
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Self-stabilizing exchange-mediated spin transport
T. Schneider, D. Hill, A. Kákay, K. Lenz, J. Lindner, J. Fassbender, P. Upadhyaya, Yuxiang

Liu, Kang Wang, Y. Tserkovnyak, I. N. Krivorotov, and I. Barsukov
Phys. Rev. B 103, 144412 — Published  8 April 2021

DOI: 10.1103/PhysRevB.103.144412

https://dx.doi.org/10.1103/PhysRevB.103.144412


Self-stabilizing exchange-mediated spin transport
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Long-range spin transport in magnetic systems can be achieved by means of exchange-mediated
spin textures with robust topological winding – a phenomenon referred to as spin superfluidity. Its
experimental signatures have been discussed in antiferromagnets which are nearly free of dipolar
interaction. However, in ferromagnets, which possess non-negligible dipole fields, realization of such
spin transport has remained a challenge. Using micromagnetic simulations, we investigate coherent
exchange-mediated spin transport in extended thin ferromagnetic films. We uncover a two-fluid
state, in which the long-range spin transport by spin textures co-exists with spin waves, as well as a
soliton-screened spin transport regime at high spin injection biases. Both states are associated with
distinct spin texture reconstructions near the spin injection region and sustain spin transport over
large distances.

I. INTRODUCTION

The field of magnon-spintronics opens new possibili-
ties for energy-efficient information storage[1, 2], trans-
port, and processing. Achieving low-dissipation long-
range spin transport is one of the main goals of spintron-
ics research. In magnetic insulators, spin currents are
carried by spin waves, free of undesired electric currents
[3]. However, despite low damping, spin waves exhibit
exponential decay over distances that can be short at
high frequencies.

The bosonic nature of spin excitations in ordered mag-
netic materials can benefit from magnon-magnon interac-
tions [4, 5] and the ensuing coherence. Bose-Einstein con-
densation of magnons, that was experimentally observed
in various systems [6–10], is a notable example. Another
phenomenon characteristic of bosonic systems is superflu-
idity; resistance-free charge transport in superconductors
and viscosity-free mass transport in superfluid helium are
some prominent examples [11–13].

In Ref. [14], Halperin and Hohenberg proposed a hy-
drodynamic theory of magnons, which is formally re-
lated to superfluidity. Extending this analogy further
[15], exchange-mediated spin transport by spin textures
with metastable winding (EMS) can be dynamically in-
duced in easy-plane ordered spin systems. Upon non-
equilibrium spin injection with perpendicular-to-plane
polarization [16], a global texture winding of magnetic
order parameter develops in the form of a topologically
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robust winding spiral (Fig. 1a). The order parameter pre-
cesses coherently in time at low frequencies, transporting
spin over macroscopic distances [15] with slow algebraic
decay [16, 17] governed by Gilbert damping [18–21]. The
resultant spin transport is thus intrinsically long-ranged,
beyond the decay length of ordinary spin waves. While
EMS bears similarities to mass superfluidity (equation of
spin motion resembles Josephson relations for superflu-
idity, superflow is characterized by the gradient of the
phase)[15, 16, 22–34], it must be stressed that this phe-
nomenon is not truly dissipationless.

Recently, signatures of EMS have been experimentally
observed in antiferromagnetic spin systems [35, 36]. A
realization of EMS in ferromagnets remains an unsolved
challenge. Previous theoretical works have revealed the
potential of EMS [15, 16, 22–32, 34] for spintronics ap-
plications but have not systematically studied the role of
dipolar interactions. Numerical calculations in Ref. [37]
for micrometer-scale thin-film ferromagnets have demon-
strated that dipolar interaction can destroy EMS; more-
over, numerical simulations in thin ferromagnetic stripes
[25, 26] have shown that EMS can be achieved despite
the dipolar interaction, sparking a discussion on experi-
mental feasibility of such states.

Here we present a micromagnetic study of EMS in ex-
tended ferromagnetic thin films and investigate the role
of dipolar interaction. We find that stable EMS state can
in fact be achieved and that it allows for long-range spin
transport in a wide range of spin biases.

In ferromagnetic films, the breakdown of the EMS cor-
responds to a sudden alignment of the magnetization out-
of-plane, which disrupts the spin transport [15]. When
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FIG. 1. EMS in the absence of dipolar interaction. (a) Schematic view of the thin film. The spin injector provides spin current
with out-of-plane polarization (blue arrows). The spin sinks are shown. The red arrows represent a magnetization snapshot.
(b) Initial EMS velocity (black circles) and base frequency (red circles) as functions of the current density. Three regimes of
the EMS are marked. Black line shows transmitted spin current τ (in the same units as EMS velocity) calculated based on the
analytical model. (c) Spatial dependence of the EMS velocity in regime I, (d) in regime II at j = 3.1 · 1011 A m−2, (e) in regime
III at j = 4.6 · 1011 A m−2.

the spin-injection bias is increased, the driven easy-plane
spin-winding state reaches an instability at the injection
site. We find that this, in turn, triggers a nonlinear dy-
namic state with significant out-of-plane character. By
decreasing the injection efficiency, a stable easy-plane
spin-winding state with a reduced spin flux can be re-
covered at some distance from the injector. We find that
the spin bias applied to the injector does not determine
the spin current flowing through the magnet. Instead,
the latter is established self-consistently, as a result of the
nonlinear feedback of the magnetic dynamics near the in-
jector. This feedback regulates the spin injection through
spin wave emission and/or coherent soliton formation. In
effect, the spin superflow away from the injector can stay
below the instability threshold even at large spin biases.

II. RESULTS

We simulate extended ferromagnetic films in the
thickness range of d = 2–30 nm by applying periodic
boundary conditions in the film plane to a 50µm× 5µm
patch. Magnetic parameters of the film are chosen
(Appendix) to mimic Y3Fe5O12 (YIG) – a magnetic
insulator with low damping that may be considered
as a candidate for experimental realization of EMS.
Magnetization dynamics is excited by locally injecting

a continuous pure spin current with out-of-plane spin
polarization. It is simulated through spin-transfer
torque in the middle of the film underneath a narrow
spin injector. The spin injector carries electric current
[38, 39] that translates into spin current with conversion
efficiency of θs = 0.07 (Appendix). At the short edges
of the film patch, spin sinks are simulated by a local in-
crease of the Gilbert damping as explained in Appendix.
The spin sinks are representative of spintronics devices
fed and operated with spin current supplied through
EMS. All calculations in this study are carried out at
0 K, i.e. without thermal excitations. Figure 1a shows
the sample geometry, spin injector, and spin sinks.

Behavior without dipolar interaction. At first,
we investigate the case of omitted dipolar interaction
by enforcing zero dipole fields in our simulations and
introducing an artificial easy-plane anisotropy Ku =
−10 kJ m-3 approximating the shape anisotropy of a thin
film [16, 40, 41]. For each current value, the simula-
tions are carried out until steady state or dynamic equi-
librium is reached. In Fig. 1a, a snapshot of magnetiza-
tion is shown for the steady state at a current density
j = 1011 A m-2 in the spin injector. The magnetization
exhibits continuous 2π-rotations in the film plane, char-
acteristic of the EMS state [15]. The EMS velocity is
defined as u(x) = −∇φ(x), where φ is the azimuthal an-
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gle of magnetization [15, 16] (it is also the local order
parameter of the EMS state). Figure 1b shows the ini-
tial velocities u0 (calculated in the vicinity of the injector
region as described in Appendix) as a function of the cur-
rent density. Three distinct regimes can be identified as
indicated in the figure:

Regime I. At low current densities, the EMS veloc-
ity increases linearly with increasing current density, in
good agreement with analytical predictions of Ref. [42].
The EMS velocity decreases smoothly and slowly with
increasing distance from the spin injector (Fig. 1c). At
the spin sink, it decreases more rapidly and reaches zero
value. The longitudinal spin density n = mz (equal to
the polar component of the normalized magnetization)
[25] is well below 0.5.

Regime II. At the first critical current density j
(1)
crit,

the EMS starts to exhibit oscillations in real space, as
shown in Fig. 1d. The initial EMS velocity is calculated
by averaging out these oscillations. It shows a notable
drop at the first critical current (Fig. 1b). Underneath
the injector, the magnetization is partially tilted out of
the film plane by the spin current. Outside of the injector
region, the longitudinal spin density remains n < 0.5.

Analysis of the temporal evolution of magnetization
reveals large oscillations in the injector region. It emits
incoherent spin waves into the rest of the film which su-
perimpose with the EMS state (Fig. 1d). We observe spin
wave emission and the drop of the EMS velocity for vari-
ous injection widths w = 30—300 nm. The injector width
does not affect the critical current, but modifies [26] the
critical current density through geometrical renormaliza-

tion j
(1)
crit ∝ Icrit/w (Fig. 4 in Appendix).

The temporal base frequency Ω of the EMS spiral is
extracted for each current density by calculating the fast-
Fourier transformation of the time evolution of the in-
plane magnetization components in the injector region.
The frequency governs the Gilbert dissipation of the EMS
as αΩ2, where α is the Gilbert damping constant (Ap-
pendix). Moreover, it is a temporal characteristic of the
EMS spin dynamics that can be observed in experiment.
As shown in Fig. 1b, both u0 and Ω exhibit the distinct
breakdown in the regime II.

Regime III. Above the second critical current density

j
(2)
crit, the EMS velocity is again a smooth function of

the distance (Fig. 1e). No spin waves are observed.
The magnetization underneath the injector is almost
fully aligned out-of-plane and does not vary with time.
Both initial velocity and base frequency show a reduced
growth rate with increasing spin current and saturate
around j = 8 · 1011 A m-2 (Fig. 1b).

Analytical model. We strive to develop [43] a mini-
mal analytical model to explain the observed phase dia-
gram; we thus neglect dipolar interaction and magnetic
damping. With exchange constant Aex, we employ the

free energy:

F =

∫
dx3

[
Aex (∇mmm)

2 −Kum
2
z

]
. (1)

Taking into account that magnetization mmm does not vary
along the y and z directions, Landau-Lifshitz equation
assumes the form

dmmm

dt
= −mmm×

(
∂2mmm

∂x2
−mzẑ̂ẑz

)
, (2)

where x and t are re-scaled in units of
√
Aex/Ku and

µ0Ms/2γKu, respectively (with the permeability of free
space µ0 and gyromagnetic ratio γ). By parameteriz-
ing the magnetization with spherical coordinates, mmm =
(sin θ cosφ, sin θ sinφ, cos θ), equation (2) becomes

θ̇ sin θ = −∂x(sin2θ ∂xφ), (3)

φ̇ sin θ = ∂2xθ +
1− (∂xφ)2

2
sin 2θ. (4)

Equation (3) corresponds to a continuity equation for the
longitudinal spin density. We are interested in solutions
which satisfy boundary conditions of the form

−∂xφ(0) = τi − γ̃∂tφ(0), −∂xφ(L) = γ̃∂tφ(L) (5)

where τi is the spin torque from the injection site and
γ̃ parameterizes the edge damping effects of spin pump-
ing [28, 44]. General soliton solutions of equation (2)
were studied in Ref. [45]. Here we develop soliton solu-
tions with boundary conditions (5). Assuming soliton
solutions have the form θ = θ(x− ct) results (Appendix)
in

φ− φ0 = Ωt−
∫ x

0

dx′
c cos θ + a1

sin2θ
, (6)

x− ct = x0 ±
1√
2

∫ θ(x,t)

θ1

dθ′√
f(θ′)

, (7)

where f(θ) = a2−Ω cos θ− 1
2 sin2θ− 1

2 (c2− a21) csc2(θ)−
ca1 cot(θ) csc(θ). Here Ω, c, φ0, a1, and a2 are integration
constants. We consider the case in which f(θ) > 0 for
some open interval (θ1, θ2) ⊂ (0, π/2), where θ1 and θ2
are zeros of f(θ). The soliton expression (7) results in a
solution of the form (x−ct)(θ), which is multi-valued, i.e.
it has multiple branches that need to be pieced together
to obtain the inverted result of the form θ(x−ct). In this
patching procedure, solution branches are selected that
produce physically meaningful results. The procedure is
guided by the results of the micromagnetic simulations
and is carried out in compliance with the spatial conti-
nuity of magnetization and its first derivative, as well as
satisfying the boundary conditions (injector and sink).
The resulting soliton solution, θ(x − ct), is symmetric
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about its minimum θ1 (corresponding to a spike in mz)
centered at x0 at t = 0. One such solution is an isolated
soliton traveling at speed c through a surrounding EMS
which has constant polar angle θ2. The length of the
soliton is determined by the characteristic length scale√
Aex/Ku.

The analytically calculated transmitted spin current
per spin density (τ = −∇φ sin2 θ) is shown in Fig. 1b
as the black solid line. The analytical spin current plot
shows three distinct phases, similar to the three phases
identified in micromagnetic simulations. The low-current
regime (I) corresponds to the conventional EMS, i.e. a
coherently precessing constant-θ superflow as derived in
Ref. [27].

For high injection currents of the regime (III), on the
other hand, we find a stationary soliton solution c = 0 of
particular interest. The soliton is placed with the peak
at the injection region boundary. The injector region is
nearly fully polarized out-of-plane θ → 0, and the local
time-dependent oscillations in θ cease. As micromag-
netic simulations show, this configuration lacks the spin
wave noise. The spin current is reduced by the injector
edge soliton due to the high out-of-plane magnetic po-
larization near the injector. This configuration with high
out-of-plane polarization diminishes the transmitted spin
current at the same EMS velocity u. The polarization in
the injector region partially blocks the spin injection, and
the transmitted spin current asymptotically behaves as
∝ 1/j for j → ∞. By virtue of this self-regulation in
the injector region, the EMS persists above biases ex-
pected for the instability (for this reason, we refer to it
as screened EMS or screened spin superfluid).

In a previous analytical study [27], the drop of the
transmitted spin current to zero after the first critical
current has been associated with EMS becoming fully po-
larized out of plane (θ = 0). However, such state is in fact
unstable, even in the undamped model. It has a mode of
instability which forms near the boundaries and propa-
gates into the rest of the film. This mode of instability
has EMS-like precession and grows exponentially with
time. Furthermore, the micromagnetic simulations sug-
gest that neither the conventional EMS of regime (I) nor
the screened EMS of regime (III) are stable when the two
independent solutions of the analytical model overlap in
regime (II) (Fig. 1b). Instead, the simulations show that
EMS persists in the form of a non-trivial dynamic state.
The solution may be a hybrid periodically transitioning
between the conventional EMS and screened EMS. This
transitioning results in injector region oscillations and
spin waves propagating into the film.

Impact of dipolar interaction. A previous study
[37] on micron-sized ferromagnetic thin films has pointed
out a detrimental effect of the dipolar interaction on the
EMS, leading to a collapse of the operable bias range.
Here, we investigate extended systems by employing pe-
riodic boundary conditions. In the following micromag-
netic simulations, the dipolar interaction is enabled and
the previously used uniaxial anisotropy Ku is set to zero.

First, we find that the presence of the dipolar in-
teraction suppresses EMS at low currents and imposes
a threshold j0 for its formation [37]. The uniaxial
anisotropy Ku, introduced in the previous simulations to
mimic the shape anisotropy, has enabled a simple easy-
plane magnetic system in which the EMS can form with-
out injection threshold. On the other hand, the nonlocal
nature of the dipolar interaction introduces an effective
magnetic anisotropy – an energy barrier to overcome – for
the formation of the spatially periodic spin texture of the
EMS [15, 25, 26]. The effective dipole energy increases
with the thickness of the film d, which is varied between
2–30 nm in our simulations. For comparison across dif-
ferent film thicknesses, the current needs to be scaled
by d. Indeed, Fig. 2a shows that a normalized threshold
current j0/d increases nearly linearly with increasing film
thickness.

Upon the formation of the EMS, its initial velocity u0
shows non-monotonous dependence on the current den-
sity. Figure 2b shows a behavior qualitatively similar to
omitted dipolar interaction. Employing spatio-temporal
analysis of the magnetization dynamics, we find again:
(I) the low-current regime free of incoherent spin waves,
(II) the intermediate regime with co-existing EMS and
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FIG. 2. EMS in the presence of dipolar interaction.
(a) Threshold current as a function of film thickness. (b) Ini-
tial EMS velocity and base frequency as functions of the cur-
rent density for a 5 nm thick film (sub-threshold regime omit-
ted for clarity). (c) Spatial dependence of the EMS velocity.
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incoherent spin waves, and (III) the high-current regime
of screened EMS, free of incoherent spin waves. An
additional notable drop of the initial velocity and base
frequency is observed in the middle of the intermediate
regime (II). A detailed evaluation of the data reveals that
u and Ω show multiple non-monotonicities for both the
dipole and dipole-free cases. While the currents at which
they occur differ, their presence seems to be universal
and is likely related to the non-linear generation of spin
waves in regime II.

We further find differences of the spatial profile of EMS
velocity compared to the dipole-free case. As shown in
Fig. 2c, the gradient of the azimuthal angle exhibits spa-
tial modulations. Due to the continuous rotations of
magnetization, dipolar interaction introduces perturba-
tions of the energy landscape with uniaxial symmetry –
the dipolar field alternates at every π-rotation. The in-
plane components of the magnetization (Fig. 3a) display
a distorted sinusoidal profile as a function of distance.
Thus, the angle gradient shows a small magnitude mod-
ulation with the period of the π-rotations. The out-of-
plane component of magnetization reveals spikes at the
extrema of mx (Fig. 3), which reduces the exchange en-
ergy. This modulation can be considered a soliton lattice,
resulting in an EMS state with a broken symmetry. The
symmetry is broken by the spin injector and mediated to
the EMS by virtue of the dipolar interaction.

III. CONCLUSIONS

In this study, the EMS is found to persist over a large
range of bias currents. The magnetization pinning [46]
by the dipole fields [37] does not fully suppress the EMS
at high biases for the case of extended films [25]. The
threshold suppression of the EMS at low biases has been
previously discussed [15, 47] for symmetry-breaking mag-
netic anisotropy. In contrast to the effect of such local
anisotropy, the symmetry breaking, investigated in this
study, is mediated by the non-local dipolar interaction
[26]. We find the threshold current to increase linearly
with increasing dipole energy.

A coupling between the EMS order parameter (az-
imuthal angle φ) and the longitudinal spin density n is
observed. The longitudinal spin density shows oscilla-
tions at twice the base frequency [26], in agreement with
the symmetry order of the effective (uniaxial) magnetic
anisotropy due to the dipole fields. The oscillations cor-
respond to excitations of the soliton lattice. No such
behavior is observed in the absence of the dipolar inter-
action.

We identify three regimes of the EMS, universally
present, with and without dipolar interaction. In the
low-current regime, conventional EMS is found. Above
the first critical current, the EMS co-exists with incoher-
ent non-thermally populated magnons. Above the second
critical current, the incoherent magnons are suppressed
and a soliton screened EMS is found.
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FIG. 3. Perturbations of the magnetization spiral in the
presence of dipolar interaction, snapshot after 500 ns for
j = 4·1010 A m−2. (a) In-plane components of the normalized
magnetization, mx (blue solid line) and my (red solid line),
deviate from the sinusoidal behavior. (b) Out-of-plane com-
ponent mz reveals peaks when mx has an extremum. (c) The
divergence of the magnetization is linked to the magnetostatic
field.

We discover that the EMS can self-stabilize beyond
the anticipated critical injection bias. The spin super-
flow is not determined by the injection current alone but
self-consistently, taking into account the spin reconstruc-
tion in the injector region. At high biases, the EMS is
partially screened from injected spin current by soliton
formation. For the intermediate-current regime, we iden-
tify non-linear magnon scattering to play a role in EMS
self-stabilization.

Recently, spin injection with perpendicular polar-
ization due to spin-orbit effect with spin rotational-
symmetry [48] and due to planar Hall effect [49] has
been experimentally realized using metallic ferromagnets.
Moreover, efficient thermal spin injection [50] with polar-
ization not bound by injector geometry has been achieved
[4, 51]. These developments may benefit designing novel
ferromagnetic spin injectors and instigate research on
thin film-based EMSs. Questions on spin texture for-
mation in the injector region due to interaction with the
injector, thermal stability of the superflow, and accessible
spin bias ranges are likely to arise. Our work points out
the impact of injector spin texture formation and inco-
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herent spin waves on stabilization of EMS and extending
the range of achievable spin biases.

APPENDIX

Micromagnetic simulations. Micromagnetic sim-
ulations were carried out by numerically solving the
Landau-Lifshitz equation using MuMax software [52].
The sample volume was discretized into a mesh with the
cell size of 24.41 nm×19.53 nm×d. The validity of the
results was validated by carrying out control simulations
with a reduced cell size. Periodic boundary conditions
within the MuMax code were used. For the dipole-free
simulations, dipolar interaction was disabled within the
code. For the simulations with the dipolar interaction,
the magnetostatic field was accounted for using the ap-
proach presented in Ref. [53].

The spin current injection was simulated via the spin-
transfer (Slonczewski) torque within the code. The elec-
tric current density given throughout the manuscript cor-
responds to the injected spin current via js = θs

~
e j with

the spin conversion efficiency θs, the Planck constant ~
and the elementary charge e.

The spin sinks were designed to emulate spintronic de-
vices, fed by the spin current transmitted through the
EMS. They were modeled by non-uniform increase of the
Gilbert damping over the width (4µm) of the spin sink
regions. From the sink edge closer to the injector to the
edge at the end of the film patch, the damping constant
α was increased exponentially from 0.002 to 0.11. Such
modification of damping emulates extraction of angular
momentum from the EMS and prevents potential reflec-
tions of spin excitations at the edges of the patch, which
is necessary to simulate an extended spin system.

In the simulations, the magnetization dynamics was
evolved for several hundreds of nanoseconds. The data
shown in the figures corresponds to snapshots of the
spatially dependent magnetization. The snapshots were
taken after the magnetization field had reached the dy-
namic steady-state. Typically, a simulation time of 500 ns
was chosen to ensure that the system reached the steady-
state. Control calculations with various simulation times
were performed to ensure the validity of the steady-state.

The position dependent EMS velocity u(x) = −∇φ(x)
was calculated from the position dependent azimuthal
angle φ, determined from the magnetization snapshots
after reaching the steady-state. The initial EMS velocity
u0 was obtained from the position dependent EMS veloc-
ity in the direct vicinity to the injector edge (and by av-
eraging out the spatial modulations in this region). The
base frequency was determined as a maximum-amplitude
frequency of the Fourier transformation of the time de-
pendent in-plane magnetization data within the injector
region.

The material parameters were chosen to simu-
late YIG films [54–57]: the saturation magnetization
Ms = 130 kA m−1 and the exchange constant Aex =

3.5 pJ m−1. Control simulations with the magnetocrys-
talline anisotropy of YIG (0.6 kJ/m3) were carried out.
The anisotropy results in an increase of the threshold cur-
rent consistent with previous studies [26]. This effect is
small compared with the threshold induced by the dipo-
lar interaction. Moreover, magnetocrystalline anisotropy
induces a spatial modulation of the EMS velocity (with
smaller wavelength than the dipolar modulation of the
velocity) that is consistent with the magnetocrystalline
anisotropy symmetry [26]. This modulation, together
with the modulation due to the dipolar interaction, leads
to an overall complex spatial profile of the EMS veloc-
ity. As it does not contribute to the discussion of this
study, the magnetocrystalline anisotropy was omitted in
the simulations.

Analytical model. Numerical calculations of the an-
alytical model resort to the same material parameters as
micromagnetic simulations, but do not include magnetic
damping. The parameters of the analytical model, spin
sink (edge damping γ̃) and spin conversion efficiency at
the interface, were fixed by fitting the low-bias analytical
model to the results from the micromagnetic simulations.

Here we derive equations (5) and (6). The assumption
θ = θ(x − ct) implies that the left-hand-side of Equa-

FIG. 4. Impact of the injector width on EMS. (a) Base fre-
quency Ω for different injector widths. (b) First critical cur-
rent density decreases as ∝ 1/w (red line), where w is the
injector width.
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tion (3) can be written as a derivative in x, thus allowing
Equation (3) to be integrated. The result can be solved
for ∂xφ and integrated again to express φ in terms of θ.
In general, the constants of integration can depend on t,
i.e.

φ = C2(t)−
∫ x

dx′
c cos θ + C1(t)

sin2θ
. (8)

However, the time dependence is restricted by sub-
stituting the expression for φ in terms of θ into Equa-
tion (4). Once θ has been isolated, the resulting equa-
tion should not have explicit t dependence because, by
assumption, θ only depends on x− ct. This implies that
C1 is independent of time and restricts C2 to at most
linear dependence on t, thus resulting in equation (6).
Once φ dependence has been eliminated in Eq. (4), equa-
tion (7) follows by direct integration with the integrating

factor ∂xθ.
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