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We proposed a framework for the topological characterization of non-Hermitian band structures.
Different from previous K-theoretical approaches, our approach is homotopical, which enables us
to see more topological invariants. Specifically, we considered the classification of non-Hermitian
systems with separable band structures. We found that the whole classification set is decomposed
into several sectors, based on the braiding of energy levels. Each sector can be further classified
based on the topology of eigenstates (wave functions). Due to the interplay between energy levels
braiding and eigenstates topology, we found some torsion invariants, which only appear in the non-
Hermitian world via homotopical approach. We further proved that these new topological invariants
are unstable, in the sense that adding more bands will trivialize these invariants.

I. INTRODUCTION

While we are used to assuming the Hermiticity of
Hamiltonians, as required by the axioms of quantum me-
chanics, there has been growing interest in non-Hermitian
Hamiltonians these years. Indeed, in the Hermitian
quantum mechanics framework, non-Hermitian Hamil-
tonian can emerge as an effective description of open
systems with gain and loss [1–21] or systems with finite-
lifetime quasiparticles/non-Hermitian self energy [22–24],
which can be experimentally realized in atomic or optical
systems [25–31]. Moreover, non-Hermitian Hamiltonians
with certain properties can serve as an extension of con-
ventional Hermitian quantum mechanics [32–34].

Classification of topological phases of matter is one
of the central problems in condensed matter physics for
the last two decades. While a complete classification of
topological phases is still in progress, the classification
for gapped non-interacting fermions is well-established
[35–38] based on the geometry and topology of the band
structures.

Inspired by the great success in topological phases for
Hermitian systems, there have been lots of works focus-
ing on the topological aspects of non-Hermitian systems
[39–45]. On the one hand, many familiar constructions
for topological phases can be extended in the case of
non-Hermiticity. For example, people have constructed
the non-hermitian counterparts for Su-Schrieffer-Heeger
model [5, 20, 46–49], Chern insulators [50–54], and quan-
tum spin Hall effects [55]. On the other hand, non-
Hermitian systems also exhibit many unusual phenom-
ena with no counterpart in the Hermitian world. These
include exceptional points [56–58], anomalous bulk-edge
correspondence [20, 59–62], non-Hermitian skin effect
[50, 63] and sensitivity to boundary conditions [59, 64].
For a recent review, see Ref. 65 and references therein.

There have been some works [39–43] on the general
classification of non-Hermitian systems, aiming at a gen-
eralization of the Hermitian periodicity table [36, 37].
In these works, the authors first determined reason-
able symmetry classes in the non-Hermitian setting

(a generalization of Ref. 35), then use a unitariza-
tion/Hermitianization map to reduce the problem into
the Hermitian setting where one can apply K-theory.

In this article, we proposed a more conceptually
straightforward homotopical [66–71] framework towards
the topological classification of non-Hermitian band
structures, which enables us to see more topological in-
variants beyond K-theoretical approaches. With rig-
orous algebraic-topological calculation, we implemented
our idea in detail for systems with no symmetry.

We found that, due to the non-Hermiticity of the
Hamiltonian, energy levels can be complex and therefore
braid with each other in the complex plane, which de-
composed the whole classification set into several braid-
ing sectors. Each sector can be further classified based
on the topology of eigenstates (wave functions), akin to
the usual topological classification for Hermitian systems,
however with more subtitles coming from the braiding of
energy levels and the shape of the Brillouin zone (torus
vs. sphere). We found some new torsion invariants (for
example, Z2), and a physical explanation of these new
invariants is given.

We also considered the stability of these new invari-
ants, in the sense that whether adding other bands will
trivialize these invariants, even if the band has no cross-
ing with previous bands. Similar to the Z invariants of
Hopf insulators [68], our torsion invariants are unstable.
We managed to give a combinatorial proof for instability
in general. The physical origin of the instability is also
discussed.

This article is organized as follows. In Sec. II, we dis-
cuss our classification principle: what kind of systems we
are looking at, and what we mean by two systems are
in the same class. In Sec. III, the classification principle
is implemented mathematically, and some examples are
discussed in Sec. IV. Finally, we investigate the instabil-
ity in Sec. V.
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II. PRINCIPLE OF CLASSIFICATION

A classification problem, formally speaking, is to clas-
sify elements of a set according to some equivalence re-
lations. In many problems of condensed matter physics,
the set is usually taken to be the set of Hamiltonians
H with a “energy gap”, while H1 and H2 are equivalent
if and only if they can be continuously connected while
keeping the gap open.

For Hermitian systems, there is no subtlety regarding
the meaning of the gap, since all eigenvalues of a Hermi-
tian Hamiltonian are real and the meaning of a gap on
the real line is clear. For non-Hermitian systems (inter-
acting or not), however, the eigenvalues can be complex.
Therefore, the meaning of a “gap” need to be further
clarified [40, 53, 72].

Consider a non-interacting non-Hermitian system with
translational invariance. Standard second quantization
and band theory give rise to momentum-dependent one-
body Hamiltonians H(k). In this article, we will call
{H(k)} (k ∈ BZ, the Brillouin zone) a band structure,
which contains information of both their spectrum Ei(k)
and associated eigenstates |ψi(k)〉.

One has at least the following different notions of the
gap:

• line gap [40, 73]. There exists a (maybe curved)
line l in the complex energy plane which separates
the plane into two disconnected pieces. We require
Ei(k) /∈ l for all i and k, and both connected com-
ponents have some spectral points in them.

• point gap [39–41, 43]. Ei(k) 6= 0 for all i and k.
Here, 0 is a reference point which can be altered to
any E0.

• separable band [51, 53]. A specific band Ei(k) is
called separable if Ej(k) 6= Ei(k) for all j 6= i and
k.

• isolated band [53]. A specific band Ei(k) is called
isolated if Ej(k

′) 6= Ei(k) for all j 6= i and k, k′.

Note that these notions are not mutually exclusive. For
example, an isolated band is always separable; systems
with isolated bands always have line gaps and hence al-
ways have point gaps. Also note that, the first two no-
tions are applicable to general non-Hermitian systems,
while the last two notions are specific to translational-
invariant non-interacting cases by definition.

In our article, we will consider the classification of sepa-
rable band structures, since other cases were solved [39–
43] by mapping back to the Hermitian case. However,
there is one more problem with the definition of separa-
bility that needs to be discussed: the above-mentioned
Ei(k) may not be a well-defined function of k.

For example, consider a one-dimensional systems with
two bands, satisfying E1(k) 6= E2(k) for all k. It is
possible that E1(2π) = E2(0): if one follow the spec-
trum when k goes around the Brillouin zone (a circle in

k0 2π

FIG. 1. Z2 braiding of energy levels. In this figure, the disk is
the complex energy plane, with two spectra points in it; k is
the Bloch momentum, k = 0 and k = 2π should be identified.

this case) starting from E1(0), one may go to E2(0) in-
stead of going back to E1(0), see Fig. 1. In this case,
the notation “Ei(k)” (and therefore its separability) for
a specific i may not be well-defined. Instead, it is bet-
ter to define separability in a global manner: for any k,
Ei(k) (i = 1, · · · , n) are all different. This definition of
separability automatically rules out exceptional points,
i.e., H(k) is not diagonalizable under similarity trans-
formations, since it requires (algebraically) degenerated
spectra.

To summarize, we will consider the following problem:
classify the band structure {H(k)} where spectrum of
H(k) are non-degenerated and {H0(k)} and {H1(k)} are
equivalent if and only if they can be continuously con-
nected by {Ht(k)} for t ∈ [0, 1] and the spectra of Ht(k)
for any t and k are always non-degenerated.

III. CLASSIFICATION

Let us consider the general problem of classifying band
structures with n bands on a m-dimensional lattice. De-
note

Xn = the space of H(k). (1)

Namely, it is the space of n × n matrices with non-
degenerated spectrum. Here the Brillouin zone will be
the m-dimensional torus Tm. Mathematically speaking,
we want to find the homotopy equivalent classes of non-
based maps from the Brillouin zone Tm to Xn, denoted
by [Tm, Xn].

It will be important to distinguish Tm and Sm, since
they will give different answers. It is also important to
distinguish based maps and non-based maps: the former
requires a chosen point in Tm to be mapped to a chosen
point in Xn while the latter has no such requirement1.

1 On the other hand, for continuous systems the appropriate choice
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To calculate the classification, we are going to use some
standard methods in algebraic topology. For an introduc-
tion, see Ref. 74.

A. The space Xn and its homotopy groups

An element H of Xn is an n × n matrix with non-
degenerated spectrum, which can be represented as
(λ1, · · · , λn, α1, · · · , αn). Here, (λ1, · · · , λn) are ordered
eigenvalues satisfying λi 6= λj , i.e.,

(λ1, · · · , λn) ∈ Confn(C), (2)

where Confn(C) is the configuration space of ordered n-
tuples in C. (α1, · · · , αn) are corresponding eigenvectors
(up to complex scalar multiplications), which are linearly
independent. Denote the space of linearly independent
ordered n-vectors (up to scalar) in Cn as Fn. We have

Fn ∼= GL(n)/C∗n, (3)

since GL(n) acts transitively on Fn and the stabilizer
group is C∗n, where C∗ = C− {0}, the group of nonzero
complex numbers. Another way to understand this equa-
tion is to consider the columns of a GL(n) matrix, which
are ordered n-vectors in Cn, while “up to scalar” is taken
care of by n independent scalar multiplications C∗n. The
space Fn is actually homotopic to the full flag manifold
(the space of subspace sequences) of Cn.

This representation has some redundancies: one can
permute (λi, αi) and get the same matrix H. Therefore,

Xn
∼= (Confn×Fn)/Sn, (4)

where Sn is the permutation group acting on Confn×Fn
as simultaneous permutations of (λi, αi).

Consider π1(Confn), whose elements are (equivalence
classes of) paths in Confn, which correspond to some
pure braidings of n mutually different points in C. Here,
“pure” means each point goes back to itself after the
braiding. This is true since we are considering ordered
n-tuples. Therefore,

π1(Confn) = PBn, (5)

where PBn is the pure braiding group (no permutation)
of n points [75, 76].

It turns out [77] that Confn = K(PBn, 1), the classi-
fying space of the group PBn. Therefore,

πm(Confn) = 0, m ≥ 2. (6)

The homotopy groups πm(Fn) can be obtained by the
long exact sequence of homotopy groups [74], based on
the fibration Eq. (3). For m = 1, we have:

π1(C∗n)→ π1(GL(n))→ π1(Fn)→ π0(C∗n) = 0. (7)

the based map from Sm to Xn, since the Brillouin zone here is
Sn with the requirement that infinite momentum maps to some
fixed point [37].

Here, π1(C∗n) = Zn, π1(GL(n)) = Z, which is essen-
tially the determinant. The map π1(C∗n) → π1(GL(n))
is exactly summing over n components in Zn, which is
surjective. Therefore π1(Fn) = 0. For m = 2, we have:

0 = π2(GL(n))→ π2(Fn)
∂−→ π1(C∗n)→ π1(GL(n)).

(8)
Therefore, π2(Fn), as the kernel, is represented by n in-
tegers with summation equals 0:

{(t1, · · · , tn) ∈ Zn|
∑

ti = 0}, (9)

which is isomorphic to Zn−1. This representation with n
integers will be useful later. For m ≥ 3, we have:

0 = πm(C∗n)→ πm(GL(n))→ πm(Fn)→ πm−1(C∗n) = 0,
(10)

therefore πm(Fn) = πm(GL(n)) = πm(U(n)).
To summarize, the result is as follows:

πm(Fn) =


0, m = 1

Zn−1, m = 2

πm(U(n)), m ≥ 3

. (11)

Now consider the space Xn. According to Eq. (4)
and the fact that Sn is discrete, higher homotopy groups
πm≥2(Xn) are the same as those of Confn×Fn, therefore
the same as Eq. (11), due to the fact in Eq. (6).

For the fundamental group π1, one can take advantage
of the fact that π1(Fn) = 0 and show that:

π1(Xn) = π1(Confn/Sn) = Bn. (12)

Here Sn acts on Confn by permutations, giving the con-
figuration space Confn/Sn of non-ordered n-tuples in C,
whose fundamental group is Bn, the braiding group in-
cluding “non-pure” braidings.

This is because a loop in Xn corresponds to a path
p(t) = (p1(t), p2(t)) in Confn×Fn such that p1(1) =
gp1(0) and p2(1) = gp2(0) for the same g ∈ Sn. Note
that g is uniquely determined by p1(1) (the initial point
(p1(0), p2(0)) is a fixed lifting) and Fn is simply con-
nected, the path one-to-one (homotopically) corresponds
to a path in Confn with p1(1) = gp1(0) and therefore a
loop in Confn/Sn. A more algebraic proof is to note that
the actions of Sn on Confn×Fn and Confn are consis-
tent, which gives the following pullback:

Confn×Fn Confn

Xn Confn/Sn

, (13)

and then apply the homotopy exact sequence for this
pullback square.

The appearance of the braiding group Bn is easy to
understand. Consider a one-dimensional band structure
and follow the evolution of spectrum {Ei} along the Bril-
louin zone circle. Similar to n = 2 case in Sec. II as



4

shown in Fig. 1, in general points in {Ei} will braid with
each other during this evolution and may become other
points after one cycle. The evolution of n disjoint points
is topologically classified by the braiding group Bn.

B. The set [Tm, Xn]

The equivalent classes [Tm, Xn] is related but may not
equal to the homotopy groups πm, which is, by definition,
〈Sm, Xn〉. Here, 〈−,−〉 is used for based maps, while
[−,−] is used for non-based maps. In general, [T,X] is
just a set with no extra structures, even if T is a sphere,
in which case 〈T,X〉 is exactly a homotopy group. The
relation between [T,X] and 〈T,X〉 for general spaces T
and X is as follows [74]: There is a right action of π1(X)
on 〈T,X〉, and [T,X] ∼= 〈T,X〉 /π1(X), the orbit set of
the action.

We will first calculate 〈Tm, Xn〉 and then use the above
connection to obtain [Tm, Xn].

In the case m = 1, π1(Xn) acts on 〈T 1, Xn〉 = π1(Xn)
by conjugate:

[f ][γ] = [γ−1 ◦ f ◦ γ], (14)

therefore [T 1, Xn] is the set of conjugacy classes of group
Bn. Determine the conjugacy classes of braiding group
Bn is a difficult problem2 except n ≤ 2. Geometri-
cally they one-to-one correspond to equivalence classes
of closed braids in the solid torus, which in turn can be
regarded as (special) links in the solid torus3.

In the case m = 2, the set 〈T 2, X〉 is given by [80] (see
also Appendix A 1):⋃

a,b∈π1(X)
ab=ba

π2(X)/〈t− ta, t− tb | t ∈ π2(X)〉, (15)

where ta is the result of a ∈ π1(X) acting on t ∈ π2(X).
Note that this is a noncanonical identification. In our
problem, the result is:⋃

a,b∈Bn
ab=ba

Zn−1/〈t− ta, t− tb〉 def
=

⋃
a,b∈Bn
ab=ba

Q(n, a, b). (16)

In other words, the classification of based maps is de-
composed into several sectors, denoted by a pair of com-
muting braidings4 a, b ∈ Bn; classification within each

2 For a review of the conjugacy problem in braiding group, see
Ref. 78. It relies on the “Garside structure” [79].

3 Note that here the equivalence of links are defined as isotopy
inside the solid torus, instead of isotopy inside R3 (which is the
usual meaning of equivalent links). For example, in Sec. IV A,
even if the eigenvalues have a nonzero “spectral vorticity” as in
Fig. 1, the associate knot is trivial in R3.

4 For a review of the centralizer problem in the braiding group, see
Ref. 81. The result heavily depends on the geometry of braiding,
namely, the Nielsen-Thurston classification [82].

sector (a, b) is given by the quotient Q(n, a, b), a finite-
generated Abelian group, by identifying t with ta and
tb.

Physically, the braidings a, b is given by following two
nontrivial circles la, lb in the Brillouin zone T 2. Since
lalbl

−1
a l−1b is the boundary of the 2-cell of T 2, the cor-

responding braiding aba−1b−1 must be trivial, hence
ab = ba. Fixing a, b, the map on the 2-cell is determined
by π2(Xn) = π2(Fn) = Zn−1, which are essentially (n−1)
Chern numbers, up to some ambiguities taken care of by
the quotient.

The action t 7→ ta here is determined as follows. Re-
call Eq. (9) that π2(Xn) = Zn−1 can be represented by
{(t1, · · · , tn) ∈ Zn|

∑
ti = 0}. a ∈ Bn induced a per-

mutation ã ∈ Sn by forgetting the braiding. Then ta is
represented by a permutation of (t1, · · · , tn):

(t1, · · · , tn) 7→ (ta(1), · · · , ta(n)). (17)

The proof of this statement is a bit technical. However,
since it is the root of most novel classifications in this
article, we give a detailed proof in Appendix A 2.

Now consider the action of π1(Xn) = Bn on 〈T 2, Xn〉.
Pick c ∈ Bn, then c act on (a, b) by conjugate:

(a, b)→ (c−1ac, c−1bc). (18)

The action of c on t̄ ∈ Q(n, a, b) is induced by the ac-
tion of π1(Xn) on π2(Xn): under c, t goes to tc, ta

goes to tac, therefore t− ta goes to tc − (tc)c
−1ac, there-

fore the action of c on t̄ ∈ Q(n, a, b) is well-defined as
t̄c = tc ∈ Q(n, c−1ac, c−1bc). Note that Q(n, a, b) ∼=
Q(n, c−1ac, c−1bc), due to fact that Eq. (16) and Eq. (17)
only care about the permutation structure of a, b, which
is invariant under conjugation. We finally get:

[T 2, Xn] =
⋃
(a,b)
ab=ba

Q(n, a, b), (19)

where (a, b) means a conjugacy class of commuting pairs
under Eq. (18), and Q(n, a, b) = Q(n, a, b)/πs1(Xn) is the
orbit set (not quotient group) of Q(n, a, b) under the sta-
bilizer subgroup πs1(Xn) that keeps (a, b) invariant.

The reason for the appearance of this πs1(Xn) action
can be traced back to the difference between [T,X] and
〈T,X〉. Physically, there is no natural way to label the
bands (even if no braiding happens, namely, a = b = id).
In the Hermitian case, bands are naturally ordered ac-
cording to their energy, which is not the case for complex
energy levels. Therefore there are some redundancies cor-
responding to change the label of bands (see Sec. IV B for
an example). Also note that, while Q(n, a, b) is a finite
generated Abelian group, Q(n, a, b) is just a set.
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IV. EXAMPLES

A. Non-Hermitian bands in one dimension

In the case of m = 1, we know from Sec. III B that
band structures are classified by the conjugacy classes of
group Bn.

Determine the conjugacy classes of braiding group Bn
is only easy when the number of bands n = 2, where
the braiding group B2 is just Z: a ∈ Z is the number of
elementary braidings (half of a 2π rotation), with a even
implies a pure braid and a odd implies a permutation. In
this case, each conjugacy class only contains one element,
since Z is Abelian. Therefore, the classification is given
by:

[T 1, X2] = Z. (20)

The same classification was found in Ref. 53, see Eq.(8)
therein. Note that authors there use 1

2Z instead of Z:
their spectral “vorticity” is exactly half of the above in-
variant.

B. Two-band Chern “insulators”

Consider the case with m = n = 2, namely, band
structures with two bands in two-dimensional (2D) space.
This corresponds to Chern insulators in the Hermitian
case. However, it may not be a true insulator in the
non-Hermitian case if there is no line gap (to place the
chemical potential).

Let us calculate Q(2, a, b) and Q(2, a, b), where a, b ∈
B2 = Z. There are four cases, depending on the even/odd
of a and b.

• a, b even. Then ta = tb = t, therefore Q(2, a, b) =
Z. The action of c ∈ π1(Xn) on Q(2, a, b) might
be nontrivial: it acts as opposite if c is odd (see
below), therefore Q(2, a, b) = N, the set of nonneg-
ative integers.

• a even, b odd. Then ta = t while tb = −t
in the sense that (s,−s)b = (−s, s). Therefore
Q(2, a, b) = 〈(s,−s)〉 /〈(2s,−2s)〉 ∼= Z2. The action
of π1(Xn) at most takes (s,−s) to (−s, s), which
has no effects on Z2, therefore Q(2, a, b) = Z2.

• a odd, b even. Same as above.

• a, b odd. Then ta = tb = −t, Q(2, a, b) =
Q(2, a, b) = Z2.

Therefore, band structures are classified by:⋃
a,b∈Z

N or Z2. (21)

1. Understanding the N invariant

The N classification (instead of Z) comes from the fact
that we have no natural way to identify “upper band”
and “lower band” as in the Hermitian case, since there C
is not naturally ordered as R. This new feature of non-
Hermitian classification will disappear if, for example, we
have a fixed line gap, where the classification will go back
to Z.

2. Understanding the Z2 invariant

The Z2 classification in some sectors is a more in-
teresting phenomenon. It comes from the interplay
between spectrum braiding and eigenvector topology
(Chern band). Here, we provide a formula as well as
heuristic arguments for this invariant.

We will concentrate on the case where (a, b) is
(even, odd). The (odd, even) case is similar; the
(odd, odd) case can be handled by a Dehn twist5. Also
note that the Z2 invariant essentially comes from the
(odd, even) sector of [T 2, F2/S2] (F2/S2 is the space of
distinct pairs of states), as one can see by following the
same calculations as above.

We claim the following formula for this invariant:

C =
1

2π

∫
BZ

εijBij(k)d2k + SWZW (a, a′). (22)

In the first term, the Berry curvature Bij(k) [53] is de-
fined by following one band, therefore has a discontinu-
ity at the boundary; the integral is over the conventional
2π × 2π Brillouin zone. The second term SWZW (a, a′)
is a boundary Wess-Zumino-Witten (WZW) term6, de-
fined as follows. By following one band, one gets a map
from a cylinder to the Bloch sphere S2, such that for any
point on the left boundary a, the corresponding point
on the right boundary a′ maps to a different point on S2

(since they correspond to linear independent vectors), see
Fig. 2. We then close two boundaries in a consistent way
[84] such that the above condition is still satisfied on two
“caps”. This is always possible since [ã] = 0 in π1(F2/S2)
due to the assumption that a is even, where ã denotes the
map from the nontrivial loop (boundary) to the space of
pairs F2/S2. Then SWZW (a, a′) is then defined as

1

4π
× oriented area of caps on S2. (23)

5 Cut the torus along a longitude, resulting in a cylinder; then
gradually twist the cylinder so that one boundary is fixed and
the other boundary rotates 2π; then glue it back. Using Dehn
twist, one can reduce (odd, odd) to (even, odd).

6 The boundary term is also known as a Berry phase term [83].
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( )a ( )b

a

a

'a

'a

FIG. 2. (a) Following one band, we get a map from cylinder to
S2. To define the WZW term, one needs to close the cylinder
with two caps in a consistent way (not necessarily antipo-
dal in the non-Hermitian case). Here the arrow represents
orientation, not to be confused with the way one identifies
two boundaries. (b) A deformation retraction from F2/S2 to
RP 2. Each point in F2/S2 corresponds to a pair of different
points in S2. We draw the great circle corresponds two that
pair, and then gradually push the pair to an antipodal pair
(corresponds to a point in RP 2). If a pair is already antipo-
dal, nothing needs to be done. In this way, we have defined a
deformation retraction.

By adding the caps, we obtain a closed manifold, there-
fore Eq. (22) is an integer. As always, there are some
ambiguities in the definition of SWZW , corresponding to
the ambiguities in adding the caps. Importantly, the con-
sistency for the caps requires that Eq. (22) can only be
shifted by 2 (instead of 1) by the ambiguities7. To see
this, note that we have a deformation retraction from
F2/S2 to RP 2, as defined in Fig.2(b). After this defor-
mation retraction, the consistency condition simply re-
quires that corresponding points in two boundaries map
to antipodal points. Therefore, two caps should always
be antipodal to each other, and

SWZW (a, a′) = 2SWZW (a). (24)

Therefore, C is only defined mod 2 and we obtain a Z2

invariant.
Another way to understand the Z2 invariant is as fol-

lows. Using the above deformation retraction, we see
that this Z2 can also be understood from [T 2, RP2]. For
the (odd, even) sector, we have the following diagram:

2T 2 S2

T 2 RP 2

, (25)

therefore the classification amounts to classifying covari-
ant maps from 2T 2 to S2. Here, 2T 2 is a double cover
of Brillouin zone T 2, by gluing two cylinders along b-
direction, see Fig. 3; “covariant” means corresponding
points in the left and right cylinder should map to an-
tipodal points.

7 Heuristically, one cannot just flip one cap while leaving the other
unflipped in Fig.2(a), otherwise the Brouwer’s fixed point theo-
rem guarantees an inconsistent point.

2π0 2π0
( )a

( )b

0 2π

0 2π

0 2π

0 2π

1C =1C =

-1C= -1C= -1C=

-1C= -1C= -1C=

1C =1C =

0 2π

0 2π

2C =C =

-2C= -C=C=

FIG. 3. Physical origin of the Z2 invariant. (a) Due to en-
ergy level braiding, the Brillouin zone is better considered
as a torus with size 4π × 2π on which the energy E(k) and
wave-function ψ(k) is well-defined: if one follows one band on
the conventional Brillouin zone of size 2π× 2π, then after 2π
one goes to the other band. The dashed lines indicate this
“gluing”. (b) Each solid line represents a cylinder similar to
those in figure (a), the dashed lines again indicate the “glu-
ing”. Starting with trivial bands, one adds ±1 “bumps” to
the upper band, and ∓1 “bumps” to the lower band, then
move the right pair (circled by the dashed line) to the right.
After 2π, they will switch, resulting in a C = 2 “bump” in
the upper band and C = −2 “bump” in the lower band.

Now, we can add a “bump” of Berry curvature with
positive 1 integral and a “bump” with negative 1 integral
by deforming the eigenstates, both in the “upper band”.
It is necessary to add opposite bumps due to the covariant
constraint. We can then move a pair of bumps along b-
direction for 2π. After this procedure, we effectively add
a C = 2 bump to the “upper band” and a C = −2 bump
to the “lower band”. Therefore, C is again only well-
defined mod 2.

C. n-band Chern “insulators”

The conjugacy classes and commuting pairs are hard
to describe if n > 2. However, the quotients Q(n, a, b)
for given braiding sector (a, b) are not hard to calculate.

Recall from Eq. (17) that π2(Xn) = Zn−1 =
{(t1, · · · , tn)|

∑
ti = 0} and (t1, · · · , tn)a =

(ta(1), · · · , ta(n)) where a(i) is the image of i under
the permutation a. Therefore, the subgroup to be
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quotient out is (we only write down the ta part):

〈t− ta〉 = 〈(t1 − ta(1), · · · , tn − ta(n))|
∑

ti = 0〉 . (26)

There are only (n − 1) independent ti: we can use

tn = −
∑n−1
i=1 ti to get rid of the constraint. Then the

subgroup Eq. (26) is generated by 2(n − 1) (not neces-
sarily independent) generators. For example, take t1 =
1, t2 = · · · = tn−1 = 0, tn = −1 and consider the action
of a, we get a generator e1− ea−1(1)− en+ ea−1(n), where
e1 = (1, 0, · · · , 0,−1), e2 = (0, 1, 0, · · · , 0,−1), en−1 =
(0, · · · , 0, 1,−1), en = (0, · · · , 0). Therefore, the Q(n, a, b)
is the quotient of 〈e1, · · · , en−1〉 with 2(n − 1) relations
ei − ea−1(i) − en + ea−1(n)(i = 1, . . . , n− 1). Its structure
can be determined by standard procedure using Smith
normal form.

As a simple example, consider the case where a : 1 →
2 → 3 → 4 → 1, b : 1 → 4 → 3 → 2 → 1. This
is possible, say, by taking a to be a braiding with such
permutation structure, then taking b = a−1. The aux-
iliary “generators” given by ti = 1, t1 = · · · = ti−1 =
ti+1 = · · · = tn = 0 written in terms of n-tuples is the
ith columns of the following matrix 1 −1

1 −1
1 −1

−1 1

 . (27)

Since the true generators are given by taking ti = 1, tn =
−1, tj = 0(j = 1, · · · , i − 1, i + 1, · · · , n − 1), we need
to subtract the last column from all other columns and
delete the last row. The matrix of true generators for
〈t− ta〉 is: 1 −1

1 −1
1 1 2

 , (28)

and similarly for b:  2 1 1
−1 1
−1 1

 . (29)

Juxtapose those two matrices and calculate its Smith nor-
mal form (normal form for integer matrix under elemen-
tary row/column operations), we get:1 0 0 0 0 0

0 1 0 0 0 0
0 0 4 0 0 0

 , (30)

which means Q(4, a, b) = Z4.
Another example is when b = id, i.e., no permutation.

We can decompose a into cycles: a = (...)(...)...(...). De-

note the length of each cycle to be l1, · · · , lk (
∑k
i=1 li = n)

where k is the number of cycles. In this case, we can fol-
low the above procedure and get an explicit formula for
Q(n, a, b).

Denote an l× l matrix of form Eq. (27) to be Jl, then
the counterpart of Eq. (27) (where columns are auxiliary
“generators”) is: 

Jl1
Jl2

. . .

Jlk

 , (31)

and the counterpart of Eq. (28) by subtraction and delet-
ing is: 

Jl1

Jl2
. . .

1 1 1 1 1 1
J̄lk


, (32)

where J̄lk is an (lk − 1) × (lk − 1) matrix of form
Eq. (28). To clarify, the last row of the above big matrix
is (1, 1, . . . , 1, 2). It is easy to perform row transformation
on the above matrix and get:

Kl1

Kl2

. . .

0 l1 0 l2 ·· ··
K lk


, (33)

where Kl = diag{1, · · · , 1, 0} (size l), Kl =
diag{1, · · · , 1, l} (size l − 1). To clarify,
the last row of the above big matrix is
(0, · · · , 0, l1, 0, · · · , 0, l2, · · · , 0, · · · , 0, lk). Therefore,
the structure of Q(n, a, b) is:

Q(n, a, b) = Zk−1 ⊕ Zgcd (l1,...,lk), (34)

where Zgcd (l1,...,lk) is the greatest common divisor and
Z1 means trivial group {0} if gcd = 1.

The Zk−1 comes from the fact that we have k groups of
bands (bands that transfer to each other under braidings
are in the same group). Each band has an integer Chern
number, with summation equals 0. This is the same as
the Hermitian case. However, there is an extra Zgcd.
We also see that the extra torsion part is determined by
all band groups as a whole, not from any specific band
group. It shows some complicated interplay between en-
ergy braiding and eigenstates topology.

With other permutations a, b(a, b 6= id), it is possible
to get more than one torsions. An example is a : 1 ↔
2, 3 ↔ 4 with b : 1 ↔ 3, 2 ↔ 4. The algorithm will give
us Z2 ⊕ Z2.
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V. INSTABILITY

Examples in Sec. IV show that our homotopical ap-
proach reveals more topological invariants than the tradi-
tional K-theory approach. For example, a 2-band Chern
“insulator” in 2D may reveal some Z2 classification due
to the nontrivial topology of the spectrum.

Similar phenomena also happen in the Hermitian
world. For example, in three dimensions (3D), insula-
tors in class A are always trivial according to the peri-
odicity table. However, one can still have a Z classifi-
cation if the number of bands is fixed to be 2, due to
π3(CP 1) = Z. This is called the Hopf insulator [68],
which is unstable against adding more bands. Indeed,
as long as one adds one more band above and below the
Fermi surface respectively, the classification will be trivial
due to π3(GrC(3, 1)) = 0 (and similarly for more bands),
where GrC(3, 1) is the complex Grassmannian.

A natural question arises: are our new topological in-
variants stable against adding bands?

As an example, let us consider 2-band systems in 2D
as in Sec. IV B, and add one more band. Since the clas-
sification is decomposed into braiding sectors and each
sector has its own classification set, it only makes sense
to add a band with no permutation to previous bands
(therefore it does not alter the braiding sectors). For
each sector (a, b), adding a band without permutation is
to add a length-1 cycle after previous a, b.

• a, b even. Then a′ and b′ are trivial permutations,
therefore Q(3, a, b) = Z2, which are just two Chern
numbers.

• a even, b odd. Then a′ trivial while b′ decomposes
as (12)(3). Eq. (34) shows that Q(3, a′, b′) = Z.

• a odd, b even. Same as above.

• a, b odd. Then both a′ and b′ are of the form
(12)(3). A Smith normal form calculation shows
Q(3, a′, b′) = Z.

In all cases, we see that the extra band contributes a
Chern number Z, as well as kills the old Z2 invariants
if there are any, even if the Z2 comes from other bands
that never intersect with the added band. This is possible
since the Z2 not just comes from those two bands, but
from all three bands as a whole, as noted at the end of
Sec. IV C.

The instability of Z2 can be understood as follows. As-
suming a odd and b even, consider the procedure shown
in Fig. 4: we start with three bands with Chern number
1,−1, 0 respectively, where the first two bands switch to
each other after 2π as in Fig. 3(a). Adding a negative
bump and a positive bump in band 1, as well as a pos-
itive bump and a negative bump in band 3; then move
the rightmost bump pair in band 1 and 3, so that the
positive bump cancels the negative bump in band 2; the
remaining bumps in band 1 and 3 can be easily canceled,
leaving three trivial bands. During the procedure, the

0 2π

0 2π

0 2π

1C =1C =

-1C= -1C= -1C=

0 2π

0 2π

0 2π

1C =1C =

-1C= -1C= -1C= 1C =1C = -1C= -1C= -1C=

1C =

0 2π

0 2π

0 2π1C =1C =

-1C= -1C= -1C= 1C =

-1C= -1C= -1C=

-1C= -1C= -1C=

0 2π

0 2π

0 2π

FIG. 4. Physical origin of instability. Similar to Fig. 3, solid
lines represent the Brillouin; dashed lines indicate the “glu-
ing”. We start with three bands with Chern number 1,−1, 0
respectively, where the first two bands switch to each other
after 2π. If we forget band 3, it will be nontrivial, indicated
by a Z2 invariant. However, add band 3 and follow the pro-
cedure shown in the figure, we can make the band structure
totally trivial.

local neutral condition is always satisfied. Note that the
3rd band is essential for this argument to work.

Similarly, as long as b = id, Eq. (34) shows that Q(n+
1, a′, b′) has no torsion part.

We can prove a general result regarding the instability,
even if b 6= id. For a system with n bands, consider
the braiding sector labeled by the commuting pair (a, b).
Let us add an extra no-permutation band, denote a, b→
a′, b′. The matrix of auxiliary “generators” is: 0A B

0
0 0 0 0 0

 , (35)

where A and B are of form Eq. (31) up to some congruent
transformation by permutation matrices. The matrix of
generators (counterpart of Eq. (28)) is therefore just

[A | B]. (36)

We claim that the invariant factors in its Smith normal
form must be 1. Indeed, we claim a more general state-
ment:

Claim. Assuming a matrix has the following property:
there are either 2 or 0 nonzero elements in each column;
in the former case, there is exactly one 1 and one -1.
Then the invariant factors of this matrix must be 1 (if
there are any).

Proof. We prove by induction on the total number of
nonzero elements N . From the assumption, N must be
even. If N = 0, then the statement is trivially true.
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Now assume the state is true for N and less, let us
consider N+2. Denote the matrix to be A. Without lose
of generality, assume A1,1 = 1, A2,1 = −1, Ai,1 = 0 for
i ≥ 3. Add row 1 to row 2, denote the new matrix as A′,
then A′i,1 = 0 for i ≥ 2. Moreover, from the assumption
on matrix A, there are only 7 possibilities happened to[
A1,2

A2,2

]
(we only write 4 of them, the other 3 are obtained

by adding negative sign):[
0
0

]
→
[
0
0

]
,

[
1
−1

]
→
[
1
0

]
,

[
1
0

]
→
[
1
1

]
,

[
0
1

]
→
[
0
1

]
.

(37)
Therefore, the column (A′2,2, · · · , A′n,2)T satisfies the
same assumption as columns of A. The number of
nonzero elements in this shorter column is less or equal
to that in (A1,2, · · · , An,2)T . Other columns are similar.

Then we use column transformations to make A′1,i = 0
for i ≥ 2, while keeping other elements. A′ is of the form:

A′ =

 1 0 0
0
0
A′′

 . (38)

We can then apply the induction assumption on A′′ and
finish the proof.

Therefore, Q(n + 1, a′, b′) is always of the form Zk.
This means all torsion invariants Zi(i ≥ 2) are unstable
against adding a no-permutation band.

VI. CONCLUSION AND OUTLOOK

In this article, we considered the homotopical classifi-
cation of non-Hermitian band structures from first prin-
ciples. We found that, the whole classification set is de-
composed into several sectors, based on the braiding of
energy levels. Fix a braiding pattern, we consider the
classification coming from nontrivial eigenstates topol-
ogy. Since different bands will transfer to each other un-
der braidings, the classification of band topology is not

just a direct summation of Chern numbers. Instead, the
interplay between energy level braiding and eigenstates
topology gives some new torsion invariants.

The torsion invariants come from all bands as a whole,
instead of some specific band group. Namely, even if we
add a band with no crossing with previous bands, the
torsion invariants can in principle be changed. We found
that the torsion invariants are unstable, in the sense that
just adding a trivial band can trivialize them. This state-
ment is proved based on an interesting combinatorial ar-
gument.

Many future works can be done in this framework.
First of all, due to the complexity of the braiding group,
it is complicated to describe its conjugacy classes and
commuting pairs, let alone the conjugacy classes of com-
muting pairs. It will be useful to develop more explicit
descriptions of the braiding sectors. On the more phys-
ical side, it is very interesting to consider the physical
consequence of these novel invariants, in terms of phys-
ical observables. On the other hand, in this article we
only consider the case with no symmetry as an first step.
It is necessary to consider other symmetry classes using
our framework in order to find a complete classification.
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Appendix A: Some algebraic topology details

1. Homotopy class 〈T 2, X〉–proof of Eq. (15)

In this section, we prove Eq. (15) in detail:

〈T 2, X〉

=
⋃

a,b∈π1(X)
ab=ba

π2(X)/〈t− ta, t− tb | t ∈ π2(X)〉, (A1)

Namely, a homotopy class [f ] ∈ 〈T 2, X〉 one-to-one cor-
responds to an element in the set described by the right-
hand side of Eq. (A1).

For each pair (a, b) ∈ π1(X)2 such that ab = ba, we
choose and fix two loops8 a0, b0, and also choose and fix
a homotopy from a0b0a

−1
0 b−10 to 0, denoted by F (a, b).

Note that a0, b0, F (a, b) are arbitrarily chosen. But once
they are chosen, they are fixed for all.

Given [f ] ∈ 〈T 2, X〉, we choose a map f : T 2 → X
in this class. There are two nontrivial loops (fixed) in
T 2, denoted by l1, l2, with the same base point. The
restriction of f on l1 defines a map (loop) f1 : S1 → X
and therefore an element a ∈ π1(X). Similarly we have
b ∈ π1(X). Since the loop l1l2l

−1
1 l−12 is homotopic to 0

in T 2, we know ab = ba in π1(X). Obviously a and b are
well-defined function of [f ].

8 Note the notations here: a and b are homotopy class of loops, a0
and b0 are loops.

1f

1f
2f 2f

0a

0a
0b0b ( , )F  a b

( )F b ( )F b

2|
T

f

1f
1f

2f2f

1f ′
2f ′

2f ′
1f ′

( )F b( )F b ( )F b′

( )a ( )b

FIG. 5. (a) The definition of h ∈ π2(X). It is defined by
the surface of the cube, made of f |T2 , F (a), F (b) and the pre-
chosen F (a, b). (b) h̄ is well-defined. The “cap” attached to
the right surface (the other one in the left denoted with dashed
line) is the other homotopy F ′(b). Here, F (b), F ′(b) and the
homotopy between f2 and f ′2 defined an element s ∈ π2(X).
Pictorially it is the right “cap”+right surface. The one on
the left corresponds to sa, since we have to fixed a base point
when defining π2(X), say the one denoted by •.

Since loop f1 is homotopic to a0, there exists (not
unique) a homotopy F (a) from f1 to a0; the same for
b and we have a F (b). Now define an element h in
π2(X) as in Fig. 5(a). In this way we get an element
h̄ ∈ π2(X)/〈t− ta, t− tb | t ∈ π2〉.

We need to prove that h̄ does not depend on the choice
of f, F (a), F (b). To do this, assume we choose a different
f ′ and therefore different loops l′1, l

′
2 inX, different homo-

topy F ′(a) and F ′(b), and different element h′ ∈ π2(X).
To compare h and h′ we need to fix a base point. Defined
t to be the element in π2(X) determined by F (a), F ′(a)
and the homotopy between f, f ′, see Fig. 5(b). Also from
this figure, we know that

h′ = h+ t− tb + s− sa, (A2)

therefore h̄ = h̄′.
The inverse map is easy to define. Therefore we have

proved Eq. (A1).

2. The action of π1(Xn) on π2(Xn)–proof of Eq. (17)

In this section, we prove that the action t 7→ ta is
determined by Eq. (17), which we rewrite here for con-
venience:

(t1, · · · , tn) 7→ (ta(1), · · · , ta(n)). (A3)

To see this, consider the projection

Xn = (Confn×Fn)/Sn
j−→ Fn/Sn, (A4)

which induces an isomorphism on π2 and a surjection
Bn → Sn on π1. Therefore, the action of π1(Xn) on

https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
http://www.jstor.org/stable/j.ctt1b9rzv3
http://www.jstor.org/stable/j.ctt1b9rzv3
http://dx.doi.org/10.1142/4256
http://dx.doi.org/10.7146/math.scand.a-10517
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http://dx.doi.org/10.1007/978-0-387-68548-9
http://dx.doi.org/10.1093/qmath/20.1.235
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https://math.stackexchange.com/q/36504
https://math.stackexchange.com/q/36504
http://dx.doi.org/10.5802/ambp.293
http://dx.doi.org/10.5802/ambp.293
http://dx.doi.org/10.1090/s0273-0979-1988-15685-6
http://dx.doi.org/10.1090/s0273-0979-1988-15685-6
http://dx.doi.org/10.1017/CBO9781139015509
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/ 10.1103/PhysRevB.101.205417
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FIG. 6. An illustration for the proof of Eq. (17). Assuming
[γ] action takes an element in π2(Fn/Sn) (represented by A)

to B, then the lift f̃t will be a homotopy from Ã to B̃. To
identify the corresponding element of B̃ in π2(Fn/Sn), just

consider g−1(B̃) since it is the same as B̃ under projection.

π2(Xn) factorizes through the action of π1(Fn/Sn) = Sn
on π2(Fn/Sn):

π2(Xn) π2(Xn)

π2(Fn/Sn) π2(Fn/Sn)

Bn

∼= ∼=
Sn

. (A5)

Geometrically, the action of [γ] ∈ π1(Xn) on π2(Xn) is
given by any homotopy ft : S2 → Xn such that ft(s0) =
γ(t) (here s0 is a base point on S2); under projection j,
j ◦ ft gives a homotopy S2 → Fn/Sn and therefore an
action of p([γ]) ∈ Sn on π2(Fn/Sn).

We now show the action of π1(Fn/Sn) = Sn on
π2(Fn/Sn) is given by Eq. (A3). Indeed, assuming the
loop γ in Fn/Sn is lifted to γ̃ in Fn, γ̃(1) = gγ̃(0) where
g ∈ Sn. Then a homotopy S2 → Fn/Sn corresponding
to the [γ] action will be lifted to a homotopy that de-

forms the map f̃0 : S2 → Fn to f̃1 : S2 → Fn such that
f̃1(s0) = γ̃(1), f̃0(s0) = γ̃(0). In order to identify the cor-

responding element of f̃1 in π2(Fn/Sn), one just need to

consider g−1◦ f̃1 since they (g−1◦ f̃1 and f̃1) are the same

map after projection to Fn/Sn and g−1f̃1(s0) = f̃0(s0) is
the correct base point, see Fig. 6 for illustration of above
argument.

Now we identify g−1◦f̃1 in π2(Fn) = Zn−1 according to

the injection π2(Fn)
∂−→ π1(C∗n) in Eq. (8). Recall that

the boundary map ∂ is defined by a homotopy lifting.
For example, to identify ∂(f̃1), one regard f̃0 : S2 → Fn
as a map I2 → Fn, where f̃0(∂I2) = {b0}; then as a
homotopy Ht : I1 → Fn. Then lift H0 along into GL(n).
This is just the trivial map to a point, say e0. They use

0b

1
0 )(g b−

1
0 )(g b−

1
0 )(g b− 1

0 )(g b−

1
0 )(g b−

0b0b

0b

0b

0e 1e−

β

γnF

( )GL n

( )a ( )b

FIG. 7. (a) The definition of g−1 ◦ f̃1 (corresponds to g−1(B̃)
in Fig. 6). One regard S2 as I2 with boundary points iden-
tified, then draw a smaller square inside it. Define the map
on the inner square as g−1 ◦ f̃0 (would be g−1(Ã) in the nota-
tion of Fig. 6), so that the inner boundary maps to g−1(b0).
Then one connects the inner and outer boundary by the paths
g−1(γ̃). One gets a well-defined map from I2 to Fn, with the
outer boundary maps to b0. (b) Illustration of the homotopy
lifting process.

relative homotopy lifting property to lift Ht for t ∈ I.
H1(I), which is the lift of f̃0 on I × {1}, is now a loop
based on e0, which induces as an element in π1(C∗n).

In our case, g−1 ◦ f̃1 is just given by Fig. 7(a). We can
construct the lifting explicitly. First note that Sn has an
action on GL(n) by column transformation, which is the
lift of its action on Fn. We lift the path g−1(γ̃) in Fn to
a path β in GL(n) starting at e0. We can make it end
at e−1 = g−1e0 by gradually changing the phases of each
column vector along the path. Now the homotopy lifting
is defined as follows (see Fig. 7(b)). For t ∈ [0, 1], scan
the square in Fig. 7(a) from bottom to up. For small t
(before touching the inner square), just lift the homotopy
it along β. Then one lifts the homotopy inside the inner
square by g−1◦ the homotopy lifting of f̃0. After one
passes the inner square, one can just move e−1 to e0 by
shrinking the line β. The homotopy class (n integers) of
the loops on fibers is invariant (For example, since we are
only looking at the bundle over an open path γ̃, we can
regard it as a trivial bundle). The final lifting is a loop
on the fiber over b0 with base point e0. It is easy to see
this loop corresponds to (17).
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