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We explore the mathematical theory to rigorously describe the response of media with linear time-
varying, generally dispersive, electromagnetic constitutive parameters. We show that, even when
the temporal inhomogeneity takes place on a time scale comparable—or shorter—than the driving
fields’ time period, one can still define a physically meaningful time-varying dispersion. Accord-
ingly, a generalized set of Kramers-Kronig relations is investigated to link the real and imaginary
parts of the time-varying frequency-dispersive spectra characterizing the medium’s constitutive re-
sponse. Among others, we study the case of a Lorentzian dielectric response with time-varying
volumetric density of polarizable atoms and present the varying circuital equivalents of the gov-
erning differential equation, which in turn allow us to use the notion of generalized time-varying
impedances/admittances of a time-dependent resistor, inductor and capacitor.

I. INTRODUCTION

The field of “dynamic” (i.e., time-variant) metama-
terials has recently emerged within the metamaterial
community and is rapidly expanding as the next gen-
eration of metamaterials. Their predecessors, “static”
(i.e., time-invariant) metamaterials [1], are regarded
as artificial materials engineered through the (deeply)
subwavelength—both in size and periodicity—space-
variation of some of their physical properties (such as
permittivity, permeability and/or conductivity), which
opens up fascinating possibilities in harnessing light in
ways that were unimaginable years ago, although pho-
tonic crystals [2] (with spatial features electrically larger
than in metamaterials) already allowed for other inter-
esting phenomena like bandgaps [3, 4] and slow light
[5]. Time-invariant metamaterials gave rise, in the first
decade of the 21st century, to new paradigms in the
way the electromagnetic waves interact with matter, in-
cluding left-handedness [6, 7], cloaking [8–10], epsilon-
near-zero media [11–13], and magnetless nonreciprocity
[14], to name a few. Their two-dimensional equivalents,
“static” metasurfaces, have also gained a lot of momen-
tum in this present decade, given their ability to tailor the
amplitude, phase and polarization of waves, yet without
the bulkiness or loss-related limitations of their three-
dimensional counterparts. A plethora of metasurface-
supported exotic effects and applications have been re-
ported, e.g., strong nonlinear responses [15], dramatic
enhancement of the local density of states via hyper-
bolic dispersion [16], photonic topological states [17], all-
optical real-time signal processing [18], angular filtering
[19], and photonic quantum vortices [20].

Dynamic metamaterials (and metasurfaces) add yet
another degree of freedom and controllability by in-
ducing, with some external source of energy, a tem-
poral change in some of the materials’ properties and
are therefore spatio-temporally variant. Despite the
embryonic stage of this research field, there are al-

ready numerous examples of possible applications en-
abled by such time-varying materials, ranging from more
efficient frequency mixers [21] and matching-networks
[22, 23] to spatio-temporal-based nonreciprocity [24]
for magnetic-free optical isolators/circulators [25–28],
angularly-selective nonreciprocal transmission [29], time-
reversal mirrors [30], and antireflection coatings [31];
moreover, seeing as time-invariant spatially inhomoge-
neous metastructures have proved to perform mathemat-
ical operations [18, 32], the idea of adding time variation
to expand the range of applicability of these metastruc-
tures to, e.g., the linear compansion of a pulse [33] is es-
pecially promising. Particularly, the amount of research
devoted to the spatio-temporal modulation of light with
active metasurfaces [34] has grown exponentially in the
last few years [35–43].

One possible way of achieving time variation is by
temporally-modulating (electro-optically, for instance)
the dielectric function of a medium. In [44], a high-power
electromagnetic pulse was reported to ionize a plasma,
creating a nonstationary interface. This rapid change in
the dielectric permittivity produces a “time interface” or
step transient [45–47] which, from temporal continuity
considerations for both the electric displacement and the
magnetic induction fields, is seen to produce frequency-
shifted forward and backward waves described by the
time-equivalent of the Fresnel coefficients (these discon-
tinuities have also been looked into e.g. in a half-space
[48], whereas arbitrary transients have been explored too
[49, 50]). Time-periodic inhomogeneities in the dielec-
tric function have also been addressed in the context of
wave propagation in a half-space [51], a slab [52, 53] or a
spacetime-periodic medium [47, 54–56]. In this regard, it
is well-known that the application of the Bloch-Floquet
theorem to spatially-homogeneous time-periodic media
yields a frequency-periodic band-structured dispersion
relation exhibiting forbidden wavevector gaps [53], dual
of the bandgaps found in space-periodic media and in-
timately linked to parametric amplification [52, 57, 58].
Importantly, this phenomenon is described through ex-
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ceptional point theory in [59] and, interestingly, also in
connection with a time-aperiodic medium, where PT -
symmetric wave-states are substantiated not only with-
out the spatially-symmetric loss/gain induced by a time-
varying complex optical potential as in [60], but without
the time-periodicity itself of otherwise lossless/gainless
non-Hermitian Time-Floquet systems as in [61–63].

The above scenarios mainly contemplate, however,
only nondispersive electric susceptibilities. In [64], the
Green’s function of an impulse point-like source in a
cold ionized plasma of time-varying plasma frequency
was presented in closed form for some specific cases (ra-
diation from a more arbitrary pulsed source was later
tackled in [65], but for nondispersive nonstationary me-
dia only). Remarkable efforts have very recently been
made to address the interaction of waves with a meta-
atom when its load is time-modulated [66], the radia-
tion from nonharmonic dipole moments [67], and the
coupling of a dipole of arbitrarily time-varying Drude-
Lorentz polarizability kernel with an incoming harmonic
illumination [68]. Also, [69] has dug into the dynam-
ics of plane-wave propagation in a time-discontinuous
Lorentzian medium. In this manuscript, we dig into this
latter aspect of the local (i.e., wave propagation is not
the object of study here) dynamics of media with a sus-
ceptibility that is time-variant and dispersive in general,
and we study the transient behavior of the polarization
that arises under such conditions. More specifically, we
tackle the problem by adopting the methodology of lin-
ear systems theory in order to develop rigorous mathe-
matical tools enabling us to investigate the time-varying
impulse response of such temporal media, allowing us to
generalize the Kramers-Kronig relations [70, 71] for non-
instantaneous time-varying media.

II. THEORETICAL ANALYSIS

There is a well-developed body of knowledge describing
linear time-variant (LTV) channels in the signal process-
ing community, inasmuch as mobile communications rely
on multipath fading channels modeled as time-variant
linear filters [72, 73] (in this regard, we should men-
tion that extensive research work has also been done on
time-varying circuits, for example in the context of (i)
microwave engineering—from parametric amplifiers [74]
and nonreciprocal devices [75] in the 1960s, to the unlim-
ited energy accumulation recently proposed in [76]—, (ii)
control engineering—both from the perspective of func-
tional analysis [77–80] and state-space theory [81, 82]—or
(iii) the model reduction of the time-varying equivalents
that result from linearizing nonlinear circuits [83–85]).
We will therefore borrow the mathematical apparatus de-
scribing multipath propagation and start by writing the
response of an LTV system to an arbitrary input x(t) as
the following Fredholm integral

y(t) =

∫ ∞
−∞

h(t, τ)x(τ)dτ, (1)

in which case it is straightforward to see that h(t, τ) is
defined as the system response at time t to an impulse
applied at time τ (note that, throughout this text, we
intentionally leave the upper integration limit of the su-
perposition integrals go to +∞, i.e., we choose to define
these integrals in a general form by making no a priori
assumptions on the causality of their kernels). Indeed,
inserting x(t)=δ(t − τ) into the previous integral and
changing the integration variable from τ to τ ′ for ease
of notation, one can write

y(t) =

∫ ∞
−∞

h(t, τ ′)δ(τ ′ − τ)dτ ′ = h(t, τ). (2)

It is oftentimes more convenient to resort to an alterna-
tive formulation as introduced by Kailath [86] and use
instead τ̂=t− τ . A change of variable in Eq. (1) yields

y(t) =

∫ ∞
−∞

h(t, t− τ̂)x(t− τ̂)dτ̂ =

∫ ∞
−∞

c(t, τ̂)x(t− τ̂)dτ̂ ,

(3)
where c(t, τ̂), known as the input delay-spread function
[87], is now the response measured at t due to an impulse
applied at t− τ̂ . Proceeding similarly as before we have,
for x(τ̂ ′)=δ(τ̂ ′ − (t− τ̂)),

y(t) =

∫ ∞
−∞

c(t, τ̂ ′)δ(t− τ̂ ′ − (t− τ̂)dτ̂ ′

=

∫ ∞
−∞

c(t, τ̂ ′)δ(τ̂ − τ̂ ′)dτ̂ ′ = c(t, τ̂).

(4)

In essence, c(t, τ̂)=c(t, t − τ) moves the impulse time
frame reference from the origin over to t, very much in
the same way a Green’s tensor does in a translationally

invariant space domain when we write ¯̄G(r, r′)= ¯̄G(r−r′),
with r and r′ observation and source positions, respec-
tively. One can immediately see that h(t, τ)=h(t − τ)
and c(t, τ̂)=c(τ̂) when there is time invariance. Besides,
it is clear that causality implies h(t, τ)=0 for t < τ or,
alternatively, c(t, τ̂)=0 for τ̂ < 0. Additionally, if c(t, τ̂)
is separable, i.e., c(t, τ̂)=ct(t)cτ̂ (τ̂), Eq. (3) is simplified
to

y(t) = ct(t)

∫ ∞
−∞

cτ̂ (τ̂)x(t− τ̂)dτ̂ = ct(t)
(
cτ̂ (t) ∗

t
x(t)

)
.

(5)
Let us focus the discussion on time-varying systems

that can be characterized as a linear differential equation
with time-varying coefficients of the form [88]

an(t)
dny(t)

dtn
+ ...+ a1(t)

dy(t)

dt
+ a0(t)y(t) = x(t). (6)

The electric response of a linear dispersive time-varying
medium characterized by a Lorentzian resonance, but
whose volume density of polarizable atoms N(t) is time-
dependent, falls under this category. This is one of the
simplest scenarios one can think of, since the relative am-
plitude of the coefficients in Eq. (6) remains unperturbed,
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as seen below:

d2P (t)

dt2
+ γ

dP (t)

dt
+ ω2

0P (t) = ε0ω
2
p(t)E(t), (7)

E and P being the electric field and (local) linear po-

larization, respectively, and ωp(t) ∝
√
N(t) the plasma

frequency. This is equivalent to a linear time-invariant
(LTI) medium that responds to ω2

p(t)E(t) rather than

to E(t). If we define A(t)=ω2
p(t), this translates in the

frequency domain to

P (ω) = ε0

1
2πA(ω) ∗

ω
E(ω)

ω2
0 − ω2 + iγω

, (8)

where ∗
ω

denotes the convolution operation with respect

to ω and eiωt convention is chosen. One can arrive at a
wave equation for E(z, t) of the form(

∂2

∂t2
+ γ

∂

∂t
+ ω2

0

)(
∂2E(z, t)

∂z2
− 1

c2
∂2E(z, t)

∂t2

)
=

1

c2
∂2
(
A(t)E(z, t)

)
∂t2

,

(9)

which collapses to the wave equation for a time-varying
lossless plasma (i.e., Drude-type medium) (ω0=0, γ=0)
in [64]:

∂2E(z, t)

∂z2
− 1

c2
∂2E(z, t)

∂t2
=

1

c2
A(t)E(z, t). (10)

If one wants to express Eq. (7) in terms of the system’s in-
put response as in Eq. (1), P (t)=ε0

∫∞
−∞ χh(t, τ)E(τ)dτ ,

it suffices to recognize the time-invariance equivalence
mentioned earlier: P (t)=ε0

∫∞
−∞ χ(t− τ)A(τ)E(τ)dτ (in-

cidentally, note that this situation is different than
the one depicted in [68], which is rather described by
P (t)=ε0A(t)

∫∞
−∞ χ(t − τ)E(τ)dτ). It thus follows from

inspection that χh(t, τ)=χ(t− τ)A(τ), with

χ(t) =
1√

ω2
0 − (γ/2)2

e−(γ/2)tsin

(
t
√
ω2

0 − (γ/2)2

)
U(t),

(11)
where we have used the well-known result for a time-
invariant Lorentzian medium and U(t) is the step func-
tion. It is compelling to point out that the response to an
impulse applied at τ is not a function of how N(t) evolves
for t > τ ; this is traced back to the relative weights of
the coefficients in Eq. (6) being invariant. Perhaps a cir-
cuital analogy would be of use here to better understand
this behavior: this Lorentzian response can be thought of
as the (polarization) charge response to an applied volt-
age across a time-varying series RLC circuit, such that
Eq. (7) is recast to

L(t)
d2P (t)

dt2
+

(
R(t) +

dL(t)

dt

)
dP (t)

dt
+

1

C(t)
P (t) = E(t),

(12)

with L(t)= 1
ε0ω2

p(t) , R(t)=γL(t)− dL(t)
dt , and C(t)= 1

ω2
0L(t)

,

dP (t)
dt being the polarization current (as L(t)C(t) and R(t)

L(t)

remain constant, so do the resonance and collision fre-
quencies). Consequently, the lossless plasma in [64] can
be modeled as a time-varying RL circuit with a resis-
tor that cancels out the time derivative of the inductor’s
time-dependence, i.e., R(t)=−dL(t)

dt .
If we go back to our varying Lorentzian oscillator, we

have

h(t, τ) = χh(t, τ) = A(τ)χ(t− τ), (13a)

c(t, τ̂) = A(t− τ̂)χ(τ̂), (13b)

whose Fourier domain representations can be found
in Appendix A. Inserting Eq. (13a) into Eq. (1)—or
Eq. (13b) into Eq. (3)—, we arrive at

y(t) = χ(t) ∗
t

(
A(t)x(t)

)
, (14)

at which point it appears natural to translate the obser-
vation time-frame reference from the origin to τ , when
the impulse is applied, and define the so-called output
delay-spread function hc(τ̂ , τ)=h(τ̂ +τ, τ) [87], such that

y(t) =

∫ ∞
−∞

hc(t− τ, τ)x(τ)dτ, (15)

where hc(τ̂ , τ)=A(τ)χ(τ̂) is now separable.

A. Polarization in Time-Varying Media

In [68], Mirmoosa et al. investigated the dipolar po-
lazability in time-varying media, and introduced the no-
tion of temporal complex polarizability. Here, we take a
different path by adopting from [80] the notion of a time-
varying admittance for the time-dependent RLC circuit
modelling our Lorentzian if we realize that

I(t) =
dP (t)

dt
=

∫ ∞
−∞

dχ(t− τ)

dt

1

L(τ)
V (τ)dτ, (16)

in which case YRLC(τ̂ , τ)=dχ(τ̂)
dτ̂

1
L(τ) . Also, note that this

admittance is defined purely in the time domain as a re-
sponse function. In the next two sections we will delve
into the Fourier domain and rigorously characterize the
spectra of the impulse response of a time-varying sys-
tem; this will allow us to utilize generalized time-varying
transformed impedances and admittances. But before
this, let us first gain physical insights into this problem
and consider the simplified case of a time-varying induc-
tor, parameterized by

L(t)
dI(t)

dt
+
dL(t)

dt
I(t) = E(t), (17)

where I(t)=dP (t)
dt . By replacing the right-hand side of

the equation above by δ(t − τ), the impulse response to
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this first-order differential equation can be retrieved, for
which we first solve the homogeneous equation, which
gives us

I(t, τ) = K(τ)e
−

∫ t
0

dL(t′)
dt′
L(t′) dt

′
= K(τ)eln(L(0)

L(t) ) = K(τ)
L(0)

L(t)
,

(18)
with K(τ) some unknown constant (with respect to t),
to be determined by imposing I(τ, τ)= 1

L(τ) [89]. It thus

follows that

K(τ) =
1

L(τ)
e
∫ τ
0

dL(t′)
dt′
L(t′) dt

′
=

1

L(0)
, (19)

so I(t, τ) is simply 1
L(t) . The impulse response of this

system can finally be written as hI(t, τ)=I(t, τ)U(t −
τ)=U(t−τ)

L(t) [80]. If we assume, e.g., L(t)= L0

1+∆cos(Ωt) ,

then K(τ)= 1+∆
L0

and I(t, τ)= 1+∆cos(Ωt)
L0

(note that we
could have more easily solved this problem by start-

ing from dΦ(t)
dt =E(t), where Φ(t)=L(t)I(t) represents the

magnetic flux linkage, and write hI(t, τ)=hΦ(t,τ)
L(t) , with

hΦ(t, τ)=U(t − τ)). By integrating I(t, τ) with respect
to t and enforcing the initial condition of null polarization
charge at t=τ , we obtain

hP (t, τ) = U(t−τ)

∫ t

τ

I(t′, τ)dt′ =
A(t, τ)

L0
U(t−τ), (20)

with A(t, τ)=(t − τ) + ∆
Ω

(
sin(Ωt) − sin(Ωτ)

)
. Eq. (20)

becomes hP (t, τ)=hP (t − τ)= t−τ
L0
U(t − τ) when ∆=0,

with the t term connected to the pole at ω=0. It is
revealing to compare this expression with the response

for the lossless plasma of [64], for which hI(t, τ)=U(t−τ)
L(τ)

and hP (t, τ)= t−τ
L(τ)U(t− τ), with L(τ)= 1

ε0ω2
p(τ) .

If we keep L(t)= L0

1+∆cos(Ωt) and add a constant resistor

R, we will obtain

hI(t, τ) =
U(t− τ)

L(t)
e−

R
L0
A(t,τ) (21a)

hP (t, τ) =
U(t− τ)

R

(
1− e−

R
L0
A(t,τ)

)
. (21b)

Similar derivations for an RC circuit with
C(t)= C0

1+∆cos(Ωt) allows us to arrive at

hP (t, τ) =
U(t− τ)

R
e−

1
RC0

A(t,τ) (22a)

hI(t, τ) =
dhP (t, τ)

dt
= −U(t− τ)

R2C(t)
e−

1
RC0

A(t,τ). (22b)

Incidentally, from Eq. (3) one can see that cI(t, τ̂) 6=
dcP (t,τ̂)

dt , but cI(t, τ̂)=hI(t, t−τ̂), just as hcI(τ̂ , τ)=hI(τ̂+
τ, τ). Obviously, Eq. (22a) collapses to Eq. (B4a) in Ap-
pendix B for nondispersive media when R=0. In addi-

tion, in the same way that dL(t)
dt behaves as a resistance,

we can observe from the equation below, dual of Eq. (17):

C(t)
dV (t)

dt
+
dC(t)

dt
V (t) = I(t), (23)

that dC(t)
dt behaves as a conductance.

Let us now take a look at the dynamics of an RLC
circuit with constant R and L, and a capacitor with
the same temporal profile as for the previous RC cir-
cuit, C(t)= C0

1+∆cos(Ωt) . Repeating the rationale that links

Eqs. (7) and (12), it is clear that this circuit models the
behavior of a medium with a polarization response obey-
ing a Lorentzian curve with varying resonance frequency,
described by:

d2P (t)

dt2
+ γ

dP (t)

dt
+ ω0(t)2P (t) = ε0ω

2
pE(t), (24)

with ε0ω
2
p= 1

L , γ=R
L , and ω0(t)= 1√

LC(t)
=ωp

√
ε0
C(t) . The

homogeneous differential equation for the polarization
presents a closed-form solution in terms of even (MC)
and odd (MS) Mathieu functions [90], as shown below:

P (t, τ) =

(
KC(τ)MC(a, q, z(t)) +KS(τ)MS

(
a, q, z(t)

))
· e− R

2L t,

(25)

with characteristic value a=4
ω2

0−( R
2L )

2

Ω2 , parameter

q=−2∆
(
ω0

Ω

)2
, and argument z(t)=Ω

2 t, as given
by the Mathieu differential equation y′′(z) + (a −
2qcos(2z))y(z)=0, ω0 being 1√

LC0
. If we enforce

P (t, τ)=0 and dP (t,τ)
dt

∣∣∣
t=τ

= 1
L , KC(τ) is found to be

KC(τ) =
2

LΩ
e
R
2L τ

1
dMC(z(t))

dt

∣∣∣
t=τ
− MC(z(τ))

MS(z(τ))
dMS(z(t))

dt

∣∣∣
t=τ

,

(26)

while KS(τ)=−MC(z(τ))
MS(z(τ))KC(τ), where the terms a and

q have been dropped to simplify the notation. For τ=0,
KC(τ)=0 and KS(τ)= 2

LΩ
1

dMS(z(t))

dt

∣∣
t=0

. The time-varying

impulse response will finally be hP (t, τ)=P (t, τ)U(t−τ),
as was previously done for the varying inductor.

B. Time-Varying Transfer Functions

We saw before how the polarization/current responses
of Eq. (7), or of its RLC circuit equivalent in Eq. (12),
do not depend on the medium’s state after the im-
pulse and, consequently, derived a separable admit-

tance YRLC(τ̂ , τ)=dχ(τ̂)
dτ̂

1
L(τ) which embodies a time-

independent frequency dependence. In order to under-
stand what this statement really means, it would be
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useful to properly define a suitable time-varying trans-
fer function (frequency response). Before going any fur-
ther, it is expedient to revisit the context of LTV com-
munication channels, whose underlying physical effects
are mainly multipath propagation and the Doppler ef-
fect, which can be intuitively characterized in terms of
time delays and Doppler frequency shifts [72] (Doppler
spectral compression/dilation can be approximated as a
frequency shift in narrowband communications), respec-
tively.

1. Transfer Functions for c(t, τ̂)

Denoting by [ω, ν, ν̂] the frequency-domain coun-
terparts of [t, τ, τ̂ ], the specular single-path propa-
gation via an ideal point scatterer n can be cap-
tured, except for a complex attenuation constant
factor an, by c(t, τ̂)=eiωntδ(τ̂ − τ̂n), which leads to
Cω(ω, τ̂)=FT

t→ω
{c(t, τ̂)}=2πδ(ω−ωn)δ(τ̂− τ̂n), ωn and τ̂n

being a frequency shift and a time delay, respectively,
with FT

t→ω
the Fourier transform (FT) for the (t,ω) pair.

Following Eq. (3) and using Fubini’s theorem [91], we can
now write

y(t) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

Cω(ω, τ̂)x(t− τ̂)dτ̂

)
eitωdω.

(27)
That is, the integral along ω can be viewed as a

continuous parallel connection of LTI channels, each
parameterized by a Doppler frequency ω (note that
the term inside the parentheses depends on t, so∫∞
−∞ () eitωdω in Eq. (27) is not an inverse FT). Anal-

ogously, if we flip domains on both dimensions and de-
fine Cν̂(t, ν̂)=FT

τ̂→ν̂
{c(t, τ̂)}=eiωnte−iτ̂ ν̂ , after manipulat-

ing Eq. (3) it can be shown that

y(t) =
1

2π

∫ ∞
−∞

Cν̂(t, ν̂)

(∫ ∞
−∞

x(t− τ̂)eiτ̂ ν̂dτ̂

)
dν̂

=
1

2π

∫ ∞
−∞

(
Cν̂(t, ν̂)X(ν̂)

)
eitν̂dν̂,

(28)

where X(ω)=FT
t→ω
{x(t)} and, again and for the

same reason,
∫∞
−∞ () eitν̂dν̂ is not an inverse FT.

Finally, using both transformed domains and
Cω,ν̂(ω, ν̂)= FT

(t,τ̂)→(ω,ν̂)
{c(t, τ̂)}=2πδ(ω−ωn)e−iτ̂ ν̂ , it is

easy to arrive at

Y (ω) =
1

2π

∫ ∞
−∞

Cω,ν̂(ω − ν̂, ν̂)X(ν̂)dν̂. (29)

Cω(ω, τ̂) describes how the input signal is spread out or
broadened both in frequency (ω) and time (τ̂), whereas
Cν̂(t, ν̂) expresses the response’s time (t) and frequency
(ν̂) selectivity. For an LTI system, there is no ω-
broadening or t-selectivity, so Cω(ω, τ̂) and Cν̂(t, ν̂) are
simplified to δ(ω)c(τ̂) and Cν̂(ν̂), respectively. Note also

that, if c(t, τ̂) is separable, Cω,ν̂(ω, ν̂)=Cω(ω)Cν̂(ν̂) and
thus Eq. (29) can be simplified as

Y (ω) =
1

2π
Cω(ω) ∗

ω

(
Cν̂(ω)X(ω)

)
, (30)

which is the frequency-domain version of Eq. (5).

2. Transfer Functions for hc(τ̂ , τ)

Although a detailed description of the transfer func-
tions of h(t, τ) and hc(τ̂ , τ) can be found in Appendices
A and B, respectively, it is worthy to focus on hc(τ̂ , τ)
and see that Eq. (29)—and (A2) in Appendix A—can be
rewritten as

Y (ω) =
1

2π

∫ ∞
−∞

HCν̂,ν(ω, ν + ω)X(−ν)dν, (31)

which, if hc(τ̂ , τ) is separable, i.e., hc(τ̂ , τ)=hcτ̂ (τ̂)hcτ (τ)
and thus HCν̂,ν(ν̂, ν)=HCν̂(ν̂)HCν(ν), adopts the form

Y (ω) =
1

2π
HCν̂(ω)

(
HCν(ω) ∗

ω
X(ω)

)
, (32)

which is the FT of Eq. (14) if we note that χ(τ̂)=hcτ̂ (τ̂)
and A(τ)=hcτ (τ). This shows an interesting duality be-
tween the pairs of Eqs. (14,32) and (5,30).

Continuing with our varying Lorentzian, we have

HCν(τ̂ , ν) = A(ν)χ(τ̂), HCν̂(ν̂, τ) = A(τ)χ(ν̂), (33)

where we see the convenience of working with the (τ̂ ,τ)
pair (note that, although A in A(ν) is the FT of A in
A(τ), we deliberately choose to not add more notation
and let its argument resolve the ambiguity. The same
applies to χ, and to the circuital elements R, L, and
C in the next section). This stems from the fact that
frequency broadening (time selectivity), in sheer contrast
with the Doppler ω-spreading (t-selectivity) defined so
far, is now given in the ν (τ) domain. The time-variance
of the Doppler channel entails ω-broadening, whereas the
Lorentzian’s varying nature reveals itself in the width of
N(ν). Note also that if one replaces HCν=A(ν) and
HCν̂(ν̂)=χ(ν̂)= 1

ω2
0−ν̂2+iγν̂

in Eq. (32), what is obtained

is precisely Eq. (8), except for the constant ε0.

C. Time-varying Impedances and Admittances

Now that we have discussed a mathematical theory
of LTV systems, we can utilize, as in [80], the notion
of time-varying impedance for our RLC circuit’s time-
varying impedance. It is clear that ZR(t, τ̂)=R(t)δ(τ̂),

ZC(t, τ̂)=U(τ̂)
C(t) and

ZL(t, τ̂) = L(t− τ̂)δ′(τ̂) = L(t)δ′(τ̂) +
dL(t)

dt
δ(τ̂), (34)



6

where, incidentally, note that the delta function and all
of its derivatives are causal distributions [92]. Therefore,
we can write the transformed impedances as

ZRω(ω, τ̂) = R(ω)δ(τ̂), (35a)

ZLω(ω, τ̂) = L(ω)
(
δ′(τ̂) + iωδ(τ̂)

)
, (35b)

ZCω(ω, τ̂) = FT
t→ω

{
1

C(t)

}
U(τ̂), (35c)

and

ZRν̂(t, ν̂) = R(t), (36a)

ZLν̂(t, ν̂) = L(t)iν̂ +
dL(t)

dt
, (36b)

ZCν̂(t, ν̂) =
1

C(t)

(
1

iν̂
+ πδ(ν̂)

)
, (36c)

or in the (ω,ν̂)-domain as

ZRω,ν̂(ω, ν̂) = R(ω), (37a)

ZLω,ν̂(ω, ν̂) = iL(ω)
(
ν̂ + ω

)
, (37b)

ZCω,ν̂(ω, ν̂) = FT
t→ω

{
1

C(t)

}(
1

iν̂
+ πδ(ν̂)

)
. (37c)

These expressions clearly show how ω-dispersion (ν̂-
dispersion) in ZLω (ZLν̂) depends on τ̂ (t). By duality,
the same interdependence shows up in the capacitor’s ad-
mittance (see Appendix C). It is paramount to realize,
though, that the usual time-invariant relation between
impedance and admittance does not apply now and, con-
sequently, it cannot be used to circumvent the lack of
closed-form solution of, e.g., the FT of Eqs. (21,22).
For instance, noting that hI(t, τ̂) in Eq. (22b) is the
time-varying admittance response of the RC circuit, and
switching to the (t,τ̂)-space, we have

YRCω(ω, τ̂) 6=
(
ZRω(ω, τ̂) + ZCω(ω, τ̂)

)−1
, (38a)

YRCν̂(t, ν̂) 6=
(
ZRν̂(t, ν̂) + ZCν̂(t, ν̂)

)−1
, (38b)

YRCω,ν̂(ω, ν̂) 6=
(
ZRω,ν̂(ω, ν̂) + ZCω,ν̂(ω, ν̂)

)−1
. (38c)

where, e.g., YRCω(ω, τ̂)=FT
t→ω
{hI(t, τ̂)}.

Nonetheless, the impedance of the series RLC circuit
that models the Lorentzian resulting from a time-varying
N(t) can be written in separable form, considering that

R(ω) = (γ − iω)L(ω) and FT
t→ω

{
1

C(t)

}
= ω2

0L(ω), as:

ZRLC(t, τ̂) = L(t)ZRLCτ̂ (τ̂), (39a)

ZRLCω,ν̂(ω, ν̂) = L(ω)ZRLCν̂(ν̂), (39b)

where L(t) plays the role of ZRLCt(t) (the definition of
ZRLCω(ω, τ̂) and ZRLCν̂(t, ν̂) is straightforward and thus
omitted for brevity), and with

ZRLCτ̂ (τ̂) = γδ(τ̂) + δ′(τ̂) + ω2
0U(τ̂), (40a)

ZRLCν̂(ν̂) = γ + iν̂ + ω2
0

(
1

iν̂
+ πδ(ν̂)

)
, (40b)

being the impedance of a time-invariant RLC circuit

with normalized elements R = γ = 1
L(t)

(
R(t) + dL(t)

dt

)
,

L = 1, and C = 1
ω2

0
. The impedance’s ν̂-dispersion

is t-independent (the whole ν̂-spectrum is modulated
by the same factor L(t)), just like τ̂ -broadening is ω-
independent. Besides, inserting Eq. (39b) in Eq. (29), it
is easy to see that

V (ω) =
1

2π
L(ω) ∗

ω

(
ZRLCν̂(ω)I(ω)

)
(41)

and therefore

V (t) = L(t)
(
ZRLCτ̂ (t) ∗

t
I(t)

)
, (42)

both consistent with Eqs. (30) and (5), respectively.
That is, the voltage response at the observation in-

stant t is the product of L(t) times the convolution of
the input current with the response of an LTI, in this
case a “normalized” RLC circuit. Except for the terms
γ and iω (or, in the time domain, γδ(t) and δ′(t)) which
represent, respectively, the instantaneous response of the
time-invariant normalized resistor R = γ and inductor
L = 1, ZRLCτ̂ (t) ∗

t
i(t) is simply the ratio of the total

charge accumulated in the capacitor and C= 1
ω2

0
, i.e., its

voltage. We previously showed how the current response
of our varying Lorentzian at t to a voltage impulse at τ
is only a function of the system’s state at τ ; now we ob-
serve the opposite behavior: the voltage response at t to
a current impulse at τ is only a function of the system’s
state at t. This interrelation is best seen by reordering
and Fourier-transforming Eq. (42) to arrive at

I(ω) =
1

2π
YRLCν̂(ω)

(
FT
t→ω

{
1

L(t)

}
∗
ω
V (ω)

)
, (43)

where we have used the LTI equality YRLCν̂(ν̂) =
Z−1
RLCν̂(ν̂), which does hold now. Going back to the time

domain, we have

I(t) = YRLCτ̂ (t) ∗
t

(
1

L(t)
V (t)

)
. (44)

This last pair of equations has precisely the form of
Eqs. (14,32), as expected. Finally, we can write

YRLC(τ̂ , τ) =
1

L(τ)
YRLCτ̂ (τ̂), (45a)

YRLCν̂,ν(ν̂, ν) = FT
τ→ν

{
1

L(τ)

}
YRLCν̂(ν̂), (45b)

and realize that YRLCτ̂ (τ̂)=dχ(τ̂)
dτ̂ when the integration

constant P0 in P (t)=P0 +
∫ t
−∞ I(τ)dτ , which translates

into the term πδ(ν̂) within ZRLCν̂(ν̂), is omitted. The
admittance’s ν̂-dispersion is τ -independent (the entire ν̂-
spectrum is now modulated by the same factor L(τ)).
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D. Kramers-Kronig Relations

Given that the Kramers-Kronig relations [70, 71] con-
nect the real and imaginary parts of any complex function
that is analytic in the upper half of the complex plane,
and that, for any stable physical system, causality implies
analyticity and vice versa, we now explore these relations
when the system is time-varying (we stress that although
the Kramers-Kronig relations in a stationary medium—
be it linear or nonlinear [93]—are usually substantiated
under the assumptions of causality and passivity, the lat-
ter can be relaxed and replaced by stability: the transfer
function of a causal active system with bounded impulse
response is still analytic, i.e., with no poles in the upper-
half complex ω-plane—perhaps we should keep the en-
gineering convention throughout the paper and rather
say right-half s-plane to avoid confusion—, as shown in
[94] for an active half-space or in [95] for conditionally-
stable non-Foster circuits. Hence, as long as our time-
modulated (active) medium is stable, we can assume an-
alyticity). In the context of time-invariant media, it is
well known that the Kramers-Kronig relations constitute
a powerful tool to retrieve the real part of the permittiv-
ity from absorption measurements (e.g., electron energy
loss spectroscopy [96]). Moreover, they prove useful in
obtaining the real part of the effective nonlinear change
of permittivity from its imaginary part (e.g., in the case
of metals, via the change of interband transitions involv-
ing Fermi-level states [97]), in which case the medium’s
nonlinear response is slow enough to consider it effec-
tively time-invariant.

Going back to our time-varying impulse responses, it
was pointed out before that a causal LTV system re-
quires h(t, τ) to be zero for t<τ , and thereby c(t, τ̂) (and
hc(τ̂ , τ)) must also be zero for τ̂ < 0. Ergo, it is evident
that the Kramers-Kronig relations have physical ground
along the ν̂-dimension. In the (t,ν̂)-space and consider-
ing c(t, τ̂) first, we will have t-varying Kramers-Kronig
relations of the form

Re {Cν̂(t, ν̂)} =
1

π
−
∫ ∞
−∞

Im {Cν̂(t, ν̂′)}
ν̂ − ν̂′

dν̂′, (46a)

Im {Cν̂(t, ν̂)} = − 1

π
−
∫ ∞
−∞

Re {Cν̂(t, ν̂′)}
ν̂ − ν̂′

dν̂′, (46b)

or, alternatively, in the (ω,ν̂)-space, ω-dependent
Kramers-Kronig relations as shown below

Re {Cω,ν̂(ω, ν̂)} =
1

π
−
∫ ∞
−∞

Im {Cω,ν̂(ω, ν̂′)}
ν̂ − ν̂′

dν̂′, (47a)

Im {Cω,ν̂(ω, ν̂)} = − 1

π
−
∫ ∞
−∞

Re {Cω,ν̂(ω, ν̂′)}
ν̂ − ν̂′

dν̂′, (47b)

where −
∫

stands for the Cauchy principal value of the in-
tegral. In this regard, note that Cω(ω, τ̂) is not purely
real in general, but this fact does not compromise the
validity of Eq. (47). For each value of ω, one could
use superposition and apply the Hilbert transform to the

real and imaginary parts of the spectra of Re {Cω(ω, τ̂)}
and iIm {Cω(ω, τ̂)} separately, the only difference in the
latter being the purely imaginary/real character of the
ν̂-spectra of its even/odd decomposition (see Appendix
D). The drawback of investigating the causality of c(t, τ̂)
along the τ̂ -axis is that, in actuality, we are analyzing
the response of the system (medium) at a fixed t when
considering all possible delays, which does not give an
intuition of the system’s dynamics to a single impulse
response (the explanation of Fig. 2 in the next section
reveals this fact in more detail). It is therefore more
suitable in our case to resort to hc(τ̂ , τ) and write (in
the following, only the retrieval of the real part from the
imaginary part is included for brevity):

Re {HCν̂(ν̂, τ)} =
1

π
−
∫ ∞
−∞

Im {HCν̂(ν̂′, τ)}
ν̂ − ν̂′

dν̂′, (48a)

Re {HCν̂,ν(ν̂, ν)} =
1

π
−
∫ ∞
−∞

Im {HCν̂,ν(ν̂′, ν)}
ν̂ − ν̂′

dν̂′.

(48b)

Using Eqs. (B1a) and (B1c) in Appendix B one can still
derive the following:

Re
{
eiτωHω(ω, τ)

}
=

1

π
−
∫ ∞
−∞

Im
{
eiτω

′
Hω(ω′, τ)

}
ω − ω′

dω′,

(49a)

Re {Hω,ν(ω, ν − ω)} =
1

π
−
∫ ∞
−∞

Im {Hω,ν(ω′, ν − ω′)}
ω − ω′

dω′,

(49b)

where Eq. (49a) can also be obtained by simply decom-
posing h(t, τ) into even and odd with respect to t=τ . A
similar expression can be derived for Hν(t, ν) using anti-
causality (the expressions that relate the real and imag-
inary parts of an anticausal—not to be confused with
noncausal—signal’s spectrum are the same as for a causal
signal, but with the signs flipped) and symmetry with re-
spect to τ=t.

Let us shed some light onto these equations and pro-
vide some more physical understanding by putting aside
for a moment the concept of temporal impulse response
and considering usual laboratory conditions where one
can sweep the frequency Ω of a continuous-wave input
eiΩt, i.e., a frequency impulse of spectrum 2πδ(ω−Ω): the
time response will be eiΩtCν̂(t,Ω), of spectrum Cω,ν̂(ω−
Ω,Ω) (see Eqs. (27,28)). Analogously, the latter can be
expressed as Hω,ν(ω,−Ω) or HCν̂,ν(ω, ω − Ω), whereas
the former is equal to Hν(t,−Ω). Notably, Eq. (48a)
would not be of much use in this case, as the spectrum
of the system’s response to a frequency impulse can-
not be directly mapped from HCν̂ (see convolution in
Eq. (B2a) and discussion afterwards), just like, by dual-
ity, the spectral response to a temporal impulse δ(t−τ)—
equal to Hω(ω, τ)=e−iτωHCν̂(ω, τ)—loses its physical
ground when mapped from Cν̂ (see Appendix A), ren-
dering Eq. (46) useless when measuring our system in
terms of time-impulse inputs.
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III. NUMERICAL RESULTS

In order to visualize the relations between h, c and hc,
both in time and frequency, in Fig. 1 we first consider the
trivial scenario of the nondispersive time-varying medium
of Eqs. (B4,B5) and choose, for simplicity, C(t)=C0

(
1 +

∆cos(Ωt)
)
, such that C(ω)=C0π

(
2δ(ω) + ∆

(
δ(ω −Ω) +

δ(ω+Ω)
))

, with C0=4 and ∆=0.9. It is evident that c or

hc are much more convenient than h, specially in (b,c).

(b)

(a)

(c)

(d)

FIG. 1. Time-varying impulse responses h, c and hc
for a nondispersive medium of polarization described by
P (t)=ε0C(t)E(t). (a) Both the observation time t-axis and
the impulse time τ -axis are represented in the temporal do-
main. c(t, τ̂) and hc(τ̂ , τ) are remapped from h(t, τ) to bet-
ter illustrate the effect of changing the representation spaces.
The inset in c(t, τ̂) represents c(t, τ̂ =0)=C(t) (b) The t-axis
is transformed to ω, while the τ -axis is left unchanged. (c)
The t-axis stays in the time-domain, while the τ -axis is trans-
formed to ν. (d) Both time axes are transformed. Cω,ν̂ and
HCν̂,ν are remapped from Hω,ν . Only the real part of the
spectra is depicted in (b-d). In (b,c) the magnified dots rep-
resent Dirac delta functions.

As a second example, let us now consider in Fig. 2
a time-varying medium whose electric polarization fol-
lows Eqs. (7,8), and focus on its Lorentzian-like im-
pulse responses as defined in Eqs. (13,33), with a ν̂-
dispersion that remains unchanged regardless of τ . The
plasma frequency is chosen to be periodically modulated

as ω2
p(t)=ω2

p0

(
1 + cos(Ωt)

)
, with ωp0 (and γ) such that,

in the LTI case of ∆=0, χ(Ω)=3−0.10i, with ω0=5Ω. ∆
has the same value as in Fig. 1.

The black dashed straight lines in panel (a) of Fig. 2
(and Fig. 4) illustrate how points in the (t, τ)-domain are
remapped onto the (t, τ̂) and (τ̂ , τ) domains. If we have
an input impulse at a given τ0, the information about the
causal’s system’s response can be found in h(t > τ0, τ0),
which is a straight line parallel to the t-axis. This same
information can also be found in c(t, t−τ0 > 0), which
forms a straight line at an angle of 45◦ with respect to
the t-axis, crossing it at t=τ0. One-dimensional (1D) cuts
of c(t, τ̂) parallel to the t-axis restrict the response of the
system vs. t to only a given delay τ̂ , implicitly implying
an input to the system that is a continuous train of im-
pulses at t− τ̂ . This is very clearly visualized, except for
the cosinusoidal variation, in panel (a) of Fig. 1 for the
case of a medium with instantaneous response. Analo-
gously, 1D cuts of c(t, τ̂) parallel to the τ̂ -axis describe
the response of the system at a given t for all possible
delays, again implying a constant input.

On the contrary, the system’s response for an impulse
at τ=τ0 is also contained in hc(t− τ0 > 0, τ0), thereby
drawing a straight line parallel to the t-axis, just as with
h(t, τ), but with the advantage that now the causality
condition is τ -independent. 1D cuts of hc(τ̂ , τ) parallel to
the τ̂ -axis have a less useful meaning, as they characterize
the system response for a given delay τ̂ , which entails the
aforementioned constant input. Incidentally, note also
that hc(τ̂ , τ) in panel (a) is τ -periodic.

In short, c(t, τ̂) is a powerful tool in mobile commu-
nications because c(t = t0, τ̂) synthesizes, at a given in-
stant t0, the signal at the receiver including all the de-
lays; whereas hc(τ̂ , τ) is more revealing in our case be-
cause hc(τ̂ , τ = τ0) tells us what the response of the
varying medium is for a single impulse occurring at τ0.
We already addressed the advantage of the former for
mobile communications, when using the simplified case
c(t, τ̂)=eiωntδ(τ̂ − τ̂n) (see Eq. (27), e.g.), which we now
depict in Fig. 3 for ωn=1.5Ω and τ̂n=T

3 , with T= 2π
Ω . One

can observe that our first example in Fig. 1 can actually
be recast into the shape of a zero-delay (τ̂n=0) three-path
channel with Doppler shifts 0, +Ω and −Ω.

Fig. 4 represents the medium whose polarization re-
sponse is Lorentzian with time-varying resonance fre-
quency, according to Eq. (40). As mentioned earlier, this
is equivalent to an RLC circuit with a time-dependent
capacitor. In a similar fashion as Fig. 2, the capacitor is
periodically modulated as C(t)= C0

1+∆cos(Ωt) , with C0 (and

γ) such that, in the LTI case of ∆=0, χ(Ω)=3 − 0.10i,
with ω0=5Ω. We choose again ∆=0.9. Note that with
this modulation, ω2

0(t) follows a sinusoidal pattern. Panel
(b) in Fig. 5 illustrates how the dispersion of this medium
varies with τ , unlike the medium with varying plasma
frequency of Fig. 2, represented in panel (a) of Fig. 5.
Importantly, the response to an impulse applied at τ is
now a function of how C(t) evolves for t > τ .
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(b)

(a)

(c)

(d)

FIG. 2. Time-varying impulse responses h, c and hc for
a medium with time-varying Lorentzian response, with τ -
independent ν̂-dispersion. Panels (a-d) are organized in the
same way as Fig. 1. The inset in (a) for h(t, τ) represents the
varying plasma frequency ω2

p(t) in [rad/s]. The magnitudes of
the response functions where χ shows up in the time domain
are divided by ω0 (similar considerations apply to Fig. 4 and
Fig. 5).

IV. CONCLUSIONS

In this work we have borrowed the mathemati-
cal framework that rigorously characterizes LTV sys-
tems in the signal processing research field, of partic-
ular interest in mobile communication channels, and
adapted/extended it to address the topic of time-
variant generally-dispersive electromagnetic constitutive
responses. In doing so we have shown that the con-
cept of time-varying frequency dispersion is still physi-
cally meaningful when the medium’s temporal variation
is fast with respect to the driving field’s frequency. In
LTI systems, it is very well known that the causality of
its impulse response allows to relate the real and imag-
inary part of its spectra through the Hilbert transform
or, in the jargon of the physics community, the Kramers-
Kronig relations. We herein described the response of a
causal LTV system as a differential equation with time-
varying coefficients and linked these coefficients to time-
dependent lumped circuital elements. We then defined
the different Fourier-transformed spaces that result from
a twofold temporal variation: for each observation in-

(b)

(a)

(c)

(d)

FIG. 3. Time-varying impulse responses h, c and hc for a
single-path propagation channel affected by Doppler shift.
Panels (a-d) are organized in the same way as the previous
figures.

stant τ , the system has a different impulse response,
each of them having an LTI equivalence when expressed
with respect to t − τ . We proved that these Fourier
spaces give room to time-varying transfer functions for
which not only is it possible to generalize the Kramers-
Kronig relations, but also allow us to utilize the gen-
eralized impedance and admittance of varying resistors,
inductors and capacitors. Furthermore, as an example of
medium with time-varying dielectric response, we stud-
ied the Lorentzian dispersion resulting from a varying
number of polarizable atoms N(t); interestingly, we saw
that the dielectric response of such medium to an im-
pulse applied at τ is only a function of N(t=τ) and not
of N(t>τ).
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(b)

(a)

(c)

(d)

FIG. 4. Panels (a-d) display, in the same order as before, the
impulse responses h, c and hc for the time-variant medium
with polarization charge characterized by Eq. (40). Unlike
Figs. 1-3, which are entirely analytical, the plots in the spec-
tral domains are now calculated numerically through fast
Fourier transforms.

Appendix A: Transfer Functions for h(t, τ)

The impulse response h(t, τ) can be transformed under
FT
t→ω

, FT
τ→ν

and FT
(t,τ)→(ω,ν)

to yield Hω(ω, τ), Hν(t, ν) and

Hω,ν(ω, ν), respectively, and express

y(t) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

Hω(ω, τ)x(τ)dτ

)
eitωdω

=
1

2π

∫ ∞
−∞

Hν(t, ν)X(−ν)dν

(A1)

and

Y (ω) =
1

2π

∫ ∞
−∞

Hω,ν(ω, ν)X(−ν)dν. (A2)

Likewise, it is straightforward to infer that

Hν(t, ν) = e−itνCν̂(t,−ν), (A3a)

Hω,ν(ω, ν) = Cω,ν̂(ω + ν,−ν). (A3b)

On the contrary, the link in the (ω,τ) domain is more
intricate and reads Hω(ω, τ)= 1

2π e
−iτω ∗

ω,τ
Cω(ω,−τ), ∗

ω,τ

(b)(a)

FIG. 5. 1D cuts of hc(τ̂ , τ) for different fixed values of τ .
Panel (a) and (b) correspond to Figs. 2 and 4, respectively.
Panel (a) shows how the system response is the same regard-
less of τ , except for a constant. Meanwhile, panel (b) presents
three curves with totally different shape, revealing how ν̂-
dispersion does depend on τ in this case.

denoting a double convolution operation across the ω and
τ dimensions. This convoluted connection can be traced
back to the fact that frequency ω-broadening loses its
meaning when switching from τ̂ to τ . This is better il-
lustrated if we take a look at h(t, τ)=c(t, t−τ)=eiωntδ(t−
τ − τ̂n), with t now showing up both within the com-
plex exponential and the Dirac delta function, rendering
Hω(ω, τ)=e−i(ω−ωn)(τ+τ̂n). Going back to our varying
Lorentzian oscillator, from Eq. (13) it follows that

Hω(ω, τ) = A(τ)χ(ω)e−iτω, (A4a)

Cω(ω, τ̂) = A(ω)χ(τ̂)e−iτ̂ω. (A4b)

As far as the complementary domains are concerned, we
now have

Hν(t, ν) =
1

2π
A(ν) ∗

ν

(
χ(−ν)e−itν

)
, (A5a)

Cν̂(t, ν̂) =
1

2π

(
A(−ν̂)e−itν̂

)
∗̂
ν
χ(ν̂), (A5b)

where it becomes apparent that Eq. (A3a) is satisfied if
one realizes that

Cν̂(t, ν̂) =
1

2π

∫ ∞
−∞

A(−ν̂ − ν̂′)e−it(ν̂−ν̂
′)χ(ν̂′)dν̂′

=
1

2π
e−itν̂

∫ ∞
−∞

A(−ν̂ − ν̂′)eitν̂
′
χ(ν̂′)dν̂′

=
1

2π
e−itν̂

(
A(−ν̂) ∗̂

ν

(
χ(ν̂)eitν̂

))
.

(A6)

In addition, one can also write

Hω,ν(ω, ν) = A(ν + ω)χ(ω), (A7a)

Cω,ν̂(ω, ν̂) = A(ω)χ(ν̂ + ω). (A7b)
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Appendix B: Transfer Functions for hc(τ̂ , τ)

From hc(τ̂ , τ)=h(τ̂ + τ, τ), we can find that

HCν̂(ν̂, τ) = eiτ ν̂Hω(ν̂, τ), (B1a)

HCν(τ̂ , ν) =
1

2π
eiτ̂ν ∗̂

τ,ν
Hν(τ̂ , ν), (B1b)

HCν̂,ν(ν̂, ν) = Hω,ν(ν̂, ν − ν̂). (B1c)

Equivalently, hc(τ̂ , τ)=c(τ̂ + τ, τ̂), and hence

HCν̂(ν̂, τ) =
1

2π
eiτ ν̂ ∗̂

ν,τ
Cν̂(τ, ν̂), (B2a)

HCν(τ̂ , ν) = eiτ̂νCω(ν, τ̂), (B2b)

HCν̂,ν(ν̂, ν) = Cω,ν̂(ν, ν̂ − ν), (B2c)

which means we can rewrite Eq. (27) as

y(t) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

e−iτ̂ωHCν(τ̂ , ω)x(t− τ̂)dτ̂

)
eitωdω,

(B3)
that is to say, as a continuous sum of paral-
lel LTI channels, each with an impulse response
h(t)=e−itωHCν(t, ω). What we cannot do is to reformu-
late the rightmost part of Eq. (28) or Eq. (A1) in terms of
HCν̂ or HCν , respectively, because time τ̂ -broadening is
not physically meaningful anymore, as can be seen in our
Doppler LTV channel, where hc(τ̂ , τ)=eiωn(τ̂+τ)δ(τ̂−τ̂n).

If we assume a nondispersive (instantaneous) time-
varying medium with a varying capacitor, as given by
P (t)=ε0C(t)E(t), it is clear that

h(t, τ) = C(τ)δ(t− τ) = C(t)δ(t− τ), (B4a)

c(t, τ̂) = C(t− τ̂)δ(τ̂) = C(t)δ(τ̂), (B4b)

hc(τ̂ , τ) = C(τ)δ(τ̂), (B4c)

so there is not much difference between expressing the
system’s time-dependence with respect to t or τ , other
than temporal shifts. In the transformed domains, we
would have

Hω(ω, τ) = C(τ)e−iτω, Hν(t, ν) = C(t)e−itν (B5a)

Cω(ω, τ̂) = C(ω)δ(τ̂), Cν̂(t, ν̂) = C(t), (B5b)

HCν̂(ν̂, τ) = C(τ), HCν(τ̂ , ν) = C(ν)δ(τ̂). (B5c)

Appendix C: Time-varying Admittances

Given that YR(τ̂ , τ)= 1
R(τ)δ(τ̂), YL(τ̂ , τ)= U(τ̂)

L(τ+τ̂) and

YC(τ̂ , τ)=C(τ)δ′(τ̂), the transformed admittances be-

come

YRν̂(ν̂, τ) =
1

R(τ)
, (C1a)

YLν̂(ν̂, τ) =
1

2π

(
FT
τ̂→ν̂

{
1

L(τ̂)

}
eiτ ν̂

)
∗̂
ν

(
1

iν̂
+ πδ(ν̂)

)
,

(C1b)

YCν̂(ν̂, τ) = C(τ)iν̂, (C1c)

and

YRν(τ̂ , ν) = FT
τ→ν

{
1

R(τ)

}
δ(τ̂), (C2a)

YLν(τ̂ , ν) = FT
τ→ν

{
1

L(τ)

}
eiτ̂νU(τ̂), (C2b)

YCν(τ̂ , ν) = C(ν)δ′(τ̂), (C2c)

or in the (ν̂,ν)-domain as

YRν̂,ν(ν̂, ν) = FT
τ→ν

{
1

R(τ)

}
, (C3a)

YLν̂,ν(ν̂, ν) = FT
τ→ν

{
1

L(τ)

}(
1

i(ν̂ − ν)
+ πδ(ν̂ − ν)

)
,

(C3b)

YCν̂,ν(ν̂, ν) = C(ν)iν̂. (C3c)

In addition, the expressions for the admittances in the
(t,τ̂)-space and its transformed counterparts result from
applying duality to Eqs. (35)-(37).

Appendix D: Derivation of Eq. (47) from Eq. (46)

Let us start by applying the operator FT
t→ω
{} on both

sides of Eq. (46). By defining

CReν̂
ω,ν̂ (ω, ν̂)=FT

t→ω

{
Re{Cν̂(t, ν̂)}

}
, (D1a)

CImν̂

ω,ν̂ (ω, ν̂)=FT
t→ω

{
Im{Cν̂(t, ν̂)}

}
, (D1b)

we obtain

CReν̂
ω,ν̂ (ω, ν̂) =

1

π
−
∫ ∞
−∞

CImν̂

ω,ν̂ (ω, ν̂′)

ν̂ − ν̂′
dν̂′, (D2a)

CImν̂

ω,ν̂ (ω, ν̂) = − 1

π
−
∫ ∞
−∞

CReν̂
ω,ν̂ (ω, ν̂′)

ν̂ − ν̂′
dν̂′. (D2b)

Now, considering that

Re {Cω,ν̂(ω, ν̂)} = Re
{
CReν̂
ω,ν̂ (ω, ν̂)

}
− Im

{
CImν̂

ω,ν̂ (ω, ν̂)
}
,

(D3a)

Im {Cω,ν̂(ω, ν̂)} = Im
{
CReν̂
ω,ν̂ (ω, ν̂)

}
+ Re

{
CImν̂

ω,ν̂ (ω, ν̂)
}
,

(D3b)
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one arrives from Eq. (D2) at

Re {Cω,ν̂(ω, ν̂)} =

1

π
−
∫ ∞
−∞

Re
{
CImν̂

ω,ν̂ (ω, ν̂′)
}

+ Im
{
CReν̂
ω,ν̂ (ω, ν̂′)

}
ν̂ − ν̂′

dν̂′,

(D4a)

Im {Cω,ν̂(ω, ν̂)} =

1

π
−
∫ ∞
−∞

Im
{
CImν̂

ω,ν̂ (ω, ν̂′)
}
− Re

{
CReν̂
ω,ν̂ (ω, ν̂′)

}
ν̂ − ν̂′

dν̂′,

(D4b)

which is seen to be equivalent to Eq. (47) after using
Eq. (D3) on the right-hand sides. Incidentally, separating
the real and imaginary parts in Eq. (D2a) leads to

Re
{
CReν̂
ω,ν̂ (ω, ν̂)

}
=

1

π
−
∫ ∞
−∞

Re
{
CImν̂

ω,ν̂ (ω, ν̂′)
}

ν̂ − ν̂′
dν̂′,

(D5a)

Im
{
CReν̂
ω,ν̂ (ω, ν̂)

}
=

1

π
−
∫ ∞
−∞

Im
{
CImν̂

ω,ν̂ (ω, ν̂′)
}

ν̂ − ν̂′
dν̂′,

(D5b)

whose complementary expressions can be deduced from
Eq. (D2b). Alternatively, as pointed out in the main text,
one can also derive Eq. (47) from the (ω, τ̂)-domain: the

fact that Cω(ω, τ̂)=0 for τ̂ <0 allows to first write

Re
{
CReω
ω,ν̂ (ω, ν̂)

}
=

1

π
−
∫ ∞
−∞

Im
{
CReω
ω,ν̂ (ω, ν̂′)

}
ν̂ − ν̂′

dν̂′,

(D6a)

Im
{
CReω
ω,ν̂ (ω, ν̂)

}
= − 1

π
−
∫ ∞
−∞

Re
{
CReω
ω,ν̂ (ω, ν̂′)

}
ν̂ − ν̂′

dν̂′,

(D6b)

Re
{
CiImω

ω,ν̂ (ω, ν̂)
}

=
1

π
−
∫ ∞
−∞

Im
{
CiImω

ω,ν̂ (ω, ν̂′)
}

ν̂ − ν̂′
dν̂′,

(D6c)

Im
{
CiImω

ω,ν̂ (ω, ν̂)
}

= − 1

π
−
∫ ∞
−∞

Re
{
CiImω

ω,ν̂ (ω, ν̂′)
}

ν̂ − ν̂′
dν̂′,

(D6d)

where

CReω
ω,ν̂ (ω, ν̂)=FT

τ̂→ν̂

{
Re{Cω(ω, τ̂)}

}
, (D7a)

CiImω

ω,ν̂ (ω, ν̂)=FT
τ̂→ν̂

{
iIm{Cω(ω, τ̂)}

}
. (D7b)

Similarly to Eq. (D3), we now have

Re {Cω,ν̂(ω, ν̂)} = Re
{
CReω
ω,ν̂ (ω, ν̂)

}
+Re

{
CiImω

ω,ν̂ (ω, ν̂)
}
,

(D8a)

Im {Cω,ν̂(ω, ν̂)} = Im
{
CReω
ω,ν̂ (ω, ν̂)

}
+Im

{
CiImω

ω,ν̂ (ω, ν̂)
}
,

(D8b)

which from Eq. (D7) can be recast as

Re {Cω,ν̂(ω, ν̂)} =

1

π
−
∫ ∞
−∞

Im
{
CReω
ω,ν̂ (ω, ν̂′)

}
+ Im

{
CiImω

ω,ν̂ (ω, ν̂′)
}

ν̂ − ν̂′
dν̂′,

(D9a)

Im {Cω,ν̂(ω, ν̂)} =

− 1

π
−
∫ ∞
−∞

Re
{
CReω
ω,ν̂ (ω, ν̂′)

}
+ Re

{
CiImω

ω,ν̂ (ω, ν̂′)
}

ν̂ − ν̂′
dν̂′,

(D9b)

and this is precisely Eq. (47), as seen from inspection of
Eq. (D8).
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