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In this work we investigate the electromagnetic local density of states (LDOS) near of a twisted bilayer
graphene (TBG) deposited over a general isotropic substrate. The band structure of the TBG is calculated
within a tight-binding framework, and then used to determine the TBG’s conductivity. The latter presents a
non-trivial dependence upon the angle of twist, which shows up in the LDOS, allowing for a Moiré pattern-
dependent quantum emission. For some specific twist angles we show that it is possible to either enhance or
decrease the LDOS by an order of magnitude at selected frequencies when compared to the monolayer. This
impressive variation is explained in terms of the presence/absence of well defined surface plasmon-polaritons
(SPPs). Altogether our findings demonstrate that TBG is an alternative, versatile material platform for con-
trolling spontaneous emission and enhancing light-matter interactions, and pave the way for further studies and
applications of quantum emission in the emerging class of 2D Moiré materials.

I. INTRODUCTION

In addition to graphene, which has been extensively studied
over the past decade1, two different classes of van der Waals
materials have drawn a lot of attention in recent years. One
of them is the class of two-dimensional graphene-like materi-
als, produced by exfoliating down materials such as hexagonal
boron nitride, molybdenum disulphide, and other dichalco-
genides2. Another class is composed of two-dimensional
crystals assembled together layer by layer with controllable
sequence and orientation. These structures exhibit unusual
physical properties that cannot be found in monolayers or in
bulk2. Twisted bilayer graphene (TBG) is one important ex-
ample of these structures, where the rotation between the two
layers produces a Moiré pattern and induces a static periodic
potential from the coupling between graphene layers, leading
to an angle-dependent band structure3. TBG can occur natu-
rally by chemical vapor deposition growth on metals4–6 or fab-
ricated by mechanically folding graphene8 and stacking two
monolayers together9. TBG has remarkable electronic and op-
tical properties, such as Dirac-like spectrum10, low energy van
Hove singularities7,11, localization of low energy states12, all
of which angle-dependent.

Very recently, the observation of unconventional supercon-
ductivity in TBG has triggered an enormous amount of in-
terest in this material13,14. This remarkable result, which is
the first evidence of a purely carbon-based 2D superconduc-
tor, occurs for some specific “magic” twist angles between the
two graphene layers. At these angles TBGs exhibit ultraflat
bands near charge neutrality, leading to correlated insulating
states. Upon electrostatic doping away from these correlated
insulating states, superconductor phases exist with a phase di-
agram similar to that of cuprates13,14. Altogether, these re-
cent findings indicate that TBG is a new, tunable, and versa-
tile material platform to probe strongly correlated phenomena.
Moreover, from the applied point of view, twisting of bilayer
graphene allows for the modulation for electronic devices15,16.
In addition to TBG, other 2D materials such as MoSe2/WSe2
heterobilayers, exhibit Moiré patterns that, by generating an

array of nanoscale electrostatic potential, can trap quasiparti-
cles including excitons. Indeed, optical emission from Moiré-
trapped excitons has been recently observed17–20, confirming
theoretical predictions21.

Despite the considerable recent interest in TBG, its capacity
to mediate light-matter interactions at the nanoscale has never
been investigated so far. Indeed, despite 2D materials22 be-
ing now established plataforms to enhance and control spon-
taneous emission from quantum emitters (atoms, molecules
and quantum dots)23–28, this possibility has never been inves-
tigated for TBG to the best of our knowledge. The purpose
of the present paper is hence to fill this gap by calculating the
photonic density of states of TBG using tight-binding meth-
ods.

This paper is organized as follows. Section II is devoted
to the methodology, where the photonic density of states is
calculated in terms of the optical conductivity of TBG, which
in turn is given by the tight-binding method. In Section III we
present and discuss our main findings whereas Section IV is
devoted to the conclusions.

II. METHODODOLOGY

A. Photonic Local Density of States

We consider a system where a twisted bilayer graphene is
placed atop a substrate, as shown in Fig. 1. The photonic lo-
cal density of states (LDOS) associated to two-level quantum
emitter at position r0 in the vicinities of a generic arrangement
of objects is given by29,30

ρ(r0, ω) =
6ω

πc2
Im [n̂ ·G(r0, r0, ω) · n̂] (1)

where ω is the emitter characteristic frequency, n̂ is the unit
vector in the direction of 〈e|p|g〉 (where p is the dipole oper-
ator), and G(r, r′, ω) is the Green function of the system. For
a single boundary planar system, the Green function is avail-
able in the literature (see, for instance,29), and for an isotropic



2

Figure 1. Our setup consists of a twisted bilayer of graphene on top
of a substrate. The two layers of graphene are twisted by an angle
θm, and the bilayer as a whole has a conductivity σ(ω). The substrate
is characterized by a permitivitty ε(ω) that, for suspended TBGs, is
equal to ε0.

emitter it is straightforward to show that ρ = ρE + ρH , where
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and ρH is obtained from ρE by swapping rs ↔ rp. Here, ρ0 =

k20/π
2c is the free space density of states, kz0 =

√
k20 − k2‖,

κz0 =
√
k2‖ − k

2
0 , and k0 = ω/c is the wavenumber. The 2nd

term is associated to the contribution of propagating waves, as
it can be seen from the fact that it is an integral over k < k0, so
kz0 is real. Conversely, the 3rd term is related to evanescent
waves (in the z-direction), as kz0 = iκz0 is imaginary. Fi-
nally, the Fresnel reflection coefficients rs, rp, that owe their
appearance in the Green function to the reflected modes on a
plane, sharp boundary (the graphene sheet), are calculated by
modeling the bilayer graphene as a surface density current at
z = 0, resulting in28

rs =
kz0−kzs−µ0ωσ

kz0+kzs+µ0ωσ
, rp =

εkz0−kzs+kz0kzsσ/ωε0
εkz0+kzs+kz0kzsσ/ωε0

, (3)

for k0 > k‖, and when k‖ > k0 it is necessary to deal with the

square roots appropriately. We have also kzs =
√
εk20 − k2‖,

ε being the substrate’s dielectric function, and σ is the 2D
material conductivity.

The LDOS is a very useful quantity, first and foremost be-
cause it is directly proportional (in the weak coupling regime)
to the spontaneous decay of a localized quantum emitter. In-
deed, the spontaneous decay rate Γe (Γh) of an object with a
transition electric (magnetic) dipole moment de (dm) is given
by Ref.29,30

Γe =
πω

3~ε0
|de|2ρe , Γh =

πω

3~ε0
|dm|2ρh (4)

In addition, the LDOS not only informs the total decay rate
but also encodes valuable information about decay channels.
By analysing the LDOS spectrum (i.e., its dependence on the
transverse wave vector) it is possible to assess how likely cer-
tain type of waves are going to be excited (e.g., surface waves,
or radiative waves).

B. Tight-binding model

Following some previous work on TBGs31, our tight-
binding model is based on a linear combination of orthogonal
pz atomic orbitals. The Hamiltonian of a general multilayer
system is written as:

H = −
∑
i,j

t(~Ri − ~Rj)|~Ri〉〈~Rj |+H.c., (5)

where |~Ri〉 represents the atomic orbital at site i and t(~Ri −
~Rj) is the hopping energy between orbitals i and j. Hopping
energies t depend on interatomic distances and relative orien-
tation between pz orbitals at each site31:

−t(~d) = Vppπ(~d)

[
1−

(
dz
d

)2
]

+ Vppσ(~d)

(
dz
d

)2

, (6)

where the interatomic distance dependences of hopping ener-
gies are given by31:

Vppπ(~d) = V 0
ppπ exp

(
−d− a0

δ0

)
(7)

Vppσ(~d) = V 0
ppσ exp

(
−d− d0

δ0

)
, (8)

where ~d = ~Ri − ~Rj , dz = ~d · ẑ, and d = |~d|. In our formal-
ism, hopping between orbitals belonging to the same sheet are
treated in the same footing as orbitals belonging to different
sheets. We take V 0

ppπ = −2.7 eV and V 0
ppσ = −0.48eV to

fit the dispersions of monolayer graphene and AB-stacked bi-
layer graphene. a0 = 0.142 nm is the carbon-carbon nearest-
neighbor distance, d0 = 0.335 nm is the interlayer spacing,
and δ0 is the decay length of the hopping integral, chosen to
be 0.184 a, where a = a0

√
3, so that the next-nearest neigh-

bor intralayer hopping becomes 0.1V 0
ppπ . The hopping can be

safely neglected for d > 4a0.

C. Dynamical conductivity

The linear optical response of any electronic system is given
by the optical conductivity. This conductivity is obtained
from the sum of the two contributions: a regular conductivity
(σregαβ ) that describes interband transitions and a term contain-
ing the Drude weight (Dαβ) that is connected to the intraband
processes. The total conductivity is given by

σαβ(ω) =
iDαβ

~ω + iη
+ σregαβ (ω), (9)

where α and β are the different directions of the light polar-
ization and η is a phenomenological broadening which is set
to 3 meV. From the tight-binding model we can obtain the
eigenfunctions and eigenergies to calculate the Drude weight
and regular conductivity. The Drude weight is given by32

Dαβ = − e2

~2S
∑
k,λ

∂ε~kλ
∂kα

∂ε~kλ
∂kβ

∂f(ε~kλ)

∂ε~kλ
(10)
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Figure 2. Upper plots: Real and imaginary parts of the opti-
cal conductivity of a suspended graphene monolayer (full black
line), and suspended TBGs with θm = 7.34o, 13.2o (dashed red
and dotted purple). The conductivities are normalized by σ0 =
(4/π)(e2/h).Temperature is set to zero and the chemical potential
to µ = 0.5 eV.
Lower plots: Same as above, but the suspended TBGs now have
θm = 7.34o, 9.46o, 13.2o, 16.9o (red, blue, purple, orange; colors
online), Temperature is also zero but the chemical potential is set at
µ = 1 eV.

where ε~kλ are the band energies, f(ε) is the Fermi-Dirac dis-
tribution function, and S is the area of the system. Using the
Kubo-Greenwood formula, the regular conductivity is found
to be31

σregii (ω) =
e2~
iS

∑
k,λ,λ′

f(ε~kλ)− f(ε~kλ′)

ε~kλ − ε~kλ′

| 〈λ|vi|λ′〉 |2

ε~kλ − ε~kλ′ + ~ω + iη
,

σregij (ω) ≈ 0 (11)

where (i, j = 1, 2), |λ〉 is the eigenstate associated to ε~kλ and
vi = − i

~ [ri, H] is the i-th component of the velocity operator.
Matrix elements of the velocity operator in the tight-binding
basis are given by33

〈~Ri|v|~Rj〉=
i

~
〈~Ri|H|~Rj〉〈~Ri|r|~Rj〉≈

i

~
〈~Ri|H|~Rj〉(~Ri − ~Rj).

(12)
Our results for the optical conductivity are written in terms

of σ0 = (4/π)(e2/h), which is the universal dynamical con-
ductivity of monolayer graphene. In Fig. 2 we present the
conductivities for bilayer graphene twisted in three differ-
ent angles, alongside the conductivity for a single graphene
monolayer. It is patently clear that the conductivities of the
TBGs have a much richer structure than the single monolayer:
the peaks in the real part signal the presence of optical tran-
sitions between van Hove singularities34. Remarkably, these
transitions can be tuned by varying the twist angle, thus un-
veiling an alternative mechanism to control quantum emission
in TBGs.

Figure 3. Electric contribution to the photonic local density of states
at µ = 0.5 eV, as a function of frequency, for a graphene mono-
layer (full black line), and bilayer graphene with θm = 7.34o, 13.2o

(dashed red and dotted purple, respectively). The distance is fixed
at z = 30 nm. The inset shows the distance dependence of the
photonic LDOS for the same Moiré angles as in the main panel for
ω = 2× 1014rad/s.

III. RESULTS AND DISCUSSIONS

Once the conductivity of the TBG is known, one can
straightforwardly obtain the reflection coefficients (3) and
thus the electric and magnetic densities of states ρE and ρH .
In Figs. 3 and 4 we depict the electric LDOS as a function
of frequency, for suspended monolayer and bilayers with se-
lected angles of twist, setting the chemical potential µ at 0.5
eV in Fig. 3 and 1 eV in Fig. 4. Despite presenting the same
general structure, the two plots have peculiarities that deserve
specific consideration.

The most prominent feature of the plot in Fig. 3 is the peak
that arises for θ = 7.34o at ω ≈ 2 · 1014 rad/s. In order
to properly understand that, a small digression is necessary.
Given that we are evaluating the LDOS at z = 30 nm, we
have κc := 1/z ≈ 3.3 · 107 m−1 � k0 ≈ 6.7 · 105 m−1, so
that the evanescent part largely dominates the local density of
states in that frequency range. By isolating their contribution
in (2), we get

ρEva
E

ρ0
= Im

∫ ∞
k0

dk‖
k‖e
−2κz0z

4k0κz0

[
rs +

(
2k2‖

k20
− 1

)
rp

]
.

(13)

We see then that the LDOS is essentially controlled by the
imaginary parts of rs and rp, which in turn are determined
by the relation between the real and imaginary parts of the
mono/bilayers’ conductivities. If |Im(σ)| � Re(σ), i.e.,
small losses, it is possible to show that, in the evanescent re-
gion, Im(rs), Im(rp)� 1 (see appendix) except in the vicini-
ties of the surface plasmon polariton (SPP) dispersion relation,
defined by the pole of rp.
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σ(ω1)/σ0 (µ = 0.5 eV) σ(ω2)/σ0 (µ = 1 eV)
Mono 0.09 + 3.82 i 0.31 + 10.11 i

θm = 7.34o 0.78 + 1.22 i 1.23 + 16.10 i

θm = 9.46o 0.69 + 14.90 i

θm = 13.2o 0.18 + 7.65 i 1.92 + 6.74 i

θm = 16.9o 0.58 + 18.43 i

Table I. Values of the conductivities for selected twisted bilayers.
The frequency values are ω1 = 2 · 1014 rad/s and ω2 = 1.5 · 1014
rad/s, and σ0 = e2/4~. For comparison, we show also the values for
a graphene monolayer.

Figure 4. Electric contribution to the photonic local density of
states at µ = 1 eV, as a function of frequency, for a graphene
monolayer (full black line), and bilayer graphene with θm =
7.34o, 9.46o, 13.2o, 16.9o (dashed red, long-dashed blue, dotted
purple, and dot-dashed orange respectively). As in Fig 3, the dis-
tance is fixed at z = 30 nm.The inset shows the distance dependence
of the photonic LDOS for the same Moiré angles as in the main panel
for ω = 2× 1014rad/s.

Bearing that in mind, we can end our digression and, in
order to understand the underlying physics of quantum emis-
sion in TBG, plot in Fig. 5 the integrand of the LDOS for
ω = 2 · 1014 rad/s. The sharp peaks we see in the full black
and dotted purple curves are the respective SPPs, indicating
that if an emitter (in that frequency) is placed at ≈ 30 nm
from a monolayer or the θm = 13.2o bilayer, it would most
likely decay by exciting SPPs in the layers. In addition, the
peaks are so sharp that, in all those 3 cases, expression (13)
may be very well approximated by an opportune application
of the Cauchy residue theorem, yielding

ρEva
E

ρ0
≈ π

k30
Re
[
k3sppe

−2kspz
]
, (14)

where kspp = 2iωε0/σ, and we used that ksp � k0.
However, if the real and imaginary parts of the

mono/bilayer conductivities are comparable (higher losses),
the physical scenario becomes different. The SPP pole moves
away from the real axis and the behaviour of the integrand in
(13) becomes much smoother, allowing us to neglect the SPP
contribution and simply integrate over the evanescent region

Figure 5. The integrand of the electric LDOS as function of k‖, for
a monolayer (solid black) and twisted bilayers of 7.34o (dashed red)
and 13.2o (dotted purple). One can immediately see the SPP signa-
tures as sharp peaks for the latter 2 TBGs and the monolayer, while
the 7.34o TBG is dominated by lossy suface waves. See text for
further discussion.

(or, as defined by Ford and Weber35, over the lossy surface
waves - LSW). In the k‖ � k0 approximation, we get

ρEva
E

ρ0
≈ 1

2k30

∫ ∞
0

dk‖k‖ Im(rp) e
−2k‖z =

1

8(k0z)2
Im(kspp)

k0
(15)

We clearly see this smoother behaviour in the dashed red
curve in Fig. 5, for θm = 7.34o. We have then two compet-
ing mechanisms to increase the LDOS: the SPP channel for a
low-loss situation, and the LSW channel when higher losses
are present. In the first case - the full, dotted, large-dashed
curves - the LDOS has this exponential behaviour (typical of
SPP interactions) but in the ksppz � 1 limit (that always
holds here) we conclude that it essentially grows with kspp,
and that is why in Fig. 5 we see that the peaks get larger as
their centres move to the right in the horizontal axis. How-
ever, even the contribution of the monolayer’s very high peak
to the LDOS is much smaller than that of the lower but much
wider θm = 7.34o bilayer, which is ultimately connected to
the fact that the LDOS of the latter is ruled by the power law
behavior shown in (15). This means that, provided Im kspp is
not negligible, it gets very large in the limit k0z � 1. The
condition upon kspp is assured by striking a balance between
the real and imaginary parts of σ, and this has a clear physi-
cal interpretation: the role of losses is to add these dissipative
quasi-modes to the LDOS (so that the red dashed curve is way
wider than the others), but too much loss quenches the contri-
bution of each mode, overcoming the effect of having more
modes available. The optimal situation is then reached when
Imσ & Reσ - see table I - explaining the huge enhancement
of the LDOS in this case.

We can now set our sights in the results of Fig. 4, that is,
for µ = 1 eV. This time around we have a softened peak at
ω ≈ 1.5 · 1014 rad/s for θ = 13.2o, which occurs for the same
reasons already discussed in the previous paragraph. Here we
shall focus on the quite sharp step just shy of 4 · 1014 rad/s,
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Figure 6. Left plot: the LDOS of the θ = 9.46o TBG at four different frequencies, ω = 3 · 1014 rad/s (solid line), 3.7 · 1014 rad/s (dashed
line), 3.85 · 1014 rad/s (dotted line), 4 · 1014 rad/s (dot-dashed line). Right plot: Real (dashed line) and imaginary (dotted line) parts of the
conductivity of θ = 9.46o TBG. In the two plots we set µ = 1 eV.

most prominently shown in the TBG of θ = 9.46o. This is
due to a sudden disappearance of a marked surface plasmon-
polariton as we approach ω = 4 · 1014 rad/s from below: in
the left plot of Fig. 6 we depict the behaviour of the LDOS’
integrand for different frequencies. For ω = 3 · 1014 rad/s
(solid line) we have a very sharp SPP but at the onset of the
near discontinuity occuring at 3.7 · 1014 rad/s (dashed line),
the SPP is already somewhat broadened, despite the fact it is
still quite prominent. However, at 3.85 · 1014 rad/s (dotted
line) we see that the peak is so wide that it hardly makes sense
to still talk about a SPPs, and it is virtually nonexistant for
4 ·1014 rad/s (dot-dashed line). These results are better appre-
ciated by recovering the data for the conductivity, as we do in
the right plot of Fig. 6: while the conductivity has a signifi-
cant positive imaginary part (and negligible real part) we have
a strong surface plasmon-polariton, as expected. We hit the
(local) maximum value for the LDOS around 3.7 · 1014 rad/s
- where, again, Imσ & Reσ - and as Imσ crosses the real
part and even becomes negative, the SPP channel is strongly
suppressed, and with it the whole local density of states.

IV. CONCLUSIONS

We have theoretically investigated the local density of states
(LDOS) of twisted bilayer graphene (TBG) and its poten-
tial applications to tailor quantum emission. We have shown
that, due to the remarkable structure that the Moiré patterns
allow in the conductivity, calculated using the tight-binding
method, the LDOS can be drastically altered by up to two
orders of magnitude when the Moiré angle is varied. This
large variation is physically explained in terms of the strong
dependence of the surface plasmon-polariton structure upon
the Moiré angle. By investigating the dependence of the
LDOS on the Moiré angle, frequency, and chemical poten-
tial, we identify the ideal scenario for significantly enhancing
the LDOS, which can be achieved by a balance between the
real and imaginary parts of the TBG conductivity. In prac-
tice, this optimal amount of loss could be realized by, for in-

stance, incorporating gain in the system as it has been im-
plemented in graphene-based photonic devices36. Finally we
have shown that the LDOS for certain TBGs may present
a very sharp dependence on frequency, also related to the
appearance/disappearance of SPPs, allowing for tuning the
LDOS in a broad spectral range. Our results disclose the
full potential of TBG as an alternative, versatile system for
controlling spontaneous emission and enhancing light-matter
interactions, and hopefully will foster further nanophotonics
applications in other 2D Moiré materials.
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VI. APPENDIX

For suspended graphene, meaning ε = 1, we have (in the
evanescent region)

Im (rp) = Im

[
iσ/(2ωε0)

1/κz0 + iσ/(2ωε0)

]
=

σR/(2ωε0κz0)

1/κ2z0 + 2σI/(2ωε0κz0) + σσ∗/(2ωε0)2
,(16)

where σR = Re(σ) and σI = Im(σ). Using 10−3 S/m ≈ 2σ0
as a typical value for |σ| and also the small losses condition
(σI � σR), we get

Im (rp) ≈ σR
σI

2ωε0
σIκz0

≈ 5.3

κz0

σR
σI
, (17)
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where we chose ω = 3 · 1014 rad/s and κz0 is measured in
(µm)−1. Therefore, we see that, except very close to κz0 = 0,

Im (rp)� 1 is easily satisfied.
The reasoning for Im (rs) is totally analogous.
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(2013).

9 Kyounghwan Kim, Matthew Yankowitz, Babak Fallahazad, Sang-
woo Kang, Hema C. P. Movva, Shengqiang Huang, Stefano Lar-
entis, Chris M. Corbet, Takashi Taniguchi, Kenji Watanabe, San-
jay K. Banerjee, Brian J. LeRoy, and Emanuel Tutuc, Nano Lett.
16, 1989 (2016).

10 A. Luican, Guohong Li, A. Reina, J. Kong, R. R. Nair, K. S.
Novoselov, A. K. Geim, and E. Y. Andrei Phys. Rev. Lett. 106,
126802 (2011).

11 Wei Yan, Mengxi Liu, Rui-Fen Dou, Lan Meng, Lei Feng, Zhao-
Dong Chu, Yanfeng Zhang, Zhongfan Liu, Jia-Cai Nie, and Lin
He, Phys. Rev. Lett. 109, 126801 (2012).

12 Long-Jing Yin, Jia-Bin Qiao, Wei-Jie Zuo, Wen-Tian Li, and Lin
He, Phys. Rev. B 92, 081406(R) (2015).

13 Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras,
and P. Jarillo-Herrero, Nature 556, 43 (2018).

14 Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo,
J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras,
R. C. Ashoori, and P. Jarillo-Herrero, Nature 556, 80 (2018).

15 E. Koren, I. Leven, E. Lartscher, A. Knoll, O. Hod, and U. Duerig,
Nat. Nanotechnol. 11, 752 (2016).

16 T. Chari, R. Ribeiro-Palau, C. R. Dean, and K. Shepard, Nano
Lett. 16, 4477 (2016).

17 Kyle L. Seyler, Pasqual Rivera, Hongyi Yu, Nathan P. Wilson,
Essance L. Ray, David G. Mandrus, Jiaqiang Yan, Wang Yao and
Xiaodong Xu, Nature 567, 66 (2019).

18 Evgeny M. Alexeev, David A. Ruiz-Tijerina, Mark Danovich,
Matthew J. Hamer, Daniel J. Terry, Pramoda K. Nayak, Seongjoon
Ahn, Sangyeon Pak, Juwon Lee, Jung Inn Sohn, et al., Nature 567,
81 (2019).

19 Kha Tran, Galan Moody, Fengcheng Wu, Xiaobo Lu, Junho Choi,
Kyounghwan Kim, Amritesh Rai, Daniel A. Sanchez, Jiamin
Quan, Akshay Singh, et al., Nature 567, 71 (2019).

20 Chenhao Jin, Emma C. Regan, Aiming Yan, M. Iqbal Bakti

Utama, Danqing Wang, Sihan Zhao, Ying Qin, Sijie Yang, Zhiren
Zheng, Shenyang Shi, Kenji Watanabe, Takashi Taniguchi, Se-
faattin Tongay, Alex Zettl and Feng Wang, Nature 567, 76 (2019).

21 H. Yu, G.-B. Liu, J. Tang, X. Xu, W. Yao, Sci. Adv. 3, e1701696
(2017).

22 C. Chakraborty, N. Vamivakas, and D. Englund, Nanophotonics
8, 2017 (2019).

23 F. J. Garcı́a de Abajo, ACS Photonics 1,135 (2014).
24 F. H. L. Koppens, D. E. Chang, and F. Garcı́a de Abajo, Nano

Lett. 11, 3370 (2011).
25 L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Os-

mond, F. J. Garcı́a de Abajo, and F. H. L. Koppens, Nano Lett. 13,
2030 (2013).

26 P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martı́n-
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