottom of the
trap. We have combined the streak images from the
top and bottom of the ring for comparison in Fig. 2
(c). In Fig. 2 (a) and (b) we show spatially and tem-
porally resolved energy and linewidth of the emission
from the full ring. From these plots we infer that the
spatial coherence extends at most to one-third of the
ring circumference at any given point in time, which
is signaled by the energy locking of the emission. At
late times the energy of the emission approaches the
local, low density k|| = 0 lower polariton energy.

We resolved the polarization of the PL from the
ring by performing a full Stokes vector measurement
(S0, S1, S2, S3) using combinations of half or quar-
ter waveplate and a linear polarizer. The measure-
ment was done on the collimated signal just after the
microscope objective. The transmission axis of the
polarizer was chosen to be vertical in the lab frame
and was kept fixed throughout the experiment. This
was done to remove the polarization sensitivity of
the optics downstream in the setup. We used an-
other half waveplate and a polarizer before the en-
trance slit of the spectrometer to collect all the signal
which didn’t get reflected, scattered or absorbed af-
ter passing through the optics. For all the measure-
ments the orientation of the transmission axis of the
final polarizer was also kept fixed, which removed
the polarization sensitivity of all the optics inside
the spectrometer as the light that entered the spec-
trometer was always at a fixed linear polarization.
Two images were taken for each individual measure-
ment, one with the half waveplate fast axis (placed
just before the final polarizer) at 0◦ and one with it
at 45◦. By adding these two images together, the
total contribution of both polarizations (both paral-
lel and orthogonal to the final polarizer) were taken
into account. Additional details on the full Stokes
vector measurement are given in Appendix B.

Time-resolved Stokes vector measurements were
done using the streak camera. A diametric slice of
the image of the ring was aligned with the horizon-
tal time slit of the streak camera. To collect the PL
from a different location on the ring, the image was
rotated using a dove prism. The dove prism was
placed in a nearly collimated region of the optical
path, as shown in Fig. 1. Before the experiment, the
dove prism was carefully aligned to minimize the im-
age walk-off when the prism was rotated by adjust-
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FIG. 1. Schematic of the experimental setup. Inset shows a time integrated image of the photoluminiscence from
the ring microcavity also showing the direction of the cavity gradient ∆E. QWP: quarter waveplate, HWP: half
waveplate, LP: linear polarizer.
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FIG. 2. Example of condensate energy (a) and linewidth (b) as a function of time from different locations on the
ring. 3π/2 corresponds to the bottom of the ring. The zero of the time axis corresponds to the time of excitation at
the top of the ring. The condensate energy is obtained at each spatial location by fitting a lorentzian function to the
energy- and time- resolved image captured by the streak camera. (c) shows a spectral comparison between the PL
emission from the top and bottom of the ring as a function of time.

ing the tilt screws on the mount. Small adjustments
were made during data collection by moving the fi-
nal imaging lens, Lens 3, in the transverse plane to
ensure consistent overlap of the diametric slice of the
ring with the time slit. We note that the intensity
collected by the streak camera after a pulsed excita-
tion of the ring is the sum of the intensity of millions
of such realizations. The density of polaritons cre-
ated by each pulse was above the critical density
of polaritons required for undergoing Bose-Einstein
condensation (BEC) at the given temperature. If the
realization of each instance of the BEC picks up a
random polarization state in the ring, then by aver-

aging we should obtain a strong component of unpo-
larized light in the emission. However, from previous
time resolved studies on spontaneously formed po-
lariton BEC it is known that the polarization of the
BEC is not random and is sensitive to underlying
crystal symmetries and other symmetries or imper-
fections of the microcavity. Therefore, degree of po-
larization is an important parameter distinguishing
between emission from condensed and uncondensed
or excited polaritons.

We compare the time resolved polarization of the
PL emission from the point of excitation (top) and
the diametrically opposite point (bottom) on the
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ring in Fig. 3. We find a rapid build up of the
degree of polarization (DOP) of the emission at the
pump spot following the arrival of the pump pulse.
This is correlated with a decrease in the PL emis-
sion intensity at the pump spot. This signal is post
hot thermalization and indicates appearance of a lo-
cal non-equilibrium condensate which undergoes fur-
ther energy relaxation. As the condensate streams
and fills the ring, the DOP plateaus. At the same
time, there is a slow build up of the polarized emis-
sion from the bottom of the ring which persists as
long as the polaritons leak from the microcavity. In
contrast, the DOP drops at the pump location after
plateauing because the condensate drifts away from
this location towards the bottom of the ring. The
oscillations in the intensity of the PL emission from
the bottom of the ring is due to the pendulum like
oscillations about the ring trap minimum [15].

Measurement of the time-resolved components of
the Stokes vector from different angular positions on
the ring are shown in Fig. 6 and a Bloch vector vi-
sualization at different time instances are shown in
Fig. 4. The circular polarization component S3 in
these measurements reveal that before the appear-
ance of condensate in the ring, highly excited non-
thermal polaritons moving out from the pump spot
show spin imbalance polarity depending on whether
they are moving in the clockwise or anti-clockwise
direction. This is due to the polariton pseudo-spins
experiencing the effect of the in-plane magnetic field
arising due to the splitting of the transverse electric
(TE) and transverse magnetic (TM) mode in the
cavity and depending on the polariton wave-vector.
It is easily verified in a simulation showing the time
evolution of a linearly polarized wavepacket under
the TE-TM splitting Hamiltonian.

The linear polarization components S1 and S2

show a spontaneous emergence of four-leaf angular
pattern as shown in Fig. 6 (b) and (c). This pattern
persists in the ring until the polaritons fully leak
from the microcavity. Manifestation of this pattern
could be visualized by representing the Stokes vector
on the Bloch sphere and tracing it around the ring.
The projection of the Stokes vector on the equato-
rial plane of the Bloch sphere gives the component
of linear polarization of the emission. This is shown
in black arrows in Fig. 4 at different time instances.
We see in these figures and in Fig. 5 that after t =
265 ps, the linear polarization component appears
to wrap around the ring by 4π radians, which cor-
responds to a rotation by 2π radians for the major
axis of the elliptically polarized emission from the
ring. In Fig. 5 we compare the direction of the lin-
ear polarization of the Stokes vector from different
angular positions in the ring at two different time
instances. The wrapping of the linear polarization

component by 4π radians is found at t = 265 ps,
while it only wraps by 2π radians at t = 103 ps.
The linear polarization component forms domains in
the ring where the direction changes slowly within a
domain while across a domain there is a change in
the direction by ±π/2 or more. The direction of the
linear polarization component from the lower half
of the ring remains nearly stationary in time after
t = 265 ps as shown in Fig. 4. This is despite the
fact that there is noticeable angular variation of the
intensity of emission from this region with time as
shown in S0 component in Fig. 6 (a) as well as in
Figure 4. Both spatial and temporal dependence of
the PL intensity from the ring indicates variation of
the density of the polaritons in the ring. The over-
all polarization component of the emission does not
show a strong dependence on the polariton density
which could be deduced from plots of the Stokes vec-
tor around the ring in Fig. 4. We can thus conclude
that the interactions between the polaritons do not
play a dominant role in determining the polariza-
tion direction of the emission. At late times, the
non-equilibrium state shows very little spin imbal-
ance as shown in Fig. 6 (d) which is due to good
spatial overlap of nearly identical density profiles of
the two spin components.

In the following section we develop a minimal
model capturing the qualitative features discussed
above highlighting the essential physics needed to
interpret our observations. We derive an effective
one-dimensional Hamiltonian by projecting the two-
dimensional Hamiltonian onto the ground state of
the radially confining potential due to the finite
width of the ring channel. The periodicity of the
wavefunction in the azimuthal direction results in
discrete orbital angular momentum states in the
ring. We assume that the polaritons occupy only
a small part of the lower polariton dispersion near
k|| = 0, allowing us to make an effective mass ap-
proximation for the polaritons. The cavity gradient
in the ring reduces the circular symmetry to a left-
right mirror symmetry in the ring. It also creates
a small spatial anisotropy in the TE-TM splitting
energy which is ignored in the present model. A
schematic of the quantum states in the ring in ab-
sence of a cavity gradient is shown in Fig. 7 (a).
We also neglect the spin-dependent interactions for
reasons discussed previously.

III. THEORETICAL MODEL

Here we present the theoretical model of a single
polariton ring of radius R and width a with a cavity
gradient along the vertical axis (see the inset in Fig.
1), where only the lowest radial mode is occupied. In
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FIG. 3. Comparison of the polarization between the top and bottom of the ring as a function of time. Degree of
polarization (DOP) is given by

√
S2
1 + S2

2 + S2
3 .

FIG. 4. PL intensity from the ring at different time instances t0 and the corresponding polarized emission shown
with the Bloch sphere representation of the Stokes vectors at different angular positions on the ring. Black arrows
depict the projection of the Stokes vector on the equatorial plane of the Bloch sphere. The length of the arrow is a
measure of the degree of linear polarization within the polarized sector of emission and half of the angle w.r.t. the
positive x-axis measures the direction of the linear polarized light. The red and green arrows depict the spin up and
spin down projection of the polariton spinor respectively. The length of these arrows indicate the degree of circular
polarization (or spin polarization) of the polaritons. Stokes vectors for intensity below a cut-off level (Icut = 3) is not
plotted due to poor signal to noise ratio. The linear polarization pattern in the time range shown is quasi-stationary.
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FIG. 5. (a) The direction pointed by the linearly polarized Stokes vector S1x̂ + S2ŷ around the ring at two time
instances. The angle tan−1(S2/S1) has been unwrapped in the range [0, 6π]. (b) and (c) show the linearly polarized
Stokes vector in the ring at t = 103 ps and t = 265 ps respectively.

Total intensity (arb. units) Horizontal polarization (𝑆ଵ) Diagonal polarization (𝑆ଶ) Circular polarization (𝑆ଷ)
(a) (b) (c) (d)

(e) (f) (g)

FIG. 6. Example of time and polarization resolved PL from tilted ring. Components of the Stokes vector S0, S1, S2

and S3 measured at an angular resolution of 10◦ as a function of time. We integrated the polarization resolved PL
over the radial width of the ring to process the Stokes components at any given angular position on the ring. The
intensity collected by the streak camera after a pulsed excitation of the ring is the sum of the intensity of millions of
such realizations. Bottom row shows the four-leaf pattern in the components S1 and S2 at t = 374 ps. Stokes vectors
normalized w.r.t. the polarized component of the total emission is shown in Appendix B.



7

Radial confined states TE-TM splitting Ring geometry

States with discrete orbital 
angular momentum

𝑘!

𝑘" 𝐵"##(𝑘)

𝑆# 𝑆$

Ground state

(a)

(b)

En
er

gy

FIG. 7. (a) A schematic showing the effect of the radial confinement, TE-TM splitting and the ring geometry on the
quantum states in the ring. Visualization of the expectation value of the Stokes components in the ground state of
the ring without the tilt is also shown. In the ground state Sz = 0 while S1 and S2 components are phase shifted by
π/4 w.r.t. each other. The white arrows depict the polarization plane direction, corresponding to the local Stokes
parameters. In the ground state the polarization wraps in the azimuthal direction in the ring. (b) Direction of the
effective magnetic field due to TE-TM splitting shown with red arrows in the momentum space.
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FIG. 8. Time evolution of the horizontally polarized condensate spinor. Parameters for both rows are meff =
6.14 × 10−5m0, B = 0.05, τ = 200 ps, and ∆ = 250, where m0 is the rest mass of an electron in vacuum. Top row
(a-d): V0 = 16, Λ = 1; Bottom row (e-h): V0 = 335, Λ = 0.3; A larger energy damping rate is chosen for smaller tilt
case (top row) because the initial state has a lower potential energy than the larger tilt case (bottom row), so energy
relaxation is slower for the same value of Λ in the smaller tilt case.
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the absence of the polariton-polariton and polariton-
reservoir interaction, the ring is described by the fol-

lowing matrix Hamiltonian Ĥ, whose elements are
given by (see the derivation in Appendix A)

Ĥ11 = Ĥ22 =
~2

2meffR2
(
ˆ̃
k2 + V0 sinϕ), (1)

Ĥ12 = Ĥ†21 =
~2

2meffR2
·(

(B + V1 sinϕ)e−2iϕ(−ˆ̃
k2 + 2

ˆ̃
k + ∆) + αe−iϕ0

)
,

where
ˆ̃
k = −i(d/dϕ). ϕ is measured from the pos-

itive direction of the x-axis in anticlockwise sense.
For the sake of simplicity we introduced the dimen-
sionless quantity B + V1 sinϕ which corresponds to
the TE-TM splitting, inherited from the plane mi-
crocavity, here B = 2βmeff/~2 (β defines the TE-
TM splitting of the plane microcavity without tilt)
and V1 accounts for the dependence of the TE-TM
splitting on the changing width of the quantum well.
V0 describes the position-dependent shift of the en-
ergy levels due to the cavity gradient. The dimen-
sionless parameter ∆ = (πR/a)2 corresponds to the
LT-splitting, stemming from the confinement in the
radial direction. We also consider an additional
splitting between linear polarizations which acts as
a static in-plane field, and described by α and ϕ0.
This field is usually linked with the crystallographic
axes and appears because of the anisotropy of the
quantum well.

One can relate the parameters B = βmeff/~2 and
V1 introduced in Eq. (1) to the parameters of the
DBRs as (see details in Appendix A)

β =
2~Lc,0LDBR(ωc,0 − ω̄)c2n0

(Lc,0 + LDBR)2n2
cω

2
c,0

, (2)

and

β +
~2V1

meff
=

2~Lc,π/2LDBR(ωc,0 − ω̄)c2n0

(Lc,π/2 + LDBR)2n2
cω

2
c

, (3)

where n0 and nc are the refractive indexes of the
surrounding media and the cavity respectively Lc,0,
Lc,π/2 are the widths of the cavity at the points of
the ring defined by ϕ = 0, π, respectively and ωc,0
is the real part of the cavity eigenfrequency at zero
in-plane momentum. LDBR = nanbλ̄/(2(nb − na)),
which is frequently called the effective length of a
Bragg mirror, na,b are the refractive indices of the
layers comprising the DBRs and λ̄ is the wavelength,
corresponding to central frequency of the stop-band
λ̄ = 2πc/ω̄. In the following discussion, we drop V1

and α. The time evolution of the polariton conden-
sate spinor Ψ in presence of energy relaxation and
finite lifetime τ reads:

i~
∂Ψ

∂t
= (1− iΛ) ĤΨ− i~

2τ
Ψ (4)

Energy relaxation is phenomenologically included
in the model by multiplying the Hamiltonian (1) by
the complex coefficient 1 − iΛ, where Λ is the di-
mensionless energy relaxation parameter. This is
an energy diminishing scheme, where the higher en-
ergy eigenstates relax more quickly than the lower
energy eigenstates. For longer temporal evolution
only the ground state survives. This form of en-
ergy relaxation was first suggested by Pitaevskii [18]
and applied in context of damped atomic conden-
sates [19, 20]. Since the rate of energy dissipation
and the rate of particle loss are not equal, we ac-
counted for the leakage rate with the parameter τ .
While numerically integrating the term proportional
to Λ we preserve the norm of the wavefunction by
adding back the particles that are lost during the
energy relaxation step. To account for the finite life-
time of the polaritons we added another imaginary
term proportional to Ψ, which describes the loss of
particles from the microcavity with time. Thus, the
number of polaritons in the simulation exponentially
decays with time at a rate 1/τ . An order of magni-
tude estimate for Λ is obtained from the damping of
the oscillations at the bottom of the ring as shown in
Fig. 6 (a), which gives Λ of the order of 0.1, an order
of magnitude higher than previous studies [19, 21].

We evolve an initial state which is close to the
state observed in the experiment after hot thermal-
ization at the pump spot. As shown in Figs. 3 and 6,
the Stokes parameters are S1 ∼ 0.5 and S2 ∼ −0.5
when the degree of polarization is maximum at the
top of the ring. This implies that the linear polar-
ization makes an angle of about -22.5◦ with the hor-
izontal axis. Any spatially extended state with this
uniform polarization is not a polarization eigenstate
of the ring because it lacks the left-right mirror sym-
metry of the ring. In the simulations, we preferred
to use an initial state which respects the mirror sym-
metry of the ring to show that the observed exper-
imental signatures like the four-leaf pattern (in S1

and S2) and the spin flips (in S3) arise in the course
of dynamics and do not sensitively depend on the
choice of the initial conditions. Since the initial con-
densate is over 80% horizontally polarized, the initial
condensate order parameter in the simulations was
chosen to be completely horizontally polarized and
localized at the top of the ring,

Ψ(ϕ, t = 0) = exp

[
− (ϕ− π/2)2

2d2

]
[1, 1]

T
. (5)

This initial polarized state has a left-right mirror
symmetry with S2(ϕ, t = 0) = 0 as well as spin
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balanced S3(ϕ, t = 0) = 0. Such an initial state
would clarify the dynamical signature of the pseudo
magnetic field on the propagating polariton conden-
sate when S2 and S3 become non-zero during evolu-
tion. The angular width (d = π/10) of the gaussian
wavepacket in the simulations was chosen compara-
ble to the spot size of the pump ≈ 15µm. Numerical
solution of Equation (4) is shown in Fig. 8 for two
different choices of cavity tilt and different energy
relaxation rates to elucidate the role of the cavity
gradient and the energy damping in the polarization
pattern formation in the ring. The simulation cap-
tures the coherent evolution of the polariton spinor
after excitation by a single pulse.

As the initial spin balanced state diffuses from the
top, the two components of the spinor are pushed in
opposite directions creating a spin imbalanced state.
This is shown at early times in the circular polariza-
tion components S3 in Fig. 8 (d) and (h). In the
first 100 ps we observed similar spin imbalance near
the top of the ring in the S3 component as shown
in Fig. 6. This imbalance is manifested by the ap-
pearance of opposite polarity of the S3 component
for clockwise and counter-clockwise flow of the po-
lariton condensate. From Fig. 6 (c) we also see that
after 200 ps, the top half of the ring shows a spin
flip, i.e. the region where S3 > 0 in the first 100
ps becomes S3 < 0 and vice-versa. From our sim-
ulations we see this when the condensate motion is
not strongly damped in Fig. 8 (h). The opposite
spin components do not immediately come to rest
on reaching the bottom from the top, and continues
onward motion converting back the gained kinetic
energy into potential energy. It is during this course
of motion that we observe spin flip in the ring. In
Fig. 8 (d) we do not see this feature because the
condensate motion is overdamped, dissipating the
kinetic energy very quickly and bringing the conden-
sate to rest in the bottom of the ring. In the linear
polarization sector, which is a measure of the relative
phase between the two spinor components, we find
rotation of the polarization as the condensate flows
out from the point of generation. This is shown by
appearance of non-zero S2 component shortly after
evolution of the initial state in Fig. 8 (b) and (f). As
the condensate fills the entire ring, we see emergence
of the four-leaf pattern in S1 and S2. This is clearly
seen in Fig. 8 (b) and (c) while obfuscated in Fig.
8 (f) and (g) due to interference between clockwise
and anti-clockwise moving waves. Similar observa-
tion made in Fig. 6 (b-c) and the four-leaf pattern
is shown in Fig. 6 (e-f). As the condensate settles
to the minimum of the trap potential, this pattern
is seen at the bottom of the ring in Fig. 8 (b), (c),
(f) and (g). In this state the circular polarization is
nearly absent as the ground state of the ring is not

circularly polarized as shown in Appendix A. The S3

component at late times in Fig. 6 (d) is also absent
in the bottom half of the ring. It should be noted
that the model neglects the evolution of the excitonic
reservoir in the ring, which dynamically reshapes the
effective potential for polaritons. Evidence of long
transport of the reservoir was shown in these rings
in Ref. [15]. Also the contribution of the higher ra-
dial modes are not included which are found to be
occupied only at early times after the quench since
we address a much slower spin precession dynamics.
We found that these are not crucial for understand-
ing the generic polarization patterns in the ring but
will be important when addressing details regarding
the transport and energy relaxation of the nonequi-
librium polariton condensate in the ring. The model
introduced in this section captures all the qualitative
aspects of the linear and circular polarization preces-
sion following a quench, which emphasizes the role
of the TE-TM splitting on the condensate dynamics.
Finally, we note that the polarization of the conden-
sate observed in the experiment at late times doesn’t
correspond to any eigenstate of the tilted ring and
requires further theoretical investigation into the de-
tails of energy relaxation and thermalization pro-
cesses which could lead to such a pre-thermal state.

IV. CONCLUSION

Ring shaped polariton waveguides is attracting a
great deal of attention for exploring various topo-
logical effects [22–25] due to the TE-TM splitting
in these structures. We present in this direction the
first experiments on etched polariton rings. We stud-
ied the polarization dynamics of a non-equilibrium
polariton condensate formed after a pulsed excita-
tion. Through time resolved measurements we were
able to observe the temporal signature of intrinsic
optical Hall effect shortly after quench. We pro-
vide a qualitative estimate of the length scale over
which the spatial coherence builds up in the ring by
observing spatial energy locking and linewidth nar-
rowing of the emission. We also present a theoretical
model which captures qualitatively the formation of
a four-leaf pattern in the S1 and S2 components of
the Stokes vector, the relative angular phase offset
between S1 and S2 and finally the contrasting ra-
tio between the degree of linear and circular polar-
ization in the ring thus elucidating the role of the
anisotropic pseudo magnetic field originating from
the TE-TM splitting and the tilt in the microcavity
structure.

Future work will explore making the rings radially
thinner pushing further apart the radially confined
states in energy while also diminishing the cavity
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tilt. In the present rings with radial width 15 µm,
the separation between the radial modes is about
250 µeV [15]. Rings with negligible cavity gradi-
ent would restore the full rotational symmetry and
would bring the orbital momentum states into play
when the diameter of the rings are also reduced. An-
other aspect of making thinner rings would be to
increase the effective interactions between the po-
laritons which could be a route to studying the in-
termediate regime between weakly and strongly in-
teracting Bose gases. These rings could then serve
as an ideal platform for studying one-dimensional
macroscopic quantum phenomena similar to super-
conducting rings. Already with these long lifetime
samples we could address interesting questions in
nonequilibrium physics, such as generation of long
lived non thermal states, which could be observed
and studied in this system.
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Appendix A: Derivation of Hamiltonian

In this section we derive the effective Hamilto-
nian describing a single polariton ring of radius R

and width a, accounting for the effect of the TE-
TM splitting and the tilt of the well, where only the
lowest radial subband is occupied.

We start with the Hamiltonian of 2D polaritons in-
side a planar microcavity neglecting the cavity width
gradient [26]

Ĥ2D =

(
Ĥ0(k̂) ĤTE-TM(k̂)

Ĥ†TE-TM(k̂) Ĥ0(k̂)

)
, (A1)

where the diagonal terms Ĥ0 describe the kinetic en-
ergy of lower cavity polaritons, and the off-diagonal

terms ĤTE-TM correspond to the TE-TM splitting.
We further employ the effective mass approximation

Ĥ0(k̂) =
~2k̂2

2meff
. (A2)

The TE-TM part is given by

ĤTE-TM(k̂) = β

(
∂

∂y
+ i

∂

∂x

)2

, (A3)

where β governs the strength of the TE-TM split-
ting and may be expressed in the longitudinal and
transverse polariton effective masses ml and mt as
β = (~2/4)(m−1

l −m
−1
t ). In order to proceed with

the derivation of the correct 1D Hamiltonian let us
pass to the polar coordinates and add the confin-
ing potential V (r) confining the polariton wave func-
tions on the ring in the radial direction to the planar

cavity Hamiltonian Ĥ2D. The confining potential is
taken as an infinite square well in the radial direc-
tion. The terms associated with the TE-TM split-
ting in polar coordinates read(

∂

∂y
± i ∂

∂x

)2

= e∓2iϕ×(
− ∂2

∂r2
± 2i

r

∂2

∂r∂ϕ
∓ 2i

r2

∂

∂ϕ
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)
.

(A4)
We decompose the Hamiltonian Eq. (A1) into two

parts Ĥ2D = Ĥ0(r) + Ĥ1(r, ϕ), where

Ĥ0(r) = − ~2

2meff

(
∂2

∂r2
+

1

r

∂

∂r

)
+ V (r). (A5)

Since we can now separate the variables assuming

only the lowest radial mode occupation Ψ̃(r, ϕ) =
R0(r)Ψ(ϕ), the effective Hamiltonian [27] for Ψ(ϕ)
reads

Ĥ = 〈R0(r)|Ĥ1(r, ϕ)|R0(r)〉, (A6)

where R0(r) is the lowest radial mode of the Hamil-
tonian (A5). For an infinite square well poten-
tial of width a centered at R in the radial direc-
tion, the radial modes, which are non-zero only in
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[R− a/2, R+ a/2], are given by

Rn(r) = (A7)

An

(
Y0(

εnr

R
)−

Y0(εn(1− a
2R )))0F1(1;−( εnr2R )2)

0F1(1;−(εn(1− a
2R ))2/4)

)
,

where we introduced the dimensionless energy eigen-

values εn =
√

2mEnR
~ and 0F1(a; z) is the confluent

hypergeometric function and An is the normaliza-
tion constant. The eigenvalues εn satisfy the follow-
ing equation

Y0(εn(1 + a
2R ))0F1(1;−(εn(1− a

2R ))2/4)

Y0(εn(1− a
2R ))0F1(1;−(εn(1 + a

2R ))2/4)
= 1.

(A8)

Now we perform the averaging over the lowest ra-
dial mode R0(r) corresponding to the lowest eigen-
value ε0. First we observe 〈R0(r)| 1r

∂
∂r |R0(r)〉 =∫∞

0
R0(r)R′(r)dr = R2

0(r)/2|∞0 = 0 for any R0(r)
such that R0(0) = R0(+∞) = 0. Then, we cal-

culate 〈R0(r)| ∂
2

∂r2 |R0(r)〉 = −C0/a
2, where we used

that R′′0 + r−1R′0 = −(2meff/~2)E0R0 and the fact
that from dimensional analysis it follows that E0 =
~2C0/(2ma

2), where C0 is dimensionless. Finally,
we have

〈R0(r)| ∂
2

∂r2
|R0(r)〉 = −C0/a

2,

〈R0(r)|1
r

∂

∂r
|R0(r)〉 = 0,

〈R0(r)| 1

r2
|R0(r)〉 = F(a/R)/R2, (A9)

where the equation in the last line is obtained
from dimensional analysis and F(x) is a dimension-
less function. We approximate R0(r) by its first
Fourier harmonic, which is reasonable as long as
only the lowest radial mode is occupied R0(r) ≈√

2
aR sin(π(r−(R−a/2)

a ). This function is properly

normalized
∫∞

0
R2

0(r)rdr = 1 and satisfy the bound-
ary conditions R0(R − a/2) = R0(R + a/2) = 0.
Then, we have C0 = π2 and for 0 < x < 1 it follows
F(x) ≈ 1 to two decimal places. Thus, we finally
arrive at the following hamiltonian

Ĥ =
~2

2meffR2
·(

ˆ̃
k2 Be−2iϕ(−ˆ̃

k2 + 2
ˆ̃
k + ∆)

Be2iϕ(−ˆ̃
k2 − 2

ˆ̃
k + ∆)

ˆ̃
k2

)
(A10)

where
ˆ̃
k = −i(d/dϕ) and the energy levels are now

shifted by a constant as compared to the Hamilto-
nian (A1). For the sake of simplicity we introduced
a dimensionless parameter B corresponding to the
TE-TM splitting as B = 2βmeff/~2 and a dimen-
sionless parameter ∆ = (πR/a)2 corresponding to
the LT-splitting, stemming from the confinement in
the radial direction. In the case where the ring is in-
finitely thin, the model reduces to the one described
in [23].

In general, solutions of the stationary Schrodinger
equation with the Hamiltonian (A10) can be repre-
sented in the following form

Ψk,α(ϕ) = χ̃α(ϕ, k)eikRϕ, (A11)

where χ̃α(ϕ, k) is the corresponding spinor

χ̃α(ϕ, k) =
1√

ξα(k)2 + 1

(
e−iϕ

ξα(k)eiϕ

)
, (A12)

and

ξα(k) = −a
2B(kR− 1)(kR− 3) + 8π2R2

a2((kR+ 1)2 − Eαk )
. (A13)

The energy spectrum of the Hamiltonian can be
found analytically, the energy levels are given by

EL,Uk = 1 + k2R2 ∓
√
B2π4 + 2a2B2π2(3 + k2R2)R−2 + a4(4k2R2 +B2(9− 10k2R2 + k4R4))R−4

(a/R)2
(A14)

in ~2/(2meffR
2) units. As we consider polaritons

with spin ±1 as a two-level system, the z-projection
of the operator of total angular momentum is Ĵz =

~ˆ̃
k + ~σz. One can check that ĴzΨ(ϕ) = ~k̃Ψ(ϕ)

which clarifies the physical meaning of k̃ = kR. The
periodic boundary condition imposes the condition
Ψ(ϕ) = Ψ(ϕ + 2π), which yields integer k̃ corre-

sponding to the quantized orbital angular momen-
tum. According to Eq. (A14) the energy becomes
quantized as well.

To account for the tilt of the well one needs to
replace B in the Hamiltonian (A10) by B + V1 sinϕ
and add V0 sinϕ to the diagonal elements, where we
assume that the value of the TE-TM splitting as well
as the shift of the energy levels linearly depends on
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the width of the well. Having done that, we arrive
at the Hamiltonian (1), where an additional splitting
between linear polarizations is added (see the text)
below Eqs. (1).

The dependence of the TE-TM splitting on the
local width of the ring can be calculated as follows.
Introducing the coefficient

LDBR =
nanbλ̄

2(nb − na)
, (A15)

which is frequently called the effective length of a
Bragg mirror, where na,b are the refractive indexes
of the layers comprising the DBRs and λ̄ is the wave-
length, corresponding to the central frequency of the
stop-band λ̄ = 2πc/ω̄. Next, introducing

δ = ωc − ω̄ (A16)

where ωc is the real part of the cavity complex eigen-
frequency, the TE-TM splitting thus reads [7]

ωTE(Lc, ωc, φ0)− ωTM(Lc, ωc, φ0) ≈
LcLDBR

(Lc + LDBR)2

2 cosφeff sin2 φeff

1− 2 sin2 φeff

δ, (A17)

where φeff ≈ arcsin ((n0/nc) sinφ0), the coefficients
and Lc is the width of the cavity, n0 and nc are the
refractive indexes of the surrounding media and the
cavity respectively. Now, one can relate the param-
eters B = βmeff/~2 and V1 introduced in Eq. (1)
as

β =

lim
k||→0

~(ωTE(Lc,0, ωc, φ0)− ωTM(Lc,0, ωc, φ0))

k2
||

=

=
2~Lc,0LDBR(ωc,0 − ω̄)c2n0

(Lc,0 + LDBR)2n2
cω

2
c,0

, (A18)

and

β +
~2V1

meff
=

lim
k||→0

~(ωTE(Lc,π/2, ωc, φ0)− ωTM(Lc,π/2, ωc, φ0))

k2
||

=

=
2~Lc,π/2LDBR(ωc,0 − ω̄)c2n0

(Lc,π/2 + LDBR)2n2
cω

2
c,0

, (A19)

where k|| = (ωc/c) sinφ0 and Lc,0, Lc,π/2 are the
widths of the cavity at the points of the ring defined
by ϕ = 0, π, respectively and ωc,0 is a cavity eigen-
frequency at k|| = 0, which also depends on the local
width of the cavity.

Let us investigate the ground state of a flat ring
(no tilt) and in the absence of birefringence. For

the experimentally relevant values B = 0.052 and
∆ = 61.36, the ground state Ψ0,L is non-degenerate

and corresponds to k̃ = 0 of the lower branch (minus
sign in Eq. (A14)), the expression for it reads

ψ0,L =
1√
2

(
e−iϕ

eiϕ

)
. (A20)

The Stokes vector for this state is given by

~S = Ψ†0,L~σΨ0,L =

 − cos 2ϕ
− sin 2ϕ

0

 , (A21)

thus, the ground state of a flat ring with no birefrin-
gence is completely linearly polarized with the polar-
ization direction remaining tangential to the ring. It
should be noted, that the Stokes vector in the ground
state (A20) repeats the pattern of the effective mag-
netic field produced by the TE-TM splitting (shown
in Fig. 7 (b)), but in the XY-plane. We observed a
large degree of linear polarization and a small degree
of circular polarization in the ring as seen in Fig. 6
and Fig. 8; the TE-TM splitting term in the Hamil-
tonian mixes the left and right circular components
of the pseudo spinor creating a large component of
linear polarized state with a small circular compo-
nent. Although, the four-leaf angular pattern in S1

and S2 are not phase shifted by π/2 as predicted
from the theory but the 2ϕ angular dependence of
both the patterns point towards the 2ϕ angular de-
pendence of the pseudo magnetic field originating
from the TE-TM splitting in the ring microcavity.

Appendix B: Stokes vector measurement

Jones matrix formalism is a simple method for
keeping track of the polarization of light as it inter-
acts with various optical elements. Commonly it is
used to characterize only completely polarized light
while Mueller matrix formalism can describe a par-
tial polarized state of light. The full polarization
state of light is then characterized by a set of four
real numbers known as the Stokes vector. In this
appendix we discuss our measurement scheme with
the help of Jones matrix to characterize any arbi-
trary state of partially polarized light, so that the
connection between our measurements and the state
of the polariton spinor remains transparent.

Our goal is to measure any arbitrary input state
|ψ〉 = (Ex, Ey)T , where Ex(= |Ex|eiθx) and Ey(=
|Ey|eiθy ) are complex numbers. Such a state can
faithfully represent the state of a completely polar-
ized light. To include partially polarized light we
can add to the above state ε(Wx,Wy)T , such that
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〈Wx〉 = 〈Wy〉 = 0 and 〈W 2
x 〉 = 〈W 2

y 〉 = 1/2. There-
fore, we see that in order to characterize the in-
put state, we need to find just four real numbers
{|Ex|, |Ey|, θyx(= θy − θx), ε} requiring only four
measurements summarized in Table I.

The action of λ/2- and λ/4-waveplates with fast
axis rotated by θ from the vertical on |ψ〉 are given
by

H(θ) = R(−θ)
(

1 0
0 eiπ

)
R(θ)

Q(θ) = R(−θ)
(

1 0
0 eiπ/2

)
R(θ),

(B1)

where R(θ) is the 2D rotation matrix. Since λ/2-
and λ/4-waveplates have different thicknesses, so we
expect them to have slightly different transmission
efficiency. To compensate for this we found that it
is usually more accurate to take two measurements
with λ/4-waveplate which could be added to give
the total intensity of light Itot (= S0). From our
measurements we can calculate the components of
the Stokes vector by taking linear combinations as
shown below.

Itot = I1 + I3 = I4 + I5 = |Ex|2 + |Ey|2 + ε2

S1 =
I3 − I1
I1 + I3

=
|Ex|2 − |Ey|2

|Ex|2 + |Ey|2 + ε2

S2 =
2I2 − I1 − I3

I1 + I3
=

E∗xEy + E∗yEx

|Ex|2 + |Ey|2 + ε2

S3 =
I5 − I4
I4 + I5

=
i(E∗xEy − E∗yEx)

|Ex|2 + |Ey|2 + ε2

(B2)

It is also straightforward to see that the intensity

of the polarized and unpolarized light are given by

Ipol = |Ex|2 + |Ey|2 = Itot

√
S2

1 + S2
2 + S2

3

ε2 = Itot(1−
√
S2

1 + S2
2 + S2

3).
(B3)

The relative phase difference between the spinor
component is

tan θyx =
S3

S2
(B4)

and the amplitudes are given by,

|Ex|2 =
Itot
2

(√
S2

1 + S2
2 + S2

3 + S1

)
|Ey|2 =

Itot
2

(√
S2

1 + S2
2 + S2

3 − S1

)
.

(B5)

The direction of the polarization plane ϕ is given by,

ϕ =
1

2
tan−1 S2

S1
. (B6)

Four-leaf pattern in the linear polarization sector is
shown at different time instances in Fig. 9 supple-
menting Fig. 3 (e-g). In these plots the Stokes vec-
tors S1 and S2 are normalized w.r.t. Ipol instead of
Itot. Bloch vector representation showing the circu-
lar and linear polarization components of the Stokes
vectors are shown in Fig. 10, which supplements
Fig. 4.
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θλ/2 θλ/4 Polarizer orientation Measured intensity Observed intensity
0 − vertical |Ey|2 + ε2/2 I1

π/8 − vertical 1
2

(
|Ex|2 + |Ey|2 + (E∗

xEy + E∗
yEx) + ε2

)
I2

π/4 − vertical |Ex|2 + ε2/2 I3

− π/4 vertical 1
2

(
|Ex|2 + |Ey|2 + i(E∗

yEx − E∗
xEy) + ε2

)
I4

− 7π/4 vertical 1
2

(
|Ex|2 + |Ey|2 − i(E∗

yEx − E∗
xEy) + ε2

)
I5

TABLE I. Stokes vector measurement scheme showing the relationship between the observed intensity measured in
the experiment and the corresponding expression of the intensity written in terms of the electric field components of
the light.

FIG. 9. Temporal snapshots of the S1 and S2 components from the ring which show nearly stationary dynamics.
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t = -6 ps t = 48 ps t = 103 ps

t = 482 pst = 428 ps

t = 374 pst = 211 ps t = 320 pst = 265 ps

t = 157 ps

t = 754 pst = 700 pst = 645 ps

t = 591 pst = 537 ps

t = 808 ps

FIG. 10. Visualization of the components of the Stokes vector at different angular positions on the ring at different
time instances. Black arrows depict the projection of the Stokes vector on the equatorial plane of the Bloch sphere.
The length of the arrow is a measure of the degree of linear polarization and half of the angle w.r.t. the positive
x-axis measures the direction of the linear polarized light. The red and green arrows depict the spin up and spin down
projection of the polariton spinor respectively. The length of these arrows indicate the degree of circular polarization
(or spin polarization) of the polaritons.
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