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In the XY regime of the XXZ Heisenberg model phase diagram, we demonstrate that the origin of magnet-
ically ordered phases is influenced by the presence of solvable points with exact quantum coloring ground states
featuring a quantum-classical correspondence. Using exact diagonalization and density matrix renormalization
group calculations, for both the square and the triangular lattice magnets, we show that the ordered physics of
the solvable points in the extreme XY regime, at Jz

J⊥
= −1 and Jz

J⊥
= − 1

2
respectively with J⊥ > 0, adiabati-

cally extends to the more isotropic regime Jz
J⊥
∼ 1. We highlight the projective structure of the coloring ground

states to compute the correlators in fixed magnetization sectors which enables an understanding of the features
in the static spin structure factors and correlation ratios. These findings are contrasted with an anisotropic gen-
eralization of the celebrated one-dimensional Majumdar-Ghosh model, which is also found to be (ground state)
solvable. For this model, both exact dimer and three-coloring ground states exist at Jz

J⊥
= − 1

2
but only the two

dimer ground states survive for any Jz
J⊥

> − 1
2

.

I. INTRODUCTION

The question of magnetic long-range ordering (LRO), or
lack thereof, in quantum antiferromagnetic insulators in low
dimensions has been of prime interest in the field of quantum
magnetism. One of the hallmark results is the absence of true
LRO for the quantum Heisenberg spin chain owing to strong
quantum mechanical fluctuations in one dimension and the as-
sociated fractional spinon excitations.1 LRO does exist in two
dimensions, but only at zero temperature, for the square lat-
tice Heisenberg model, as well as other (unfrustrated) bipar-
tite lattices.2 In three dimensions, LRO exists at finite temper-
atures as well. Compounding this issue is the ingredient of
frustration; it was initially suggested as a possible mechanism
to suppress LRO in the triangular lattice Heisenberg antifer-
romagnet. Theoretical3–7 and experimental studies8–10 have
revealed that LRO indeed survives in the triangular lattice ge-
ometry, however, other frustrated geometries and interactions
have continued to be the subject of intense study.

Given the complexity of such problems, exactly solv-
able Hamiltonians form important cornerstones in our under-
standing of quantum magnetism and, more generally, quan-
tum matter in its vast variety. Bethe’s solution of the one-
dimensional (1d) Heisenberg chain11 has led to an entire field
of activity12–15 with Bethe ansatz methods applied to a host of
1d models including the spin-12 XXZ model. Additionally,
the ground state solvable one-dimensional Majumdar-Ghosh
model16, a precursor to the S = 1 AKLT chain17, has led to
many insights into the valence bond physics of 1d frustrated
systems. In higher dimensions, however, there are fewer solv-
able examples for both unfrustrated and frustrated quantum
magnets, notably the Shastry-Sutherland model18 and Kitaev
honeycomb model.19 In this spirit, this work will show the
influence of exactly solvable points in the XXZ parameter
space,

HXXZ = J⊥
∑
〈i,j〉

(
Sxi S

x
j + Syi S

y
j

)
+ Jz

∑
〈i,j〉

Szi S
z
j (1)

on magnetic LRO in two dimensional quantum antiferromag-
nets (QAFM). We will set J⊥ = 1 throughout this paper.

The motivation for our present work stems from a re-
cent finding of a higher-dimensional example of ground state
solvable frustrated quantum magnets described by H3c ≡
HXXZ [Jz = −1/2]20 (previously referred to as “XXZ0”)
on any lattice composed of triangular motifs that allow for a
consistent “three-coloring" of the lattice sites where no two
sites connected by a bond share the same color. Even though
this work was situated in the context of the Kagome antifer-
romagnet, the general principle applies to a host of lattices in-
cluding the triangular lattice. At this solvable 3c point, there is
a one-to-one correspondence between the classical and quan-
tum ground states. Adding realistic perturbations away from
such a point in parameter space thus potentially offers a new
way of understanding the phases that are stabilized by quan-
tum fluctuations.

The coloring states remain exact ground states when pro-
jected to a specific magnetization sector due to U(1) symme-
try of the XXZ model. This general projection structure of
the exact ground state is an important feature of the solvable
point, e.g. it was utilized21 to explain the magnon crystal as-
sociated with the m

ms
= 7

9 high-magnetization plateau state on
the Kagome lattice22–24 wherem is the magnetization, andms

is its saturation value. This was achieved by an exact mapping
of three-colorings to localized magnons using the projection
structure (also see the recent Ref. 25 for analogous mappings
on the sawtooth lattice). The unprojected exact solution in the
context of the triangular lattice has previously been noted by
Ref. 26.

Here we address two cases with magnetic LRO - the frus-
trated triangular and unfrustrated square lattice which admit
coloring ground states as shown in Fig. 1. For the unfrustrated
case, the exact ground state corresponds to a two-coloring
which is applicable for any bipartite lattice in any dimension
and occurs for Jz = −1. Because of the projection struc-
ture of these states, we work in fixed magnetization sectors of
choice. For the square lattice case, we focus on the zero mag-
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(a) (b)
Figure 1. Illustration of the unique two-coloring on the square lat-
tice, and one of the two three-colorings on the triangular lattice. The
colorings directly correspond to magnetically ordered states.

netization sector and for the triangular case on the m = 0 and
m
ms

= 1
3 sectors, the latter being a known plateau state at the

Heisenberg point.27,28 For these projected coloring states, we
establish the presence of magnetic LRO by calculating two-
point correlators. Since these points in parameter space do
not have the full SU(2) but only U(1) symmetry, the corre-
sponding ground state in the zero magnetization sectors are
AFM ordered in the XY plane.

We next investigate, using exact diagonalization (ED) and
density matrix renormalization group (DMRG)29,30 calcula-
tions, how these coloring ground states are connected to the
more isotropic regime Jz ∼ 1. Using various measures, we
provide evidence for the emergence of magnetic LRO in the
square and triangular Heisenberg magnets from the solvable
points. Interestingly, both the three-coloring and two-coloring
solvable points sit at the quantum critical point between the
XY Néel LRO and ferromagnetic ground state. Thus, the ex-
act ground states contain the seeds for both AFM and FM or-
dering. This basic structure of the XXZ phase diagram for
magnetically LRO magnets is the central result of this paper.

However, the presence of an exactly solvable point with
quantum coloring ground states in the extreme anisotropic
limit does not necessarily guarantee the existence of LRO
away from it. We demonstrate this in the context of the
anisotropic generalization of the celebrated Majumdar-Ghosh
model where both coloring and dimer ground states are exact
solutions at Jz = −1/2. The model is characterized by com-
peting coloring and dimerized (valence bond) ground states;
perturbing towards the isotropic point favors the dimer solu-
tions rather than the coloring solutions.

The paper is organized as follows. In Sec. II, we discuss the
case of them = 0 sector of the square lattice AFM in the con-
text of the Jz = −1 point. In Secs. III A and III B, we present
our findings for them = 0 and m

ms
= 1

3 sectors of the triangu-
lar AFM. As mentioned above, we contrast these findings with
that for an anisotropic generalization of the Majumdar-Ghosh
model in Sec. IV. In the appendices Apps. A-G, we provide
derivations for correlations and structure factors induced by
projection, applicable on any lattice and some additional use-
ful information.

II. THE SQUARE LATTICE ANTIFERROMAGNET

We consider the case of the Hamiltonian H2c ≡
HXXZ [Jz = −1], where an exact ground state solution is
guaranteed on any bipartite lattice in any dimension. We fo-
cus on the 2d square lattice where the existence of Néel LRO
at the Heisenberg point Jz = 1 is well established22, in com-
parison to the 1d chain which has only quasi-LRO with poly-
nomially decaying spin-spin correlations. The ground state
of H2c corresponds to a unique two-coloring of the bipartite
lattice.

Let the two colors, denoted by red (|r〉) and blue (|b〉) la-
bels, represent the Sx eigenstates on a single site,

|r〉 ≡ 1√
2

(| ↑〉+ | ↓〉) |b〉 ≡ 1√
2

(| ↑〉 − | ↓〉). (2)

The (unprojected) ground state at H[Jz = −1] is

|C〉 ≡

∏
i∈A
⊗i|r〉i

∏
j∈B
⊗j |b〉j

 (3)

where A,B are the two sublattices of any bipartite lattice, for
example, in 1D: chain, ladders; 2D: square, honeycomb; 3D:
cube, hyper-honeycomb etc.

To show the ground state property of Eq. 3, we writeH2c as
a sum of bond HamiltoniansHij ≡ Sxi Sxj +Syi S

y
j −Szi Szj . On

a given bond, the eigensystem ofHij [Jz = −1] consists of the
polarized states | ↑↑〉, | ↓↓〉, and the bond singlet |0; 0〉 ≡ (| ↑↓
〉 − | ↓↑〉)/

√
2 as ground states with energy −1/4, while the

state |1; 0〉 ≡ (| ↑↓〉 + | ↓↑〉)/
√

2 is an excited state with en-
ergy +3/4. Then,Hij =

∑4
k=1Ek|ψk〉〈ψk|whereEk are the

four eigenenergies of the bond, and |ψk〉 are the correspond-
ing eigenvectors. Using the identity 1 =

∑4
k=1 |ψk〉〈ψk|,

H2c =
∑
〈ij〉Hij is recast purely in terms of the bond pro-

jectors Pij ≡ |1; 0〉〈1; 0|,

H2c =
∑
〈ij〉

Pij −
1

4
Nbonds (4)

Since the coefficient in front of the projectors is positive, any
wavefunction that simultaneously zeros out the projector on
each bond is a ground state. Zeroing out a projector requires
that only components orthogonal to |1; 0〉 enter the many-
body wavefunction. This is indeed achieved by |C〉. (Ex-
panding out the product state for one |r〉 and one |b〉 gives
| ↑↑〉 − | ↓↓〉 −

√
2|0; 0〉, with each individual term being

orthogonal to |1; 0〉.)
One can see, at the level of a single bond, that there is in-

herent competition between FM (| ↑↑〉,| ↓↓〉) and AFM (|0; 0〉)
correlations, and the two states become exactly degenerate at
Jz = −1. This, in turn, results in Jz = −1 being a critical
point in theXXZ phase diagram. Since total Sz is conserved,
the projected coloring state

|CSz 〉 ≡ PSz |C〉 (5)

is also the exact ground state in every Sz sector, where PSz
is the projection to a given total Sz sector.31 This construc-
tion gives a unique ground state in each total Sz sector. For
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a lattice with N sites, there are thus (N + 1) degenerate
ground states which is readily verifiable in Exact diagonal-
ization (ED) for accessible systems, as well as their ground
state energy value (Table I in App. G).

We note that the choice of the two colors in Eq. 2 has a
(global) gauge freedom. The present choice is along the X
direction in XY plane of the Bloch sphere. They can be
chosen to be in any direction in the XY plane owing to the
U(1) symmetry of H[Jz]. This is also seen at a classical level
through a Luttinger-Tisza analysis of HXXZ which leads to
a classical phase transition at Jz = −1, with a FM solution
along the Z axis for Jz < −1, and an AFM solution in the
XY plane for Jz > −1. This freedom of choice in direc-
tion in the XY plane is the classical counterpart of the global
gauge freedom seen in the quantum mechanical case. A simi-
lar classical-quantum correspondence works for H3c.21 In the
classical case, the XY -plane AFM solution holds true only
up to Jz < 1, after which the AFM solution lies along the Z
axis. At Jz = 1, the AFM solution can lie in any direction.
In the quantum case, this translates to full SU(2) symmetry
at the Heisenberg point. We can thus anticipate that the U(1)
symmetric XY Néel state as in Eq. 3 evolves in an adiabatic
fashion to a SU(2) symmetric Néel state, since both are es-
sentially Néel-ordered states in the same total Sz sector.

The above can also be understood as a consequence
of a “superspin" with length N

2 with a degeneracy of
2
(
N
2

)
+ 1, even though H2c is not SU(2) symmet-

ric and is short-ranged. A more familiar and di-
rect example of such a superspin is rather the long-
range all-to-all coupled SU(2)-symmetric Hamiltonian32

J
∑
i∈A,j∈B

(
Sxi S

x
j + Syi S

y
j + Szi S

z
j

)
= J(SA · SB) where

SA/SB are superspins with length N
2 . To see how this arises

in H2c, it is useful to compare its solution with that of the fer-
romagnetic Hamiltonian HFM = −HXXZ [J⊥ = Jz] through
a projector point of view. Recasting this ferromagnetic Hamil-
tonian as a sum of projectors,HFM =

∑
〈i,j〉Qij after a trivial

shift of 0.25 per bond, where Qij’s are non-commuting semi-
definite projectors to the singlet state |0; 0〉 on bonds 〈i, j〉
respectively. The familiar eigensystem here is | ↑↑〉, | ↓↓〉
and |1; 0〉 as ground states (with energy −1/4), and |0; 0〉 as
an excited state (with energy +3/4). The unprojected ground
state is now achieved by

∏
i∈{A,B}⊗i|r〉i, and projection to

desired total Sz sectors may again be done as before. Since
total S2 is also conserved for HFM, this projection gives rise
to the usual multiplet structure expected for SU(2) symmetry,
i.e. the 2

(
N
2

)
+ 1 = N + 1 degeneracy due to a superspin

structure. Also, since we project out the singlet on each bond,
we only get FM correlations here as expected. In contrast, for
H2c there is no SU(2) symmetry, and therefore the ground
state in any total Sz sector is a superposition of various to-
tal S2 sectors. Nonetheless, we see that the superspin struc-
ture of the ground state of HFM gets exactly mirrored in the
ground state of H2c because of the close relation of the two
ground states, |C〉 and

∏
i∈{A,B}⊗i|r〉i. A phase change of

(−1)#↓B where # ↓B are the number of down-spins on the
B sublattice to the wavefunction coefficients (in the Sz basis)
maps uniquely |C〉 to

∏
i∈{A,B}⊗i|r〉i and vice versa, and

this mapping carries over under projection PSz as well.
We now calculate the spin correlations in the state |CSz=0〉.

Following Ref. 20’s supplementary, we have

〈CSz |CSz 〉 ∝
1

N + 1

∑
p

∏
j

∑
sj

eipsj 〈cj |sj〉〈sj |cj〉e−ipS
∗
z

(6)

up to an overall normalization, where p runs from 0 to 2πN
N+1 in

steps of 2π
N+1 , and S∗z is desired total Sz sector. We work with

evenN to ensure that S∗z = 0. |cj〉 refers to the coloring of the
site j in |C〉, i.e. |cj〉 = |r〉 or |b〉 for A/B sublattices respec-
tively, and |sj〉 are Ising states | ± 1

2 〉. Taking into account
the number of states in the S∗z = 0 sector compared to the
full Hilbert space, we are guaranteed that 〈CSz=0|CSz=0〉 =

1
N+1

2N
NCN/2

∑
p

(
cos p2

)N
= 1 as expected. NCM stands for

the “N choose M" combinatorial function everywhere in this
paper, i.e. NCM = N !/(M !(N −M)!). For the two-point
correlators, we perform similar calculations and arrive at

〈CSz=0|SzmSzn|CSz=0〉 = −1

4

1

N − 1
(7)

〈CSz=0|SxmSxn|CSz=0〉 = 〈CSz=0|SymSyn|CSz=0〉

=
εmn

8

N

N − 1
(8)

where εmn = −1 for a pair of sites {m,n} with different col-
ors, and εmn = 1 for {m,n} with the same color. These exact
expressions are readily verifiable by performing ED on small
systems (see Table I). Details of the derivations are given in
App. A. We see from the above that projection to Sz = 0
sector introduces only sub-dominant corrections of O(1/N)
in the LRO correlations of |CSz=0〉 when compared to the
unprojected state |C〉 which is another generic feature of the
quantum-classical correspondence in all the examples consid-
ered in this paper, and are to be expected in other ordered cases
as well.

We now show that the unprojected state |C〉
is a gapless ground state in the thermodynamic
limit. Consider the following (unprojected) state
|C ′〉 =

(∏
i∈A⊗ieiS

z
i δi |r〉i

∏
j∈B ⊗jeiS

z
j δj |b〉j

)
built

by modulating the two-colorings of |C〉 in the XY plane
of the Bloch sphere by a small angle δi that oscillates at a
non-zero wavevector q → 0, e.g. δi = δ sin(q · ~ri) with
a small δ. This variational state is like a Goldstone mode
associated with U(1)-symmetry breaking, however it is not
orthogonal to |C〉. Thus, for an excited state, we consider the
following variational state |ψ〉 ∝ |C ′〉 − 〈C|C ′〉|C〉. |ψ〉 is
orthogonal to |C〉 by construction. The variational estimate
for the excitation energy ∆E ≡ 〈ψ|H|ψ〉/〈ψ|ψ〉 − 〈C|H|C〉
scales to zero as N → ∞, provided the variational parameter
δ is chosen to scale as Nα with −1/2 < α < 0. The details
are given in App. B. The foregoing discussions are thus
highly suggestive of |CSz=0〉 (and |C〉) being adiabatically
connected to the SU(2) symmetric Néel ground state,
which we numerically demonstrate next for the case of two
dimensions and expect to hold for higher dimensions.
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Figure 2. For the square lattice XXZ Hamiltonian in the m = 0 sector, the left panel shows the ground state energy per bond (E0) vs. Jz .
The inset of the left panel shows the evolution of the structure factors (Szz(q0)

N
and Sxy(q0)

N
such that they are intensive), calculated at the

ordering vector q0 = (π, π). The right panel shows the correlation ratio, as defined in the text (Eq. 10), vs. Jz at the ordering wave-vector
q0 = (π, π) for the representative case of ∆q = ( 2π

Lx
, 0).

To analyze the magnetic structure and adiabaticity of the
XY LRO upto the SU(2) symmetric Heisenberg point, we
calculate the structure factors defined by

Szz(q) =
1

N

∑
m,n

e−iq·(rm−rn)〈SzmSzn〉

Sxy(q) =
1

N

∑
m,n

e−iq·(rm−rn) 〈SxmSxn〉+ 〈SymSyn〉
2

(9)

where we set Lx, Ly as the number of unit cells along the
primitive lattice directions such that the number of sites N =
Lx×Ly , and rm is the Bravais lattice vector for site m, while
q is a reciprocal lattice vector in the (first) Brillouin zone. We
also calculate correlation ratios defined as

Rα = 1− Sα(q0 −∆q)

Sα(q0)
, (10)

where α ∈ (zz, xy), q0 is a chosen wave vector in the Bril-
louin zone, and q0 −∆q represents one choice of the nearest
wave vectors allowed on the discrete lattice. This quantity
scales to 1 if there is a Bragg peak at q0 implying ordering
at that wavevector in the α channel, and scales to 0 if there
is no such ordering. This ratio is designed to approach unity
independent of the strength of quantum fluctuations as long as
there is spin LRO at the chosen wave vector.

For the square lattice, the two structure factors Szz(q0) and
Sxy(q0) at q0 = (π, π) are useful order parameters to mea-
sure the diagonal or Ising AFM ordering, and off-diagonal or
U(1)/XY AFM ordering respectively. In Fig. 2, we show the
ground state energy per bond, and the above order parame-
ters and corresponding correlation ratios at the AFM ordering
wave vector q0 = (π, π) computed using ED and DMRG
(with bond dimension 8000) in the zero magnetization sector.
From Fig. 2(a), we see a monotonic behavior in the ground

state energy in the XY regime extending up to Jz = −1 on
one side and Jz = 1 on the other side. This is the first piece of
data that signals that a single phase encompasses the regime
Jz ∈ (−1, 1) of the XXZ phase diagram on the square lat-
tice. At the end points of this regime, we observe kinks in the
ground state energy curves.33 At Jz = −1, this kink behav-
ior is quite pronounced, and it corresponds to development of
ferromagnetic order.

On the other hand, at Jz = 1, the kink behavior is less
pronounced. However, by looking at the structure factors in
the inset of Fig. 2(a), we see that Szz(q0) dominates over
Sxy(q0) on the Ising side. This is consistent with the devel-
opment of Ising AFM order34, which is confirmed by the fact
that Rzz is essentially one on this side in Fig. 2(b). Germane
to the solvable point 2c and as is also seen from Eq. 9, we
observe that Rxy tends to one strongly in the whole regime
Jz ∈ (−1, 1). This second piece of data convincingly estab-
lishes that the U(1) AFM LRO state at Jz = −1 is adiabatic
all the way to the SU(2)-symmetric point. Our results show
that the XY regime of the square lattice unfrustrated mag-
net, and likely other unfrustrated magnets, has a ground state
whose essential properties are captured by the correlations of
the exact ground state |CSz=0〉. We finally note that the FM-
AFM phase transition at H2c is a first-order level-crossing
transition as can be seen in Fig. 2(a).

Our findings in Fig. 2 are further substantiated in Fig. 3
where we have plotted the full structure factor as a func-
tion of q for the 8(Lx) × 8(Ly) cylinder. At Jz = −2
(top left), there is ferromagnetic order in the system. Im-
posing the constraint of Sz = 0 in our DMRG calculations
leads to a state with two domains arranged along the length
of the cylinder, preserving the translational invariance along
the y-direction due to periodic boundary conditions imposed
in the y-direction. As a result of this modulation in the x-
direction, the ordering wavevector in the zz channel is not
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Figure 3. The panels show Sxy(q) and Szz(q) for the square lattice, in the first Brillouin zone (highlighted by the dashed black lines) for
various representative Jz in the m = 0 magnetization sector for the N = 8× 8 cylinder.

(0, 0). Instead, peaks occur at the smallest allowable nonzero
|qx| = 2π

Lx
and qy = 0. The contributions to Sxx(q) through-

out the entire Brillouin zone are significantly smaller and arise
purely near the domain wall due to transverse spin fluctua-
tions (see App. F for real space plots of the spin-spin cor-
relations for further discussion). Moving on to Jz = −1
(top right), DMRG correctly captures the exact two-coloring
ground state; for this state the Fourier transform of the real
space spin-spin correlators corresponding to the two-coloring
wavefunction (Eq. 7 and Eq. 8) can be computed analyti-
cally (App. E). Szz(q) is precisely 1/4 at all points in the
first Brillouin zone except for q = (0, 0), where its value is
exactly zero. This is a direct consequence of the sum-rule
Szz(0, 0) = 1

N 〈(
∑N
i=1 S

i
z)

2〉 = 0 where N = LxLy . Sxy(q)
has a Bragg peak at q0 = (π, π) and no peaks elsewhere
as might be expected from the quantum-classical correspon-

dence mentioned previously.

These features associated with perfect co-planar Néel or-
der in Sxy(q) are quantitatively modified on moving towards
the Heisenberg point. For Szz(q), there is also a qualitative
reorganization of spectral weight. The featureless Szz(q) at
Jz = −1 now starts to develop a maximum at q0. For ex-
ample, at Jz = 0.0 (middle left) the dip at (0, 0) has broad-
ened out significantly. As Jz keeps increasing, the maxima
at q0 also acquire appreciable weight as shown for Jz = 0.6
(middle right). These features are further enhanced as one
approaches the Heisenberg regime, and at exactly Jz = 1
(bottom left) both correlators become identical due to SU(2)
symmetry. Beyond Jz > 1 (bottom right), the dominant cor-
relations are now present in the zz channel seen clearly as
a Bragg peak at q0 reflecting Ising LRO, while there are no
peaks in the XY channel but only a broad maximum at q0
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in agreement with lack of U(1) AFM LRO as surmised from
Rxy on the Ising side in Fig. 2.

III. THE TRIANGULAR LATTICE ANTIFERROMAGNET

A. Zero magnetization sector

In this and the next section, we turn our attention to the tri-
angular lattice AFM with its frustrated geometry. This geom-
etry harbors a different solvable point H3c at H[Jz = −1/2]
as introduced in Sec. I such that the exact ground states are
three-coloring states. On the triangular lattice, there are two
distinct such ground states one which is sketched in Fig. 1.
Analogous to the two-coloring case, these ground states also
possess LRO in the XY plane. Based on our knowledge of
the 120◦ ordered Heisenberg point22, we expect that LRO of
the solvable point H3c extends to the SU(2) symmetric point
analogous to the situation on the square lattice.

In the zero magnetization sector, the two ground states may
be written down as

|C(1)
Sz=0〉 ≡ PSz=0

∏
i∈A
⊗i|r〉i

∏
j∈B
⊗j |b〉j

∏
k∈C

⊗k|g〉k


|C(2)
Sz=0〉 ≡ PSz=0

∏
i∈A
⊗i|r〉i

∏
j∈B
⊗j |g〉j

∏
k∈C

⊗k|b〉k

 (11)

where A/B/C are the three sublattices, and |r〉 ≡ 1√
2
(| ↑

〉 + | ↓〉), |b〉 ≡ 1√
2
(| ↑〉 + ω| ↓〉) and |g〉 ≡ 1√

2
(| ↑〉 + ω2| ↓

〉). ω = ei2π/3 and ω2 = ω∗ are the cube roots of unity.
|r〉, |b〉, |g〉 may be chosen to be any triad of 120◦ states in the
XY plane of the Bloch sphere due to the presence of U(1)
symmetry, this choice being a global gauge choice.

Based on the existence of the Jz = − 1
2 point coupled with

linear spin-wave calculations, Ref. 26 argued the adiabaticity
of the coloring ground states to the ground state at the SU(2)
point. In what follows, we will work in a fixed magnetization
sector and numerically demonstrate this adiabaticty working
with projected wavefunctions by calculating structure factors
and correlation ratios.

For the N site triangular lattice, the overlap between the
two three-coloring states is given by

〈C(k)
Sz=0|C

(l)
Sz=0〉 =

{
1, for k = l.
N/3CN/6
NCN/2

, for k 6= l.
(12)

where k, l ∈ (1, 2). It goes to zero for k 6= l exponentially
as N → ∞ due to the macroscopic difference in the colors
in the two wavefunctions. Perturbing away from the 3c point
towards the Heisenberg point brings in matrix elements with
magnitude that are exponentially small in N between |C(1)〉
and |C(2)〉 at lowest-order resulting in an exponentially small
splitting. As one goes further away from the 3c point, non-
perturbative effects result in a finite splitting such that there
is a unique ground state at the Heisenberg point. Alterna-
tively, this can be understood by starting at the Heisenberg

point which, being fully SU(2)-symmetric, harbors the low-
energy quasi-degenerate Anderson tower of states whose en-
ergy spectrum is given by ∼ S(S+1)

N .35 Appropriate linear
combinations of these states are known to give symmetry bro-
ken states.6 Thus, the effect of XY anisotropy is to break this
quasi-degeneracy of the Heisenberg point and lead to the (two)
AFM ordered states. At and near the Heisenberg point, these
states have significant quantum fluctuations36 which become
effectively absent at the 3c point (Eq. 11).

A similar calculation (see App. C) for the correlators in ei-
ther of the two ground states gives

〈C(k)
Sz=0|SzmSzn|C

(k)
Sz=0〉 = −1

4

1

N − 1
(13)

〈C(k)
Sz=0|SxmSxn|C

(k)
Sz=0〉 = 〈C(k)

Sz=0|SymSyn|C
(k)
Sz=0〉

=
εmn

8

N

N − 1
(14)

where εmn = −1/2 for a pair of sites {m,n} with different
colors, and εmn = 1 for {m,n} with the same color. For
N → ∞, 〈SzmSzn〉 → 0 and 〈SxmSxn〉 ∝ εmn reflect the three
sublattice or 120◦ order solely lying in the XY -plane.

The structure factors (Eq. 9) Szz(q0) and Sxy(q0) at
q0 = (±4π/3, 0) are useful order parameters for this case.
They quantify the presence or absence of “diagonal" and “off-
diagonal" LRO respectively in terms of the mapping between
S = 1

2 degrees of freedom and hardcore bosons (S+
m → b†m,

S−m → bm and Szm → b†mbm − 1/2 on site m). If Szz(q)
is finite as N → ∞, the system has a broken sublattice Sz

symmetry which corresponds to the boson occupation density
wave at wavevector q, whereas a finite Sxy(q) as N → ∞
represent a broken U(1) rotational symmetry which corre-
sponds to superfluid ordering of the bosons.37

In Fig. 4(a), we show the ground state energy per bond us-
ing both ED on toric and DMRG (with bond dimension 7000)
on cylindrical geometries. Its behavior is featureless as we
scan fromH3c to the Heisenberg point and beyond when com-
pared to the corresponding data set for the square lattice (Fig.
2(a)). In the inset of Fig. 4(a), we show the magnitude of
structure factors at the ordering vector q0 = (4π/3, 0). In
the range −0.5 < Jz < 1, Sxy(q0) dominates over Szz(q0).
Their finite size dependence suggests the absence of boson oc-
cupation ordering, and the presence of three-sublattice AFM
LRO lying in the XY -plane tied to the 3c point (Eq. 14)
corresponding to the superfluid state in the hardcore boson
language. In contrast, Szz(q0) dominates over Sxy(q0) for
Jz > 1. The finite size dependence of Szz(q0) clearly shows
the presence of boson occupation order in this regime. More-
over, the finite size dependence of Sxy(q0) suggests a coex-
istence of superfluid ordering in this regime, i.e. supersolid
order, in agreement with earlier studies.38–40

However, inferring the thermodynamic behavior from the
finite size dependence of order parameters can sometimes be
inconclusive, especially if the extrapolated value is small as
is the case for Sxy(q0) for Jz > 1 (inset of Fig. 4(a)). In
such situations, correlation ratios as defined in Eq. 10, have
proved especially useful since they have been shown to be
less susceptible to finite size effects.41 Thus, we utilize them
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Figure 4. For the triangular lattice XXZ Hamiltonian in the m = 0 sector, the left panel shows the ground state energy per bond (E0) vs. Jz
The inset of the left panel shows the evolution of the structure factors (Szz(q0)

N
and Sxy(q0)

N
), calculated at the ordering vector q0 = (4π/3, 0).

The right panel shows the correlation ratios (Rzz and Rxy), as defined in the text (Eq. 10), vs. Jz at the ordering wave-vector q0 for the
representative case of ∆q = ( 2π

Lx
, 4π√

3Ly
− 2π√

3Lx
).

to probe the coexistence of density wave and superfluid LRO
for Jz > 1 which is shown in Fig. 4(b), choosing a represen-
tative ∆q for computations. In the XY regime, we see that
Rxy tends towards unity with increasing system size, while
Rzz decreases towards zero. This is consistent with the pres-
ence of 120◦ AFM in the XY plane or superfluid order. As
we go beyond the Heisenberg point (Jz > 1), we see that Rzz
now increases towards one providing evidence for boson den-
sity wave ordering. Furthermore, we see that Rxy is quite ap-
preciable and evidently consistent with a non-zero value that
is increasing towards unity as we go towards the thermody-
namic limit for the system sizes studied here. This provides
strong evidence for the coexistence of superfluid and boson
density ordering in the zero magnetization sector of the trian-
gular AFM on the Ising side.

Given the unusual coexistence of diagonal and off-diagonal
orders presented above unlike the square lattice case discussed
in the previous section, we address how they are reflected in
the spin structure factors. For the 12 × 6 cylinder we plot
Szz(q) and Sxy(q) as a function of Jz (Fig. 5). Our findings
bear many qualitative similarities to the square lattice case on
theXY side. At Jz = −1 (top left), there is ferromagnetic or-
der in the system with domains, and accordingly, the peaks in
Szz(q) occur at the smallest allowable nonzero |qx| = 2π

Lx
and

the corresponding qy . Then, at Jz = −1/2 (top right), DMRG
spontaneously picks one of the two three-colorings, and the
features seen can be matched by exact computations (Eqs. 13,
14, App. E, also see App. F). Szz(q) is again precisely 1/4
at all points in the first Brillouin zone except for q = (0, 0),
where its value is exactly zero. Sxy(q) has Bragg peaks at
q0 = (4π

3 , 0) and symmetry related points in the Brillouin
zone. For Jz > −1/2, the sequence of panels in Fig. 5 from
Jz = −0.2 to Jz = 1.0 confirm that the features associated
with perfect coplanar 120◦ order at Jz = −1/2 are only quan-

titatively modified on moving towards the Heisenberg point.
Beyond Jz > 1 (bottom right), the correlations are again dom-
inated by the zz channel with pronounced Bragg peaks seen at
q0 signaling the diagonal LRO. However, the maxima in the
XY channel at q0 are also Bragg peaks as confirmed through
the size dependence of correlation ratio Rxy on the Ising side
(Fig. 4) which is the expected signature of the co-existence
of superfluid LRO in the structure factor, as opposed to the
square lattice case where only a broad maximum was present
at the ordering wavevector (π, π).

Our ED and DMRG results are in agreement with the pre-
vious studies that have focused on Jz > 0. Our study shows
that the properties on the XY side originate from the 3c point
including the 120◦ order at the Heisenberg point. Thus, for
zero magnetization, we may say that the Heisenberg points on
triangular and square lattices are “inheriting" the long-range
AFM order of their respective solvable points H3c and H2c.
Moreover, on the Ising side past the Heisenberg point, the cor-
relation ratio data provides compelling evidence for the coex-
istence of diagonal and off-diagonal LRO.

B. m
ms

= 1
3

sector

The ground state of the m
ms

= 1
3 sector of the triangu-

lar Heisenberg AFM has been argued to be a magnetization
plateau state.27,42 In this state, each triangle has two spin-ups
and one spin-down in a modulated pattern at the wave vector
q0 = (4π/3, 0) (the “UUD" state) which is equivalent to 1

3
filling of hardcore bosons ordering at the same wave vector.
A magnetization plateau state is an incompressible state with
a gap to excitations that change magnetization. In contrast,
coloring ground states are expected to be gapless with low en-
ergy Goldstone modes lying above it. At the classical level for
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Figure 5. The panels show Sxy(q) and Szz(q) for the triangular lattice in the first Brillouin zone (highlighted by the dashed black lines) for
various representative Jz in the m = 0 magnetization sector for the N = 12× 6 cylinder.

m
ms

= 1
3 , the ground state in the XY regime (0 < Jz < 1), is

an “umbrella" state whose projection on to the XY plane has
120◦ correlations (see a schematic in the inset of Fig. 6).43

This classical umbrella state in fact extends all the way to the
3c point. Since the 3c point exists for any magnetization sec-
tor, it is natural to ask how the quantum counterpart of the
classical umbrella state that emerges from the 3c point even-
tually transitions to the magnetization plateau state.

Starting from Eq.(6) in this m
ms

= 1
3 sector, i.e. setting

S∗z = N/6, gives

〈C(k)
Sz=N/6|C

(l)
Sz=N/6〉 =

{
1, for k = l.
N/3C2N/9
NC2N/3

, for k 6= l.
(15)

and in the thermodynamic limit, the overlap between the two
three-coloring ground state again goes to zero. Similarly, we

have

〈C(k)
Sz=N/6|SzmSzn|C

(k)
Sz=N/6〉 = −1

4

[
8

9

N

N − 1
− 1

]
(16)

〈C(k)
Sz=N/6|SxmSxn|C

(k)
Sz=N/6〉 = 〈C(k)

Sz=N/6|SymSyn|C
(k)
Sz=N/6〉

=
εmn

9

N

N − 1
(17)

where again εmn = −1/2 for a pair of sites {m,n} hav-
ing different colors, while εmn = 1 for {m,n} with same
color. This again reflects 120◦ sub-lattice LRO in the XY
plane in triangular lattice. As expected, 〈SzmSzn〉 is now fi-
nite as N →∞ in this nonzero magnetization sector with the
thermodynamic value of this correlator in complete agreement
with m

ms
= 1

3 . This along with 〈SxmSxn〉 ∝ εmn tells us that
the state at the solvable point in this magnetization sector is
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Figure 6. For the triangular lattice XXZ Hamiltonian in the m
ms

= 1
3

sector, the left panel shows the ground state energy per bond (E0)

vs. Jz . The inset of the left panel shows the evolution of the structure factors
(
Szz(q0)

N
and Sxy(q0)

N

)
, calculated at the ordering vector

q0 = (4π/3, 0). The right panel shows the correlation ratios (Rzz and Rxy) as defined in the text (Eq. 10) vs. Jz plot at the ordering
wave-vector q0 for the representative case of ∆q = ( 2π

Lx
, 4π√

3Ly
− 2π√

3Lx
). The inset of the right panel shows a schematic of classical spin

configurations in the classical umbrella state that correspond to the corresponding three-colored sites (Fig. 1).

the quantum counterpart of umbrella state illustrated in Fig. 6.
In Fig. 6(a), we show the ground state energy (per bond)

for a wide range of Jz . It shows a sharp kink at Jcz ≈ 0.75
on the XY side, indicative of a first-order phase transition that
occurs before the SU(2)-symmetric Heisenberg point. In the
range −0.5 < Jz < Jcz , Sxy(q0) dominates over Szz(q0) at
q0 = (4π/3, 0) in accordance with an umbrella state. Due to
the net magnetization, Szz has a peak at the zero wavevector
(not shown) for all Jz . Once Jz > Jcz , Szz(q0) becomes
the dominant order parameter, while Sxy(q0) is suppressed in
accordance with the UUD state.

We confirm the first-order nature of the transition using the
correlation ratio as shown in Fig. 6(b): To the left of Jcz , Rxy
tends to unity while Rzz tends to zero. To the right of Jcz , Rzz
tends towards unity, while Rxy tends towards zero. In this
magnetization sector, the finite size trends of the order param-
eter and the correlation ratio are clear-cut, and we clearly see
the first-order behavior as sharp discontinuities in these quan-
tities near Jcz . Our results for Jz > 0 are in agreement with
previous work on the triangular phase diagram37,43 and extend
it to the solvable point. Through this work, we realize that the
umbrella state in the phase diagram as actually being inherited
from the 3c point, but quantum fluctuations eventually drive a
phase transition to the UUD plateau state.

IV. COLORS AND DIMERS IN THE ANISOTROPIC
MAJUMDAR-GHOSH CHAIN

We now study a model which illuminates the competi-
tion between three-coloring states and other quantum ground
states. Our inspiration stems from the Majumdar-Ghosh (MG)
model,16 one of the earliest known exactly solvable models

of frustrated 1d quantum magnetism. The model has nearest
neighbor J1 and second neighbor J2 isotropic Heisenberg in-
teractions in the ratio J2

J1
= 1

2 , which allows the Hamiltonian

to be written as HMG = 1
2

∑N
i=1

(
~Si−1 + ~Si + ~Si+1

)2
up

to an innocuous constant for N sites and periodic boundary
conditions (i + 1 and i − 1 are taken modulo N ). Each term
in this sum corresponds to the square of the total spin of three
consecutive sites schematically shown in Fig. 7.

1 2 3 4 5
.... ....

6

.... ....

4

3

21 3

2

3 5

4

.... ....
1 2 3 2 3 4 4 53

Figure 7. Decomposition of the Hamiltonian for the Majumdar-
Ghosh chain (and its anisotropic generalization), which can be vi-
sualized as overlapping three site contiguous chunks. Each three
site motif has the XXZ Hamiltonian on a triangular motif which,
at Jz = − 1

2
can be three-colored and dimer covered consistently,

without creating any conflicts.

For even N , all terms can be simultaneously minimized, a
property of “frustration free" Hamiltonians, i.e. each three site
motif can be brought in a total S = 1

2 state in two different
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Figure 8. Dimer and three-color solutions on a six site motif. These
patterns repeat for larger systems. For Jz = − 1

2
all four states are

exact ground states, for periodic chains that have sizes which are
multiples of six. (For exactly six sites, the four solutions are not
linearly independent). For |D2〉, the sites on the boundary pair up
into a dimer for periodic boundary conditions.

ways. These correspond to the two dimer coverings of the one
dimensional chain and are referred to as the valence bond solid
(VBS) states in the literature. Ref. 44 rigorously proved that
these are the only two exact ground states of the MG chain.

We generalize the MG Hamiltonian to anisotropic interac-
tions,

HMG
XXZ = J1

N∑
i=1

(
Sxi S

x
i+1 + Syi S

y
i+1 + Jz S

z
i S

z
i+1

)
+

J2

N∑
i=1

(
Sxi S

x
i+2 + Syi S

y
i+2 + Jz S

z
i S

z
i+2

)
(18)

with J2
J1

= 1
2 which we fix for the rest of this discussion, and

Jz is a dimensionless parameter in this section. For this ratio
of J2

J1
= 1

2 , the entire Hamiltonian still remains a sum of tri-
angular pieces each of which has the 3c form for Jz = − 1

2 ;
this decomposition has been schematically depicted in Fig. 7.
The ground state of this Hamiltonian is thus locally a three-
coloring state on each triangular piece. As long as each of
these three-site motifs can be three-colored consistently, with-
out creating any “color conflicts" (no neighboring sites have
the same color, and each contiguous three site motif has three
distinct colors), the resulting wavefunction is an exact ground
state of the anisotropic MG chain. For chain lengths that are
multiples of three, this can be done in precisely two ways -
rbgrbg... and rgbrgb..., as is shown in Fig. 8. For chain
lengths that are also even, i.e. multiples of six, we may project
the two three-colorings to the Sz = 0 sector and, as mentioned
earlier, this projection still preserves the property that it is an
eigenstate.

Additionally, the set of two dimer coverings are also exact
ground states at the 3c point of the anisotropic MG chain. This
is because on any three-site triangular motif, the two linearly
independent three-colorings (schematically |rgb〉 and |rbg〉)
may be linearly combined and then projected to Sz = ± 1

2

to make a dimer or valence bond and a free spin- 12 . Indeed,
this is the situation at the familiar Jz = 1 MG point as well.
Requiring all three-site triangular motifs to have a dimer and
a free spin- 12 yields the two dimer covering states.

For a six-site chain, the proposed set of four solutions (two
three-colorings and two dimer coverings) are not linearly in-
dependent. We establish this with an explicit enumeration of
the amplitudes of three-coloring and dimer wavefunctions for

1.0 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0 K = 0

K =

K = other

Figure 9. Energy spectrum of the 18 site periodic anisotropic
Majumdar-Ghosh chain as a function of Jz (J⊥ = 1) in the Sz = 0
sector. For a given Jz , only the lowest 30 energies in each momen-
tum sector are plotted. The ground state energy is subtracted out
at each value of Jz . There is a phase transition at Jz = − 1

2
. For

Jz > − 1
2

the ground state is exactly two fold degenerate (one state
in k = 0 and the other in k = π), which correspond to linear com-
binations of the two Majumdar-Ghosh dimer (valence bond) solu-
tions. These ground states persist all the way to the Heisenberg point
(Jz = 1) and beyond (not shown), consistent with the analytic argu-
ments.

all 20 Ising configurations in the Sz = 0 sector (see Table II
in App. G). We obtain the relation,

|D1〉+ |D2〉 =

√
20

ω2 − ωPSz=0(|rgbrgb〉 − |rbgrbg〉) (19)

where |D1〉 and |D2〉 are depicted in Fig. 8, and in our nota-
tion, PSz=0|...〉 corresponds to a coloring wavefunction that
has been projected and normalized. In defining our sign con-
vention for the dimer solutions, we have used that any local
dimer of sites i and i + 1 (modulo N) is 1√

2

(
| ↑〉i ⊗ | ↓

〉i+1 − | ↓〉i ⊗ | ↑〉i+1

)
. For chains that are higher multi-

ples of six, there is no such linear dependence between the
four states. On larger system sizes N = 12, 18, 24, 30, we
find the number of solutions to be four or greater. We have
empirically observed the precise number to be (N6 + 2) but do
not have an explanation for the extra solutions.

We now address the case of Jz ≥ −1
2 . We rewrite the

anisotropic MG Hamiltonian (up to a constant) as

HMG
XXZ = HMG

3c +
(Jz + 1

2 )

2

N∑
i=1

(Szi−1 + Szi + Szi+1)2

≡ HMG
3c +HZZ (20)

As the second term involves the square of the sum over
only the Sz components, therefore for (Jz + 1

2 ) ≥ 0 this
term is minimized for any state that satisfies (Szi−1 + Szi +

Szi+1)2|ψ〉 = ( 1
2 )2|ψ〉 for any three consecutive sites {i −

1, i, i+1}. WhileHMG
3c andHZZ do not commute, any wave-

function that simultaneously minimizes their individual con-
tributions is guaranteed to be a ground state of the anisotropic
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MG model. This condition is indeed achieved by the dimer
VBS states since, as discussed earlier, they respect the condi-
tion that any three-site triangular motif is composed of a dimer
and a free spin- 12 . Thus, they are indeed the lowest energy
eigenstates of HMG

3c and HZZ simultaneously and therefore
of HMG

XXZ . This analytic result is confirmed with exact diag-
onalization, and demonstrated for the representative example
of the 18 site periodic chain in Fig. 9. While the dimer solu-
tions break translational invariance, appropriate linear combi-
nations of them restore this symmetry, these linear combina-
tions appear in exact diagonalization (with momentum sym-
metry). We observe two exactly degenerate states, one with
momentum k = 0 and the other k = π that are selected from
the degenerate manifold at Jz = − 1

2 , and stay degenerate for
all Jz > − 1

2 , gapped out from the rest of the spectrum.
The three-coloring states (projected or unprojected) possess

LRO, and in accordance with the Mermin-Wagner theorem are
not allowed to be the ground state of a Hamiltonian with con-
tinuous symmetry in one dimension. However, at precisely
the Jz = − 1

2 point which is a critical point in parameter
space, both the short range ordered solutions (dimer VBS) and
the three-coloring states coexist.45 This leads us to conclude
that the presence of competing states at the solvable point can
strongly influence the stability of the coloring ground state,
and in this particular case, they immediately lose out to the
VBS ground states for any Jz > − 1

2 .

V. CONCLUSION

In this work, we have reported a ground state solvable point
H2c in the XXZ phase diagram of lattice translationally in-
variant bipartite quantum magnets in any magnetization sec-
tor. The associated U(1) symmetric XY Néel order in the
zero magnetization sector is numerically demonstrated to be
adiabatically connected to the SU(2) symmetric Néel order
at the Heisenberg point. This is unified with a similar thread
in the tripartite triangular lattice with 120◦ AFM order and
associated solvable point H3c with finite number of three-
colorings. For the case of the m

ms
= 1

3 sector on the triangular
lattice, we found that the umbrella state at H3c extends up to
Jz ∼ 0.75, after which the magnetization plateau UUD state
is obtained. We also studied the anistropic generalization of
the MG chain and found it to be ground state solvable. Both
long-range ordered colorings and valence bond ordered states
coexist at the 3c point, while the latter are the only ground
states on moving towards the SU(2)-symmetric point and be-
yond. This offers an interesting contrast to the previous results
that we presented on magnetic LRO.

It is also interesting to ask whether the existence of the
2c point offers a natural explanation for the numerically ob-
served existence of LRO on diluted unfrustrated AFM at their
percolation threshold.46–51 This problem has seen several con-
flicting opinions, owing to the possible smallness of the order
parameter (the staggered magnetization). Parts of the system
become dimer covered with dominant VBS correlations, and
hence magnetically inert, yet LRO tenuously survives on such
fractal clusters. LRO at the 2c point on such bipartite clus-
ters is obviously guaranteed (Eq. 8), and one would anticipate
that it adiabatically persists to the Heisenberg point, but this
remains to be firmly established.

In comparison to the ordered cases presented here, that in-
volved finite number of colorings of the lattice, the highly-
frustrated Kagome lattice harbors a macroscopic degeneracy
due to an exponential number of three-colorings.20 While it
is not clear which state is stabilized as one moves towards
the Heisenberg point, there is evidence of adiabaticity of the
Heisenberg point to H3c from DMRG computations.21,52,53

Evidence for adiabaticity to the XY point (Jz = 0) was also
observed previously in the context of chiral spin liquid on
the Kagome lattice in the m/ms = 2/3 magnetization sec-
tor.54 These findings suggest a unifying picture of the ground
state behavior in XXZ models. A natural question to ask
then is what happens to the excited states and the associated
dynamics of coloring states on tuning the anisotropy. (The
question of non-equilibrium dynamics in the vicinity of the 3c
point on the Kagome, as a function of anisotropy has been ad-
dressed recently55,56). Finally, for completeness, we note that
our numerical evidence for adiabaticity from solvable points
towards the isotropic regime strictly applies to finite size sys-
tems, and rigorously showing this in the thermodynamic limit
at the level of a mathematical theorem is an open problem.
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|sj〉 are the Ising states | ↑〉 or | ↓〉 on site j. Terms of the form 〈cj |sj〉 follow from these definitions. Taking into account the
overall normalization of 2N

NCN/2
in the S∗z = 0 sector as discussed in the main text, we have,

〈CSz=0|CSz=0〉 = N
∑
p

∏
j

1

2
(eip/2 + e−ip/2) (where N =

1

N + 1

2N

NCN
2

)

=
N
2N

N∑
k=0

(eikθ + e−ikθ)N (where p =
2πk

N + 1
= 2kθ and k is integer)

=
N
2N

N∑
k=0

N∑
m=0

NCm(eikθ)m(e−ikθ)N−m (using the binomial expansion)

=
N
2N

N∑
m=0

NCm(N + 1)δN/2−m,0

= N N + 1

2N
NCN

2
= 1 . (A1)

as expected.
Analogous to Eq. 6, the general expression for diagonal correlation function in the zero magnetization sector is

〈CSz=0|SzmSzn|CSz=0〉 (A2)

= N
∑
p

 ∑
sm,s′m,sn,s

′
n

eipsm〈cm|sm〉〈sm|Szm|s′m〉〈s′m|cm〉 eipsn〈cn|sn〉〈sn|Szn|s′n〉〈s′n|cn〉

 ∏
j 6={m,n}

∑
sj

eipsj 〈cj |sj〉〈sj |cj〉

 .
Perfoming the sm, s′m, sn, s

′
n, sj sums, we get

〈CSz=0|SzmSzn|CSz=0〉 = N
∑
p

1

4
(eip/2 − e−ip/2)

1

4
(eip/2 − e−ip/2)

∏
j 6={m,n}

1

2
(eip/2 + e−ip/2)


= N

∑
p

1

4

(eip/2 − e−ip/2)(eip/2 − e−ip/2)

(eip/2 + e−ip/2)(eip/2 + e−ip/2)

∏
j

1

2
(eip/2 + e−ip/2)


= − N

2N+2

∑
p

[
(eip/2 + e−ip/2)N−2 − (eip/2 + e−ip/2)N

]
= −N (N + 1)

2N+2
[4×N−2 CN

2 −1
−N CN

2
]

= −1

4

1

N − 1
(A3)

where we use similar manipulations as in Eq. A1. Similarly, the general expression for off-diagonal correlation function in the
zero magnetization sector is

〈CSz=0|S±mS∓n |CSz=0〉 (A4)

= N
∑
p

 ∑
sm,s′m,sn,s

′
n

eipsm〈cm|sm〉〈sm|S±m|s′m〉〈s′m|cm〉 eipsn〈cn|sn〉〈sn|S∓n |s′n〉〈s′n|cn〉

 ∏
j 6={m,n}

∑
sj

eipsj 〈cj |sj〉〈sj |cj〉

 .

Again, perfoming the sm, s′m, sn, s
′
n, sj sums, we get

〈CSz=0|S±mS∓n |CSz=0〉 = N
∑
p

 εmne
±ip/2e∓ip/2

(eip/2 + e−ip/2)(eip/2 + e−ip/2)

∏
j

1

2
(eip/2 + e−ip/2)


= εmn

N
2N

∑
p

(eip/2 + e−ip/2)N−2

=
εmn

4

N

N − 1
. (A5)
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where we use similar manipulations as in Eq. A1, and εmn = −1 in Eq. A5 when {m,n} belongs to sites with different colors,
while εmn = 1 when sites {m,n} have the same color. Following Eq. A5, it is straightforward to get the form of Eq. 8 in the
main text.

Appendix B: Details of the gaplessness argument

To show that the unprojected two-coloring state |C〉 is a gapless ground state of H2c, we consider the following state |C ′〉
built by modulating the two-coloring of |C〉 as mentioned in the main text:

|C ′〉 ≡
∏
i∈A
⊗ieiŜ

z
i δi |r〉i

∏
j∈B
⊗jeiŜ

z
j δj |b〉j

=
∏
i∈A

(
cos

(
δi
2

)
|r〉+ i sin

(
δi
2

)
|b〉
)∏
j∈B

(
cos

(
δj
2

)
|b〉+ i sin

(
δj
2

)
|r〉
)

=

(∏
i

cos

(
δi
2

))
|C〉+ . . .

≡ √ε|C〉+ . . . (B1)

where ε ≡∏i cos2
(
δi
2

)
, and δi are to be small numbers→ 0. Both |C〉 and |C ′〉 are clearly normalized. Now, for the variational

excited state, we will consider a state |ψ〉 as that part of |C ′〉 which does not contain any component along |C〉, i.e. 〈ψ|C〉 = 0.
This is simply achieved by

|ψ〉 ≡ |C ′〉 − √ε|C〉. (B2)

This state has to be renormalized to respect normalization, i.e, presently

〈ψ|ψ〉 = 〈C ′|C ′〉+ ε〈C|C〉 − √ε (〈C ′|C〉+ 〈C|C ′〉)
= 1− ε (B3)

In the above, we simply used 〈C ′|C〉 = 〈C|C ′〉 =
√
ε as defined in Eq. B1. Now in the following, we establish a variational

upper bound for the excitation gap using |ψ〉 which being orthogonal |C〉 is a legitimate variational excited state. The energy in
the properly normalized state will be

〈ψ|H2c|ψ〉
〈ψ|ψ〉 =

〈C ′|H2c|C ′〉+ ε〈C|H2c|C〉 −
√
ε (〈C ′|H2c|C〉+ 〈C|H2c|C ′〉)

1− ε

=
〈C ′|H2c|C ′〉 − ε〈C|H2c|C〉

1− ε (B4)

where we make use of the fact that |C〉 is the (ground) eigenstate of H2c, i.e. H2c|C〉 = 〈C|H2c|C〉|C〉, and thereby
〈C|H2c|C ′〉 = 〈C ′|H2c|C〉 =

√
ε〈C|H2c|C〉. Therefore, the variational estimate of the excitation energy is

∆E ≡ 〈ψ|H2c|ψ〉
〈ψ|ψ〉 − 〈C|H2c|C〉 =

〈C ′|H2c|C ′〉 − 〈C|H2c|C〉
1− ε (B5)

We are primarily interested in the N dependence or scaling of ∆E in the arguments below. For the numerator of ∆E in
Eq. B5, for a single bond, the states on the sites that are part of the bond are relevant, and therefore we have for the bond 〈i, j〉
(with i ∈ A sublattice and j ∈ B sublattice without loss of generality):

〈C ′|Hij |C ′〉 − 〈C|Hij |C〉 =
(
e−iŜ

z
i δi〈r|i ⊗ e−iŜ

z
j δj 〈b|j

)
Hij

(
eiŜ

z
i δi |r〉i ⊗ eiŜ

z
j δj |b〉j

)
− (〈r|i ⊗ 〈b|j)Hij (|r〉i ⊗ |b〉j)

=

[
−1

4
(cos δi cos δj + sin δi sin δj) +

1

4

]
=

1− cos(δi − δj)
4

' (δi − δj)2
8

(B6)

since δi → 0 ∀ i, and it is understood that j in the above expressions are the nearest neighbor sites in the unit cell to which i
belongs.
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As described in the main text, let us choose the following modulation: δi = δ sin(q.ri) with q = 2π
Lx
x̂ → 0 as Lx → ∞.

Let’s recall that Lx, Ly, . . . are the linear dimensions, and the number of sites N =
∏
i Li in d dimensions. We sum over all the

bonds along the x-axis (since in other directions, δi − δj = 0 identically in our choice of modulation) to get

〈C ′|H2c|C ′〉 − 〈C|H2c|C〉 =

N∑
i=1

δ2

8
[sin (q · ri)− sin (q · (ri + x̂))]

2

=

N∑
i=1

δ2

2

[
sin

(
q · x̂

2

)
cos

(
q ·
(
ri +

x̂

2

))]2

' δ2π2

2L2
x

[
N∑
i=1

cos2
(
q ·
(
ri +

x̂

2

))]
(B7)

by using small angle approximation as q · x̂ = 2π/Lx ∼ N−1/d. We also have
∑N
i=1 cos2(q.(ri + x̂

2 )) = 1
4

2C1 N ∼ N by
using very similar steps for the power of cosine sums as in previous sections. Therefore, the numerator in Eq. B5 for ∆E scales
as

〈C ′|H2c|C ′〉 − 〈C|H2c|C〉 ∼ δ2N1−2/d (B8)

Another way to see the above scaling is by choosing i,j such that ri = 0, i.e. δi = 0 and δj = δ 2π
Lx

. For this choice,
one obtains the maximum value of (δi − δj) over all bonds (simply because for f(x) = sinx, the variation or slope around
x = 0 is maximum). This gives an upper bound for 〈C ′|H2c|C ′〉 − 〈C|H2c|C〉 which leads to the same scaling as before, i.e.
N max[(δi − δj)2] ∼ δ2N1−2/d.

If δ scales as δ ∼ Nα, then the numerator of ∆E in Eq. B5 scales as

〈C ′|H2c|C ′〉 − 〈C|H2c|C〉 ∼ N1+2α− 2
d , (B9)

which will→ 0 (as is the goal of this appendix) if α < 0 (for d = 2). This is consistent with our initial assumption above that the
modulations are small, i.e. δi � 1 ∀ i. However, to complete the argument, it remains to analyse the scaling of the denominator
of Eq. B5 as well to make sure that ∆E indeed scales to zero. We note here that the denominator 1− ε is directly related to the
overlap of |C〉 and |C ′〉. Going ahead,

ε =

N∏
i=1

cos2
(
δi
2

)
'

N∏
i=1

(
1− δ2i

4

)

=⇒ log(ε) '
N∑
i=1

log

(
1− δ2i

4

)
'
∑
i

(
−δ

2
i

4

)

=⇒ ε ' exp

[
−

N∑
i=1

δ2i
4

]
= exp

[
−δ

2

4

N∑
i=1

sin2(q · ri)
]

(B10)

Now we again use a power of sines sum identity to arrive at
∑N
i=1 sin2(q · ri) = N

22
2C1 ∼ N . Therefore for δ ∼ Nα, ε behaves

as

ε ∼ e−N.N2α

= e−N
1+2α

(B11)

In order to ensure gaplessness, i.e. ∆E → 0 as N → ∞, we need to ensure that the denominator 1 − ε remain finite and not
scale to zero simultaneously. Given Eq. B11, this is clearly ensured by 1 + 2α > 0 ⇒ −1/2 < α Thus, we have arrived at the
desired scaling choice for δ such that the variational estimate for the excitation energy ∆E scales to zero when

− 1/2 < α < 0 (B12)

which implies gaplessness for the spectrum at the solvable point H2c as is to be expected for a U(1)-symmetry broken Néel
state. This completes our proof.

Finally, it is instructive to consider how the above gaplessness argument fails when α is not in the desired range stated above.
E.g. when α is below the range, say α = −1, then the numerator of ∆E indeed still scales to zero as desired, however the
denominator now also scales to zero! This tells us that the modulation magnitude can not be too small either on a finite lattice,
otherwise the overlap does not scale to zero fast enough to make the gaplessness argument work, inspite of the naive expectation
that ε is simply the product of N factors each being less than one (of the form cos2(δi/2)). On the other side, when α is above
the range, say α = 0, then the denominator does scale to a finite value (one) as desired, but now the numerator of ∆E does not
scale to zero thus again invalidating the gaplessness argument.
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Appendix C: Two-point ground state correlators for the m = 0 sector of H3c

In this section, we calculate matrix elements for triangular lattice where the coloring ground states is two-fold degenerate (see
Sec. III A). We recall that |cj〉 on site j can be |r〉 ≡ 1√

2
(| ↑〉 + | ↓〉), |b〉 ≡ 1√

2
(| ↑〉 + ω| ↓〉) or |g〉 ≡ 1√

2
(| ↑〉 + ω2| ↓〉)

corresponding to the colors on the three sublattices of the triangular lattice. ω = ei2π/3 and ω2 = ω∗ are the cube roots of unity.
Therefore, if we associate integers 0, 1, 2 to cj for |r〉, |b〉, |g〉 respectively, it follows that 〈cj |sj〉 = ω(cj−2cjsj)/

√
2. Taking

into account the overall normalization of 2N
NCN/2

in the S∗z = 0 sector, the overlap in general can be written as

〈CSz=0|C ′Sz=0〉 = N
∑
p

∏
j

1

2
(eip/2 + ei2πλj/3e−ip/2) (C1)

where λj = (2cj + c′j) (mod 3). Therefore for the two three-coloring states, we get 〈C(1)
Sz=0|C

(1)
Sz=0〉 = 〈C(2)

Sz=0|C
(2)
Sz=0〉 = 1 as

expected using the very same steps as in Eq. A1.
For the overlap between the two three-coloring states, we have

〈C(1)
Sz=0|C

(2)
Sz=0〉 = 〈C(2)

Sz=0|C
(1)
Sz=0〉 = N

∑
p

[
1

23
(eip/2 + e−ip/2)(eip/2 + ωe−ip/2)(eip/2 + ω2e−ip/2)

]N/3
=
N
2N

∑
p

(ei3p/2 + e−i3p/2)N/3

=
N/3CN/6
NCN/2

(C2)

This overlap vanishes in the thermodynamic limit, i.e., N →∞.
For the spin-spin correlations, we will make use of the following identities:∑

sm,s′m

eipsm〈cm|sm〉〈sm|Szm|s′m〉〈s′m|cm〉 =
1

4
(eip/2 − ei2πλm/3e−ip/2)

∑
sm,s′m

eipsm〈cm|sm〉〈sm|S+
m|s′m〉〈s′m|cm〉 =

1

2
(eip/2 ei2πcm/3) (C3)

∑
sm,s′m

eipsm〈cm|sm〉〈sm|S−m|s′m〉〈s′m|cm〉 =
1

2
(e−ip/2 ei4πcm/3)

Then, starting from the analogs of Eq.A2 and Eq.A4 for the three-coloring case, we have

〈C(l)
Sz=0|SzmSzn|C

(l)
Sz=0〉 = N

∑
p

1

4

(eip/2 − e−ip/2ei2πλm/3)(eip/2 − e−ip/2ei2πλn/3)

(eip/2 + e−ip/2ei2πλm/3)(eip/2 + e−ip/2ei2πλn/3)

∏
j

1

2
(eip/2 + e−ip/2ei2πλj/3)


= − N

2N+2

∑
p

[
(eip/2 + e−ip/2)N−2 − (eip/2 + e−ip/2)N

]
(for cj = c′j , λm/n/j = 0 mod 3)

= −N (N + 1)

2N+2

[
4×N−2 CN

2 −1
−N CN

2

]
= −1

4

1

N − 1
, (C4)

〈C(l)
Sz=0|S+

mS
−
n |C(l)

Sz=0〉 = N
∑
p

 ( 1
2e
i2πcm/3eip/2) ( 1

2e
i4πcn/3e−ip/2)

1
2 (eip/2 + e−ip/2ei2πλm/3) 1

2 (eip/2 + e−ip/2ei2πλn/3)

∏
j

1

2
(eip/2 + e−ip/2ei2πλj/3)


=
N
2N

ei
2π
3 (cm+2cn)

∑
p

(eip/2 + e−ip/2)N−2

=
N

4(N − 1)
ei

2π
3 (cm+2cn) (C5)
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and similarly

〈C(l)
Sz=0|S−mS+

n |C(l)
Sz=0〉 = N

∑
p

 ( 1
2e
i4πcm/3eip/2) ( 1

2e
i2πcn/3e−ip/2)

1
2 (eip/2 + e−ip/2ei2πλm/3) 1

2 (eip/2 + e−ip/2ei2πλn/3)

∏
j

1

2
(eip/2 + e−ip/2ei2πλj/3)


=
N
2N

ei
2π
3 (2cm+cn)

∑
p

(eip/2 + e−ip/2)N−2

=
N

4(N − 1)
ei

2π
3 (2cm+cn) (C6)

where l ∈ (1, 2). Since we made the choice (cr, cb, cg) = (0, 1, 2) above, thus for sites {m,n} that have different colors, we
obtain

〈C(l)
Sz=0|Sxr Sxb + SyrS

y
b |C

(l)
Sz=0〉 =

N

8(N − 1)
ω(1 + ω) = − N

8(N − 1)

〈C(l)
Sz=0|Sxr Sxg + SyrS

y
g |C(l)

Sz=0〉 =
N

8(N − 1)
ω2(1 + ω2) = − N

8(N − 1)

〈C(l)
Sz=0|Sxb Sxg + Syb S

y
g |C(l)

Sz=0〉 =
N

8(N − 1)
1.(ω + ω2) = − N

8(N − 1)
. (C7)

In the above equations, we have used the identity 1 + ω + ω2 = 0. U(1) symmetry implies 〈C(l)
Sz=0|SxmSxn|C

(l)
Sz=0〉 =

〈C(l)
Sz=0|SymSyn|C

(l)
Sz=0〉, and therefore 〈C(l)

Sz=0|SxmSxn|C
(l)
Sz=0〉 = 〈C(l)

Sz=0|SymSyn|C
(l)
Sz=0〉 = − 1

2 ( 1
8

N
N−1 ) for sites {m,n} that

have different colors. For sites {m,n} that have the same color, putting cm + 2cn = 2cm + cn = 0 mod 3 in Eqs. C5 and C6,
we obtain 〈C(l)

Sz=0|SxmSxn|C
(l)
Sz=0〉 = 〈C(l)

Sz=0|SymSyn|C
(l)
Sz=0〉 = 1

8
N
N−1 . In general, we may write

〈C(l)
Sz=0|SxmSxn|C

(l)
Sz=0〉 = 〈C(l)

Sz=0|SymSyn|C
(l)
Sz=0〉 = εmn

1

8

N

N − 1
(C8)

where εmn = 1 and −1/2 for sites {m,n} with same and different colors respectively. As cos(120◦) = cos(240◦) = −1/2 and
cos(0◦) = 1, this is often called as 120◦ or three sub-lattice order (in the XY plane).

Appendix D: Two-point ground state correlators for the m
ms

= 1
3

sector of H3c

For the m
ms

= 1
3 sector, the calculation steps are similar to the m = 0 sector shown in the previous section with the only

difference being S∗z = 0 gets replaced by S∗z = N/6 and the overall normalization factor thus becomes 1
N+1

2N
NC2N/3

= N̄ .
Therefore,

〈C(1)
Sz=N/6|C

(1)
Sz=N/6〉 = 〈C(2)

Sz=N/6|C
(2)
Sz=N/6〉 =

N̄
2N

∑
p

(eip/2 + e−ip/2)Ne−ipN/6

=
N̄
2N

N∑
k=0

N∑
m=0

NCm(eikθ)m(e−ikθ)N−me−ikNθ/3 (where p =
2πk

N + 1
= 2kθ)

=
N̄
2N

N∑
m=0

NCm(N + 1)δ2N/3−m,0

=
N̄
2N

(N + 1) NC 2N
3

= 1 . (D1)

Similarly, we have

〈C(1)
Sz=N/6|C

(2)
Sz=N/6〉 = 〈C(2)

Sz=N/6|C
(1)
Sz=N/6〉 = N̄

∑
p

[
1

23
(eip/2 + e−ip/2)(eip/2 + ωe−ip/2)(eip/2 + ω2e−ip/2)

]N/3
e−ipN/6

=
N̄
2N

∑
p

(ei3p/2 + e−i3p/2)N/3e−ipN/6

=
N/3C2N/9

NC2N/3
(D2)
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In the thermodynamic limit, the right hand side of Eq. D2 vanishes and the two three-coloring states become orthogonal to each
other similar to the m = 0 sector. The expression for diagonal correlation function in this sector is

〈C(l)
Sz=N/6|SzmSzn|C

(l)
Sz=N/6〉 = − N̄

2N+2

∑
p

[
(eip/2 + e−ip/2)N−2 − (eip/2 + e−ip/2)N

]
e−ipN/6

= −N̄ (N + 1)

2N+2

[
4×N−2 C 2N

3 −1
−N C 2N

3

]
= −1

4

[
8

9

N

N − 1
− 1

]
, (D3)

whereas the off-diagonal correlation function has the form

〈C(l)
Sz=N/6|S+

mS
−
n |C(l)

Sz=N/6〉 =
N̄
2N

ei
2π
3 (cm+2cn)

∑
p

(eip/2 + e−ip/2)N−2 e−ipN/6 =
2N

9(N − 1)
ei

2π
3 (cm+2cn) (D4)

and

〈C(l)
Sz=N/6|S−mS+

n |C(l)
Sz=N/6〉 =

N̄
2N

ei
2π
3 (2cm+cn)

∑
p

(eip/2 + e−ip/2)N−2 e−ipN/6 =
2N

9(N − 1)
ei

2π
3 (2cm+cn) . (D5)

Combining Eq. D4 with Eq. D5 and following the same steps as for the m = 0 sector, we have

〈C(l)
Sz=N/6|SxmSxn|C

(l)
Sz=N/6〉 = 〈C(l)

Sz=N/6|SymSyn|C
(l)
Sz=N/6〉 = εmn

1

9

N

N − 1
(D6)

with εmn as defined in the previous section.

Appendix E: Ground State structure factors for H2c and H3c

Here we compute the exact structure factors of the two-coloring and two three-coloring states for the square and triangu-
lar lattice in the zero magnetization sector respectively. The calculations follow directly from the exact expressions of real
space correlation functions derived previously: a) 〈CSz=0|SzmSzn|CSz=0〉 = − 1

4
1

N−1 for m 6= n and 0.25 for m = n, and
b) 〈CSz=0|SxmSxn|CSz=0〉 = 〈CSz=0|SymSyn|CSz=0〉 = εmn

8
1

N−1 for m 6= n and 0.25 for m = n for all the coloring states
with appropriate definitions of εmn for the square and triangular cases as noted in Apps. A and C. For both cases, the diagonal
structure factor has the form

Szz(q) ≡ 1

N

∑
m,n

e−iq·(rm−rn)〈C(l)
Sz=0|SzmSzn|C

(l)
Sz=0〉

=
1

N

0.25N − 1

4

1

N − 1

∑
m6=n

e−iq·(rm−rn)


= 0.25− 1

4

1

N(N − 1)

[∑
m,n

e−iq·(rm−rn) −N
]

= 0.25− 1

4(N − 1)
[Nδq,0 − 1] (E1)

and therefore Szz(q) = 0 for Brillouin zone center and Szz(q) = 0.25 + 1
4(N−1) for other points. The off-diagonal structure

factors has the form

Sxy(q) =
1

N

∑
m,n

e−iq·(rm−rn)〈C(l)
Sz=0|SxmSxn|C

(l)
Sz=0〉

=
1

N

0.25N +
1

8

N

N − 1

∑
m 6=n

εmn e
−iq·(rm−rn)

 (E2)



19

For the 2c case, εmn = eiq0·(rm−rn) with q0 = (π, π), Therefore,

Sxy(q) = 0.25 +
1

8

1

(N − 1)

[∑
m,n

ei(q−q0)·(rm−rn) −
∑
m

1

]

= 0.25 +
1

8

1

(N − 1)

[
N2δq,q0 −N

]
(E3)

For the 3c case, εmn = eiq0·(rm−rn)+e−iq0·(rm−rn)

2 with q0 = ( 4π
3 , 0) or (− 4π

3 , 0), and therefore

Sxy(q) = 0.25 +
1

8

1

(N − 1)

[
N2

2
(δq,q0

+ δq,−q0
)−N

]
(E4)

These values are observed in ED and DMRG at the solvable points (Fig. 2 and 4) as expected.

Appendix F: Real space spin correlations

In the main text, we discussed the evolution of features in the static spin structure factor of the triangular and square lattice
antiferromagnet as a function of the anisotropy Jz , in the zero magnetizationm = 0 (Sz = 0) sector. Here we present the ground
state real space spin correlation functions on the 12×6 cylinder for the triangular lattice, and 8×8 cylinder for the square lattice.
We plot 1

2 〈Sxi Sxc + Syi S
y
c 〉 and 〈Szi Szc 〉, with respect to a site c located in the bulk of the cylinder, for various representative Jz

values.
In Fig. 10 we discuss our results for the triangular case. At Jz = −1.0, the system spontaneously forms two (equal sized)

ferromagnetic domains, one with spins pointing in the z direction and the other with spins pointing in the−z direction, consistent
with the Sz = 0 constraint imposed in the DMRG calculation. Due to the choice of the cylindrical geometry (length being bigger
than the width) the two domains are placed horizontally, to minimize the energy cost of having a domain wall. The transverse
(XY plane) correlations exist only along the domain wall.

At the exactly solvable point Jz = − 1
2 , the correlation functions are consistent with the exact formulae derived for the

projected coloring wavefunction. The 〈Szi Szc 〉 correlator is constant, independent of sublattice. The transverse correlations show
correlations consistent with 120◦ order, and do not depend on the distance between sites, but only on which sublattice they
belong to.

On moving away from the solvable point towards the Heisenberg point i.e. for Jz > − 1
2 , next nearest neighbor ferromagnetic

correlations gradually begin to develop in the z direction. The in-plane correlations qualitatively resemble the pattern seen at
Jz = − 1

2 , but the long range order is weakened, as is evidenced from the fall off of the size of the circles (see caption). At the
Heisenberg point, both patterns evolve to be identical (as they must) owing to the full rotational symmetry of the Hamiltonian at
Jz = 1, and given that the ground state is non-degenerate. At Jz = 3, evidence of ordering in both channels is seen, at least on
the finite size system studied here. This is the co-existence of diagonal and off-diagonal ordering, discussed in the main text.

For completeness, we also show the case of the square lattice in Fig. 11. The ordering wavevector of Néel order is now (π, π)
and the critical points in the XXZ phase diagram are at Jz = −1 and Jz = 1.

Appendix G: Tables

In this section, we list the tables that have been referred to in the main text in Sec. II and IV.

(Lx, Ly)
E|C〉
#bonds

EED
#bonds

#|C〉
(N + 1)

#ED
〈Ŝzi Ŝ

z
j 〉|C〉

(− 1
4

1
N−1 )

〈Ŝzi Ŝ
z
j 〉ED

εij〈Ŝxi Ŝ
x
j 〉|C〉

( 1
8

N
N−1 )

εij〈Ŝxi Ŝ
x
j 〉ED

(2,2)/(4,1) -0.25 -0.250000.. 5 5 -1/12 -0.083333.. 1/6 0.166666..
(4,2) -0.25 -0.250000.. 9 9 -1/28 -0.035714.. 1/7 0.142857..
(6,2) -0.25 -0.250000.. 13 13 -1/44 -0.022727.. 3/22 0.136364..
(4,4) -0.25 -0.250000.. 17 17 -1/60 -0.016666.. 2/15 0.133333..
(6,4) -0.25 -0.250000.. 25 25 -1/92 -0.0108696 3/23 0.130435..
(8,4) -0.25 -0.250000.. 33 33 -1/124 -0.0080645 4/31 0.129032..

Table I. Comparison of exact analytic results with exact diagonalization computations for the case of two-coloring. The results hold for both
periodic and open boundary conditions.
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1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz =-1.0

1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz =-0.5

1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz =-0.2

1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz =0.4

1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz =1.0

1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz =3.0

Figure 10. Real space correlation functions (measured with respect to a central site c) 1
2
〈Sxi Sxc +Syi S

y
c 〉 and 〈Szi Szc 〉 for the triangular lattice

in them = 0 (Sz = 0) magnetization sector, at various representative Jz . The correlation function of the spin at a site with itself is not plotted,
and is left empty. The size of the circles indicates the magnitude of the correlator and the color indicates the sign, blue being negative and red
being positive.
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1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz = −2.0

1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz = −1.0

1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz = 0.0

1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz = 0.6

1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz = 1.0

1
2〈Sxi Sxc + Syi S

y
c 〉 〈Szi Szc 〉Jz = 2.0

Figure 11. Real space correlation functions (measured with respect to a central site c) 1
2
〈Sxi Sxc + Syi S

y
c 〉 and 〈Szi Szc 〉 for the 8 × 8 square

lattice cylinder in the m = 0 (Sz = 0) magnetization sector, at various representative Jz . The correlation function of the spin at a site with
itself is not plotted, and is left empty. The size of the circles indicates the magnitude of the correlator and the color indicates the sign, blue
being negative and red being positive.
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Configuration 23/2|D1〉 23/2|D2〉 23/2
(
|D1〉+ |D2〉

) √
20PSz=0|rbgrbg〉

√
20PSz=0|rgbrgb〉

√
20

ω2−ω

(
|rgbrgb〉 − |rbgrbg〉

)
| ↑↑↑↓↓↓〉 0 0 0 1 1 0
| ↑↑↓↓↓↑〉 0 0 0 1 1 0
| ↑↓↑↓↓↑〉 −1 0 −1 ω2 ω −1
| ↓↑↑↓↓↑〉 +1 0 +1 ω ω2 +1
| ↑↑↓↓↑↓〉 0 +1 +1 ω ω2 +1
| ↑↓↑↓↑↓〉 +1 −1 0 1 1 0
| ↓↑↑↓↑↓〉 −1 0 −1 ω2 ω −1
| ↑↑↓↑↓↓〉 0 −1 −1 ω2 ω −1
| ↑↓↑↑↓↓〉 0 +1 +1 ω ω2 +1
| ↓↑↑↑↓↓〉 0 0 0 1 1 0
| ↓↓↓↑↑↑〉 0 0 0 1 1 0
| ↓↓↑↑↑↓〉 0 0 0 1 1 0
| ↓↑↓↑↑↓〉 +1 0 +1 ω ω2 +1
| ↑↓↓↑↑↓〉 −1 0 −1 ω2 ω −1
| ↓↓↑↑↓↑〉 0 −1 −1 ω2 ω −1
| ↓↑↓↑↓↑〉 −1 +1 0 1 1 0
| ↑↓↓↑↓↑〉 +1 0 +1 ω ω2 +1
| ↓↓↑↓↑↑〉 0 +1 +1 ω ω2 +1
| ↓↑↓↓↑↑〉 0 −1 −1 ω2 ω −1
| ↑↓↓↓↑↑〉 0 0 0 1 1 0

Table II. Amplitudes of dimer and three-coloring wavefunctions (and linear combinations) for all 20 Ising configurations in the Sz = 0 sector
for the six site chain with periodic boundary conditions. ω ≡ exp( i2π

3
) is the cube root of unity.


