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1. Abstract 
Analytical solutions based on the Boltzmann transport equation (BTE) within the 
relaxation time approximation are developed to relate the Nernst coefficient to 
materials band structure and relaxation times parameters in simple conductors. 
The dependence of the Nernst coefficient on the effective mass, anisotropy of 
bands, energy bandgap, and scattering parameters are investigated. The obtained 
relations are compared to the existing solutions presented in the past using 
different approximations.  
 

2. Introduction: 

Thermomagnetic energy conversion based on the Nernst effect and 
thermomagnetic refrigeration based on the Ettingshausen cooling provides a solid-state 
technique for direct conversion of heat to electricity and pumping of heat from the cold 
reservoir to the hot one. Thermomagnetic modules are similar to thermoelectric modules 
(see Fig. 1). A temperature gradient applied to a conductor results in a longitudinal 
Seebeck voltage which is the base of the thermoelectric heat to electricity, energy 
conversion. When a magnetic field is applied normal to the imposed temperature 



gradient, there will be a secondary transverse 
voltage, the so-called Nernst voltage. [1] The 
Nernst coefficient, N, is then defined as the 
transverse voltage gradient divided by the 
temperature gradient (we do not divide by the 
magnetic field and assume N is in the units of 
V/K), has the same dimensions as the Seebeck 
coefficient, and is the base of the 
thermomagnetic energy conversion. (Figure 1).  

The thermomagnetic efficiency of materials 
for power generation and refrigeration 
applications is evaluated by their 
dimensionless figure of merit, 𝑧!"𝑇 defined as 
#𝑁#𝜎$$𝑇&/𝜅%% where  𝜎$$ is the electrical 
conductivity in the y-direction (direction of 
the Nernst voltage), 𝜅%% is the thermal conductivity along the direction of the applied 
thermal gradient, and 𝑇 is the average temperature of the material [2]. Historically, the 
Nernst coefficient was first observed in Bismuth in 1886. [1] It was then measured in 
many metals  [3–7] semimetals [8–11] and narrow-gap semiconductors [12–15]. Previous 
studies have shown that extremely mobile quasi-particles in dilute metals generate a 
noticeable Nernst signal. [16] Within the Fermi liquid picture, it is shown that the Nernst 
effect roughly measures the ratio of electron mobility to Fermi energy in a given 
metal. [17,18] 

In addition to power generation and cooling, the Nernst effect has been used as an 
experimental probe in studying various physical systems, for instance, in determining 
the carrier-scattering mechanisms involved in semiconductors and semimetals  [14,19–
22].  

The theory of the Seebeck coefficient is well developed and the analytical solutions 
for the Seebeck coefficient are well known. For instance, we know that the Seebeck 
coefficient,	𝛼, in metals follow Mott’s formula and is an increasing function of the 
derivative of the logarithm of the electrical conductivity, 𝜎, with respect to energy, 𝜀, at 

the Fermi energy, 𝜀& (𝛼 = '!("
!!

)*
+,-.(0)
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|2# where 𝑘3 is the Boltzmann constant, T is the 

temperature, and 𝑒 = 1.6 × 10456𝐶 is the unit of charge). This suggests that materials with 
a large slope of the density of states and relaxation times with respect to energy own a 
large Seebeck coefficient.  

Figure 1. Schematic of the a)Seebeck effect b) 
Nernst effect c) Thermoelectric module for 
refrigeration d) Thermomagnetic modules for 
refrigeration.  



In non-degenerate semiconductors, the Seebeck coefficient increases as the 
bandgap increases. Within the single-band model, the further the chemical potential from 
the band edge, the larger the Seebeck coefficient. Within the two-band model that 
includes the conduction band and the valence band, the Seebeck coefficient increases with 
the ratio of the effective masses of the two bands and is zero close to the middle of the 
bandgap. Understanding how the Seebeck coefficient depends on the materials 
parameters helps in the design of highly efficient thermoelectric materials. [23–25] 
Perhaps, a better criterion is the thermoelectric power factor, but the Seebeck coefficient 
comes as the first step. 

Similarly, the Nernst theory has also been studied in the past. Sondheimer studied 
the galvanometric and thermomagnetic effects in metals with s and d bands  [17,26]. 
Putley  [15] studied the  Nernst signal in semiconductors through the Lorentz-
Sommerfeld theory  [27]. He started from a formalism developed by Sommerfeld and 
Frank [28] for metals and extended it to semiconductors and mixed conductors. [29] 
Theoretical predictions of the Nernst coefficient of PbTe and PbSe appeared to be 
reasonably close to experimental values. Price  [30] obtained a relatively simple formula 
for the Nernst coefficient in the case of isotropic two-band semiconductors using 
Boltzmann statistics.  In terms of electrical conductivity (𝜎), and Hall mobility (𝜇7) of 
each band, the  Nernst coefficient was defined as 𝑁 = 𝑘3/𝑒 :;

0$0%
0!
< (𝜇87 + 𝜇97)(𝛼8 + 𝛼9) +

0$:$;0%:%
0

> 𝐵 where 𝛼< =
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+!
+ 𝛾< and 𝜑< = 𝛾<(𝜆<7 − 𝜇<7). Based on the kinetic theory 

represented by Einstein  [31], 𝛾 parameter relates diffusion coefficient to mobility by 𝛾< =
8>&

'

?&("
 and 𝜆7 is a mobility developed by both magnetic field and temperature gradient. 

Jeffrey Clayhold studied the Nernst effect in anisotropic materials and found that the 
value of the Nernst coefficient depends on the correlation between the Hall angle and 
thermopower at different points on the Fermi surface  [6]. Masuki et. al., using a 
momentum-dependent relaxation time approximation, showed that in FeSb2, a second 
peak appears in the temperature dependence of the Nernst coefficient due to the phonon-
drag effect [32]. Pikulin et. al. compared the value of the Nernst coefficient in cuprate 
superconductors calculated using constant relaxation time approximation (CRTA) and 
momentum-dependent relaxation time approximation [33]. They found that in the 
combined presence of the band and scattering anisotropy, the CRTA is a poor 
approximation and can result in an error significant enough to result in a Nernst 
coefficient of the wrong sign. It is noteworthy to mention here that, in their calculation, 
only the single band elastic quasi-particle scattering was considered, and the response in 
the low magnetic field limit was computed. In recent years, there has been a surge in 



research activity concentrated on the Nernst effect in Weyl and Dirac semimetals. 
Consequently, several theoretical studies focusing on both the conventional and the 
anomalous part of the Nernst coefficient have been performed using the Boltzmann 
transport equation (BTE)  [34,35]. The contribution of Berry curvature [35–38], conformal 
anomaly [39], gravitational and thermal chiral anomaly [40] in the anomalous part of the 
Nernst coefficient in these material systems have also recently been theoretically 
investigated. These works focus on the topological aspects of the problem but use 
approximations such as Mott’s formula, Sommerfeld expansion, and small magnetic 
fields. 

The goal of this paper is to find explicit and general analytical expressions for the 
Nernst coefficient in simple semiconductors and to develop an understanding of when 
large Nernst coefficient values are expected theoretically, hence narrowing down the 
search for good thermomagnetic materials. We use the term simple semiconductors in 
contrast to topological and ferromagnetic materials which are often used in the study of 
the Nernst coefficient. When possible and needed, we study the thermomagnetic power 
factor and lay the criteria for thermomagnetic transport. While similar results are 
available in old literature, there are several problems. First, they are scattered in old 
papers. Second, they are obtained sometimes using phenomenological assumptions and 
sometimes with little details of the assumptions used, and third, different authors 
obtained different equations using different assumptions. Here we use a BTE approach 
within the relaxation time approximation to study the Nernst coefficient under different 
band structures and scattering rates. When possible, we compare our results with 
previously obtained equations for the Nernst coefficient in simple semiconductors.  

3. Analytical solutions: 

3.1. General definition of the response functions: 

First, we obtain the general solutions for the Nernst coefficient following 
Lundstrom's [41] and Smith's [42] notations. We start by expressing the electrical current 
(𝐽 ) in terms of the electric field (𝐸) and the gradient of the inverse temperature (∇ ;5

!
<).               

	𝑱 = 𝜎𝑬 + 𝛽𝜵 ;5
!
<  1 

          where 𝜎 and 𝛽 are 3 × 3 response function tensors representing respectively the 
electrical conductivity and thermoelectric function. In the presence of an external 
magnetic field (B), moving electrons experience an additional force 𝑭 = −𝑒𝑬 − 𝑒𝒗 × 𝑩. As 



a result, the response functions are modified, i.e., they become a function of the magnetic 
field (𝜎(𝐵) and 𝛽(𝐵)). 

We start by first expressing the Nernst coefficient in terms of these matrices. The 
isothermal Nernst coefficient is defined as the ratio of the transverse voltage to an applied 
thermal gradient when the applied magnetic field is perpendicular to the directions of 
measured voltage and temperature gradient: 𝑁! = 𝐸$/∇@𝑇 . This is subject to open-circuit 
electrical boundary conditions, i.e., 𝑱 = 0.   

Denoting the resistivity tensor by 𝜌 = 𝜎45, we have 𝑬 = 𝜌𝛽𝛁𝑇/𝑇#. In the presence of a 
magnetic field, we define the generalized Seebeck tensor as:   

𝛼 = AB
!!

  2 

 

 In the case where the temperature gradient is along x, and the applied magnetic field 
along z, the longitudinal xx component in the B=0 limit is the ordinary Seebeck coefficient, 
while the transverse xy component contains the Nernst coefficient.  We will show the 
explicit formula for 𝑁! = 𝛼%$ in the next section.  

3.2. General Solution of the BTE in the presence of a magnetic field within the 
relaxation time approximation: 

If we denote the equilibrium distribution function by 𝑓C, for every electronic state of 
momentum, 𝑘, and band index, 𝑛, the BTE is:   

        

D&()
DE

+ 𝒗(=. 𝛁F𝑓(= − 𝑒(𝑬 + 𝒗(= × 𝑩). 𝛁(𝑓(= = − &()4&()
*

G()
  3 

 

From now on, for simplicity, we omit the indices 𝑘, 𝑛 from the velocities, electron 
energies, and distribution functions. Following Smith et al. [42] we write the solution to 
this equation in the form:  

𝑓 = 𝑓C + 𝜏𝒗. 𝑺 ;− D&*

D2
<  4 

 

where 𝜀 is the electron energy and the unknown vector 𝑺 is assumed to be only a function 
of energy 𝜀. Plugging this expression into BTE (3) yields the equation satisfied by 𝑺. It is 
well-known that in the absence of a magnetic field, 𝑺 is the driving electrothermal force 



𝑭	on the electrons: 𝑺 = 𝑭 = −𝛁𝜀& −
242#
!
	𝛁𝑇, where 𝜀& is the electrochemical potential (we 

are using µ to denote mobility). In the presence of B, and in steady-state, the BTE 
simplifies to:  

(1 + 𝜏Ω)𝑓5 = 𝜏𝒗. 𝑭 ;− D&*

D2
<  5 

 

where we defined Ω = 48
ℏ
(𝒗 × 𝑩). 𝛁(  and 𝑓5 = 𝑓 − 𝑓C. The operator Ω	and namely 𝛁( 	acts 

on 𝑓5 which is postulated to be of the form: 𝜏𝒗. 𝑺 ;− D&*

D2
< 

This expression can be simplified if we assume the relaxation times depend only on the 
energy so that 𝛁(𝜏 =

D2
D𝒌
	DG
D2
= ℏ𝒗	 DG

D2
. Furthermore, its action on the velocity gives the 

effective mass tensor at the point 𝑘: 𝛁(𝒗 = ℏ 5
"

  where M is the effective mass tensor. 
Inserting these relations into Eq. 5, one finds that 𝑺 must satisfy. 

𝑺 − 𝜔𝜏	𝑩Y × ℕ	𝑺 = 𝑭  6 

Where 𝐵[  is the unit vector along the direction of the magnetic field, 𝜔 = 83
J*

 is the 

cyclotron frequency, and the dimensionless 3 × 3 tensor ℕ is the inverse effective mass 
matrix normalized by the bare electron mass 𝑚C. Note that one can substitute the cross 
product by the multiplication by an antisymmetric matrix which we call 𝔅: 

  

𝔅 = −𝜔𝜏^
0 −𝐵[K 𝐵[$
𝐵[K 0 −𝐵[%
−𝐵[$ 𝐵[% 0

_   
7 

 

So that the equation satisfied by S becomes a simple 3 × 3 linear system easily invertible. 

	𝑺 = ℚ	𝑭  with  ℚ = (𝕀 + 𝔅ℕ)4𝟏 8 
Therefore, in an actual calculation, if the band structure is known at any k-point of 
interest, one needs to calculate the group velocity and inverse effective mass tensor at 
that k-point, and use the solution to Eq. 8 to deduce the components of 𝑺, which will give 
the electrical current as: 

𝑱 = 48
M
∑ 𝒗(=(= ⊗𝒗(=. 𝑺(=		𝜏(= 	;−

D&()
*

D2
<	   9 

 



This general solution has the advantage that is valid for any arbitrary orientation of the 
fields with respect to each other (no need to be perpendicular) or to the crystalline axes, 
is valid even at moderately large magnetic fields (within the semiclassical approximation) 
as long as we have a relaxation time that is only energy-dependent. If that is not the case, 
as an approximation, one may take its angular average over the constant energy surfaces 
of interest: 𝜏=	(𝜀) = ∑ 𝜏=( 	𝛿(( 𝜀 − 𝜀=()	  

Before proceeding further, we need to point out that although the Nernst coefficient is 
linear in 𝐵 at small magnetic fields, the solution obtained above has in principle full 
magnetic field dependence as the distribution function has not been Taylor expanded in 
powers of B as is commonly done. In this limit, since we have 𝑺 + 𝔅ℕ	𝑺 = 𝑭 , the solution 
becomes 𝑺 = (1 + 𝔅ℕ)45𝑭 ≈ 𝑭 − 𝔅ℕ	𝑭 , i.e. we obtain the standard distribution function 
plus a correction linear in 𝐵:  𝔅ℕ = 𝑒𝐵𝜏/𝑚∗ usually denoted by 𝜔𝜏.  

Behavior at high magnetic fields: From the above equation defining 𝑺, we can note that the 
behavior of response functions will then start with a constant plus a term linear in 𝐵 at 
low 	𝐵, and decays as 1/	𝐵 at large fields. The crossover point is when 𝜔𝜏 = 𝜇𝐵 ≃ 1 where 
𝜇 = 𝑒	⟨𝜏/𝑚∗⟩ is the mobility of the sample. The behavior at these intermediate fields may 
be less straightforward in complex materials with large anisotropies in effective mass and 
relaxation time, but the limiting behavior will remain linear in 𝐵 at low 𝐵 and linear in 
1/𝐵 at high 𝐵. At yet higher fields such that the cyclotron radius defined by 𝑙O# = ℏ/𝑞𝐵 
becomes smaller than other length scales in the problem such as the electron mean free 
paths, quantization effects become important, and the semiclassical BTE approach ceases 
to be valid. 

Throughout the rest of this article, we fix the direction of the applied thermal gradient to 
be in the x-direction and the external magnetic field to be in the z-direction, irrespective 
of the crystalline axes. The Nernst voltage is then collected along y.  

We focus on the isothermal Nernst coefficient 𝑁! ,	where it is assumed there is no thermal 
gradient along y or z.   

Using Eqs.  8 and 9, we can obtain the transport functions. First, to simplify notations, we 
define un-normalized transport averages as: 

   〈⟨𝐴〉⟩<P 	=
5
M
∑ 𝐴=( 	𝑣=(< 	𝑣=(, 	ℚ,P 	(𝑛)	(−=(

D&)(
*

D2
)	  10 

 



where implicit summation over repeated Cartesian indices (𝑖, 𝑗, 𝑙, … ) is implied. From 
their definition in Eq. 1, the general equations defining the response functions can be 
written as:  

𝜎<P = 𝑞#〈〈	𝜏	〉〉<P   ; 𝛽<P = 𝑞𝑇	〈〈	𝜏#𝜀 − 𝜀&&	〉〉<P  11 

The normalizing factor  〈〈1〉〉<< =
5
M
∑ 	𝑣=(< 	𝑣=(, 	ℚ,< 	(𝑛)(−=(

D&)(
*

D2
) can be derived to be  =

J∗ in 
the isotropic case where the effective mass tensor is a scalar (𝑛 is the so-called free-
electron density).  

The Nernst voltage is measured under open-circuit conditions implying  𝐽% = 𝐽$ = 0. 
Setting these currents to zero, and solving for 𝐸% and 𝐸$ in terms of ∇%𝑇 by using Eqs. 1, 
in agreement with previous work  [10], the Nernst and Seebeck coefficients become:  

𝑁! 	=
Q,
R-!

= 5
!!

0--B,-40,-B--
0--0,,40,-	0-,

	   ; 			𝛼%% 	=
Q-
R-!

= 5
!!

0,,B--40,-B-,
0--0,,40,-	0-,

	  12 

  Equation 12 is valid for any arbitrary band structure as long as the x, y, z directions are 
defined along   ∇𝑇, ∆𝑉, 𝐵 directions respectively.                  

  

3.3. Weak magnetic field limit: 

In this section, we proceed to solve the problem in special cases where it can be solved 
analytically. Starting from Eqs. 12 and the following definitions, we need to find explicit 
solutions for 𝜎(𝐵) and 𝛽(𝐵).  

In the case of weak magnetic fields, Eq. 5 simplifies to 𝑓5 ≈ (1 − 𝜏Ω)𝜏𝒗. 𝑭 ;− D&*

D2
<. The first 

term is independent of the magnetic field and we express it as 𝑓T = 𝜏𝒗. 𝑭 ;− D&*

D2
< and the 

second term is linear to 𝑩 and we can express it as 𝑓" = 𝜏# 8
ℏ
(𝒗 × 𝑩). 𝛁((𝒗. 𝑭) ;−

D&*

D2
<. In 

writing 𝑓", we assumed 𝜏 depends only on energy. The current is then written as   𝑱 =
48
M
∑ 𝒗𝑓5( . Using the notation of Eq. 1 and after inserting 𝑓5 into the current equation, we 

obtain:  [41]. 

𝜎<P =
8!

M
∑ 𝜏 ;− D&*

D2
< 𝑣<(𝑣P +

8
ℏ
𝜏 ∈J=U 𝑣J𝐵=

	DV.
D(/
)(   13 

𝛽!" = − #$!%"

&
∑ 𝜏 &− '(#

')
' 𝑣!)𝑥 − 𝑥(+$ (𝑣" +

#
ℏ
𝜏 ∈+,- 𝑣+𝐵, 	

	'/$
'$%

)    14 
Implicit summation over repeated indices is implied. 𝑘3 is the Boltzmann constant, ∈+,- 
is the antisymmetric Levi-Civita symbol, and 𝑥 refers to dimensionless (reduced) energy 
𝑥 = 2

("!
  throughout this work.  



3.4. Special cases  
3.4.1. Case of isotropic single band: A single band with isotropic effective 

mass is the simplest possible band structure and hence that will be our starting point.  In 
this case, the derivative of the velocity with respect to momentum is the inverse of the 

effective mass (	DV.
D(&

= ℏ W.&
J∗). Considering the magnetic field is in the z-direction, Eq. 13 for 

the isotropic case simplifies to:  

𝜎!" =
#"

&
∑ 𝜏 &− '(#

'𝜀 ' 𝑣!𝑣"$ 		+ 0
&
∑ #&1"

+∗ &−
'(#

'𝜀 ' ∈+2" 𝑣!𝑣+𝐵2	$ 	  15 

       

If we now define normalized transport averages by: ⟨𝐴⟩<P = ∑ 𝐴( 	𝑣<𝑣P 	(−(
D&*

D2
)/

∑ 	𝑣<𝑣P 	(−(
D&*

D2
)	we have: 

𝜎%% = 𝜎$$ =
8!

M
∑ 𝜏 ;− D&*

D2
< 𝑣%𝑣%( = 8!

M
Y
J∗ 〈𝜏〉 = 𝜎C  16 

𝜎%$ = −𝜎$% = − 5
M
∑ 80G!

J∗ ;−
D&*

D2
< 𝑣%𝑣%𝐵K	( = −𝜇7𝜎C𝐵K  17 

                                       

where 𝑁 = ∑ 𝑚∗	𝑣<𝑣P 	(−(
D&*

D2
)	 is the number of free carriers, and 𝜇7 =

8
J∗

ZG![
ZG[

 is the Hall 

mobility. Since we are dealing with isotropic band structure, we drop the xx index from 
the averaging.                                                  

Similarly, Eq.14 under isotropic conditions is:  

𝛽%% = 𝛽$$ = − 8("!!

M
∑ 𝜏 ;− D&*

D2
< 𝑣%𝑣%#𝑥 − 𝑥&&( = − 8!

M
〈	𝜏#𝜀 − 𝜀&&	〉

Y
J∗ = 𝛽C   18 

𝛽%$ = −𝛽$% =
("!!

M
∑ 8!G!

ℏJ∗ ;−
D&*

D2
< 𝑣%𝑣%𝐵K	#𝑥 − 𝑥&&( = −𝛽C𝜇B 	𝐵K   19 

 

where 𝜇B =
8
J∗

ZG!	\242#][
ZG	\242#][

	 and we refer to it as thermal mobility.                                 

By substituting all transport functions obtained above in Eq. 12 we find: 

𝑁! = 𝛼C
\?14?2]

(5;(?233)!)
𝐵K   where the zero-field Seebeck is 𝛼C = βC/𝑇#σC 20 

This is our first significant result stating that the Nernst coefficient is proportional to the 
Seebeck coefficient (𝛼C) and also to the difference between the thermal and Hall 
mobilities. We notice that under constant relaxation time approximation, 𝜇B and 𝜇7 are 
identical and the Nernst coefficient is zero! Hence, in the isotropic single band model, the 
Nernst coefficient is merely the result of energy-dependent scattering rates.  



We can further include power laws for the relaxation times to better understand 
the relation between the Nernst coefficient and the energy dependence of the relaxation 
times. It is shown that the relaxation times can be approximated by power laws in the 
form of   𝜏 = 𝜏C𝑥^ for several common scattering mechanisms. For instance the scattering 
parameter (or characteristic exponents), s, is -0.5 for acoustic phonon scattering and 1.5 
for weakly screened ionized impurity scattering. [41] In general since only electrons in a 
narrow Fermi window contribute to transport, it is possible to fit the scattering rates with 
a power law form. Assuming a power law for scattering rates, we obtain:          

𝜇7 =
8
J∗

ZG![
ZG[

= 𝜇C
(#^;5.`)
(^;5.`)

Ϝ!45*.7\%#]b(#^;5.`)

Ϝ45*.7\%#]b(^;5.`)
	      21 

𝜇B = 𝜇C
(#^;#.`)(#^;5.`)Ϝ!458.7\%#]4%#(#^;5.`)Ϝ!45*.7\%#]

(^;#.`)(^;5.`)Ϝ458.7\%#]4%#(^;5.`)Ϝ45*.7\%#]
b(#^;5.`)
b(^;5.`)

		   22 
 

Here, s is the scattering parameter, 𝜇C =
8G*
J∗  is the constant mobility, and 𝑥& =

2#
("!

 is the 

reduced chemical potential. As can be seen, it is possible to obtain analytical solutions in 
the general case, but not simple to interpret as they include Fermi Dirac integrals (ϜP#𝑥&&) 
and gamma functions (Γ). Figure 2 shows the plot of these solutions for the Nernst 
coefficient as a function of the modified chemical potential for several s-values. We note 
that solutions do not exist for all possible s-values.  The Nernst coefficient increases as 
the s-parameter increases. We can conclude that the Nernst coefficient is larger when 
there is a stronger energy dependence of the differential conductivity.   

Nondegenerate case: Using non-degenerate (Maxwell-Boltzmann) statistics, it is possible 
to further simplify the equations. Doing so, we obtain 

𝜇B − 𝜇7 = 𝜇C {
^

^;#.`4%#
| b(#^;#.`)
b(^;#.`)

      23 

𝑁! =
c*

(5;(?233)!)
{ ^
^;#.`4%#

| b(#^;#.`)
b(^;#.`)

𝜇C𝐵K   24 
 

Figure 2. The ratio of the Nernst to Seebeck coefficient as 
a function of the reduced chemical potential (𝑥9 =

:!
;"<

). 

Zero is the band edge.  Dashed lines are the general 
solutions of the isotropic bands, Eq. 20, obtained by 
subtracting Eq. 21 from 22 (the two mobilities). Solid lines 
at the negative side are showing the non-degenerate 
solutions of Eq. 24. As expected only at negative Fermi 
levels, non-degenerate solutions match the full solutions. 
Solid lines at positive Fermi levels are degenerate 
approximations using the Sommerfeld expansion Eq. 27.  
Note that the absolute values are plotted, and the second 
order B terms	(𝜇=𝐵>)? are ignored. 



The results of Eq. 24 are only valid in the non-degenerate limit when the chemical 
potential is in the gap (negative). The analytical solutions of Eq. 24 are plotted in Figure 
2 (solid lines in the negative 𝑥& range. They can closely reproduce the full solutions 
represented in Eqs. 20, 21, and 22 (dashed lines). In the nondegenerate case, the Y

c*
	 ratio 

decreases as the chemical potential moves away from the band-edge (as 5
d;#.`4%#

 ). 

However, we note that the 𝛼C increases linearly as the chemical potential moves away 
from the band edge as #𝑥& − s − 2.5&. Hence, N does not have any significant chemical 
potential dependence! The results obtained in Eq. 24 are similar to what Delves [10] 
presented in his comprehensive review for spherical bands and non-degenerate statistics 

(see Eq. 5.10 of Ref. 10). The difference is the extra factor of e(#d;#.`)
e(d;#.`)

 in our results. Delves 

obtained his results by modifying the distribution function by a 5
(5;(fG)!)

 factor in the 

presence of an external magnetic field where (𝜔 = 83
J∗)	 is the cyclotron resonance 

frequency.  

Degenerate case: We can also estimate the solutions in the metallic (degenerate case). To 

find 𝜇7, we approximate D&
*

D2
~𝛿#𝜀 − 𝜀&& and we obtain: 

𝜇7 =
8
J∗

∫ G!W\242#]V-V-.(2)+2

∫ GW\242#]V-V-.(2)+2
= 𝜇C	𝑥&^   25 

 

The same approximation for 𝜇B gives zero due to the #𝜀 − 𝜀&& term and hence, we use the 
Sommerfeld expansion to obtain: 

𝜇B = 𝜇C
∫ %!4h@#

*

@A iV-V-.(2)\242#]+2

∫ %4h@#
*

@A iV-V-.(2)\242#]+2
= 𝜇C

#(#^;5.`)%#
!45*.7

#(^;5.`)%#
45*.7 = 𝜇C𝑥&^

(#^;5.`)
(^;5.`)

   26 

 

Plugging Eqs. 25 and 26 into 20 we obtain: 

𝑁! =
c*

(5;(?233)!)
𝑥&^

^
(^;5.`)

𝜇C𝐵K   27 

 

The results of Eq. 27 are only valid in the degenerate (metallic) case when the chemical 
potential is well-inside the band (positive). These results are also plotted in Figure 2 (solid 
lines on the positive 𝑥& side) and can reproduce full solutions especially when s is larger 
than 1. In Eq. 27, when s is positive, Y'

c*
	increases with the chemical potential. When s is 



negative, the ratio decreases with increasing the chemical potential. We also remind the 
reader that 𝛼C itself has 5

%#
	dependence. Hence in this limit, N is proportional to 𝑥&^45.  

Within the same approximations used to obtain Eq. 27, the Seebeck coefficient can be 

expressed as (αC =
'!

)
("
8
(^;5.`)
%#

	) and hence the Nernst coefficient is 𝑁! =

'!

)
("
8
	

^	%#
4B8

(5;(?233)!)
𝜇C𝐵K, ignoring the second-order B term. This is similar to (but not identical 

to) 𝑁! =
'!

j
("
8

5
%#
𝜇C𝐵K	obtained by Feiber et.al. [43,44]. They used nearly free-electron 

picture with a phenomenological relaxation time approximation and assumed the Fermi 
level is much larger than the thermal energy (strong metal) to obtain their expression.  
Moreau [45] has developed a phenomenological relation for the Nernst coefficient in 
metals (𝑁! = 𝑅7𝜎 ;𝑇

+c*
+!
<𝐵). It seems that Moreau argument has been an analogy to the 

Hall effect which he attributed to some sort of deformation. While he has not provided a 
convincing proof, he has shown that his relation can explain some of the experimental 
observations in metals. [46] It has shown that his relation can also explain some of the 
semiconductor trend. [14,47] We notice that within single band degenerate model, 𝛼C is 
linear in T and hence 𝑇 +c*

+!
= 𝛼C and 𝑅7𝜎 = 𝜇7 = 𝜇C	𝑥&^. Hence, Moureau’s relation is 

similar to what we obtained here in Eq. 27. Ignoring the second-order B term, the 
difference is a factor of ^

(^;5.`)
.  

3.4.2. Case of ellipsoidal single-band: The analysis of the isotropic case points to 
the fact that anisotropy can increase the Nernst coefficient. Hence, here we study the case 
where the effective mass is different along different axes and the dispersion relation is 

𝜀 = ℏ!

#
{(-

!

J-
+ (,!

J,
+ (3!

J3
|. Using the same steps as before and observing that +V&

+U.
= W&.

J&
	, we can 

start from Eq. 13 to obtain: 

𝜎%% =
8!

M
∑ 𝜏 ;− D&*

D2
< 𝑣%𝑣%U   28 

𝜎%$ = − 5
M
∑ 80G!

J,
∗ ;−

D&*

D2
< 𝑣%𝑣%𝐵K	U = −𝜇7-,𝜎%%𝐵K  29 

𝜇7-, =
8
J,
∗

∑ G!h4@#
*

@A iV-V-	/

∑ Gh4@#
*

@A iV-V-/
= 8

J,
∗
ZG![--
ZG[--

  30 

In defining mobility, the first index refers to the direction of velocities over which the 
averaging is performed, and the second index refers to the effective mass direction.  

𝜎(𝐵) = �
𝜎%% −𝜎%%𝜇7-,𝐵

𝜇7,-𝜎$$𝐵 𝜎$$
�    31 



           

The transport matrices are 3 × 3 but since we fixed B in the z-direction, to keep things 
simple, we only use 2 × 2 matrices. Similarly                                                                       

𝛽(𝐵) = �
𝛽%% −𝛽%%𝜇B-,𝐵

𝜇B,-𝛽$$𝐵 𝛽$$
�    32 

𝜇B-, =
*
J,
∗
ZG!	\242#][--
ZG	\242#][--

  33 

 

The Seebeck tensor is then 

𝛼(𝐵) = AB
!!
= 5

l5;?2-, 	?2,-3
!m
�
𝛼%% + 𝜇7-, 	𝜇B,-𝛼$$𝐵

# −𝛼%%𝜇B-,𝐵 + 𝛼$$𝜇7-,𝐵
−𝛼%%𝜇7,-𝐵 + 𝜇B,-𝛼$$𝐵 𝛼$$ + 𝜇7,-𝛼%%	𝜇B-,𝐵

# �      34 

 

And the Nernst coefficient is the xy component of the Seebeck tensor.  

𝑁! = 𝛼%$(𝐵) =
lc,,	?2-,4c--	?1-,m3

l5;?2-, 	?2,- 	3
!m

     35 

 

Within the constant relaxation time, this equation simplifies to 

𝑁! =
c,4c-

l5;?2-, 	?2,- 	3
!m
	𝜇C,,𝐵K     36 

 

Here 𝜇C,, =
8G*
J,
∗  is the mobility in the y-direction. Eq. 36 shows that the Nernst coefficient 

is proportional to the difference between the Seebeck coefficients in the x and y directions. 
The more anisotropic a sample is, the higher the Nernst coefficient. For instance, in 
layered materials and superlattices, the in-plane transport coefficients are very different 
compared to the cross-plane transport coefficients. Hence these are good candidates to 
explore large Nernst coefficients. An extreme case would be if there is p-type transport 
in the x-direction and n-type transport in the y-direction. While unusual, materials with 
different polarity transport in in-plane and cross-plane directions have been observed 
and studied in the past. [48–53] It would be interesting to measure the Nernst coefficient 
of these materials.  

Similar to the isotropic case, one can include energy-dependent relaxation times in a 
power-law form. Upon doing so we obtain: 



𝑁! =
?*,,3

l5;?2-,?2,-3
!m
{𝛼$$ − 𝛼%%

#^;#.`4%#
^;#.`4%#

| b(#^;#.`)
b(^;#.`)

      37 (non-degenerate) 

𝑁! =
lc,,4c--

(!458.7)
(458.7) m

l5;?2-,?2,-3
!m
	𝑥&^𝜇C,,𝐵  38 (degenerate ) 

 

 

As seen in Eq. 37 (non-degenerate)37, 38, and Figure 3, the larger the ratio of the Seebeck 
coefficients in the two directions, the larger the Nernst coefficient. As before the Nernst 
coefficient is also an increasing function of the s-parameter.  

3.4.3. The two-band model: The case of two bands is important since it 
allows investigation of the effect of bandgap and mass mismatch between electrons and 
holes. To keep the equations simple, here we assume that there are two isotropic bands, 
one is the conduction band labeled by e for electrons hereafter, and the other is the valence 
band labeled by h for holes. We start from Eq. 12 and define each component in the 
presence of two bands. Since the current of electrons and holes are additive, we find that 

𝜎<P = 𝜎<P8 + 𝜎<P9      39 

𝛽<P = 𝛽n<P + 𝛽<P
9      40 

         

We note that the conductivity term that does not have B dependence has the same sign 
for electrons and holes, while the conduction term that is linear in B has opposite signs 
for electrons and holes. In the thermoelectric coefficients 𝛽 however, the terms with no B-

Figure 3. Ellipsoidal case: The absolute value of 
the Nernst coefficient divided by the y component 
of the Seebeck coefficient versus reduced 
chemical potential (𝑥9 =

:!
;"<

). The curves are 

plotted after Eq. 37and 38 in the non-degenerate 
and degenerate limits, respectively. Solid lines are 
referring to when (

E#
E$
= 1) which is then like the 

isotropic case. Dashed lines are referring to when 
((
E#
E$
= 4) and dotted lines are plotted for (

E#
E$
=

10). Red, black, and purple refer to s parameters 
of -0.5, 0.5, and 1.5, respectively. Second order 
terms in B are ignored.   



field are linear in charge (and opposite in sign) and those linear in B are in 𝑒#. We note 
that equations for single-band were developed for electrons assuming a charge of -e, 
hence some of the signs are modified for the case of holes. To be able to address the two 
bands properly, we revise our definitions with the isotropic conditions for each band in 
mind. Each band starts at 𝜀C and goes to infinity. (That is the axis is flipped when dealing 
with the valence band)  
Defining: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜎C = ∫ 𝑒#𝜏 ;− D&*

D2
< 𝑣%𝑣%

o
2*

𝑔(𝜀 − 𝜀C)𝑑𝜀

𝛽C = ∫ 𝑒𝜏𝑇 ;− D&*

D2
< 𝑣%𝑣%#𝜀 − 𝜀&&

o
2*

𝑔(𝜀 − 𝜀C)𝑑𝜀

𝜇7 =
8
J∗

ZG![
ZG[

𝜇B =
8
J∗

ZG!\242#][
ZG\242#][

	  

 
 
 

41 

 
And using superscripts e/h for electrons and holes we obtain 
 

⎩
⎪
⎨

⎪
⎧ 𝜎%% = 𝜎C8 + 𝜎C9

𝜎%$ = #−𝜇78 𝜎C8 + 𝜇79𝜎C9&𝐵K
𝛽%% = −𝛽C8 + 𝛽C9

𝛽%$ = #𝛽C8𝜇B8 + 𝛽C9𝜇B9&𝐵K

   
42 

 
Plugging Eq. 42 into Eq. 12 and ignoring second-order B terms, we find: 
 

𝑁! =
45
!!

\0*$;0*%]lB*$?1
$;B*%?1

% 	m;\?2
$ 0*$4?2

%0*%]\4B*$;B*%]

\0*$;0*%]
! 	𝐵K  43 

𝑁! =
l0*$

!
Y$;0*%

!
Y%m

\0*$;0*%]
! − 5

!!
0*$B*%l?1

%;?2
$ m;0*%B*$l?1

$;?2
%m

\0*$;0*%]
! 𝐵K     44 

 

Where 𝑁8 =
5
!!

B*$l?1
$4?2

$ m

0*$	
𝐵K is the Nernst coefficient of the conduction band alone and 

𝑁9 =
5
!!

B*%l?1
%4?2

%m

0*%	
𝐵K is the Nernst coefficient of the valence band alone.   

The first term in the Nernst coefficient is a weighted average of the Nernst coefficients of 
the electrons and holes, weighted by conductivity squared.  The second term is a mixed 
contribution of the two bands. We refer to the first term as the “average Nernst” and the 
second term as the “mixed Nernst” term.  



To keep the calculations simple, we study Eq. 44 under constant relaxation time 
approximation (CRTA). In the isotropic single band model case, the Nernst coefficient 
was found to be zero under CRTA. The two mobilities 𝜇7 = 𝜇p =

8q*
J∗  were identical, hence 

𝑁8 = 𝑁9 = 0. In the two-band model, and under CRTA, the average Nernst term is 
therefore zero. However, the mixed Nernst term containing the cross terms between the 
two bands results in a nonzero Nernst coefficient (see Eq. 44).  
Under CRTA, 𝜇7 = 𝜇B = 𝜇C =

8G*
J∗ . Defining 𝛼C =

5
!!

B*
0*
	, Eq. 44 simplifies to: 

𝑁 = − 0*$0*%

\0*$;0*%]
! 	#𝛼C8 + 𝛼C9&(𝜇C8 + 𝜇-9)	𝐵K  45 

 Observe that 𝛼C is similar to the Seebeck coefficient, but it has the contribution of only 1 
band, and it is positive for both the conduction band and the valence band. A puzzling 
observation is that even when the two bands are identical and when we are at the center 
of the gap (full symmetry), the Nernst coefficient is not zero and it is equal to 𝑁 =
−𝛼C𝜇C𝐵K. While everything in our analysis of a single band model pointed to the 
requirement of asymmetry, here, we observe that the cross terms between the two bands 
result in a nonzero Nernst coefficient in the case of symmetrical bands.  

We can further study Eq.45  assuming non-degenerate statistics (chemical potential in the 
gap). In the non-degenerate limit, we can define: 

�
𝜎C8 = 𝑛𝑒𝜇C8; 𝜎C9 = 𝑝𝑒𝜇C9

𝑛 = 𝑁O𝑒4(%F4%#); 𝑝 = 𝑁V𝑒4(%#4%G)

𝛼C8 =
("
8
;𝑥O − 𝑥& +

`
#
< ; 𝛼C9 =

("
8
;𝑥& − 𝑥V +

`
#
<
   

46 

using these definitions, Eq .45  simplifies to: 

𝑁! = − ("
8
#𝑥. + 5&

\?*$;?*%]

\=?*$;U?*%]
!𝑁O𝑁V𝑒4%H𝜇C8𝜇C9𝐵K  47 

Figure 4 demonstrates the effect of bandgap and effective mass ratio on the Nernst 
coefficient. Here we plot the absolute value of Nernst divided by 𝜇C	𝐵K =

8G*
J*
𝐵K versus 

reduced chemical potential, we take the middle of the gap as zero and we assumed both 
electrons and holes have the relaxation time of 𝜏C. Hence the only relevant parameters 
are the reduced bandgap (𝑥. =

2H
("!

), the reduced chemical potential and the effective 

mass ratio (𝑚F =
J%
J$
), and the electronic mass (𝑚8, this is the mass relative to the free 

electron mass 𝑚C, note that we could have divided everything by 𝑚9	instead and the 
results would be similar).  

� Y'
?*33

� = ("
8
#𝑥. + 5&𝑒4%H

(JI;5)JI
B*.7

J$r8
BJ
-H
! 	B	-#L;√JI8

BJ-#5
-H
! L
t
!  48 



In the middle of the gap, where the Seebeck coefficient is normally zero, the Nernst 
coefficient has its peak value. Similar to the Seebeck coefficient, the values of the Nernst 
coefficient increase as the bandgap increases. This is clear in Figure 4b where we fixed 
the mass ratio of electrons to holes to 1 (𝑚8 = 𝑚9 = 1) and only modified 𝑥.. We observe 
that the Nernst coefficient in this case linearly increases with the bandgap. Increasing the 
mass ratio of the electrons to holes (or vice versa) increases the Seebeck coefficient. 
However, this is not the case for the Nernst coefficient. Increasing the mass ratio lowers 
the Nernst coefficient as shown in Figure 4a. Finally, we notice that in Eq. 48, there is a 
mass in the denominator. This means that the Nernst coefficient is larger for smaller 
effective mass values. Reducing the mass values to half increases the Nernst coefficient 
by a factor of 2.   

Let us compare these results with that of Putley [15]. For mixed conductors, Putley 

obtained:  𝑁! = − )u("
5j8

\=!?$0;U!?%
0]4=U?$?%(?%;?$)\v;#%H]
(=?$;U?%)!

𝐵 The first paranthesis in Putley is 

the individual contribution of conduction and valence band which is the equivalent of 
our average Nernst term. As discussed under CTRA this term is zero. Hence his 
expression reduces to 𝑁! =

)u("
5j8

#7 + 2𝑥.&
=U?$?%(?%;?$)
(=?$;U?%)!

𝐵 which differs from our equation 

by a factor of )u
5j
#7 + 2𝑥.&/#5 + 𝑥.&. Putley’s work is based on drift-diffusion model and 

assumes that the scattering is dominated by Debye longitudinal lattice model. We can 
also compare our results with what is presented by Aono [54] where he assumed the same 
scattering mechanism for electrons and holes. Similarly, keeping only mixed band 
contributions, Aono’s expression can be written as  𝑁! =

w("
80!

(−𝜎9𝜎8)(𝜇9 + 𝜇8)#5 + 3𝑠 +
𝑥.&𝐵. The A parameter is described by Aono as a positive numerical coefficient that is 
function of s. If we ignore this parameter and set s=0 (CRTA), then the results of Aono is 
similar to what we obtained in Eq. 47. However, we note that the start-point of both Aono 
and Putley seems to be degenerate conductors and the equations were then extended to 
mixed conductors.  Finally, we compare the results to those of Price who obtained the 
Nernst coefficient for two isotropic bands using drift-diffusion model. The mixed term in 
Price’s analysis (See Eq. 12’ of Ref.  [30]) is 𝑁! =

("
8
#𝑥. + 3 + 𝛾8 + 𝛾9&

(?$;?%)
0!

𝜎8𝜎9𝐵K 
wherein γn and γx are unitless numbers connecting thermal diffusion coefficient and 
Einstein diffusion coefficients for electrons and holes. We see that the only difference 
between Eq. 47 and this one is the replacement of (γn + γx) by 2, meaning our treatment 
is equivalent of ratio of 1 between the thermal and normal diffusion constants in Price 
analysis.   

Beyond CTRA, it is easier to study the results numerically. What we obtained previously 
for isotropic single-bands and ellipsoidal bands remains valid. For instance, when 



considering power law for relaxation times [ 𝜏 = 𝜏C ;
2

("!
<
^
], the Nernst coefficient 

increases as the s-parameter increases. This is shown in Fig. 4c where we assumed 
identical bands (effective mass of 1 and the same s-parameter for the two bands) and 𝑥. =
10. Results are plotted on the logarithmic axis and indicate enhancement in the Nernst 
coefficient as the s-parameter increases. Note that Fig. 4c is obtained numerically.  

 

                             

 

 

 

 

 

 

 

In analyzing the Nernst coefficient, we observed that the Nernst coefficient 
increases as the bandgap increases. This observation is against the general knowledge 
that the best thermomagnetic materials are semi-metals. To understand the benefit of the 
semimetals, it is not sufficient to study the Nernst coefficient, and we need to study the 
thermomagnetic power factor. 

𝑃𝐹 = 0
?*
� Y'
?*33

�
#
= #("

!

8
;#'(!

9!
<
0
! #𝑥. + 5&

#	𝑒4#%H (JI;5)!

JIJ$
8.7r8

BJ
-H
! 	B	-#L;√JI8

BJ-#5
-H
! L
t
0		  
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Figure 5 shows the behavior of the power factor. We observe that the power factor has a 
similar dependence on mass ratio as the Nernst coefficient. We also note that the power 
factor increases as the effective mass decreases. The optimum Power factor is when the 
mass ratio is 1. In this case, the optimum power factor is in the middle of the bandgap. 
Under these conditions, the thermomagnetic power factor can be simplified to 

𝑃𝐹 ∝ \%H;`]
!8B

-H
!

J$
8.7   

50 

 
           The power factor as a function of the reduced bandgap (𝑥.) is plotted in Figure 
5b. We notice that the power factor decreases as the bandgap increases. This is 

Figure 4. The absolute value of the Nernst coefficient divided by (𝜇M𝐵 =
NO%
P%
𝐵) is plotted 

versus reduced chemical potential (𝑥9)  for the two-band model assuming isotropic bands 
under CRTA and assuming same 𝜏M for both electrons and holes. Zero is the middle of the 
bandgap (a) The bandgap is 𝑥Q = 20, 𝑚R is the ratio of effective mass of the two bands. If 
holes are heavier, the shift of the peak is toward the conduction band and vice-versa. e.g., 
𝑚R=2 is plotted once for 𝑚N=1 and 𝑚S=2 and again for 𝑚S=1 and 𝑚N=2 (b) The mass ratio is 
set to 1 and the bandgap is changed.  



consistent with our understanding that narrow gap semiconductors and semimetals are 
good thermomagnetic candidates. Hence while the Nernst coefficient increases with 
bandgap, the thermomagnetic power factor decreases with bandgap.                                            

 

 

 

 

 

 

 

 

 

 

  

 

4. Conclusions: 
In this work, we presented a description of the Nernst coefficient in simple conductors. 
Within an isotropic single band model, we obtained that the Nernst coefficient is zero in 
the CTRA. A nonzero Nernst coefficient in this case is the result of energy-dependent 
relaxation times and is proportional to the difference between thermal and Hall mobilities 
times the Seebeck coefficient. When using power laws and s-parameter to describe the 
relaxation times, we obtained that the Nernst coefficient is an increasing function of s. It 
is proportional to the Seebeck coefficient times mobility times magnetic field ( 𝑁 ∝
𝛼C𝜇C𝐵K). There is a factor of 5

(5;(?233)!)
 which comes from the determinant of the 

conductivity tensor. In the nondegenerate limit, the Nernst coefficient does not have any 
explicit dependence on the chemical potential, and in the degenerate limit, it is 
proportional to 𝑥&^45. 

When the bands are anisotropic, the Nernst coefficient is nonzero even within the 
CTRA and it is proportional to the difference in the Seebeck coefficient of x and y 
directions. Hence, within one band model anisotropy in x-y crystallographic directions is 

Figure 5. Power factor (𝜎TT𝑁?) plotted after Eq. 52 using arbitrary unit. Parameters 
are similar  to Fig.4 parameters. a) 𝑥3=20 for all graphs; for  𝑚R = 1 :𝑚N = 𝑚S = 1; 
for  𝑚R = 2 :𝑚N = 1	𝑚S = 2 and 𝑚N = 2	𝑚S = 1; for 𝑚R = 5 :𝑚N = 1	𝑚S = 5 and 
𝑚N = 5	𝑚S = 1. b)  𝑚R = 𝑚N = 1, optimum PF (Eq.50 ) plotted vs reduced bandgap 
(𝑥3). 



desired. Within the two-band model, we observed however that identical bands result in 
larger Nernst coefficient values. The Nernst coefficient peaks close to the middle of the 
bandgap where the Seebeck coefficient is zero. It increases linearly as the bandgap 
increases. However, we also obtained that the thermomagnetic power factor reduces as 
the bandgap increases.  

We conclude that identical electron and hole bands that are anisotropic (in the 
crystallographic directions perpendicular to the magnetic field) with large s-parameters 
and zero or overlapping bands are the best candidates for good thermomagnetic 
materials. 
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