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A numerical solution to the time evolution equation of the Wigner distribution function (WDF)
with an accuracy necessary to simulate the passage of a wave packet past a barrier is developed,
where quantum effects require high accuracy and fine discretization. A wave packet incident on a
barrier, a portion of which tunnels through, demonstrates behavior that can define various charac-
teristic transmission and reflection delay (TARD) times useful in the simulation of electron emission.
A model for the TARD times is proposed that relies only on the asymptotic maxima of the position
ρ(x, t) and wavenumber ρ(k, t) densities given by the WDF and applied to a “ballistic trajectory“
model for the (faster) transmitted and (slower) reflected parts. The dependence of the TARD times
on barrier width, symmetry, and abruptness is analyzed. For symmetrical barriers with characteris-
tics similar to field emission barrier heights and widths, TARD times are on the order of a fraction
of a femtosecond. The TARD times for when tunneling predominates are contrasted to “tunneling
times” in the literature. Use of the TARD times in simulations of field emission in nanogap devices
or to model ultrashort pulses generated under rapidly changing conditions for electron sources are
proposed.

I. INTRODUCTION

Processes associated with the field emission of electrons
operate on disparate length scales that span many orders
of magnitude [1–3]. Tunneling is exquisitely sensitive to
the barrier shape [4–6], which in turn depends on mi-
croscale surface curvature [7–12], emitter shape [13–15],
surface roughness [16–22] and nearest neighbor (shield-
ing) effects in arrays [23–25]. Simulating emission using,
for example, particle-in-cell (PIC) or molecular dynam-
ics codes is already challenging because of the difficulty
in reconciling particle transport with tunneling (wave)
behavior [17, 26–28]. Recent developments in nanogap
emitters [29–32], thin insulators [33, 34], and ultrafast
emission [32, 35–40] introduce further significant compli-
cations because the emission processes may be charac-
terized by time scales [41] approaching tunneling time
estimates [42–47]. However, a consensus on what the
“tunneling time” is has not converged [47–54], making
the assignment of a characteristic emission delay time
difficult for simulation. TARD and tunneling time esti-
mates are necessary if tunneling estimates [55–62] are to
be simulated when space charge and transit time across
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the anode-cathode gap with the barrier is present. In
such a scenario, for example, an electron deemed eligible
for emission at time t determined from a Poisson pro-
cess [41] may not be released until time t + τ , where τ
accounts for the TARD time with the barrier considered
herein. The TARD time is related to, but not identical
with, what is conventionally referred to as a “tunneling
time,” with various candidates proposed in the literature
[52, 53, 63, 64]).

Importantly for simulation purposes, Zimmerman, et
al. conclude that “...tunneling is unlikely to be an in-
stantaneous process” (emphasis added) which speaks to
a simulation need and supports measurements suggest-
ing a finite tunneling time [47, 52, 65]. The atomistic
processes (tunneling from nanoscale emission sites over
time scales comparable to the ratio of Planck’s constant
with a Rydberg energy, or 4π~/m(αfsc)

2 = 0.304 fs)
and phenomena affect the overall macroscale processes
such as space charge [30, 41, 66], and understanding
their relation is important for being able to predict over-
all cathode performance in the ultra-fast and ultra-small
limits. Such conditions are not accurately modeled us-
ing conventional one-dimensional emission models such
as the static Fowler-Nordheim equation [67–69] for pre-
dicting emission dynamics for well-understood reasons
[9, 10, 25, 41, 70]. Simulation of thermal-field emission,
in which tunneling is accompanied by over-the-barrier
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processes, introduces additional complications, but ones
that must be considered to simulate emitters that become
hot during their operation [3, 71]. Atomistic phenomena,
then, render a purely steady state approaches to model-
ing current emission inaccurate in nanogap devices and
ultrafast conditions.

Initial efforts by us to model quantum mechanical tun-
neling dynamics on the atomistic level was begun by ex-
ploring a trajectory-based Wigner distribution function
(WDF) approach [61, 62], which was intended to provide
a means for allowing microscale processes to be captured
in simulations of electron emission in nanodevices. The
WDF is a quantum distribution [72, 73], but by virtue
of its analogy with a classical transport equation, it has
analogs to a classical distribution of particles, and there-
fore is potentially useful to describing purely quantum
mechanical behaviors such as resonant tunneling [56, 74–
79] or providing a link to Monte Carlo [80–82]. The ex-
act models provided both analytic trajectories and time-
dependent behavior in addition to describing intriguing
“quantum carpets” [83] for a weighting of states mod-
eled after a thermal distribution. Changes in the eigen-
states associated with a step-potential lead to trajectories
whose tunneling behavior was examined. An exploration
of the trajectory interpretation, however, is made diffi-
cult because there are few analytically solvable cases on
which to test the methods. In our previous work, exact
models for closed boundary conditions exhibited rapidly
oscillating behavior that complicated a trajectory anal-
ysis. Although such rapid oscillations can be alleviated
by, for example, invoking a Husimi distribution [73, 84],
doing so does not provide correct estimates of charge and
current density.

Another trajectory approach for mitigating the prob-
lem of rapidly oscillating behavior was presented by
Donoso and Martens [85]. This approach involves en-
tangled classical trajectories for cases of smoothly vary-
ing potentials in which the state of the system evolves
adiabatically. It is based on the hydrodynamic formula-
tion of quantum mechanics originally proposed by Bohm
[86, 87] as a way of enabling a more efficient solution of
the tunneling problem without sacrificing realism in the
calculation [88–90]. The full Wigner function is repre-
sented by a smoothed Gaussian distribution function in
this approach, which averages over the negative regions of
the Wigner function, thereby eliminating problematic in-
terference oscillations. Using this approximate methodol-
ogy, Donoso and Martens were able to obtain good, qual-
itative agreement with the full quantum mechanical cal-
culation for both the tunneling probability and the tun-
neling time as a function of initial mean ensemble energy.
While both of these quantities were systematically over-
estimated by a few percent, the calculation was shown to
be numerically stable, correctly reproduced the long-time
growth of the tunneling probability, and resulted in an
increase in computational speed by as much as an order
of magnitude for the system considered. Lastly, Heim, et

al. [91], examine analogous phase space trajectories us-
ing a Wigner function for a parabolic barrier (for which
the integral containing V (x, k−k′) simplifies as discussed
in Section IID) for energy eigenstates and show how the
Kemble form of the transmission probability (Eq. (C1))
naturally follows.

In contrast to the exact closed boundary models of
our prior work, open boundary conditions are required
to consider current flow for electron emission models, but
require numerical approaches to the time evolution be-
havior for even simple barriers (compare to exact solu-
tions to Schrödinger’s equation (SE) [92] or alternate nu-
merical methods [54, 93]). Present methods are intended
to allow addressing emission processes with short spatial
and temporal dependencies [34, 70, 94] in a manner com-
mensurate with the development of the “moments of a
distribution” model uniting the theoretical description of
the commonly used equations of electron emission, par-
ticularly thermal-field processes [95]. In contrast to the
closed boundary condition studies with a thermal distri-
bution, the present open boundary study focuses on gaus-
sian wave packets: as shown by Kluksdahl, et al. [75],
although thermal boundary conditions [56, 74, 96, 97]
and wave packets differ, predictions of processes associ-
ated with tunneling (particularly resonant tunneling) are
similar for both [96], and therefore the wave packet stud-
ies may be profitably used to introduce a computationally
useful time parameter that would enable including delays
into the simulation of tunneling and field emission even
in the absence of a trajectory model. Even so, numer-
ical considerations limited the number of discretization
points in phase space in prior treatments to values far
too coarse for the demands of simulating TARD times
here.

The organization of the manuscript is therefore as fol-
lows. First, a far more capable methodology for time-
evolving the WDF is developed that allows for accurate
simulations capable of resolving the fine features associ-
ated with WDF evolution, in particular, the highly os-
cillatory features associated with quantum interference
that are problematic for trajectory approaches. Second,
a method for uniquely specifying a computationally use-
ful TARD time that will aid in simulations is given: al-
though static (and symmetric) barriers are presently con-
sidered exclusively, the method in principle can be em-
ployed to treat oscillating field emission barriers [37] and
interface barriers [98, 99] (triangular or triangular-like)
or transient conditions [100] of great interest, and which
are briefly discussed. Moreover, the new capabilities en-
able the examination of the speeding up of the tunneling
wave packet, and that examination is related to a sim-
ple δ-function barrier model. Third, the properties of
various potentials are considered, from which gaussian
and parabolic barriers are focused upon for their desir-
able characteristics. Lastly, simulations are undertaken
to describe the interference behavior and relate it to an-
alytical models, and then characterize the TARD times
for gaussian and parabolic barriers and briefly compare
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them to the semiclassical time of Büttiker and Landauer,
and the dwell time τd of Winful’s analysis [63] (Appendix
D).

II. WIGNER WAVE PACKETS

A. Time-dependent Formulation

The single particle one dimensional Wigner distribu-
tion function (WDF) is obtained from the density matrix
ρ̂ by [72, 101]

f(x, k) ≡ 1

π

∫ ∞

−∞

dy e2iky 〈x− y|ρ̂|x+ y〉 (1)

where x is the position coordinate and ~k is the conju-
gate momentum coordinate, with notation and conven-
tions following Refs. [69] and [61] but, briefly, are: (i) to
use units of [eV,fs,nm], (ii) to absorb the unit charge
q (the electron charge is −q) term into V = qϕ and
F = q|E|, where ϕ and E are the potential and elec-
tric field, respectively, (iii) the units of V are [eV] and
of F are [eV/nm], so that V and F are a potential en-
ergy and force, respectively, and (iv) all other terms have
their usual representations and values (e.g., m for elec-
tron mass, etc.). Quantum non-local features are made
manifest in the kets |x± y〉 on which ρ̂ operates. The
time evolution of the density matrix ρ̂ is known to sat-
isfy the relation [5, 102, 103]

i~∂tρ̂ = [Ĥ, ρ̂] (2)

where Ĥ = ~
2k̂2/2m+ V (x̂) is the Hamiltonian and the

hat notation is used to reinforce that it is an operator.
Combining Eqs. (1) and (2) shows that f satisfies [69]

∂tf (x, k, t) =− ~k

m
∂xf (x, k, t)

+

∫ ∞

−∞

V (x, k − k′) f (x, k′, t) dk′
(3)

V (x, k − k′) =− i

π~

∫ ∞

−∞

e2i(k−k′)y×

{V (x+ y)− V (x− y)} dy
(4)

Observe that Eq. (3) can be written in the Liouville form

i~∂tf = L̂f , where L̂ is determined by that relation.
Integration over all k recovers the continuity equation
relating number density ρ(x, t) to current density J(x, t)
given by

∂tρ(x, t) + ∂xJ(x, t) = 0 (5)

where ρ(x, t) and J(x, t) are defined by

ρ(x, t) =
1

2π

∫ ∞

−∞

f(x, k, t) dk (6)

J(x, t) =
1

2π

∫ ∞

−∞

~k

m
f(x, k, t) dk (7)

which resemble their classical counterparts. As given, ρ
and J are number density and number current density.
To make them charge and conventional current density, a
factor of q must be included to account for electron charge
(−q), as will be done below when explicitly needed. Sim-
ilarly, a momentum density ρ(k, t) is obtained by inte-
gration over x rather than k, resulting in

ρ(k, t) =
1

2π

∫ ∞

−∞

f(x, k, t) dx (8)

It is seen that number density is related to the zeroth
moment in k, and current density to the first moment,
of the distribution function. In terms of the Liouville
operator L̂, it is [61]

f(x, k, t+∆t) = exp
(

−iL̂∆t/~
)

f(x, k, t) (9)

Using the approximation e−2X̂ ≈ (1+ X̂)−1(1− X̂), then
the Cayley form [56]

[

Î + irL̂
]

f(x, k, t+∆t) =
[

Î − irL̂
]

f(x, k, t) (10)

is useful for implementing a time-evolution matrix
formulation[56], and where Î is the identity operator and
r = ∆t/2~. The form of Eq. (10) is similar to the
Crank-Nicolson implicit method for solving differential
equations numerically [104] and encountered in numeri-
cal solutions of Schrödinger’s equation (SE) [54].

B. Free Gaussian Wave Packet

The minimum uncertainty Gaussian wave packet at
t = 0 is (up to an arbitrary phase factor eiϕ) given by
[5, 73, 105, 106]

〈x|ψ〉 =
(

2

πa2

)1/2

eikox−(x−xo)
2/2a2

(11)

When inserted into Eq. (1), then using

〈x+ y|ψ〉 〈ψ|x− y〉 = e−2ikoy

πa2
exp

[

− (x− xo)
2 + y2

a2

]

Inserting ρ̂ = |ψ〉 〈ψ| into the integration in Eq. (1) re-
sults in

f(x, k, 0) =
2√
π~a

e−[(x−xo)/a]
2−[a(k−ko)]

2

(12)

The initial state is f(x, k, 0) ≡ fo(x, k). For a free wave
packet, then V (x, k−k′) = 0, and so Eq. (3) entails [101]
(compare Figure (1) of Ref. [107])

f(x, k, t) = fo

(

x− ~kt

m
, k

)

(13)

Another measure is the rise in density and current den-
sity at a particular point, chosen to be the origin (x = 0).
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For the parameters chosen, the shape of J(0, t) closely
resembles ρ(0, t), and so consider instead the moment
〈k − ko〉 evaluated for the distribution is f(0, k, t), for
which

〈k − ko〉
〈ko〉

≡
∫∞

−∞
(k − ko)f(x, k, t)dk

∫∞

−∞
kof(x, k, t)dk

=
J(x, t)− qvoρ(x, t)

qvoρ(x, t)

(14)

where vo = ~ko/m and the factor q for unit charge has
been explicitly included to make J a charge current den-
sity. It follows J(0, t) > q(~ko/m)ρ(0, t) for t < to, ex-
pected because the head of the wave packet contains a
greater proportion of the higher momentum states. The
rotation of the ellipse in phase space corresponds to the
spreading of the wave packet’s wave function determined
from Schrödinger’s Equation [5, 101] and shall be revis-
ited in Section IVA.

C. Interference

A simple model of free wave packet interference pro-
vides an analytic model anticipating behavior shown by
a wave packet interacting with a potential barrier below,
and is therefore treated explicitly. Let the wave function
of Eq. (11) be modified to describe two approaching wave
packets, both characterized by a center wave number ko.
Introduce the term ς = ±1, and define

〈x|ψσ〉 =
(

2

πa2

)1/2

eiςkox−(x−ςxo)
2/2a2

(15)

It is seen that Eq. (11) corresponds to 〈x|ψ+〉. The mixed
state for two gaussian wave packets is then, following
Weinbub and Ferry [108],

|ψ〉 = 1√
2
{|ψ+〉+ |ψ−〉} (16)

Now, |ψ〉 〈ψ| is explicitly

2 |ψ〉 〈ψ| = {|ψ+〉 〈ψ+|}+ {|ψ−〉 〈ψ−|}
+ {|ψ+〉 〈ψ−|}+ {|ψ−〉 〈ψ+|}

(17)

with the first two (top) are “direct” terms and the last
two (bottom) are “cross” terms. The direct contribution
to f(x, k) is easily anticipated from Eq. (12) and is

fd(x, k) = f+(x, k) + f−(x, k)

f±(x, k) =
1√
π~a

e−[(x∓xo)/a]
2−[a(k∓ko)]

2 (18)

and visualized as two non-interacting gaussian wave
packets, one centered at (+xo) and moving to the right,
and the second at (−xo) and moving to the left (note

FIG. 1. f(x, k) = fd(x, k) + fc(x, k) for a wave function of
two gaussian wave packets traveling in opposite directions,
evaluated using the analytic Eq. (18) and (19) for various
xo and ko, evaluated at t = 0 (left) and t (right). Only
contours for f(x, k) > 0 are shown with the jth contour of
10 at (j/10)f+(xo, ko).

that xo itself can be separately positive or negative). The
“cross” term can be shown to be [109]

fc(x, k) =
2√
π~a

e−(x/a)2−(ak)2 cos (kox− kxo) (19)

It is centered at the origin of phase space and oscillates
rapidly when ko is large: Weinbub and Ferry [108] des-
ignate it as the central entanglement term but in the
present study, it will instead be termed the central in-
terference term because of how entanglement differs from
coherence, even though both involve an interference term.
The orientation of the ridges is seen to be dictated by the
argument of the cos-term in Eq. (19) when the time evo-
lution of Eq. (13) is invoked: the argument of that term
is constant when k/x = ko/xo. In contrast, the direct
terms of Eq. (18) are seen to correspond to the wave
packets as they move away from the origin: they do not
give negative contributions, in contrast to the cross term
as a consequence of the cosine term. The Wigner function
f(x, k) = fd(x, k) + fc(x, k) for various xo and ko, scaled
by a, is shown in Figure 1. The clearly visible central in-
terference term concentrated near the origin anticipates
features that appear when a wave packet incident on a
barrier separates into transmitted and reflected portions.
Significantly, the central interference term is such that

both ρ(k) and ρ(x) are not appreciable near the origin
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because the rapid oscillations of the central interference
term average to small values. For example, along x = 0,
the contributions to ρ(x) from the central interference
term from Eq. (6) go as

1

2π

∫ ∞

−∞

fc(0, k) dk =
1

π~
e−(koa/2)

2

(20)

and therefore are exponentially small as koa increases,
with an analogous evaluation for ρ(k). Although the cen-
tral interference term will alter in the presence of a bar-
rier, nevertheless, it is expected that ρ(x) and ρ(k) will
be dominated by the transmitted and reflected portion
of a wave packet incident on a barrier.

D. Barriers

If V (x) is linear, that is, V (x) = −Fx, then V (x +
y) − V (x − y) = −2Fy. Similarly, if V (x) is quadratic,
that is, V (x) = (γ/2)x2, then V (x + y) − V (x − y) =
2γxy. In either case, the integral in V (x, k) of Eq. (4) is
proportional to

− i

2π~

∫ ∞

−∞

eikss ds = − 1

~
∂kδ(k) (21)

where δ(k) is the Dirac delta function. As a result, the
integral term in Eq. (3) becomes, for the linear case,
(F/~)∂kf(x, k, t), and for the quadratic case, F → −γx.
It is also seen that Eq (4) can be written

∂tf(x, k, t) = −ẋ ∂xf − k̇ ∂kf (22)

where ẋ = ~k/m and k̇ = −∂xV (x), which can then be
used to construct the classical trajectories for linear fields
and harmonic oscillators. In the linear case, it follows
[69, 101]

f(x, k, t) = fo

(

x− ~k

m
t+

F

2m
t2, k − F

~
t

)

(23)

for which the F = 0 case corresponds to a free wave
packet. Figure 1 evidences this behavior by sheering the
ellipsoid because the phase space points with higher k
move faster to the right (in the +x̂ direction): were the
initial condition ellipsoids to straddle the k = 0 bound-
ary, all phase space points for which k < 0 would likewise
move leftward, unaffected by the evolution of the k > 0
phase space points. This casual observation is behind
the form of the optimal numerical scheme leading to the
time evolution of the wave packet even when a barrier is
present. The behavior of V (x, k), then, governs in what
manner quantum mechanics alters those trajectories in a
phase space approach, but the behavior of the free wave
packet suggests a useful scheme to solve Eq. 3.
By far, the simplest barrier to consider is the δ-function

barrier of Eq. (A1), for which

Vd(x, k − k′) = −4λVo
π~

sin[2(k − k′)x] (24)

(compare Eq. (A7)) a form which allows an analytic solu-
tion to f(x, k, t) for closed boundary conditions [61, 62].
Open boundary conditions[48, 76, 110], however, require
additional considerations that make the time evolution
simulations difficult, and therefore, numerical means are
advantageous. For an abrupt potential like Vd(x), how-
ever, ripples appear in f(x, k, t) for large values of k,
particularly near regions where V (x) undergoes abrupt
changes in magnitude or slope, that cannot be ignored
(e.g., Figures (2) and (5) of Ref. [61]), and which un-
dermine finite difference methods applied to Eq. (3).
“Abruptness” is manifested as the extent of V (x, k) along
the k-dimension, and for Vd(x), it does not diminish as
do the other potentials of Eqs. (A2)-(A5), thereby com-
plicating its use in numerical methods that consider only
a portion of k-space. The next simplest form of a rect-
angular barrier also results in highly oscillatory behav-
ior for large k of f(x, k, t) near the boundaries of the
barrier (e.g., Figures (8) and (9) of Ref. [62]). Of the
simple candidates available, considered in Appendix A,
those potentials that do not exhibit large or discontinu-
ous changes in V (x) and ∂xV (x) (that is, they are not
“abrupt”) and are symmetrical most strongly reduce the
behavior of V (x, k − k′) that lead to large k behavior in
f(x, k, t) and therefore complicate numerical accuracy.
Consequently, attention here is confined to the gaussian
Vg(x) and parabolic Vp(x) potentials of Eqs. (A3) and
(A4), as they are sufficiently smooth in the sense of Fig-
ure 24.

III. WIGNER TIME EVOLUTION

A. Explicit Scheme

The numerical solution of the time dependent WDF
equation of Eq. (3) with open boundary conditions [56,
76] using a “direct solution” [111] proceeds by defining
f(x, k, t) at equi-spaced points in position (x→ xi), wave
number (k → kj), and time (t→ tn) via

xi = (2i−N − 1)∆x/2

kj = (2j −Nk − 1)∆k/2

tn = n ∆t

(25)

using standard finite-difference methods [104]. The time
taken to evaluate f(x, k, t) increases substantially as the
terms (Nx, Nk, Nt) increase, as the size of the resulting L

operator (the discrete form of the Liouville operator L̂)
rapidly increases, and the matrix solution slows. More-
over, the boundaries must be sufficiently far away that
the incoming distribution into the simulation region can
be approximated, usually by a thermal supply function
derived from a Fermi-Dirac distribution when simulat-
ing a resonant tunneling diode (RTD) [56, 61, 112]. The
problem is revisited here with the intent to develop a
far more rapid numerical solution capable of sufficient
accuracy to treat the wave packet problem, enabling
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the values of (Nx, Nk) to be enlarged by an order of
magnitude but an iteration performed in a fraction of
the time of previous methods on which the present ap-
proach is based, e.g., a single time step took 3.2 sec-
onds for (Nx, Nk) = (86, 72) on a mainframe whereas the
present approach takes 0.042 seconds per iteration for
(Nx, Nk) = (512, 128) on a desktop [113].
The values of ∆x and ∆k are related by requirements

on how to treat the sin[2(kj − kj′ )xi] term in V (xi, kj −
kj′ ). Substitution of Eq. (25) into the sin[2(k−k′)x] part
gives

sin [2(kj − kj′ )xi] ≡ sin

[

2π
(j − j′)(i − 1)

Nx − 1

]

(26)

if ∆x = L/(Nx − 1), where L is the width of the simu-
lation region, and ∆k = 2π/L. This choice insures that
V (±L/2, kj − kj′ ) ≡ 0, that is, V (x, k − k′) vanishes on
the boundaries x = ±L/2 and the choice of ∆k enables
the numerically advantageous form of Eq. (26).
Next, define f(x, k, t) and V (x, k−k′) on those points.

This shall be done by introducing indices on f and V
such that

f(x, k, t) → f(xi, kj , tn) ≡ [fni ]j (27)

V (x, k − k′) → [Vi]j,j′ (28)

Integrations over k′ become summations over j′ for the
multiplication of the Vi matrix with the f

n
i vector. The

derivatives become, in the finite difference approach,

∂tf(x, k, t) →
f
n+1
i − f

n
i

∆t

∂xf(x, k, t) → ∓ 1

2∆x

[

3fni − 4fni±1 + f
n
i±2

]

(29)

where the spatial derivative uses an upwind/downwind
second-order differencing scheme (SDS) [114]. The nota-
tion will be that bold face quantities (e.g., M, fni ) are
matrices or vectors, and terms such as D are operators.
In describing the finite differencing scheme below, the
introduction of a “difference operator” that acts on the
i-index by

D(fn
i,j) =

1

2

[

3fn
i,j − 4fn

i±1,j + fn
i±2,j

]

(30)

where (+) is used for kj < 0 and (−) is used for kj > 0.
Introduce the matrix α defined by

[α]jj′ =
~|kj |∆t
4m∆x

δj,j′ ≡ αjδj,j′ (31)

where δjj′ is the Kronecker delta function. Using a simple
explicit Euler scheme for the time derivative, then the
vectors f

n+1
i are straightforwardly deduced from f

n
i by

the equation

f
n+1
i − f

n
i = −α ·

[

3fni − 4fni±1 + f
n
i±2

]

+Vi · fni

This equation can be rewritten as

f
n+1
i = [I− 2αD+Vi] · fni (32)

where I is the identity matrix. Such an explicit scheme
is accurate to order O(∆t).

B. Implicit Scheme

To improve the accuracy to order O(∆t2), all instances
of fni on the right hand side (RHS) of Eq. (32) can be
replaced by the average (fn+1

i + f
n
i )/2, resulting in an

implicit matrix equation cast in the form of Eq. (10) and
solvable using matrix solution techniques based on LU-
decomposition [56]. The presence of Vi requires the in-
version of matrices of size Nk×Nk for Nx×Nt times. The
form of the SDS differential operator, however, makes
possible an alternate approach that spares the require-
ments for such an investment of computational time and
resources. It makes use of the formulation used to solve
for fn+1

i using an implicit scheme for a free wave packet.
For the free case, the implicit matrix equation when

Vo = 0 is

[I+αD] · fn+1
i = [I−αD] · fni ≡ bi (33)

Because D acts in a manner dependent on the jth element
within f

n
i , it is profitable to represent fni as the combina-

tion of two vectors of size Nk/2 corresponding to regions
where kj < 0 (leading to terms with an l-subscript) and
where kj > 0 (leading to terms with a u-subscript) so
that

bi ≡
[

li

ui

]

(34)

Next, because M = I+(3/2)α only has diagonal entries,
then it, too, can be separated into parts as can α/2, or

I+
3

2
α = M =

[

Ml 0

0 Mu

]

;
α

2
=

[

L 0

0 U

]

(35)

where 0 is the (Nk/2)× (Nk/2) zero matrix, and L and
U also only have diagonal entries[115]. As a result, Eq.
(33) becomes two separate matrix equations

Ml · l∗i = li + L ·
[

4l∗i−1 − l
∗
i−2

]

Mu · u∗
i = ui +U ·

[

4u∗
i+1 − u

∗
i+2

] (36)

where the action of D is explicitly shown. Importantly,
both li and ui are evaluated sequentially and rapidly: be-
cause [M−1]j,j = 1/[M]j,j′ = δj,j′/(1+ 3αj/2), no costly
matrix inversions are required. All l∗i and u

∗
i in Eq. (36)

which have indices i < 1 or i > Nx, respectively, are
set to zero vectors because there are no incident contri-
butions from the boundaries (in contrast to simulations
of RTD’s [114], where they are conventionally set to a
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FIG. 2. Reorganization of the matrix equations for fni into two
smaller matrix equations with entries entirely above or below
the diagonal. Size of each box is (Nk/2) × (Nk/2). Center
diagonal boxes for ith row and (j = i) column designated by
thicker black borders. An l-subscript and L matrix refer to
kj < 0; a u-subscript and U matrix to kj > 0. L, U and M

have only non-zero diagonal elements.

thermal supply function, although doing so may not be
accurate[61]). Finally,

f
n+1
i =

[

l
∗
i

u
∗
i

]

(37)

in the free wave packet (Vo = 0) case. By virtue of the
chosen structure of the (∓∆x ∂x → D) differential oper-
ator of Eq. (30), the solution represented by Eq. (37)
for the free propagation case (Vo = 0) can be computed
with the speed of the explicit scheme associated with Eq.
(32), and the solution of l∗i is independent of u∗

i (they can
be evaluated separately). This is a consequence of the
ability to separate the larger matrix equation into non-
interacting upward and downward elimination schemes
(as shown in Figure 2) enabled by the upwind/downwind
SDS differential operator, and reflects that the positive
and negative k regions of f(x, k, t) in Eq. (13) evolve
without any interaction when Vo = 0. The diagonal na-
ture of M insures that no time-consuming matrix inver-
sions are required. Retaining that speed advantage re-
quires that a means to bypass those matrix inversions
when Vo 6= 0, which links l∗i and u

∗
i , must be developed.

The inclusion of a barrier (Vo > 0) is accomplished by
first solving Eq. (32) for the predictor f∗i . The correction
then incorporates f∗i in a modified potential term that is

now included with the bi vector. That is,

f
∗
i = [I− 2αD+Vi] · fni
bi = [I−αD] · fni +

1

2
Vi · (f∗i + f

n
i )

(38)

where the solution of fn+1
i unfolds according to Eqs. (36)

and (37). Although iterations along the lines of higher
order Runge-Kutta methods [116] could be used to im-
prove the corrector (thereby enabling larger time steps),
here, one prediction and one correction are employed and
smaller time steps are used as a matter of simplicity.
A close consideration of Eq. (38) reveals that an

additional approximation may be made that substan-
tially increases the speed of simulations. The presence of
sin[2(kj −kj′ )xi] in Vi means that far enough away from
the potential barrier, the contribution of Vi · (f∗i + f

n
i )

to bi becomes negligible, reflecting that the rapid os-
cillations of V (x, k − k′) caused by sin[2(k − k′)x] makes
∫

V (x, k−k′)f(x, k′, t)dk′ negligible. Because the Vi ma-
trix is the only term connecting the k > 0 region of phase
space to the k < 0 region, the structure shown in Figure 2
entails that the iterative solutions of Eq. (36) need not be
extended all the way to the boundaries when L is large,
as is required to ensure that ∆k is small. As a result, un-
til the presence of the barrier impacts f(x, k, t) the “free
propagation” equations of Eq. (33) can be used. How-
ever, because the numerical solution of Eq. (38) already
provides a substantial computational savings, utilization
of this approximation is not done herein.

C. Density and Current Density

The evaluation of density proceeds straightforwardly
from Eq. (6) and is

ρ(x, t) → ρni =
∆k

2π

Nk
∑

j=1

fn
i,j (39)

with an analogous equation holding for ρ(k, t) → ρnj , for
which the summation is over i and ∆k is replaced by
∆x. By virtue of the j-dependent operator D of Eq.
(30), the current density J(x, t) is different. For steady
state conditions, the continuity equation ∂tρ + ∂xJ = 0
becomes, in discrete form,

ρn+1
i − ρni = 0 = −∆t

∆x

Nk
∑

j=1

~kj
m

D(fn
i,j) (40)

Because D acts on fn
i,j differently depending on whether

kj ≶ 0 (which is the same as 2j ≶ Nk+1), the summation
over j separates into two summations depending on the
sign of kj . In those summations, reordering Eq. (30)
gives [56, 77]

2D(fn
i,j) =

(

3fn
i,j − fn

i±1,j

)

−
(

3fn
i±1,j − fn

i±2,j

)

(41)
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Defining ∆x∂xJi = Ji+ 1
2
− Ji− 1

2
therefore identifies[117]

J∓
p =

∑

kj≶0

∓2αj

(

3fn
p± 1

2
,j − fn

p± 3
2
,j

)

Jn
p = J+

p + J−
p

(42)

where p = i± 1
2 , the form of which insures that ∂xJ(x) =

0 under steady state conditions. Importantly, because
αj > 0 for all j, a (∓) is attached to it to account for
the behavior of kj . Such a construction is demanded by
how the upwind/downwind SDS scheme for D is defined
in Eq. (30).

IV. WAVE PACKET TUNNELING

A. Free Propagation

To form a base-line comparison, the numerical time
evolution scheme of Eq. (33) is first applied to the free
wave packet so as to demonstrate stability and accuracy,
but more importantly to demonstrate how the simula-
tions are to be represented. The parameters of the sim-
ulation are given in Table I but for Vo = 0. Significantly,
observe that the present formulation is not beholden to
requirements imposed by fast Fourier Transform (FFT)
methods because V (x, k − k′) is rendered analytically.
This has two consequences: (i) the incentive to make Nx

comparable in size to Nk is no longer necessary, and so
Nx is increased substantially to allow the boundaries to
be pushed further out, to increase L and thereby decrease
∆k, and to improve computational speed and accuracy of
the SDS approach, and (ii) using FFT’s on V (x, k − k′)
led to Eq. (33) being considered for every value of i
from 1 to Nx in past studies, but the present method
can begin and end at any value of i for which f(x, k, t)
is appreciably non-zero, and so in principle much of the
numerical evaluations near x ≈ ±L/2 need not be under-
taken even when a barrier is present, resulting in a further
substantial reduction in the numerical investment. The
advantages of the second consequence, however, are not
employed here.
The results of a simulation of a free gaussian wave

packet, cast in a manner that will be used for subse-
quent simulations, are shown in Figure 3. Small depar-
tures from oval contour behavior are a consequence of the
graphical interpolation procedure applied to a relatively
coarse grid in k-space, which is governed by the size of L.
It is nevertheless seen that the simulation is sufficiently
accurate. At each time step, Eqs. (39) and (42) are eval-
uated for ρ(x, t) and J(x, t), respectively. A conventional
plot of the former at various times would show a spread-
ing of the wave packet, but here, ρ(x, t) is presented as a
contour plot such that the spreading of the wave packet
is shown by a widening of the contours for a given value
of the t-axis, as in Figure 4. The behavior of J(x, t) is

TABLE I. Default parameters for the simulation of free wave
packets and wave packets incident on barriers, grouped ac-
cording to phase space, wave packet, and barrier parameters.

Term Symbol Value Unit

# of time increments Nt 64 -
time increment ∆t 0.05 fs

Simulation Region L 14 nm
# of length units Nx 512 -

length unit ∆x L/(Nx − 1) nm
Wavenumber units Nk 128 -

Wavenumber increment ∆k 2π/L 1/nm
Wavepacket parameter a 0.6 nm
Initial center position xo −1.6 nm

Initial center wavenumber ko 13.55 1/nm
Initial center energy ~

2k2
o/2m 7 eV

Barrier height Vo 8 eV
Barrier wave number kv 14.491 1/nm

V (x) parameter λ 0.5 nm

FIG. 3. Simulation of the evolution of WDF for a Gaussian
wave packet described by the initial state Eq. (12) for Table
I parameters, except for Vo = 0. Initial (t = 0) is to the
left of each figure, final (t = Nt∆t) is to the right. (left):
analytic contours of Eq. (13). (right) numerical solution of
time dependent WDF. Range of x: -3.5 nm < x < 5.5 nm.
Range of k: 10 nm−1 < k < 17 nm−1.

shown in Figure 5. Both figures show that the dashed
white line along which x(t) = xo+ ~ko/m also tracks the
maximum of J . Below, these lines shall be called ballistic

in the sense of free propagation not subject to a barrier.
As a result, the motion of the maximum locations can
serve to develop a TARD time estimate.

B. Gaussian Barrier

A Gaussian barrier specified by (see Eq. (A3)) Vg(x) =
Vo exp

[

−(x/λ)2
]

with the parameters of Table I is now

included: Vo is set to be 1 eV larger than ~
2k2o/2m so that

what emerges past the barrier contains contributions due
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FIG. 4. Time evolution of density ρ(x, t) for a free wave packet
using Table I parameters. Vertical red line is at x = 0. Dashed
white (ballistic) line corresponds to x(t) = xo + ~kot/m.
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FIG. 5. Simulation of the evolution of WDF for a Gaussian
wave packet described by the initial state Eq. (12) for Table
I parameters. Dashed white (ballistic) line corresponds to
x(t) = xo + ~kot/m.

to tunneling. A small portion of the wave packet does
pass through after 3.2 fs, as shown in Figure 6: com-
pared to Figure 3, now the k < 0 region of phase space
must be included to show the reflected portion. After
collision with the barrier, the wave packet separates into
transmitted and reflected portions, mimicking the sepa-
rating wave packets of Figure 1 and the persistent oscil-
lations visible at the origin associated with the central

FIG. 6. Simulation of the evolution of WDF at t = 3.15 fs for
a wave packet described by the initial state Eq. (12) for Table
I parameters, but now with a gaussian barrier described by
Eq. (A3). The ellipse on the upper right is the transmitted
portion of the packet; the deformed ellipse on the lower left
is the reflected portion. The center constitutes interference
analogous to Figure 1.

interference term fc(x, k) (compare Figure (3a) of Ref.
[84], although it is for a double barrier). At the res-
olution considered herein, the oscillations appear to be
hatching, but when examined in closer detail in Figure
7, they are seen to replicate the behavior of the cos-term
in fc(x, t) in Eq. (19). IncreasingNx → 2000, Nk → 240,
and L→ 36 nm (parameters that would have defied con-
sideration in the absence of methods developed herein)
allows them to be better resolved. The orientation of
the oscillations along diagonals in phase space average
out when evaluating either ρ(x, t) or ρ(k, t), just as oc-
curred in Section II C for the central interference term
fc(x, k). Significantly, the interference is seen to arise
when portions of the wave packet begin to separate into
reflected and transmitted portions, which occurs at the
onset of the barrier. These oscillations, analogs of which
appear in exact closed boundary Wigner function stud-
ies, complicate the definition of a trajectory and associ-
ated tunneling time, but values suggested in Ref. [62] are
comparable to the present estimate.

As before, consider the time evolution of ρ(x, t): its be-
havior at select times is shown in Figure 8, and compare
to solutions based on solving Schrödinger’s Eq. [45, 118]:
the pile-up prior to the barrier is the particle being said
by Elberfeld and Kleber to “wait” before tunneling. If
the time slices are more densely represented, then a top-
down view of these lines can be mapped as contours along
axes of x and t. Figures 9, 10, and 11 show ρ(x, t), ρ(k, t),
and J(x, t), respectively, as contours. The minor wiggles
along the lowest (blue) contour lines near (x, t) = (0, 2.7)
in Figure 9 are a consequence of the highly oscillatory
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FIG. 7. Close-up of the interference region of Figure 6, but
shown in a gray color scheme to enhance the visibility of the
ridges. Both positive and negative regions of f(x, k, t) are
shown.
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FIG. 8. Density ρ(x, t) normalized to ρo = ρ(xo, 0) at four
representative times identified in the legend, using the param-
eters of Table I.

WDF associated with the central interference region con-
centrated near (x, k) = (0, 0) in Figure 6: these wiggles
are a numerical artifact and disappear as ∆x reduces.
Reflected and transmitted wave packets are visible in
ρ(x, t) and J(x, t) by elements which move away from
the red centerline at (x = 0), and ρ(k, t) by the conver-
gence to transmitted (kt) and reflected (kr) center mo-
menta. The white dashed (ballistic) lines in Figures 9
and 11 are evaluated analogously to Figure 4, but for the
transmitted and reflected lines, the procedure is modified
by finding the local maximum of the transmitted and re-
flected peaks in Figure 10, called kt and kr, respectively,

and then defining

xi(t) = xo + ~kot/m

xt(t) = xt − ~kt(tmax − t)/m

xr(t) = xr − ~kr(tmax − t)/m

(43)

for the incident, transmitted, and reflected trajec-
tories, respectively, where tmax = (Nt − 1)∆t,
(xt, xr) are the locations of the transmitted and re-
flected maxima of ρ(x, tmax). We find (ko, kr, kt) =
(13.5546,−13.1140, 14.8152) are the locations of the in-
cident, reflected, and transmitted maxima of ρ(k, tmax),
respectively, in units of [nm−1]. It is seen that (kr , kt) are
slight departures from (−ko, ko). Further, xt(t) and xr(t)
diverge from approximately the same vertex: letting ts
be such that xs(ts) = 0 for the subscripts s ∈ (i, r, t),
then tr = 1.5657 fs is at a later time than xi(t) crosses
the origin (x = 0) at ti = 1.0196 fs. The behavior of
f(x, k, t) at these times are shown in Figures 12 and 13.
The peaks of ρ(k, t) ≥ 0 as t → ±∞ are chosen because
they are well-defined and their locations asymptotically
fixed. For the purposes of modeling emission, a defini-
tion of the time between where xi(t) crosses the origin
and where xr(t) and xt(t) diverges from it, is found by
setting the left hand side of Eq. (43) to 0 and solving for
t, giving rise to the TARD times

τr = tr − ti

τt = tt − ti
(44)

where tj is such that xj(tj) = 0 for j ∈ (i, r, t).
That kt > ko is a consequence of tunneling is numeri-

cally evident in the WDF approach, but it can be demon-
strated using methods of the Schrödinger approach. Tun-
neling through a barrier is associated with a tunneling
probability D(k). In the simple case of a δ-function bar-
rier (Eq. (A1)), for which all incident waves experience
tunneling,

D(k) =
4k2

4k2 + γ2
(45)

where γ = 4λmVo/~
2, as is known [5] or can be shown

through a limiting procedure [61]. As a result, the trans-
mitted wave packet resulting from an incident gaussian
wave packet is no longer strictly gaussian itself, introduc-
ing complexity in the identification of the dynamics of its
peak with kt. The current density (compare Eq. (7))

J(x, t) =
q

2π

∫ ∞

−∞

(~k/m)D(k)fs(k) (46)

in a conventional formulation using a “supply function”
fs(k) [95] does show that the transmitted wave packet
has sped up (corresponding to kt > ko): if fs(k) =
(a/

√
π) exp[−a2(k − ko)

2] (intended to mimic Eq (11)),
then for γ ≫ ko (compare Eq. (14))

〈k〉 =
∫

kD(k)fs(k)dk
∫

D(k)fs(k)dk
≈ ko

(

2a2k2o + 3

2a2k2o + 1

)

(47)
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compared to the incident gaussian (〈k〉inc = ko with
D(k) = 1). For Table I parameters, 〈k〉trans / 〈k〉inc =
1.015. Such a result is expected because states with
larger k have greater transmission (D(k) is monoton-
ically increasing for the δ-function barrier), an expec-
tation that persists for barriers of finite thickness, and
which is clearly evident in SE simulations (see, for exam-
ple, Figure (4) of Ref. [54]). This seeming speed up of the
transmitted wave packet in a tunneling barrier, first sug-
gested by Hartman [119], is behind the “superluminal”
claims in both tunneling calculations and experiments us-
ing electromagnetic analogs of quantum tunneling [54].
Analogous to the Wigner approach studied here, time

dependent simulations of wave packets composed of
states for which ~

2k2/2m < Vo for rectangular barriers
[54, 93, 120] such as Eq. (A2) show that the transmit-
ted / reflected packets produce non-gaussian but peaked
packets (even though the less abrupt potentials of Eqs.
(A4) - (A5) would soften features in the transmitted and
reflected features). As shown by Smith and Blaylock [54],
fast Fourier transform (FFT) methods can then be used
to obtain ρ(k, t) from ρ(x, t), from which the momentum
of the peaks of the reflected and transmitted wave packets
can be found. This would allow the numerical solution
of Schrödinger’s equation (SE) to provide (ki, kr, kt) to
the TARD time approach of Eq. (43).
The present WDF method differs from the SE ap-

proach in important respects: (i) Most importantly, fi-
nite difference methods to solve SE do not unambigu-
ously resolve the potential barrier V (x) (albeit a much
greater issue for abrupt potentials such as Vr(x) and
Vt(x) of Appendix A than for gaussian potentials such
as Vg(x)) compared to the exact methods behind Eqs.
(A7) and (A8); (ii) Boundary conditions in the SE ap-
proach are comparatively difficult because the finite dif-
ference methods must apply to the full wave function
ψ(x, t) and so its boundaries at each end must be known,
whereas the entering boundaries of the WDF are spec-
ified and the exiting boundaries open (for example, to
minimize systematic error, the simulation region consid-
ered by Smith and Blaylock [54] was large enough that
the wave packet remained “very nearly zero at the bound-
aries for the entirety of the simulation”, meaning that the
range of the simulation was well beyond where the wave
packet propagated - by requiring boundary conditions
ψ(±L, t) = 0, they are, in effect, “closed”); (iii) the re-
lation f(x, k, t+ δt) = f (x− ~kδt/m, k, t) (compare Eq.
(23)) can be used in WDF simulations when the influ-
ence of V (x, k − k′) subsides, allowing broad wave pack-
ets with a narrow momentum spread to be considered,
whereas (for computational reasons) narrow wave pack-
ets with wide momentum spread are more advantageous
in the SE approach; (iv) identifying the peaks of the re-
flected and transmitted packets requires additional com-
putational complexity (e.g., FFT methods) compared to
the straightforward WDF approach and do not necessar-
ily identify the velocity of the peaks of ρ(x, t) with the

values of (ki, kr, kt) from ρ(k, t); and (v) the trajectory
interpretation for the Schrödinger approach (Bohm Tra-
jectories) are of a very different kind than the Wigner
trajectories that are well-suited to the emission models
relying on packets but more importantly on distributions
[61, 62]. Some of these distinctions address constraints
placed on the numerical evaluation of ψ(x, t) in the SE
approach, e.g., the six constraints on simulation param-
eters discussed by Goldberg, et al [93].
Final considerations with respect to peak identifica-

tion, as well as how well finite difference methods in the
SE approach (with its approximations behind generat-
ing the initial wave packet) perform, are in progress and
will be reported separately [121]. Therefore, for compu-
tational, physical, and utilization reasons, the WDF ap-
proach identifies kt and kr unambiguously and is there-
fore better suited to return (ki, kr, kt) in Eq. (43) on
which the TARD time model here is based. When the
energy and spread of the packet is sufficiently low, the
TARD time acquires a tunneling time characteristic that
is examined.

C. TARD Time

The magnitude of the reflection delay time τr of Eq.
(44) will equal the transmission delay time τt if the ballis-
tic reflected and transmitted lines converge to a common
vertex at x = 0. τr is the separation of the two horizon-
tal black lines in Figures 9, 10, and11, and numerically
equal to τr = 0.5461 fs for the parameters of the simula-
tion given in Table I. It includes both transport over the
barrier (~2k2/2m > Vo, or “fly-over”) and transport un-
der the barrier (~2k2/2m ≤ Vo, or “tunneling”). Such a
definition is reliant on utilizing the probabilistic nature of
ρ(x, t) needed when deciding if an electron has passed a
barrier or has been reflected by it, and therefore hearkens
to the Bohmian trajectory approach [53]. For all param-
eters held the same except for the barrier now specified
by 0.1 ≤ λ ≤ 0.7 nm, then τr varies as shown in Figure
14, where the default case is the yellow dot. As the bar-
rier thins (λ decreases), more of the transmitted current
is due to tunneling. Estimates of τr depend on both the
choice of xo (because of the extent of the initial gaussian
packet) and the abruptness of the barrier governed by
∂xV (x) (the interference effects extend further from the
origin).
We note that the apparent discontinuity (white space)

along the transmitted ridge between the black horizon-
tal lines of Figure 10 is only a consequence of how the
16 contour lines are selected (equispaced in height with
the smallest at 1/17 = 0.0588): a ridge is present, but is
too small in height to be discerned for the lowest contour
level, but is revealed for contours at heights less than
0.035. Because kr < −ko and kt > ko, it is seen that the
transmitted wave packet is traveling slightly faster, and
the reflected wave packet slightly slower, than the initial
wave packet, a circumstance that must be accommodated
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FIG. 9. Time evolution of position density ρ(x, t) as evaluated
using Eq. (39). The two horizontal black lines signify where
xi(t) crosses (x = 0) (lower at to = 1.0196 fs) and where
the vertex from which xt(t) and xr(t) diverge (higher at tr =
1.5657 fs), a separation of 0.5461 fs for Table I parameters.

by how the delay time is defined. This is not unexpected
[120]: the transmitted wave packet is composed of con-
tributions that have a higher transmission probability,
which increases with k. Significantly, observe that the
horizontal black lines approximately demarcate half the
separation where the peak of ρ(k, t) begins to first decline
and then separate into two distinct peaks in Figure 10.

Accounting for how long an electron takes to pass an
emission barrier is difficult for theory, simulations, and
experiments on ultrafast processes associated with emis-
sion and transmission [32, 37, 43, 56, 92, 122]. A method
to incorporate delays associated with electrons passing a
barrier (particularly if tunneling), as occur in field and
photoemission studies using quantum mechanical, Monte
Carlo, or particle-based methods [17, 20, 70, 94, 123–126],
may profitably use the notion of TARD time introduced
here, as it accounts for changes in overall number and
current density in a manner that respects their time evo-
lution for a wave packet, but which does not run afoul of
interference oscillations associated with Wigner trajecto-
ries.

A feature that was well-hidden for the gaussian barrier
(and will only be slightly better revealed for the parabolic
barrier of Section IVD) is the nature of the intersection
of the reflected and transmitted dashed white (ballistic)
lines. When these lines cross at the origin (x = 0) (that
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FIG. 10. Time evolution of momentum density ρ(k, t) as
evaluated using Eq. (39), but for summations over i. The
locations of the peaks of ρ(k, tmax) define kr = −13.1140
nm−1 and kt = 14.8152 nm−1. The vertical red lines are
at k = ±ko = ±13.5546 nm−1 and at k = 0.
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FIG. 11. Time evolution of current density J(x, t) =
J+(x, t)+J−(x, t) as evaluated using Eq. (42). White dashed
lines are as in Figure 9. Negative current (blue) moves to the
left, positive (red) to the right.

is, appear to originate together from a vertex), the TARD
times are equal in magnitude, or |τr| = |τi|. The barriers
simulated herein are symmetrical and reveal finite TARD
times, in contrast to arguments using different definitions
of tunneling time or suggesting vanishing tunneling times
for symmetrical barriers when delay is entirely due to
tunneling (considered below). The present distinction
will therefore capture probabilistic emission times in a
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FIG. 12. The distribution f(x, k, t) at t = to (positive range
only), corresponding to the lower horizontal line of Figure 9.

FIG. 13. The distribution f(x, k, t) at t = tr (positive range
only), corresponding to the upper horizontal line of Figure 9.

manner usable by particle simulation codes in a way that
the other definitions will not.

The contribution of leakage to the transmitted packet
is indicated by what portion of the initial packet has
k > kv ≡

√
2mVo/~ (see Figure 3), and successfully

passes the barrier. From Eq. (12), it is seen that
f(x, k, 0) separates into a product of an x-dependent
term with a k-dependent term, the latter of which be-
haves as fs(k) = exp[−a2(k− ko)

2]. If D(k) is the trans-
mission probability (Eq. (C1)) as a function of k, then
the portion of D(k)fs(k) for k > kv is a measure of
the non-tunneling contribution [127]. For ko = 13.5546
[nm−1] (Eo = 7 eV) as in Table I, then the portion of
D(k)fs(k) for k > kv, or “leakage”, is shown as the
shaded gray region in Figure 15(a), and is clearly signifi-
cant: it is found that the leakage contribution dominates
(> 50%) for Eo > 6 eV. When the barrier is thinned
to λ = 0.16 nm, and ko is reduced to 10.868 [nm−1]

0 0.2 0.4 0.6
0

0.2

0.4

0.6

λ [nm]

τ r
(λ
)
[f
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Gaussian

Default

FIG. 14. Evaluation of reflection TARD time τr(λ) for Table
I parameters but with different λ (Table I value for λ is a
yellow dot labeled “Default” for a gaussian barrier) for both
parabolic and gaussian barriers.

(Eo = 4.5 eV), as in Figure 15(b), the leakage is so small
as to not be visible (. 1%)
The analysis of TARD times when tunneling domi-

nates can then be investigated using the smaller ko and
λ parameters. For resolution of details, the tunneling
calculations require much larger values of Nt, Nx: be-
low, they shall be set equal to Nx = 210 = 1024 and
Nt comparable. A close-up of the wave packet evolution
for Eo = 4.5 eV is shown in Figure 16, with the con-
tours adjusted so as to starkly bring out the tunneling
portion. Because the incident energy is lower, the wave
packet is started further away from the center of the gaus-
sian barrier at xo = 2.5 nm, so that a free wave packet
would pass the center (x = 0) line at approximately 2 fs
later. Several features are immediately noticeable. First,
the gap between the horizontal lines representing where
[xi(t), xr(t), xt(t)] cross the origin x = 0 have become
much closer. Second, xr(t) and xt(t) no longer appear
to originate from a single vertex: the transmitted bal-
listic line initiates slightly to the right of the origin. To
explore the smaller TARD times associated with tunnel-
ing, evaluations were done for Eo spanning a range from
tunneling dominated (Eo < 6 eV) to leakage dominated
(Eo ≥ 6 eV), and shown in Figure 17. It is seen that τr
decreases as the tunneling contribution shown in Figure
15 increases.
Observe that lower energy wave packets are reflected

sooner than higher energy packets precisely because their
penetration of the barrier is less, leading to a reflection
delay that occurs because particles with higher energy
penetrate a greater distance into the barrier before be-
ing turned back compared to lower energy particles, and

Distribution A: Approved for public release, distribution is unlimited.
page 13



FIG. 15. Transmission probability for a parabolic barrier
D(E) (green), Ratio fs(E) = f(xo, k, 0)/f(xo, ko, 0) (blue),
and product D(E)fs(E)/D(Eo)fs(Eo) (red) for the cases
Vo = 8 eV (or kv = 14.49 nm−1) and (top) λ = 0.5 nm and
Eo = ~

2k2
o/2m = 7 eV (or ko = 13.55 nm−1) and (bottom)

λ = 0.16 nm and Eo = 4.5 eV (or ko = 10.87 nm−1). The gray
shaded region represents leakage, for which E(k) = ~

2k2/2m
is larger than Vo = ~

2k2
v/2m, but is not easily visible for the

lower figure.

such a delay presumably contributes to the separation
between where the incident and reflected ballistic lines
pass the origin (x = 0) in Figures 9 and 10. By com-
parison, a classical particle would reflect instantaneously,
such that there would be no separation between the bal-
listic incident and reflected lines, both crossing where
the particle strikes the barrier. Because lower energy in-
cident wave packets are more completely reflected, the
expectation then becomes that the ballistic incident and
reflected lines form a vertex, with a separation now ap-
pearing between xr(t) and xt(t) (they no longer form a
vertex at x = 0).
The xo(t) line, if extended, would be above the xt(t)

line in Figure 16. That circumstance mimics Figure (4) of
Ref. [54], and just as they discuss, it is not an indication
of “superluminal” transport. Whereas τr = tr − ti →

FIG. 16. Time evolution of position density ρ(x, t) as evalu-
ated using Eq. (39) but now for ko = 10.8679 nm−1 (Eo = 4.5
eV), xo = −2.5 nm, and λ = 0.16 nm for a gaussian barrier.
The contour lines are 2.5% the levels shown in Figure 9, and
a smaller field of view is chosen. Dashed white lines replaced
by solid white lines for visibility. The two horizontal black
lines are now separated by 0.046 fs. Thin white vertical line
mark the center of V (x).
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FIG. 17. TARD time τr as the initial center energy of the wave
packet Eo = ~

2k2
o/2m changes for a gaussian barrier with

Vo = 8 eV and λ = 0.16 nm. All simulations used Nt = 512
and Nx = 1024. Numerical noise is a consequence of using
fitting procedures to find (ko, kr, kt) and [xr(tmax), xt(tmax)].
Eo > Vo in the gray region, and leakage dominates in the
green region (7.3 eV ≤ Eo ≤ Vo).

0 as Eo decreases, the separation τt ≡ tt − ti, where
xi(ti) = 0 and xt(tt) = 0, remains finite and is the TARD
time due to tunneling, to borrow the parlance of Büttiker
and Landauer [43]. From Eq. (43) and the simulation
leading to Figure 16, for xo = −2.5 nm, xt = 2.8196
nm, ko = 10.8679 nm−1, kt = 11.578 nm−1, tmax =
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FIG. 18. Density ρ(x, t) normalized to ρo = ρ(xo, 0) at four
representative times identified in the legend, using the param-
eters of Table I, but now for ko = 10.8679 (Eo = 4.5 eV) and
λ = 0.16 nm so that the transmitted portion is predominantly
due to tunneling. Shaded region is the barrier.

(Nt − 1)(4 fs)/Nt = 3.9961 fs for Nt = Nx = 210, then

τt ≡ tt− ti = −mxt
~kt

+
mxo
~ko

+ tmax = −0.094567 fs (48)

Finding the behavior of τt in the tunneling-only limit
requires greater accuracy because of interference of the
reflected components of the wave packet associated with
more abrupt barriers, and therefore significantly larger
Nt and Nx for the simulation. Comparisons to simula-
tions based on solving Schrödinger’s Equation for when
tunneling is exponentially small shall be reported sepa-
rately [121]. Observe that the negative value associated
with Eq. (48) is an artifact of the arbitrary identifica-
tion of τt with trajectories that cross the t-axis (verti-
cal): were the crossing along the x-axis evaluated instead,
and a time difference created by the ratio of that sepa-
ration with the incident velocity, then a positive time
metric would result that may result in a preferred time
parameter. The interpretation will be taken up sepa-
rately. Here, it is important to emphasize that the sign
should not be associated with superluminal or non-causal
behavior: rather, the emitted wave packet is constructed
of higher velocity components analogous to the discussion
surrounding Eq. (47) or as in Figure (4) of Ref. [54].
The time scales associated with Figure 17 in the evolu-

tion of ρ(x, t) determined herein for gaussian wave pack-
ets from the Wigner function approach (compare also
Ref. [128]) closely match those determined by Petersen
and Pollak [129, 130] for gaussian wave packets similar to
Eq. (11) (e.g., compare Figure 9 here with Figure (2a) of
Ref. [130]), but τ(λ) > 0 here. In their study, Petersen
and Pollak argue that the tunneling time for both sym-
metric barriers (such as the gaussian barrier here) and
asymmetric barriers vanishes. They use a definition of τa

reliant on the size of 1/a2 in Eq. (11), which is Γ in their
notation. It is based on a definition of τ which compares
“the time” it takes the gaussian wave function centered
at t = 0 at a position −xi to the left of the barrier to
reach positions ±L, L ≫ xi. Extrapolating to large a,
they find that it takes longer to reach −L than +L, with
a time difference τa which depends on the width of the
wave packet. They explain this by noting that the trans-
mitted wave contains more of the higher components of
the momentum in the original wave packet (similar to
the arguments of Ref. [54]) . They find that τa → 0 as
a → ∞. The time τa is clearly not the time the trans-
mitted particle spends inside the barrier.
In contrast, here, the TARD times (τr, τt) are explic-

itly related to the center momenta of the incident, re-
flected and transmitted packets. Such a formulation is
closer to the view discussed by Landsman and Keller [52]
when they say “...the time it takes an electron to tunnel
is a probabilistic, rather than a deterministic process”
(emphasis added). Because ρ(x, t) represents the proba-
bility of a measurement finding an electron at x, delays
associated with its behavior therefore account for time-
dependent behavior associated with tunneling. They will
therefore be useful in simulations that rely on particle-
like behavior (e.g., beam optics codes, molecular dynam-
ics, or Monte Carlo simulations [17, 27, 28]) for the de-
scription of nanogap and/or ultra-short conditions. That
is, in field emission simulations, electrons are localized as
they emerge from the barrier, and are most often treated
as point particles: therefore, a particle code is better
served by the ballistic trajectories and the TARD times
they give rise to (although a phase space trajectory repre-
sentation desirable [62]) , particularly if the applied field
rapidly oscillates [35, 37, 131] or internal processes that
affect emission result in a delay in the arrival time of the
electron to the surface [94].

D. Parabolic Barrier

The TARD times change as a consequence of barrier
shape. A rapid demonstration is afforded by consider-
ing the parabolic barrier Vp(x) = Vo

[

1− (x/λ)2
]

(Eq.
(A4)) but otherwise using the parameters of Table I. For
brevity, only the evaluations of ρ(x, t) and J(x, t) are
reproduced, and shown in Figure 19. Compared to the
delay time associated with Figure 10, the time separation
between the horizontal lines in Figure 19 is now 0.3693
fs, and is a consequence of the narrower extent of the
parabolic barrier compared to the gaussian barrier. Con-
versely, where the figures are similar is a consequence of
the parabolic barrier parameters being chosen to closely
match the gaussian barrier at its apex. Although the
parabolic barrier has a more abrupt onset than a gaus-
sian barrier and therefore causes Vp(x, k − k′) to span
further in k-space, the sensitivity to the location of xo
for the evaluation of τr is reduced. It was found, how-
ever, that by choosing parameters for which tunneling
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dominates, as in Figures 16 and 18 for a parabolic bar-
rier, Figure 20 results. Lastly, when Eo & 7.25 eV in
Figure 17, both τr and τt are non-zero, so that none of
the ballistic (white) lines diverge from a common ver-
tex along x = 0 for those conditions. Both τr and τt
are required to model where the reflected and transmit-
ted wave packets are at later times. In simulations of
electron emission, the probability of whether an electron
is launched, when it is launched, and with what veloc-
ity it departs are therefore derived from ρ(x, t), τt and
kt. The effects of abruptness on the transmitted and in-
cident packets, and the development and application of
that emission model, shall be examined separately [121].

E. Comparisons to Other Times

The Büttiker-Landauer “semiclassical time” τsc [43] is
commonly invoked to describe tunneling (See Refs. [52]
and [132] for its relation to Bohmian and Larmour times).
τsc is defined by [43]

τsc =

∫ x+

x−

dx

v(x)
(49)

The terms x± are defined by V (x±) − E = 0, V (x)
is the barrier profile, E is the energy, and v(x) =
√

2|V (x) − E|/m for a given E (the absolute value is
used by Büttiker and Landauer to make τsc real-valued
for Eo both below and above Vo: here, only Eo < Vo
is considered). As is evident from its definition, τsc is
defined for a single energy (for which, as Büttiker and
Landauer confirm, the incident current density is simply
j = q~k/m as follows from ψinc(x) ∝ eikx), which already
renders it different from the TARD times for wave pack-
ets composed of many wave number components. Using
shape factor methods of Appendix C [133] for evaluating
the Gamow factor, where L(E) = x+(E) − x−(E) and

κ(E) =
√

2m(Vo − E)/~, and Vo is the maximum height
of the barrier, the semiclassical time becomes

τsc(E) = u(E)
mL(E)

~κ(E)
(50)

where κ(E) =
√

k2v − k2, E = ~
2k2/2m, and Vo =

~
2k2v/2m. The rectangular, triangular, and parabolic

barriers are special cases of a class of potentials that have
constant shape factor terms [6, 133], e.g., for the rectan-
gular barrier of Eq. (A2), σ(E) = u(E) = 1, whereas for
the parabolic barrier of Eq. (A4), 2σ(E) = u(E) = π/2
(compare Eq. (C6)). More complex potentials, such as
gaussian and image charge barriers, have energy depen-
dent shape factors for which the energy dependence can
be taken as weak [70]. Restricting attention for now to

the parabolic barrier Vp(x) of Eq. (A4), it is found

x±[E(k)] = ± λ

kv

√

k2v − k2

L[E(k)] =
2λ

kv

√

k2v − k2
(51)

Therefore, for the parabolic barrier Vp(x), the semiclas-
sical time is

τsc(parabolic) =
πmλ

~kv
= πλ

√

m

2Vo
(52)

and is therefore independent of E(k): in contrast, bar-
riers for which u(E) is not constant (such as gaussian
barriers) exhibit an energy dependent τsc(E). For the
parameters of Figure 1, where Vo = 8 eV and λ = 0.16
nm, τsc(parabolic) ≡ τp = 0.29964 fs. The ratio of τp
with τt is therefore τt/τp = 0.31560, or the TARD time
due to tunneling is about a third of the semiclassical time.
The dwell time (Appendix D) is the difference between

the time a wave packet spends in the region of a barrier
with the time it would have spent in the same region
when the barrier is absent. In the treatment by Win-
ful [63, 64], the wave function in the barrier is evanes-
cent, not propagating, and therefore exponentially de-
clines with a decay constant of κ(E) that behaves as a
“skin depth”. By analogy, then, “energy” in the form
of |ψ(x)|2 is stored in the barrier governed by that skin
depth, and so a substantial increase in L will not appre-
ciably alter how much is stored. In his analogy, transmit-
ted electrons correspond to leaking of the stored energy
in the forward direction, with reflection being the leak-
ing in the back direction. The time associated with that
leaking is τd.
Although there is not an equivalence between the

TARD times (τr, τt) and the dwell time (τd) of Win-
ful [63], it is seen that they bear some relation (e.g.,
τr → 0 when the ballistic incident trajectory overlaps
the transmitted trajectory, which is equivalent to Fig-
ure 4, as does τd by definition). The rectangular bar-
rier of Winful is such that L = 2λ here, for which the
Gamow factor is θ = 2κL = 4κλ. Consequently, Eq.
(20) of Winful for τd is generalized to Eq. (D1) here,
where τv ≡ ~/Vo = 0.0823 fs for Vo = 8 eV. For suf-
ficiently large θ, then sech(θ/2) ≪ 1, and so Eq. (D1)
with Nb → 0 becomes

τd ≈ τv

(

k

κ

)

tanh

(

θ

2

)

(53)

and shown in Figure 21. In this limit, τi(θ) is simply
related to τd(θ) by k2τi ≈ κ2τd as per Eq. (D2). The
equation is extended to parabolic barriers here through
the replacement θ → 4σκλ, where σ is the shape factor
of the parabolic barrier (Appendix C). Now, where the
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FIG. 19. The simulation for (top) density ρ(k, t) and (bottom)
current density J(x, t) for Table I parameters (compare Fig-
ures 10 and 11, respectively), for the parabolic barrier (rep-
resented as the red curve in the lower figure). The delay time
has been shortened (closer spacing of the horizontal lines),
which is now 0.3693 fs.

barriers are purposely thin to encourage a visible trans-
mitted wave packet, the largeness of θ is governed by Eo

rather than λ (as in Appendix D).

The behavior of τr from Figures 14 and 17 are now
compared to the dwell time τd for barrier widths specified
by the parameter λ. A direct comparison as a function of
λ is shown in Figure 22 for gaussian and parabolic V (x),
where the Hartman and Asymptotic lines use θp only (Eq.
(C7)) for simplicity, because the difference to lines using
θg is small, as demonstrated in the discussion following
Eq. (C10). For Figure 23 (gaussian V (x) only), the
gaussian Gamow factor θg is approximated by Eq. (C10)
over the range of interest for Vo = 8 eV and λ = 0.16

FIG. 20. Time evolution of position density ρ(x, t) as evalu-
ated using Eq. (39) but now for ko = 10.8679 nm−1 (Eo = 4.5
eV), xo = −2.5 nm, and λ = 0.16 nm for a parabolic barrier
(compare Figure 16). The two horizontal black lines are now
overlapping. The thin white vertical line marks the center of
the gaussian V (x).
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FIG. 21. The dwell time τd(θ) (Eq. (D1)) in the ratio κτd/kτv ,
for the parameters Vo = 8 eV and E as shown (lines). Circles
(◦) correspond to Eq. (53) and overlap the E/Vo = 1/2 line
for which k = κ.

nm. The comparison is only to show shared trends, as
the reflection TARD time τr differs from the dwell time
τd. The green region of Figure 17 corresponds to the
green region of Figure 23 for which θg(E) < 0.6373, and
that region contains a significant contribution to emission
due to leakage. It is in keeping with the observation
by Winful that “...propagating above-barrier components

begin to dominate...”
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FIG. 22. The reflection TARD time τr(λ) of Figure 14 for
parabolic and gaussian barriers. Lines use only θ = θp of Eq.
(C7) as σg is within 2.4% of σp = π/4.
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FIG. 23. The TARD time τr of Figure 17 compared to the
dwell time τd(θ) (Eq. (D1)), both in the ratio κτ/kτv, as a
function of the Gamow factor θg(k) (Eq. (C10)) for Vo = 8
eV and λ = 0.16 nm. Leakage dominates in the green range.

V. SUMMARY

Approaches to introducing quantum effects into sim-
ulations of electron emission that otherwise treat elec-
trons as point-like particles have sought to use trajectory
concepts made possible by the Wigner distribution func-
tion, which acts like a phase space probability function
even though it exhibits negative values as a consequence
of quantum mechanical effects. For wave packets that
separate into transmitted and reflected components, the
negative regions are associated with oscillatory regions

and correspond to effects of interference. Past stud-
ies of WDFs for closed boundary conditions show sim-
ilar rapid oscillations near barriers, the magnitudes of
which depend on the abruptness and height of the bar-
rier. Such oscillations are problematic for a trajectory
interpretation but are an unavoidable artifact of quan-
tum effects, interference, and wave reflection for static
conditions, with their behavior for dynamic conditions
being presently unaddressed. Time-dependent Wigner
wave packet studies were therefore investigated herein to
develop a tunneling time model that would allow such
processes to be modeled even in dynamic circumstances.

In the present study, an accurate and fast means of
numerically evaluating the time evolution of a Wigner
Distribution function (WDF) was developed that, in ad-
dition to being substantially more rapid than prior ver-
sions, allows using finite difference methods with a far
greater number of points characterizing fn

ij . The large
number of phase space points allowed for the determi-
nation of f(x, k, t) using second order accurate schemes
in both position x and time t (the discretization of
wavenumber k is fixed by the length of the simulation
region). The high accuracy is required to numerically re-
solve the central interference region (so named to corre-
spond to the “central entanglement region” in the work of
Weinbub and Ferry [108]) after the wave packet interacts
with the barrier and separates into a transmitted and re-
flected portion. The central interference region is shown
to be similar to the central interference term that arises
analytically from two gaussian wave packets traveling in
opposite directions. Although the focus was on gaussian
and parabolic barriers, analytic representations for other
barriers (delta function, rectangular, triangular, double
barrier for resonant tunneling) were developed, for which
the numerical techniques developed herein are applica-
ble, although only the parabolic and gaussian barriers
were considered explicitly because they exhibit a desir-
able smoothness.

Simple analytic barriers allowed for similarly simple
Vc(x, k − k′) functions in the WDF time-evolution equa-
tion (Eq. (4)) to be considered, a development that al-
lowed for a substantial increase in execution speed in
addition to the hybrid predictor-corrector and implicit
methods used. Nevertheless, as also shown, more com-
plex potentials (e.g., biased RTD’s, Fowler-Nordheim
or triangular-like asymmetric barriers) can be built up
through the addition of the simple components, thereby
retaining the advantage of the rapid analytical methods
without having to resort to fast Fourier Transform (FFT)
techniques characterizing earlier studies. Although not
pursued herein, the structure of the time evolution ap-
proach in Eq. (38) may allow for the only a sub-section of
the simulation region to be considered, thereby enabling
further significant reductions in execution time.

Based on the behavior of the transmitted and reflected
wave packets and and their dependence on barrier height,
width, symmetry, and abruptness, TARD times were in-
troduced that relied only on knowing the asymptotic lo-
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cations of peaks (xo, xr, xt) of the position density ρ(x, t)
and (ko, kr, kt) of the momentum density ρ(k, t), which
serve to define the times (to, tr) by setting the left hand
side of Eq. (43) to 0 and then defining the tunneling
time via τr = tr− to and τt = tt− to although we observe
that in the case when tunneling dominates, the defini-
tion of τt may merit revisiting to address its sign. When
developed for force-free motion away from the barrier,
it is suggested that the method can be applied to when
the wave packets are being accelerated in a linear field
because for up to constant fields, the WDF satisfies Eq.
(23), although such an assertion remains to be demon-
strated.

The TARD times provide a natural approach to intro-
duce delays associated with quantum mechanical effects
for either static or dynamically changing barriers. As a
result, a means to include these effects in simulations of
nano-gaps and/or changes in the barrier occurring over fs
(or smaller) time scales is possible without relying on an
instantaneous application of a current density equation
(e.g., the Fowler-Nordheim equation) that presupposes
static barriers under the assumption that the tunneling
is instantaneous. In trajectory simulations where spu-
rious oscillations at the barrier become problematic, we
may explore the entangled classical trajectory approach
of Donoso and Martens to obtain the average behavior
of the ensemble, including approximate tunneling proba-
bility and tunneling time.

Future work will be in several directions. First, compli-
cations due to the influence of resonances (see Eq. (B1))
will be considered. Second, comparisons to and mod-
ifications by Schrödinger-based approaches will enable
the examination of deep tunneling contributions where
the transmitted packet is exponentially small. Third,
demonstrating the utility of the tunneling time defini-
tion in emission simulations that are generally reliant
on a particle model (due to the large number of emis-
sion events characteristic of operation) will be consid-
ered. Lastly, the present analysis will be extended to
build on the long established analogy between quantum
mechanics and electromagnetic wave propagation [64] to
devise a series of microwave experiments for the purpose
of investigating extensions of the present study. The cm
wavelength scale in the microwave regime enables effects
presented in this paper to be examined at the macro-
scopic scale.

VI. DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are
available within the article.
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Appendix A: Delta-function Sequences

The V (x) barriers (and by extension, wells) give an-
alytical V (x, k − k′) from Eq. (4), for which ones
of relevance here are δ-function (Vd), rectangular (Vr),
parabolic (Vp), gaussian (Vg), and triangular (Vt), de-
fined by

Vd(x) = 2Voλδ(x) (A1)

Vr(x) = Vo Θ(λ2 − x2) (A2)

Vg(x) = Vo exp
[

−(x/λ)2
]

(A3)

Vp(x) = Vo
[

1− (x/λ)2
]

Θ(λ2 − x2) (A4)

Vt(x) = Vo [1− (x/λ)] Θ(x)Θ(λ − x) (A5)

where Θ(x) is the Heaviside step function and δ(x) is the
Dirac δ-function (compare Eq. (10) of Ref. [61]). In the
case of Eq. (A1), it is quickly found

Vd(x, k) = −4λVo
π~

sin(2kx) (A6)

The other cases are chosen to emphasize distinctions
associated with continuous behavior such that V (x +
ǫ) = V (x − ǫ) as ǫ → 0, abrupt behavior such that
∂xV (x + ǫ) 6= ∂xV (x − ǫ), and symmetric behavior such
that V (+|x|) = V (−|x|). Specifically, (i) cases (r, t)
are discontinuous whereas cases (p, g) are continuous,
(ii) cases (r, p, t) are abrupt whereas case (g) is smooth,
and (iii) cases (r, p, g) are symmetric whereas case (t) is
asymmetric. It can be shown that the symmetric cases
result in Vc(x, k) given by (for c ∈ (d, r, p, g))

Vs(x, k)

VoNc
= −ηc(2kλ) sin(2kx) (A7)

where k − k′ → k for notational simplicity, whereas the
antisymmetric case contains an additional term such that

Vt(x, k)

VoNt
= ηt(2kλ) sin(2kx)− η′t(2kλ) cos(2kx) (A8)

where the (t) subscript is used directly as it is the only
asymmetric case considered, although the right trian-
gle barrier can be made symmetrical by the replacement
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Vt(x) → [Vt(x) + Vt(−x)]/2, or isosceles barrier. The
right triangle barrier is, however, of greater importance
given its relation to the Fowler-Nordheim barrier of field
emission [67, 69]. Explicit evaluation of Eq. (4) gives

Nr =
4λ

π~
; Np =

8λ

3π~
; Ng =

2λ√
π~

; Nt =
2λ

π~
(A9)

ηr(ϕ) =
sinϕ

ϕ
; ηg = e−ϕ2/4

ηp(ϕ) =
3

ϕ2
(sinϕ− ϕ cosϕ)

ηt(ϕ) =
1− cosϕ

ϕ2
; η′t(ϕ) =

ϕ− sinϕ

ϕ2

(A10)

The behavior is shown in Figure 24. Observe that for the
symmetric cases, the relation

Nc~

4λ

∫ ∞

−∞

ηc(ϕ)dϕ = 1 (A11)

holds, so that the Nc~ηc(2kλ)/(4λ) are seen to be δ-
function sequences (analytic representations of the Dirac
δ-function) [134] in the limit that λ → 0. The rapidity
with which Vc(x, k) decreases with increasing k greatly
affects oscillations in f(x, k, t) for large ±|k|, which also
depends on Nc, e.g., Vr(x, k)/VoNr diminishes with in-
creasing ϕ = 2kλ but Vd(x, k)/VoNr does not, showing
starkly the effects of the most “abrupt” barrier. There-
fore, the gaussian barrier is the most advantageous as it
most rapidly diminishes with ϕ, followed by the parabolic
barrier, whereas the triangular and rectangular barriers
are more susceptible to the incursion of numerical noise
for large |k| in time evolution simulations using present
methods.

Appendix B: Resonant Tunneling Barrier

The associated V (x, k) to successively more complex
barriers can be constructed from the components of Eq.
(A2). An example of importance to past WDF simula-
tions is the superlattice barriers examined by Tsu and
Esaki [135] for which the “double barrier” instance fig-
ures prominently in the treatment of resonant tunneling
diodes [56, 74, 96, 97]. The single barrier is replaced by
two barriers centered at ±W/2, resulting in

Vrtd(x) = Vr

(

x− W

2

)

+ Vr

(

x+
W

2

)

(B1)

where W − 2λ is the width of the well region, to which a
bias potential may be added, although that complication
is not considered here. Explicit evaluation shows that

Vrtd(x, k) = −4Vo
cos(kW ) sin(2kλ) sin(2kx)

π~k
(B2)
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FIG. 24. The ηc(ϕ) functions of Eq. (A7) and (A8). Discon-
tinuity and abruptness result in a greater range over which
variation is visible. Legend refers to the cases of Eq. (A10).
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FIG. 25. V (x, k) for a single barrier (Vr(x) of Eq. (A2))
compared to a double barrier separated by a well of width
w = W − 2λ (Vrtd(x) of Eq. (B1) with 2λ = 3W/8).

which differs from Vr(x, k) by a factor of 2 cos(kW ). The
effects of the additional factor are shown in Figure 25.

Finally, RTD’s are often subject to a potential drop
that can be represented as the inclusion of an additional
bias term Vb(x) that linearly varies between (−W/2−λ <
x < W/2+λ) and constant at 0 for x < −W/2−λ but at
−∆V for x > W/2+λ. The resulting Vb(x, k−k′) is then
also analytic and can be evaluated using the techniques
introduced in the consideration of Eqs. (21) and (A5).
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Appendix C: Gaussian Shape Factors

A commonly used approximation to the tunneling
probability D[E(k)] for thermal and field emission [136]
uses the Kemble approximation

D[E(k)] =
1

1 + eθ[E(k)]
(C1)

and is exact for a parabolic barrier [137] and very good
for barriers such as Vp(x) [6]. The Gamow factor in it is
given by

θ(E) ≡ 2
√
2m

~

∫ x+(E)

x−(E)

√

V (x)− E dx (C2)

where x± are such that V (x±)−E = 0. The shape factor
method [70, 133] expresses the Gamow factor as

θ(E) ≡ 2σ(E)κ(E)L(E) (C3)

where κ(E) ≡
√

2m(Vo − E)/~ =
√

k2v − k2 is the maxi-
mum height of the integrand, L(E) = x+(E)− x−(E) is
the width of the integration region, and σ(E) accounts
for the proportion of the integration area κ(E)L(E) that
is occupied by the integrand. For the rectangular barrier,
the shape factor σr(E) ≡ 1, such that θo(E) ≡= 2κ(E)L
and L is the width of the barrier because a rectangu-
lar barrier is of constant height and width. For general
barriers, σ(E) and the companion u(E) are [133]

σ(E) =
1

L(E)

∫ x+(E)

x−(E)

[

V (x) − E

Vo − E

]1/2

dx (C4)

u(E) =
1

L(E)

∫ x+(E)

x−(E)

[

Vo − E

V (x) − E

]1/2

dx (C5)

As a result, for V (x) = Vp(x) of Eq. (A4), x±(E) =

±λ
√

1− (E/Vo) and so

σp =

∫ 1

0

√

1− s2 ds =
π

4

up =
1

2

∫ 1

0

ds
√

s(1− s)
=
π

2

(C6)

θp(k) =

(

πλ

kv

)

(k2v − k2) =
π

4
θo[E(k)] (C7)

for the parabolic barrier [133], both of which are con-
stant. Observe that no restriction appears on E to keep
it below Vo: in fact, extending E past Vo provides a good
account of D(E > Vo) for parabolic barriers [6].
The gaussian barrier for V (x) = Vg(x) of Eq. (A3)

proceeds analogously. A form more amenable to numer-
ical integration uses x±(E) = λ

√

η(E) where η(E) ≡

ln(Vo/E) = 2 ln(kv/k) results in

σg[η(E)] =

∫ π/2

0

[

eη cos2 s − 1

eη − 1

]1/2

cos s ds (C8)

Limiting cases are σg(0) = π/4 and σg(η ≫ 1) ≈
√

π/2η.
The variation of σg(η) with η is well fit by a quadratic
equation with coefficients anticipated from finite differ-
ence approximations to derivatives, giving

σg(η) ≈ A+Bη + Cη2 (C9)

where

A = σg(0) = 0.78540

B =
1

2
[−3σg(0) + 4σg(1)− σg(2)] = −0.050396

C =
1

2
[σg(0)− 2σg(1) + σg(2)] = −0.0011621

and σg(1) = 0.73384 and σg(2) = 0.67996, an approx-
imation for which the error is < 0.04% for E > Vo/8.
Consequently, a useful approximation is

θg(E) = 4λ
√
η σg(η) κ(E) (C10)

where σg(η) is approximated by Eq. (C9). It follows

θg/θp < [ηeη/(eη − 1)]1/2 ≈ 1 + (η/4)[1 + (η/24)]

Appendix D: Dwell Time and Hartman Effect

Hartman [119] considered the tunneling of a wave
packet through a metal-insulator-metal (MIM) structure,
modeled as a rectangular barrier equivalent to Eq. (A2).
He found that that for sufficiently thick barriers (kvλ≫ 1
in the present notation), tunneling is dominated by con-
tributions smaller than but near to the top of the barrier
(D[E(k)] sharply peaked near k . kv in the present no-
tation). He further found that the “transmission time”
(his δt3) converges to (k2v/kκ)τv (in the present nota-
tion where τv ≡ ~/Vo) in the same thick barrier limit
- that is, it is independent of the width of the barrier,
an effect subsequently designated the “Hartman effect”
[54, 63, 64, 138].
Winful compactly summarizes the Hartman effect in

Ref. [63] as the saturation of τg (the group delay) with
increasing λ, where he “disentangles” the role of self-
intereference of the reflected wave so as to find

τg = τd + τi

with τd being the “dwell time” and τi being the
“self-interference delay” with the latter given by τi =
−(~/k)ℑ(r)∂Ek, where ℑ(r) is the imaginary part of the
reflection coefficient r(k) (cf. Eqs. (9) and (10) of Ref.
[63]), e.g., for an incident plane wave of eikx, the reflected
plane wave is of the form r(k)e−ikx. Following Ref. [6],
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FIG. 26. Delay τd(θ) (Eq. (D1)) and self-interference τi(θ)
(Eq. (D2)) for a rectangular barrier with Vo = 8 eV and
θ = 4 (◦,�) and 8 (×,+). The asymptotic forms of Eq. (D4)
are the red, blue, and green lines for [τd(∞), τi(∞), τg(∞)],
respectively

introduce θ ≡ 2κL = 4κλ. In terms of θ, Winful’s Eqs.
(16) and (17) of Ref. [63] are

τd
τv

=

(

kk2v
2κ

)

Na +Nb

Do
(D1)

τi
τv

=

(

κk2v
2k

)

Na

Do
(D2)

where the numerator (Na, Nb) and denominator (Do)
terms are given by

Na = 2k2v tanh(θ/2)

Nb = (κ2 − k2)θ sech2(θ/2)

Do = k4v − (κ2 − k2)2 tanh2(θ/2)

(D3)

The behavior of tanh(θ/2) and sech(θ/2) alone govern
the width dependence of τd and τi. The λ → ∞ limit
corresponds to the θ → ∞ limit, for which Na → 2k2v,
Nb → 0, and Do → k4v, resulting in

τd
τv

→ k

κ
,

τi
τv

→ κ

k

τg
τv

→ k

κ
+
κ

k
=
k2v
kκ

(D4)

and is equivalent to Eq. (19) of Winful, although a better
approximation for large but finite θ is to retain Na/Do as
in Eq. (53). If saturation is said to occur for tanh(θ/2) >
1 − δ, then θ & ln[(2/δ) − 1], or θ & 6 for δ = 0.005.
The behavior of Eqs. (D1) and (D2) is compared to the
asymptotic limit of Eq. (D4) in Figure 26 for values of θ
that bracket θ = 6.
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