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Moiré superlattices of transition metal dichalcogenide (TMD) bilayers have been shown to host
correlated electronic states, which arises from the interplay of emergent moiré potential and long-
range Coulomb interactions. Here we theoretically investigate structural relaxation and single-
particle electronic properties in moiré superlattices of transition metal dichalcogenide homobilayer
and study the ground state charge orders in the effective honeycomb lattice of MX and XM regions.
From the large-scale density functional theory calculation and continuum model with layer degrees
of freedom, we find that the out-of-plane gating field creates a tunable charge transfer gap and
introduces a mass term in the Dirac spectrum. At the flat band limit, we observe a series of charge-
ordered insulating states at various fillings n = 1/4, 1/3, 1/2, 2/3, 1 with Monte Carlo simulations,
and predict that gating field induces a phase transition between different electron crystals at fixed
filling n = 1/2 or 2/3. At half-filling n=1, the ground state is a Mott insulator with electronically
driven ferroelectricity. Our work demonstrates that transition metal dichalcogenide homobilayer
provides a powerful platform for the investigation of tunable charge transfer insulator and charge
orders.

Moiré superlattices are a fruitful platform for re-
alizing and controlling correlated electron states, as
evidenced by the remarkable success in twisted bi-
layer graphene (TBG) [1–12] and trilayer graphene-
hBN heterostructure[13–16]. Recently a new family
of moiré materials based on transition metal dichalco-
genides (TMD) [17–29] have attracted great interest.
They host an abundance of correlated insulating states
at a series of fractional fillings [30–34].

In TMD bilayers, moiré bands are formed from
parabolic bands of individual layers. In twisted TMD
homobilayers, the moiré bandwidth can be made arbi-
trarily small by reducing the twist angle, which gives rise
to strong correlation without fine tuning. Electrons or
holes in these moiré bands are tightly localized in high-
symmetry stacking regions, which can be well described
by a simple effective tight-binding model. This descrip-
tion offers a convenient starting point for investigating
interaction-induced states at finite density. Despite the
conceptual simplicity, a quantitative modeling of moiré
bands in TMD is highly nontrivial. For example, the
moiré bandwidth of TMD heterobilayer WSe2/WS2 is
only on the order of 10 meV, and depends highly on the
lattice relaxation [30, 31, 35, 36].

In this work, using the large-scale density functional
theory, continuum model approach and Monte Carlo sim-
ulation, we study the effect of structural relaxation and
electric field on the moiré band structure in twisted TMD
homobilayers and predict novel charge orders at frac-
tional fillings in the strong-coupling regime. We focus on
the moiré valence bands originating from the Γ pocket
[37–41]. Due to interlayer tunneling and lattice relax-
ation, these moiré bands are derived from localized or-
bitals in MX and XM stacking regions that form a hon-
eycomb lattice. We find a pair of massless Dirac fermions
at K,K ′ points of the mini Brillouin zone (BZ), which
is protected by the D3 point group symmetry of the
moiré superlattice. Applying an out-of-plane electric field

breaks the sublattice symmetry of the honeycomb lattice
and opens a tunable gap ∆ at the Dirac point. We intro-
duce a new continuum model for twisted TMD homobi-
layers, which captures the layer degrees of freedom and
the electrically tunable gap.

We further use an extended Hubbard model on the
honeycomb lattice and perform Monte Carlo simulations
to study the insulating electron crystals in the flat band
limit. We find a distinctive set of charge orders at hole
fillings n = 1/4, 1/3, 1/2, 2/3, 1 on the honeycomb lat-
tice. Interestingly, the charge orders at n = 1/2 and 2/3
both break the rotational symmetry and differ from the
proposed states in the WSe2/WS2 heterobilayer. And
the n = 1 insulating state has a spontaneous out-of-
plane ferroelectric polarization, which can be switched
by the electric field. These symmetry breaking charge
orders can be directly probed by the optical anisotropy
experiments [34, 42]. Moreover, we predict that phase
transitions between distinct charge-ordered states at the
same filling can be induced by the electric field, which
tunes the charge-transfer gap ∆. Our work shows that
twisted homobilayer MoS2 provides an ideal platform for
investigating electrically tunable charge transfer gap and
charge orders.

We study TMD homobilayers with a small twist angle
starting from AA stacking, where every metal (M) or
chalcogen (X) atom on the top layer is aligned with the
same type of atom on the bottom layer [58]. Within a
local region of a twisted bilayer, the atom configuration
is identical to that of an untwisted bilayer, where one
layer is laterally shifted relative to the other layer by a
corresponding displacement vector d0. For this reason,
the moiré band structures of twisted TMD bilayers can be
constructed from a family of untwisted bilayers at various
d0, all having 1 × 1 unit cell. Our analysis thus starts
from untwisted bilayers [43].

In particular, d0 = 0,− (a1 + a2) /3, (a1 + a2) /3,
where a1,2 is the primitive lattice vector for untwisted bi-
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layers, correspond to three high-symmetry stacking con-
figurations of untwisted TMD bilayers, which we refer to
as MM, XM, MX. In MM (MX) stacking, the M atom
on the top layer is locally aligned with the M (X) atom
on the bottom layer, see Fig. 1a. Likewise for XM. The
bilayer structure in these stacking configurations is in-
variant under three-fold rotation around the z axis.

In homobilayer TMD, the spin degenerate Γ pockets in
the valence band arise from electron tunneling between
the two layers. The k · p Hamiltonian takes the form:

H (d0) =

(
−~2k2

2m∗ + εb (d0) ∆T (d0)

∆†T (d0) −~2k2

2m∗ + εt (d0)

)
. (1)

Here m∗ = 1.07me is the effective mass for the valence
band. ∆T (d0) is the interlayer tunnelling amplitude
which depends on the in-plane displacement between the
two layers. In contrast to the complex tunneling ampli-
tude for the K pockets [44], here the time-reversal sym-
metry at Γ pocket enforces ∆T (d0) to be real. The po-
tential term εb,t (d0) denotes the energy of the valence
band maximum in the absence of tunneling, which arises
from the unequal layer weight of the wavefunction at MX
and XM stacking configuration.

We expand ∆T (d0) in Fourier components up to the
second harmonic term:

∆T (d0) = w0+2w1

3∑
j=1

cos(Gj ·d0)+2w2

3∑
j=1

cos(2Gj ·d0),

(2)
where Gi(i = 1, 2, 3) are the three reciprocal lattice vec-
torc in monolayer TMD. Due to three-fold rotational
symmetry, ∆T is a local extremum for MM, MX and MX
stackings, with ∆T = w0+6w1+6w2 for d0=0 (MM) and
w0−3w1−3w2 for d0 = ± (a1 + a2) /3 (MX or XM). The
zero-momentum-transfer tunneling term w0 is responsi-
ble for the large bonding and antibonding energy split-
ting for all d0, while w1, w2 capture the variation of the
tunneling amplitude at different lateral displacements.

The interlayer tunneling strength depends significantly
on the layer spacing d. From the DFT calculation, we
find the equilibrium layer spacing of untwisted TMD bi-
layers in MM, MX and XM stackings: dMM = 6.63
Angstroms and dMX = dXM = 5.97 Angstroms. The
10% variation of layer spacing is comparable with that
in bilayer graphene [45] and strongly impacts the energy
splitting of Γ pockets.

By calculating the work function, we plot in Fig. 1
the band structure of MM and MX-stacked bilayers, with
reference energy E = 0 chosen to be the absolute vacuum
level. Using the relaxed layer spacings, we find the energy
splitting in MX (or XM) stacking to be stronger than
in MM , as a result of its smaller layer distance. From
the different energy splitting at Fig. 1c, we obtain the
tunnelling parameters as w0 = 338 meV, w1 +w2 = −18
meV. If the same layer spacing were used for both MX
and MM bilayers, the opposite (and incorrect) conclusion
about the energy splitting would be found, see Fig.1b.
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FIG. 1: (a) Lattice structure of MM, MX, XM spots for AA
stacking heterobilayer, M stands for metal atom and X stands
for chalcogen atom (Green for the top layer, yellow for the
bottom layer). DFT band structures of MM and MX(XM)
stacking homobilayer in (b) MoS2/MoS2 with identical layer
spacing; (c) MoS2/MoS2 with relaxed layer spacing.

Thus lattice relaxation is crucial for obtaining the correct
moiré band structure.

The structure of twisted TMD homobilayers can be de-
scribed by a lateral shift d0 that varies slowly in space:
d0 = θẑ × r. Therefore we construct the following con-
tinuum Hamiltonian for the moiré bands from Γ pocket
two-band kp model:

H =

(
−~2k2

2m∗ + εb(r) ∆T (r)

∆†T (r) −~2k2

2m∗ + εt(r)

)
(3)

The position-dependent tunneling term is obtained by
replacing d0 with θẑ × r in Eq.(2):

∆T (r) = w0+2w1

3∑
j=1

cos(Gm
j ·r)+2w2

3∑
j=1

cos(2Gm
j ·r)

(4)
Where Gm

i = Giθ× ẑ(i = 1, 2, 3) are the three reciprocal
lattice vectors in moiré superlattice. Likewise, the intra-
lyer potential εt,b (t, b stand for top and bottom layer,
respectively) can be expressed as the first order Fourier
expansion over moiré reciprocal lattice vector:

εt,b (r) = 2V0
∑

j=1,2,3

cos
(
Gm

j · r ± φ
)

(5)

The sign of phase factor φ changes under layer exchange,
enforced by C2y symmetry as shown in Fig. 2a. The
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FIG. 2: (a) Real-space moiré pattern of heterobilayer TMD
heterobilayer, where MM, MX, XM spots within one super-
cell are labeled, and the diagram for spacial dependent layer
distance (in the unit of Angstrom) in the moiré superlattice;
(b) Twist-angle dependent layer spacing for dfar and dnear,
and out of plane corrugation.

potential term is crucial for the later modelling with out-
of -plane gating field.

We now compare the band structure from continuum
model with the large scale density functional theory. The
moiré superlattice is fully relaxed with van der Waals cor-
rection incorporated by the vdW-DF (optB86) function-
als [46] as implemented in the Vienna Ab initio Simu-
lation Package[47]. We plot the twist-angle dependent
layer distance, dfar at MM region, and dnear in MX
(XM) region, in Fig. 2b. At small twist angle θ ∼ 0,
the two layers are corrugated, and the layer distance of
MM, MX or XM stacking region approaches to that of
the untwisted structure. The interlayer tunneling am-
plitude is maximum at MX and XM regions, which are
related by C2y symmetry. As a result, low-energy moiré
bands are formed from layer-hybridized orbitals in MX
and XM regions, which form a honeycomb lattice with
identical on-site potential.

We perform the large scale DFT simulation to calcu-
late the band structures for various twist angles, shown
in Fig. 3. We find that above a small moiré period
Lm ∼ 4.7 nm with twist angle θ = 3.89◦, the two top-
most moiré s bands are well separated from the remaining
bands. Similar band structures are also found in large-
scale DFT calculation with fully relaxed lattice structure
for homobilayer MoS2[37, 38] and WS2[39]. Fitting the
DFT moiré band structure to continuum model, we ob-
tain the parameters as w0 = 338 meV, w1 = −16 meV
and w2 = −2 meV, V0 = 6 meV, φ = 121◦ at twist
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FIG. 3: (a)DFT Band structure for θ = 3.89◦; (b)Twist angle
dependent bandwidth for the first two moiré bands (top two
valence bands in (a) ) of the honeycomb lattice. DFT (black
cross) and continuum model(blue line) band structures for (c)
θ = 2.876◦; (d) θ = 2.876◦ with 0.5 V/nm out of plane gating
field.

angle θ = 2.876◦. These values are consistent with the
estimation from untwisted structures.

As shown in Fig. 3(a,c), the moiré bands exhibit Dirac
points at K and K ′ points of the moiré Brillouin zone.
These Dirac points are protected by theD3 point group of
twisted TMD homobilayer: the doublet at K or K ′ form
a two-dimensional E representation. The bandwidth of
Dirac bands changes monotonously from 250 meV to 10
meV when twist angle θ ranges from 6◦ to 2◦ as shown
in Fig. 3b. This provides an ideal platform to study
the tunable correlation physics of Dirac electrons at the
filling of n = 2 per moiré unit cell.

In the case of twisted bilayer graphene [48], the low
energy Dirac fermion is protected by the C2z symmetry,
which can not be broken by the out-of-plane field. How-
ever, in MX and XM regions of the twisted homobilayer
MoS2, the wavefunctions have unequal layer weight as
indicated from the untwisted calculation. Thus the out-
of-plane gating field breaks the C2y symmetry and gaps
out the Dirac fermion. A simplified continuum model tar-
geting at antibonding orbitals well captures the topmost
moiré bands, but can not describe the band structure and
charge distribution involving layer degrees of freedom.

We further calculate the band structure of the fully
relaxed moiré superlattice of homobilayer MoS2 with the
applied gating field. As shown in Fig. 3d, an out-of-
plane gating field 0.5 V/nm creates a 2.4 meV gap at K
point, while the bandwidth of the first energy-separable
moiré band is 12 meV. At K point of the band edge,
the wavefunction of the first band is localized at MX
region, while the second band at XM region. For small
twist angle θ = 2◦ with wavelength Lm = 9.1 nm, the
gating field Ed = 1V/nm induces a charge transfer gap
∆ up to 5 meV, even larger than the bandwidth of the
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FIG. 4: Ground state charge order at filling (a) n=1/2 with
increasing charge transfer gap ∆, (b) n=2/3 with increasing
charge transfer gap ∆.

topmost moiré band (see Supplementary Material [49]).
A larger field-induced ∆ can be achieved in twisted TMD
homobilayers with reduced interlayer tunneling (which
competes with the layer potential asymmetry). This can
be realized by inserting an hBN layer in between the top
and bottom TMD layers [24].

In the TMD superlattice, the local minimums of
the periodic moiré potential can be viewed as the ef-
fective moiré atoms to host charge. Under the har-
monic approximation, the size of the Wannier orbital

for the topmost moiré band is given by ξ =
√

~
m∗ω =

2 (π)
− 1

2
√
Lm( ~2

m∗Vm
)

1
4 [35](Vm is the moiré potential in-

tegrated to antibonding orbitals). In homobilayer system
without lattice mismatch, the kinetic energy over near-
est neighbor interaction (t/V1) can be tuned arbitrarily
small, so that the classical model is well justified at suf-
ficiently small twist angle. The effective extended Hub-
bard model without kinetic energy is given by:

H0 =
∑
j∈B ∆nj +

∑
i Uni↑ni↓+

1
2

∑
i 6=j Vijninj

(6)
Here ∆ is the charge transfer gap between two sublattice
sites A and B, and Vij is the extended interaction between
i and j sites.

In twisted homobilayer MoS2, the gating field intro-
duces a charge transfer gap ∆. We first discuss the situ-
ation with large ∆. At filling n < 1, the effective tight-
binding model reduces to a triangular lattice model, as
in the case of WSe2/WS2, and exhibits similar charge
orders. Various insulating states have been observed at
fractional fillings n = 1/4, 1/3, 2/5, 1/2, 3/5, 2/3[30–32].
Due to the strong on-site Coulomb repulsion U >> ∆,
the system at n = 1 should be regarded as a charge trans-
fer insulator [35]. When doped to a higher filling n > 1,
additional charges transfer to the other sublattice/layer.

Here we further study the charge orders of honey-
comb lattice with small ∆ including ∆ = 0 in flat band
limit. We perform classical Monte Carlo simulation up to
120× 120 sites with periodic boundary condition for the

extended Hubbard model with different gate distances
from d = Lm/2 to d = 10Lm. The distance dependent
interaction strength is plotted in Fig. S2 up to V100, and
the interaction cutoff is chosen as 0.1%V1. We identify
a series of charge orders at n = 1/4, 1/3, 1/2, 2/3, 1. For
n < 1/2, moiré electrons are all filled to one sublattice,
exhibiting similar charge orders as the reduced triangular
lattice in WSe22/WS2 heterobilayer (see Supplementary
Materials [49]).

Interestingly, for small ∆, charge transfer involving two
sublattices already takes place for filling n ≥ 1/2. At
filling factor n = 1/2, we find an emerging rectangular

lattice with
√

3 × 2 periodicity. This state breaks the
three-fold rotational symmetry and can be viewed as the
combination of the stripe states on both sublattices, each
at 1/4 filling. This rectangular electron crystal is ener-
getically favorable compared to the enlarged 2×2 honey-
comb crystal at all gate screening distances. In contrast,
at large ∆, the ground state becomes a simple stripe state
on the triangular sublattice with lower on-site potential,
as shown in Fig. 4. We find the critical charge transfer
gap is ∆c = 2(V2 − V3 − V4 + 2V6 − V9 + V12 + ...). For

d = Lm = 9.1 nm, ∆c = 0.12 e2

εLm
∼ 3.8 meV can be

reached by realistic gating field. We note the critical ∆c

can be further lowered by increasing moiré wavelength.
At filling factor n = 2/3, the charges form a zigzag

stripe order with 6× 6 periodicity breaking the C3 rota-
tional symmetry. This zigzag type charge configuration
is energetically favored compared to a linear stripe at
screening distances from d = 1/2Lm to d = 10Lm. As
∆ increases, the zigzag charge stripe transitions to the√

3 ×
√

3 crystal that occupies one sublattice sites only,
as shown in Fig. 4. We find the critical charge transfer

gap is ∆c = V2 − V3 − 10
3 V4 + 14

3 V5.... = 0.04 e2

εLm
∼ 1.3

meV at d = Lm = 9.1 nm.
The transition between distinct electron crystals at the

same filling is first-order. This should lead to a kink in
the sublattice/layer charge imbalance as a function of
the gating field. This prediction, which is a main result
of our work, can be tested in MoSe2/hBN/MoSe2 het-
erostructure [24], where the gating field induced charge
transfer between the top and bottom layers has already
been observed at relatively high temperature.

For n = 1, we find that even at ∆ = 0, the ground
state is a fully sublattice polarized Mott insulating state,
which spontaneously breaks the honeycomb lattice sym-
metry. As the two sublattice sites MX and XM have
different layer weight, the Mott insulating state at n=1
develops a finite out-of-plane ferroelectric polarization,
which can be switched by the electric field. The ferroelec-
tricity driven by the Mott physics in TMD moiré systems
goes beyond the conventional ferroelectricity and enable
the fast switching due to electronic origin [50]. For filling
n > 1, charge-2e trimer can be the lowest energy exci-
tation when tuning the charge transfer gap ∆, providing
a platform to design unconventional superconductivity
[51].

In homobilayer WSe2, the valence band maximum is
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located at K with weak interlayer tunneling amplitude
and intralayer potential both on the order of 10 meV. The
complex tunneling term between two layers brings further
complications for the theoretical and experimental inves-
tigation of the insulating states [26, 28, 44]. In the case
of heterobilayer WSe2/WS2, the existence of secondary
moiré potential minima is proposed [35]. However, due
to the large band offset between WSe2 and WS2, charges
are localized at the one layer, which limits the tunability
of potential difference between two moiré regions. The
fractional filling insulating states in moiré systems es-
pecially WSe2/WS2 heterobilayer have been investigated
under the generalized Wigner crystal picture [30, 52, 53],
and it is fully consistent with our charge order picture
driven by long range Coulomb interaction. Beyond the
previous triangular lattice realized in WSe2/WS2 hetero-
bilayer, we introduce an underlying effective honeycomb
(moiré) lattice, which gives rise to the electrically tunable
phase diagram.

In conclusion, we present a combined study of lat-
tice relaxation, single-particle electronic structure, and
ground state charge orders on the twisted homobilayer
MoS2. Unlike the previous moiré charge transfer insula-
tor in WSe22/WS2 heterobilayer, here out-of-plane gat-

ing field breaks C2y symmetry and induces a control-
lable charge transfer gap. With Monte Carlo simulation,
we predict additional stripe-type charge orders at fillings
n = 1/2, 2/3 in the emergent honeycomb lattice with
∆ = 0. When increasing ∆, these electron crystals tran-
sit to fully sublattice polarized states. We further pre-
dict the ferroelectricity at the n = 1 Mott insulating
state, which enables the ultrafast switching of electronic
polarization. Our work demonstrates that the interplay
between two moiré regions leads to the charge transfer
insulator [35, 54] and serves as a platform for creating
novel correlated states, such as unconventional density
wave [55, 56], charge stripes [34], spin superfluid[57] and
superconductivity[51].
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