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We study the edge states of twisted bilayer graphene and their topological origin. We show
that the twisted bilayer graphene has special edge states associated with the moiré pattern, and
the emergence of these moiré edge states is linked with the sliding Chern number, which describes
topological charge pumping caused by relative interlayer sliding. When one layer of the twisted
bilayer is relatively slid with respect to the other layer, the edge states are transferred from a single
band to another across the band gap, and the number of the edge states pumped in a sliding cycle
is shown to be equal to the sliding Chern number of the band gap. The relationship can be viewed
as a manifestation of the bulk-edge correspondence inherent in moiré bilayer systems.

I. INTRODUCTION

In condensed matter systems, the topology of elec-
tronic band is intimately related to the emergence
of edge states, i.e., electronic states localized at the
boundary of the system.1–3 In general, the existence
of edge states in a specific band gap is related to the
non-zero topological invariant in the bulk system.4,5

In quantum Hall systems, for example, the number
of edge modes coincides with the summation of the
Chern numbers over all the occupied bands below the
gap.1,4–6 Similar relationships between bulk topolog-
ical property and emergent edge modes are found in a
wide variety of physical systems, including topolog-
ical insulators, topological superconductors,7,8 me-
chanical systems9–11 and photonic systems.12,13

In this paper, we study the edge states of twisted
bilayer graphenes (TBG) and their topological ori-
gin. TBG is a two-dimensional material where
two graphene layers are overlapped with an arbi-
trary twist angle. In a low-angle TBG, the long-
range moiré pattern strongly modifies the graphene’s
Dirac cone14–25, resulting in a flat band at zero
energy.19,24,26,27 Some previous works studied the
edge properties of TBG,28–33 and it was shown that
TBG has two kinds of the edge states32: One is zero-
energy edge modes on the zigzag termination28–31,
which are inherited from monolayer graphene.34 The
other one, which we refer to moiré edge state,
is qualitatively different state strongly dependent
on the moiré pattern, and occurs away from zero
energy.32,33 Around the magic angle, in particular,
the moiré edge states come to the energy gaps be-
tween flat band and excited band.33

One may ask if the moiré edge states are related
to some sort of bulk topology. The energy bands
of TBG has zero Chern number, and hence the sys-
tem does not have any edge states associated with

the Hall effect or the valley Hall effect. Recent
works35–37 proposed a different topological invariant
for TBG, called sliding Chern number, which rep-
resents the number of adiabatic charge pumping38

caused by a mechanical interlayer sliding. More
specifically, when one layer of TBG is relatively slid
with respect to the other layer by a single atomic
period, then electrons on the TBG are pumped by
an integer multiple of the moiré period, where the
integer is given by the sliding Chern number.

Here we investigate the edge states of TBG under
the effect of the interlayer sliding, and find that the
emergence of the moiré edge states is linked with
the nonzero sliding Chern numbers. We demonstrate
that the edge states are transferred in the energy
axis from the flat band to the excited band during
the interlayer sliding process, and the number of edge
states pumped in a sliding cycle is equal to the sliding
Chern number of the band gap. The relationship can
be viewed as a bulk-edge correspondence inherent in
moiré bilayer systems.

The paper is organized as follows. In Sec. II, we
introduce the atomic structure of TBG and the tight
binding model. In Sec. III, we calculate the energy
spectrum of TBG nanoribbon as a function of slid-
ing distance, and demonstrate the correspondence
between the edge states and the sliding Chern num-
ber. A brief conclusion is given in Sec. IV.

II. MODEL

A. Atomic structure

TBG can be generated from AA-stacked bilayer
graphene (i.e., perfectly overlapping honeycomb lat-
tices) by rotating layer 1 and 2 by −θ/2 and θ/2,
respectively. Figure 1 illustrates the atomic struc-
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FIG. 1. Atomic structures and the moiré unit cell of
TBG with θ = 2.65◦. The inset shows the primitive
lattice vectors of layers 1 and 2.

ture of TBG of 2.65◦. We define a1 = a(1, 0),a2 =

a(1/2,
√

3/2) as the lattice vectors of monolayer
graphene before the rotation, where a = 0.246nm
is graphene’s lattice constant. The lattice vectors

of layer l after the rotation are given by a
(l)
i =

R(∓θ/2)ai with ∓ for l = 1, 2 respectively, where
R(θ) represents the rotation by θ on xy-plane.

When the rotation angle is small, the mismatch
between the lattice structures of the two layers gives
rise to a long-range moiré pattern, which is ruled by
the primitive lattice vectors,

LMi = [R(θ/2)−R(−θ/2)]−1ai (i = 1, 2)

=
1

2 sin(θ/2)
R(−π/2)ai, (1)

with ∓ for l = 1, 2. The lattice constant LM =∣∣LM
1

∣∣ =
∣∣LM

2

∣∣ is given by

LM =
a

2 sin(θ/2)
. (2)

If we slide the layer l by a
(l)
i with the other layer

fixed, the moiré pattern shifts exactly by ±LMi for
l = 1, 2, respectively. Therefore, when we slide the
layer l by an arbitrary displacement vector,

∆x(l) = ν1a
(l)
1 + ν2a

(l)
2 , (3)

then the moiré pattern moves by

∆X = ±(ν1L
M
1 + ν2L

M
2 )

=
±1

2 sin(θ/2)
R(−π/2∓ θ/2)∆x(l), (4)

FIG. 2. (a) TBG nanoribbon with 2.65◦ truncated by
upper (red) and lower (blue) boundaries. Note that the
figure is rotated by 90◦ so that x axis is vertical and y
axis is horizontal. The structure is periodic in the direc-
tion of LM

1 , and five unit cells thick in the perpendicular
direction. (b) Detailed atomic structure in the sliding
parameter λ = 0, 0.2, ..., 1.

where each double sign corresponds to l = 1, 2, re-
spectively. When θ � 1, the moiré pattern shift
∆X is nearly perpendicular to the sliding vector
∆x(l), and its amplitude is magnified by the factor
[2 sin(θ/2)]−1 ∼ 1/θ.

In the following, we consider a TBG nanoribbon
as shown in Fig. 2(a) to investigate the edge states.
Note that the figure is rotated by 90◦ so that x axis is
vertical and y axis is horizontal. Here we assume that
the ribbon is parallel to y and five unit cells thick in
the perpendicular direction (along x), truncated by
red and blue lines. The boundary is nearly parallel
to the armchair direction of graphene, so that the
zigzag edge states of monolayer graphene are almost
absent.

Now we slide layer 2 with respect to layer 1 in
along the length of the ribbon (y), to move the moiré
pattern along the width (x). We specify the slid-
ing vector by (ν1, ν2) = λ(1/2,−1) (0 ≤ λ ≤ 1),
which gives ∆x(2) almost along −y direction. When
the sliding parameter λ is changed from 0 to 1, the
moiré pattern moves by ∆X = −(1/2)LM1 + LM2 ex-
actly in the x-direction. After the process, all the
AA spots move just by one row as illustrated in the
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lower panel of Fig. 2(b). Because of the triangular-
lattice arrangement, the AA spots of do not come
back to the original positions, but as we will see,
this process virtually gives a single cycle of the edge
states pumping.

B. Tight binding model

We calculate the eigenenergies and the eigenfunc-
tions of the TBG ribbon using the tight-binding
model for carbon pz orbitals. The Hamiltonian is
written as16,39–41

H = −
∑
〈i,j〉

t (Ri −Rj) |Ri〉 〈Rj |+ H.c. (5)

where Ri and |Ri〉 represent the lattice point and the
atomic state at site i, respectively, and t (Ri −Rj)
is the transfer integral between site i and site j. We
adopt the Slater-Koster-type formula for the transfer
integral,

−t(d) = Vppπ

[
1−

(
d · ez
d

)2
]

+ Vppσ

(
d · ez
d

)2

Vppπ = V 0
ppπ exp

(
−d− a0

δ0

)
Vppσ = V 0

ppσ exp

(
−d− d0

δ0

) ,

(6)
where d = Ri − Rj is the distance between two
atoms, and ez is the unit vector on the z axis. V 0

ppπ

is the transfer integral between the nearest-neighbor
atoms of monolayer graphene which are located at
distance a0 = a/

√
3 ≈ 0.142 nm. V 0

ppσ is the trans-
fer integral between two nearest vertically aligned
atoms, d0 ≈ 0.335nm is the interlayer spacing. δ0
is decay length of the transfer integral and is cho-
sen as 0.184a. The transfer integral for d >

√
3a is

exponentially small and can be safely neglected.
Our target is the TBG of the magic angle (θ =

1.05◦) which has nearly flat bands.19,24,26,27,42–44 It
has a huge number of atoms (about 12,000) in the
moiré unit cell, requiring a large computational cost
to calculate the energy bands of the ribbon which
consists of multiple unit cells. To reduce the number
of atoms, we take the atomic structure of θ = 2.65◦

which has 10 times fewer atoms per unit cell, but
at the same time, enlarge the interlayer hopping en-
ergy (i.e., transfer integral between atoms of layer
1 and layer 2) by factor of 2.65◦/1.05◦ ≈ 2.52, to
mimic the band structure of θ = 1.05◦. The approx-
imation works for the follow reason. The low-energy

FIG. 3. Band structures of (a) θ = 2.65◦ tight-binding
model with enlarged interlayer hopping by factor 2.52,
and (b) of the original θ = 1.05◦ model (see the text).

band structure of TBG is determined by the ratio of
two energy scales, tinter/EM , where tinter is the in-
terlayer hopping energy, and EM = ~v(2π/LM ) ∼
(2π~v/a)θ is the moiré band folding energy with
graphene’s band velocity v.14,19,20,22,25,45–47 There-
fore, the TBG of θ = 2.65◦ with tinter multiplied by
factor 2.52 has a nearly identical low-energy band
structure as the original θ ∼ 1.05◦ model except for
the overall energy scale.

Also, we include the in-plane lattice relaxation in
the TBG atomic structure, which gives an energy
gap between flat bands and the excited bands43 (re-
ferred to as the moiré gap in the following). Here we
set the lattice displacement vector u of θ = 1.05◦43

in the lattice of 2.65◦ TBG, and construct the tight-
binding Hamiltonian. The realistic TBG also has
an out-plane relaxation48–51, and it was shown to
also contribute to opening the moiré gap in a similar
manner52–54. Here we neglect the out-plane relax-
ation as it does not change the topology of the moiré
gap opened by the in-plane relaxation.

Figure 3 plots the bulk band structure calculated
for (a) the 2.65◦ model with three-times enlarged
interlayer hopping, and (b) the original θ = 1.05◦

model, showing a quantitative agreement except
for the energy scale difference by the factor about
2.52. In the following calculation, the energy scale
is shrunk by 1/2.52 times to emulate 1.05◦ TBG.
Note that the TBG of θ = 2.65◦ is a commensurate
system at which the atomic structure is exactly pe-
riodic in the moiré period LMi ,14,19,20,22,25,45–47 and
hence the eigenstates of the tight-binding model can
be obtained by diagonalizing a finite-sized Hamilto-
nian matrix.
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III. RESULTS

A. Electronic structure and edge states

The calculated band diagram of the TBG ribbon
is summarized in Fig. 4. Here Fig. 4(a) shows the
band energies at the fixed wave number ky = π/LM1 ,
as a function of sliding parameter λ. The panel (b)
presents the full band structure against ky, at dif-
ferent sliding distances λ = 0, 0.2, · · · , 1. In Fig. 4
(a) and (b), the colored lines are the energy bands
of TBG ribbons, where the color represents the ex-
pected value of x coordinate; red (blue) lines indicate
edge states localized at the upper (lower) bound-
ary, while green lines are bulk states spreading over
the entire system. The black-colored areas in back-
ground represent the energy bands of the bulk TBG
projected onto ky axis. Each of the edge states is an
eigenstate of the time reversal operator, where the
valley degree of freedom (K and K ′ in monolayer
graphene) is mixed. At λ = 0, we have an additional
in-plane C2 symmetry, and there the edge states at
upper and lower boundaries are force to degenerate,
as seen in Fig. 4(a).

In increasing λ from 0 to 1, we see that two edge
bands of the upper boundary (red lines) split off from
the zero-energy flat band in each of positive and neg-
ative energy sides, and they are eventually absorbed
into the excited conduction/valence bands. At the
same time, two edge bands of the lower boundary
(blue lines) transfer from the excited bands to the
zero-energy band. The number shown on the right
side of the Fig. 4(a) represent the number of pumped
edge levels (per spin) across each energy gap. For ex-
ample, ‘2’ indicates that two upper-edge states goes
up and two lower-edge states goes down in energy.

In Fig. 4(c), we present the squared wave function
of the flat band states at K̄ of a bulk TBG (not of
the ribbon) at λ = 0, 0.2, · · · , 1. Here the orange
dots represent AA spots, and the red and blue lines
represent the boundary lines for the ribbon. The
wave amplitude is concentrated on the AA spots,
which is a property of the flat band states17,18,20,24.
In increasing λ, the bright spots on AA region shift
upward to follow the moiré pattern movement. The
emergence of the edge states correlates with the rela-
tive position of the AA spots to the boundary lines.33

By comparing Figs. 4(a) and 4(c), we notice that two
edge states of the top boundary (red curves) branch
out from the zero-energy flat band right when the
AA spots cross the boundary to the outside, and
similarly, the two edge states of the lower boundary
(blue curves) are absorbed into the flat band when
the AA spots enter the ribbon from the lower bound-

ary.

Figure 5 illustrates actual eigenstates of the TBG
ribbon, (1), (2) and (3) at λ = 0.3, and (4), (5) and
(6) at λ = 0.7, which are labelled in Fig. 4(a). We
see that the in-gap states (1) and (2) are actually lo-
calized on the upper edge, and (4) and (5) are on the
lower edge, while the bulk states (3) and (6) extend
over the middle region.

B. Bulk edge correspondence

The number of edge states branching out or being
absorbed per a sliding cycle (0 ≤ λ ≤ 1) exactly
coincides with the sliding Chern number, which is
a topological invariant defined for the Bloch bands
of TBG35–37. Let us consider an infinite TBG and
assume the Fermi energy lies in an energy gap. When
we adiabatically slide the layer l by its own lattice

period a
(l)
i with the other layer fixed, the change of

electronic polarization is written as35

∆P =C
(l)
i1 LM1 + C

(l)
i2 LM2 , (7)

C
(l)
ij =

∑
n=occupied

∫ 1

0

dkj

∫ 1

0

dλi

i

[〈 ∂u
∂λi

∣∣∣ ∂u
∂kj

〉
−
〈 ∂u
∂kj

∣∣∣ ∂u
∂λi

〉]
. (8)

Here u = unk(λ1, λ2) is the eigenstate of the n-th
band at Bloch wave number k, in the TBG Hamil-

tonian with the layer l shifted by λ1a
(l)
1 + λ2a

(l)
2 .

The kj is a dimensionless wave component defined
by k = k1G

M
1 + k2G

M
2 , where GM

j is the moiré re-

ciprocal lattice vector satisfying GM
i · LMj = 2πδij .

∆P represents the shift of the polarization per a sin-
gle moiré unit cell area during a sliding cycle. In
the low twist-angle regime, particularly, the sliding
Chern number can be defined for each of nearly-
decoupled K and K ′ valleys independently, and the
number does not depend on valley. Hence the total
sliding Chern number is equal to twice that of a sin-
gle valley. This can be verified by considering the
time reversal symmetry in Eq. (8) (See, Appendix
A).

When the Fermi energy is in the gap just above
the flat band, the sliding Chern numbers per spin

(summed over valleys) are calculated as C
(1)
11 =

C
(1)
22 = 2, C

(2)
11 = C

(2)
22 = −2 and otherwise 0.35 If

we slide the layer 2 by ∆x(2) = (1/2)a
(2)
1 − a

(2)
2 as

considered for the ribbon, the polarization shift per
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FIG. 4. (a) Energy band structure of TBG nanoribbon at ky = π/LM
1 as a function of sliding parameter λ, and (b)

the full band structure against ky at λ = 0, 0.2, · · · , 1. Here the colored lines are the energy bands of TBG ribbons,
where the color represents the expected value of x coordinate, and the black-colored areas in background represent the
energy bands of the bulk TBG projected onto ky axis. The numbers shown on the right side of the figure represent the
number of pumped edge states (per spin) across the energy gap. (c) Real-space map of the flat-band wave function
at K̄ of bulk TBG at λ = 0, 0.2, · · · , 1 [corresponding to upper panels in (b)]. The red and blue lines represent the
boundary lines for the ribbon.

spin becomes

∆P =
1

2
(C

(2)
11 LM1 + C

(2)
12 LM2 )− (C

(2)
21 LM1 + C

(2)
22 LM2 )

= 2

(
−1

2
LM1 + LM2

)
= 2∆X, (9)

where ∆X is the shift of the moiré pattern argued
in the previous section. This means that two elec-
trons (per spin) pass through every unit-cell bound-
ary perpendicular to x, and it perfectly corresponds
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FIG. 5. Real-space map of low-energy eigenstates of the
TBG ribbon. (1), (2) and (3) at λ = 0.3, and (4), (5)
and (6) at λ = 0.7, which are labelled in Fig. 4(a).

the number of the edge states branching out from (or
being absorbed to) the flat band per a sliding cycle,
as argued in Fig. 4(a). The figure also shows that,
in the second gap around 0.8 eV, four bands of the
upper edge states go up, and four bands of the lower
edge states go down in a sliding process from λ = 0
to 1. Correspondingly, the sliding Chern numbers

(per spin) in the gap are C
(1)
11 = C

(1)
22 = 4, C

(2)
11 =

C
(2)
22 = −4 and otherwise 0, giving ∆P = 4∆X. The

coincidence of the number of transferred edge states
across the gap and the sliding Chern number can be
viewed as a bulk edge correspondence in the moiré
system. We note that the bulk-edge correspondence
for the topological pumping was also proposed for a
one-dimensional lattice with time-dependent moving
potential.55

The edge state pumping and the bulk-edge cor-
respondence in the moiré system are analogous to
those in the quantum Hall effect (QHE).4,5 In the
quantum Hall system, a transfer of the edge states is
observed against a change of the momentum along
the Hall bar. In the moiré pumping, on the other
hand, the edge state transfer occurs as a function
as a sliding parameter λ, instead of the momentum.

This corresponds to the fact that the conventional
Chern number for the Hall conductivity σxy is an
integral of the Berry curvature on the (kx, ky) space
(torus), while the sliding Chern number, Eq. (8), is
that on the (ki, λj) space.

A notable difference from the QHE is that the
sliding Chern number, Eq. (8), includes the momen-
tum integration in only a single direction (the charge
pumping direction), so that the momentum in the
other direction remains as a parameter. In the case
of Fig. 4, for example, the sliding Chern number is
defined for each ky, and it is topologically protected
as long as the energy spectrum at the fixed ky (and
any kx) is gapped. The bulk-edge correspondence
stands at every single ky, i.e., the sliding Chern num-
ber at given ky corresponds to the number of the
pumped edge levels at the ky, as exactly observed in
Fig. 4. In the QHE, in contrast, the Chern number
includes the integral in both kx, ky, and it is well de-
fined only when the spectrum is gapped on the entire
two-dimensional momentum space of (kx, ky).

Since the number of transferred edge states dur-
ing a sliding process is a topological invariant, it is
expected to be robust even in the presence of the
edge disorder. This can be intuitively understood as
follows: During the interlayer sliding, the bulk state
electrons are pumped towards the edge by the move-
ment of the moiré pattern, and there must be in-gap
edge states to absorb the excessive electrons accu-
mulated at the edge regardless of the detailed edge
structure.

While the above calculation is limited to the magic
angle TBG, the pumping of the edge states occurs in
a broad range of the twist angle. In Appendix B, we
present the plots similar to Fig. 4 for θ = 1.47◦, 2.65◦

and 6.01◦. In increasing the twist angle, we see that
the moiré gap between the flat band and the ex-
cited band narrows and it partially closes in some
region of ky. But we still see the same number of
the edge states pumped in the gapped region, be-
cause the sliding Chern number remains unchanged
in the gap.

IV. CONCLUSION

We studied the edge states of TBG and the topo-
logical correspondence to relative interlayer slid-
ing. By calculating the eigenfunctions of the edge-
terminated TBG ribbon as a function of the sliding
distance, we demonstrated that moiré edge states are
transferred across the band gap during the interlayer
sliding, and the number of edge states pumped in the
sliding cycle coincides with the sliding Chern number
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of the band gap. The relationship can be viewed as
a manifestation of the bulk-edge correspondence in
moiré bilayer systems, where nonzero sliding Chern
number is always associated with the emergence of
the moiré edge states.

The moiré charge pumping by interlayer sliding
is expected also in other superlattices such as the
graphene/hBN system56–64 and twisted bilayers of
transition metal diachalcogenides65–70, whenever the
Fermi energy is in an energy gap with non-zero slid-
ing Chern number. Generally, the sliding Chern
number can be non-zero in energy gaps opened by
the superlattice interlayer interaction. Any gaps

which already exists in monolayer are trivial in terms
of the sliding Chern number, because the interlayer
interaction can be continuously switched off without
closing the gap, and then no moire pumping takes
place. The moiré pumping in various van der Waals
superlattices is left for future work.
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Appendix A: Sliding Chern number of a single
valley

Here we prove the sliding Chern numbers of K and
K ′ are equal due to the time reversal symmetry. The
(spinless) continuum Hamiltonian for the low-angle
TBG is written as

Hξ(k,λ) =

(
H1
ξ (k) U†ξ (k,λ)

Uξ(k,λ) H2
ξ (k)

)
(A1)

where ξ = K,K ′ is the valley index, λ is the sliding
vector, H l (l = 1, 2) is the Hamiltonian for mono-
layer graphene and U is the interlayer coupling. The
Hamiltonians for the opposite valleys are related by
time reversal operation,

T HK(k,λ)T † = HK′(−k,λ), (A2)

where T = K is the complex conjugation operator.
Therefore its eigenvalues and Bloch wave functions
follow

EK,n(k,λ) = EK′,n(−k,λ),

uK,n(k,λ) = u∗K′,n(−k,λ).
(A3)

We define the sliding Chern numbers of a single val-
ley as

C
(l)
ij (ξ) =

∑
n= occupied

∫ 1

0

dkj

∫ 1

0

dλiΩ
ξ(kj , λi) (A4)

where

Ωξ(kj , λi) = i

[〈
∂uξ
∂λi

∣∣∣∣∣∂uξ∂kj

〉
−

〈
∂uξ
∂kj

∣∣∣∣∣∂uξ∂λi

〉]
(A5)
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is the Berry curvature in (kj , λi) parameter space.
From Eq.(A3) and Eq.(A5), the Berry curvatures of
the opposite valleys are related by

ΩK(kj , λi) = ΩK
′
(−kj , λi), (A6)

which finally leads to

C
(l)
ij (K) = C

(l)
ij (K ′). (A7)

Appendix B: Moiré edge states in other twist
angles

In main text, we calculated the energy spectrum
of the TBG ribbon with θ = 1.05◦ [Fig. 4], where we
showed the emergence of the edge states is related by
non-zero sliding Chern number. Actually the edge
states exist in other twisted angles, as long as the
gap remains opens at each ky. Here we present the
plots similar to Fig. 4 calculated for TBG ribbons
of θ = 1.47◦, 2.65◦ and 6.01◦ in Figs. 6, 7 and 8,
respectively. In increasing the twist angle from 1.05◦,
the moiré gap between the flat band and the excited
band partially closes in some region of ky. But still,
we see the same number of the edge-state pumping in
the gapped region, because the sliding Chern number
remains unchanged in the gap.
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FIG. 6. Plot similar to Fig. 4 calculated for TBG ribbons of θ = 1.47◦.

FIG. 7. Plot similar to Fig. 4 calculated for TBG ribbons of θ = 2.65◦.
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FIG. 8. Plot similar to Fig. 4 calculated for TBG ribbons of θ = 6.01◦.


