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Transient heat transfer in superfluid 4He (He II) is a complex process that involves the interplay
of the unique counterflow heat-transfer mode, the emission of second-sound waves, and the creation
of quantized vortices. Many past researches focused on homogeneous heat transfer of He II in a
uniform channel driven by a planar heater. In this paper, we report our systematic study of He II
transient heat transfer in non-homogeneous geometries that are pertinent to emergent applications.
By solving the He II two-fluid equations of motion coupled with the Vinen’s equation for vortex-
line density, we examine and compare the characteristics of transient heat transfer from planar,
cylindrical, and spherical heaters in He II. Our results show that as the heater turns on, an outgoing
second-sound pulse emerges, within which the vortex-line density grows rapidly. These vortices
attenuate the second sound and result in a heated He II layer in front of the heater, i.e., the thermal
layer. In the planar case where the vortices are created throughout the space, the second-sound
pulse is continuously attenuated, leading to a thick thermal layer that diffusely spreads following
the heat pulse. On the contrary, in the cylindrical and the spherical heater cases, vortices are created
mainly in a thin thermal layer near the heater surface. As the heat pulse ends, a rarefaction tail
develops following the second-sound pulse, in which the temperature drops. This rarefaction tail
can promptly suppress the thermal layer and take away the deposited thermal energy. The effects
of the heater size, heat flux, pulse duration, and temperature on the thermal-layer dynamics are
discussed. We also show how the peak heat flux for the onset of boiling in He II can be studied in
our model.

I. INTRODUCTION

Saturated liquid 4He transits to the superfluid phase
(known as He II) below about 2.17 K [1]. In He II,
two miscible fluid components co-exist: an inviscid and
zero-entropy superfluid component (i.e., the condensate)
and a viscous normal-fluid component (i.e., the collection
of thermal excitations). This two-fluid system possesses
many fascinating thermal and mechanical properties [2].
For instance, He II supports two distinct sound modes:
an ordinary pressure-density wave (i.e., the first sound)
where the two fluids move in phase, and a temperature-
entropy wave (i.e., the second sound) where the two flu-
ids move oppositely. Besides, heat transfer in He II is via
an extremely effective counterflow mode instead of the
classical, convective-diffusive mechanism of heat trans-
port [3]: the normal fluid carries the heat away from a
source at a velocity vn=q/ρsT , where q is the heat flux, T
is the temperature, and ρ and s are the He II density and
specific entropy, respectively; while the superfluid moves
in the opposite direction at a velocity vs=−vnρn/ρs to
balance the mass flow (here ρn and ρs are the densi-
ties of the respective fluid components). When the rel-
ative velocity of the two fluids exceeds a small critical
value, a chaotic tangle of quantized vortex lines can be
spontaneously created in the superfluid, each line car-
rying a quantized circulation κ ≃ 10−3 cm2/s around
its angstrom-sized core [4]. A mutual friction force be-
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tween the two fluids appears due to the scattering of the
thermal excitations off the quantized vortices [5]. This
mutual friction can profoundly affect the heat transfer
and turbulence characteristics in both fluids [6–12].

Due to its low temperature and extraordinary heat-
transfer capability, He II has been widely utilized in sci-
entific and engineering applications such as for cooling
superconducting particle accelerator cavities, supercon-
ducting magnets, and satellites [3]. Many of these ap-
plications involve high-flux transient heat transfer in He
II, a process that is known to be complicated due to
the interplay of counterflow, second-sound emission, and
vortex nucleation. In the early study by Cummings et

al. [13], it was found that the variation of the measured
second-sound velocity with increasing the heat-pulse in-
tensity deviated from the calculation result when the
vortices were neglected [14]. This discrepancy suggested
the important role of vortices in high-flux transient heat
transfer. Later, there were extensive experimental and
numerical studies of one-dimensional (1D) transient heat
transfer of He II in a uniform channel driven by a pla-
nar heater, due to the simplicity of this geometry [15–
19]. These studies have revealed that the transient heat-
ing from the heater generates a second-sound pulse that
propagates in He II. A counterflow establishes within the
pulse, which produces tangled quantized vortices. These
vortices then attenuate the second-sound pulse, convert-
ing the energy carried by the pulse to the internal energy
of He II. A heated region forms in front of the heater,
which is termed as the thermal layer. When the heat
flux is relatively high, the continuous attenuation even-
tually curtails the second-sound pulse to a limiting profile
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[17, 20], and the heat produced by the heater largely gets
deposited in the thermal layer, which gradually diffuses
along the channel following the second-sound pulse.

It has been recognized that the heat transfer of He
II in non-homogeneous geometries can exhibit new fea-
tures. For instance, Fiszdon et al. conducted tran-
sient heat transfer experiments in He II using cylindrical
heaters [16]. They found that a rarefaction tail of the
second-sound pulse can develop, which exhibits a drop
in temperature. The thermal layer in this geometry can
be significantly suppressed as compared to that in the
planar geometry. These observations were examined and
reproduced in numerical simulations by Kondaurova, et
al. [21–23]. Nevertheless, there lacks a systematic char-
acterization of the thermal-layer dynamics and how the
heat energy is divided between the thermal layer and the
propagating second sound. Producing this knowledge
could benefit applications pertinent to cylinder shaped
systems cooled by He II, such as superconducting trans-
mission lines and magnet coils [24, 25]. An emergent
effort in developing hot-wire anemometry for studying
quantum turbulence in He II [26] has further strength-
ened this need.

Besides the cylindrical geometry, transient heat trans-
fer of He II in spherical geometry is also relevant to prac-
tical applications. In particular, it has been known that
superconducting accelerator cavities cooled by He II can
quench due to transient heating from tiny surface de-
fects [27]. Locating these surface hot spots for subsequent
defect removal is the key for improving the cavity perfor-
mance. Our team has recently developed an innovative
molecular tagging technique for locating surface hot spots
via tracking thin lines of He∗2 molecular tracers [28, 29].
These tracers move with the normal fluid [30–33], and
therefore the transient radial heat transfer from a hot
spot can lead to tracer-line deformations that contain ac-
curate information about the spot location. In order to
extract this information, it is critical to understand how
the heat energy is partitioned between the thermal layer
and the second-sound pulse [28]. However, despite some
limited studies on the evolution of the vortex distribu-
tion in steady counterflow near a spherical heater [34, 35]
and near a cylindrical heater [36], the transient behaviors
of the thermal layer and its interaction with the second
sound have remained largely unexplored [21].

In this paper, we present a numerical study of tran-
sient heat transfer in all three (i.e., planar, cylindrical,
and spherical) geometries in He II. Our goal is to ex-
amine and compare the heat-transfer characteristics in
these geometries so that a comprehensive understand-
ing of the energy partition and thermal-layer dynamics
can be achieved. The paper is organized as follows. In
Sec. II, we introduce our model, which is based on the
governing equations of the two-fluid system and the Vi-
nen’s equation for vortex-line density. In Sec. III, we
validate our model by comparing the simulation result
of transient heat transfer in planar and cylindrical ge-
ometries with the experimental measurements by Fisz-

don et al. [16]. The systematic study of the heat trans-
fer in all geometries is discussed in Sec. IV. We first
present in Sec. IVA the calculated spatial profiles of the
second-sound wave, the vortex-line density, and the ther-
mal energy in the three geometries under the same heat-
ing conditions. This comparison clearly shows the unique
features of He II heat transfer in non-homogeneous ge-
ometries. We then discuss the thermal-layer dynamics
in cylindrical and spherical geometries and the effects of
various heat-pulse parameters in Sec. IVB. In Sec. IVC,
we illustrate how our model can also be used to deter-
mine the peak heat flux for the onset of boiling in He II.
A summary is included in Sec. V.

II. NUMERICAL MODEL

Several approaches have been developed for studying
the flow field and the heat transfer in He II in the presence
of quantized vortices. A detailed review can be found
in [37, 38]. Here we adopt the two-fluid hydrodynamic
model [39–41], which is based on the conservation equa-
tions for the fluid mass, momentum, and entropy and
treats the vortex-line density L as an independent vari-
able:

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂vs

∂t
+ vs · ∇vs +∇µ =

Fns

ρs
(2)

∂(ρv)

∂t
+∇(ρsv

2
s + ρnv

2
n) +∇P = 0 (3)

∂(ρs)

∂t
+∇ · (ρsvn) =

Fns · vns

T
(4)

where P is the pressure and ρv = ρsvs+ρnvn represents
the total momentum density. The Gorter-Mellink mutual
friction Fns per unit fluid volume depends on the vortex-
line density L and the relative velocity vns = vn − vs

between the two fluids as [5, 42]:

Fns =
κ

3

ρsρn
ρ

BLLvns (5)

where BL is a known temperature-dependent mutual fric-
tion coefficient [43]. The chemical potential µ(P, T, vns)
of He II includes a correction due to the counterflow ve-
locity vns, as proposed by Landau [2]:

µ(P, T, vns) = µ(P, T )− 1

2

ρn
ρ
v2ns (6)

Note that the viscous terms [44] in Eqs. (2)-(4) are ne-
glected, since they have small effects on the heat transfer
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FIG. 1. Schematic diagrams showing the transient heat transfer in He II from (a) a planar heater, (b) a cylindrical heater, and
(c) a spherical heater.

as compared with the mutual friction. This model repre-
sents a coarse-grained description of the two-fluid hydro-
dynamics, since the action of individual vortices on the
normal fluid [45, 46] is smoothed out. When the vortex-
line density is relatively high, this model has been shown
to describe non-isothermal flows in He II very well even
in non-homogeneous geometries [47, 48].

To provide a closure to the above equations, we adopt
the Vinen’s phenomenological equation to determine the
temporal and spatial variations of the vortex-line density
L(r, t) [5, 42]:

∂L

∂t
+∇· (vLL) = αV |vns|L3/2−βV L

2+γV |vns|5/2 (7)

where αV , βV and γV are temperature-dependent phe-
nomenological coefficients introduced by Vinen [5]. The
term ∇ · (vLL) accounts for the drifting of the vor-
tices [49, 50], where the vortex mean velocity vL is taken
to be the local superfluid velocity vs, as originally pro-
posed by Vinen [5, 42] and later utilized by many oth-
ers [51, 52]. We note that there also exist different treat-
ments of vL [37]. Nonetheless, in short transient heat
transfer processes, this drifting effect is negligible and
the selection of vL does not affect our analysis result.
The first two terms on the right-hand side of Eq. 7 re-
spectively account for the generation and the decay of
the vortices, and the third source term serves to trigger
the initial growth of the line density [5].

If one ignores the vortices and linearizes Eqs. (1)-(4) as-
suming small-amplitude wave-form variations of the en-
tropy and the counterflow velocity, it is straightforward
to derive a temperature-entropy wave mode (i.e., the sec-
ond sound) [2]. A transient heating from a heater surface
then generates a second-sound pulse in He II whose am-
plitude ∆T is determined by the heat flux. When this
amplitude is relatively high, the second-sound speed c2
can be written as c2 = c20[1 + ε(T )∆T ], where c20 is
the speed in the zero-amplitude limit and the nonlinear

coefficient ε(T ) takes the form [2]:

ε(T ) =
∂

∂T
ln

(

c320Cp

T

)

(8)

where Cp is the heat capacity at constant pressure. At
T < 1.88 K where ε(T ) is positive, the second-sound wave
with a higher amplitude travels faster. Therefore, a front
shock can appear at the leading edge of the second-sound
pulse at sufficiently large ∆T . At T > 1.88 K where ε(T )
is negative, a rear shock can form at the tail of a second-
sound pulse. This physical picture gets complicated when
vortices are present, which can attenuate and distort the
second-sound pulse profile.
Here we consider the transient heat transfer from pla-

nar, cylindrical, and spherical heaters in He II based on
all the coupled governing equations (i.e., Eqs. (1)-(7)),
as shown schematically in Fig. 1. For simplicity, we ig-
nore small-scale turbulent fluctuations and assume 1D
flow in all three geometries, i.e., 1D flow perpendicular
to the heater in the planar case and along the radial di-
rection in the cylindrical and the spherical cases. For a
rectangular heat pulse with a surface heat flux qh and
a duration ∆t, we set the boundary conditions at the
heater surface to be vn = qh/ρsT for the normal fluid
and vs = −vnρn/ρs for the superfluid during 0 < t < ∆t
and vn = vs = 0 at t > ∆t. All the thermodynamic
properties of He II are calculated using the Hepak dy-
namic library [53]. The values of the coefficients αV and
βV as recommended by Kondaurova et al. are used in
Eq. 7, which appears to produce simulation results in
good agreement with experimental observations [22]. We
then evolve the governing equations using the MacCor-
mack’s predictor-corrector scheme, which is accurate to
the second order in time and space [54]. A flux-corrected
transport approach is also adopted to suppress the nu-
merical oscillations due to the discontinuity at the shock
front [54]. We have tested various spatial steps ∆r and
time steps ∆ts and found that the calculated results con-
verged well when ∆r < 2×10−5 m and ∆ts < 2×10−8 s.
In order to balance the result fidelity and the computa-
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(a)

Planar heater

Planar heater

Cylindrical heater

Cylindrical heater

(b)

FIG. 2. Experimental and simulated temporal profiles of the
temperature increment ∆T = T − T∞ at (a) 1, 2, and 5.4
mm from the surface of a planar heater with qh=5 W/cm2,
∆t=1 ms , and a repetition rate of 0.2 Hz; and (b) at 1, 2,
and 3 mm from the surface of a cylindrical heater with qh=6
W/cm2, ∆t=1 ms, rh=2.5 mm, and a repetition rate of 2 Hz.
The bath temperature is T∞ = 1.4 K.

tional cost, ∆r = 10−5 m and ∆ts = 10−8 s are used in
all the reported simulations.

III. MODEL VALIDATION

For model validation purpose, we first performed nu-
merical simulation on transient heat transfer of He II
under the same conditions as in the experiments con-
ducted by Fiszdon et al. [16]. These authors examined
the transient heat transfer from both a planar heater and
a cylindrical heater (radius rh = 2.5 mm) immersed in
He II at 1.4 K. For the planar heater case, they used
heat pulses with a duration ∆t = 1 ms at a repetition
rate of 0.2 Hz, and the heat flux on the heater surface
was qh = 5 W/cm2. They measured the time variations
of the He II temperature at distances r = 1 mm, 2 mm,
and 5.4 mm from the heater surface using a movable su-
perconducting bolometer. In their experiment, the vor-

tices generated by one heat pulse did not have enough
time to decay when the next heat pulse arrived. There-
fore, the initial vortex-line density L0 seen by a given
heat pulse was relatively high, which is often treated as a
tuning parameter in past numerical works [15, 16, 21]. In
our calculation, we set L0 = 8× 105 cm−2 to achieve the
best match with the experimental observations. Fig. 2(a)
shows the measured temperature profiles together with
our simulation results. Since ε(T ) > 0 at 1.4 K, the tem-
perature at each location first spikes up sharply upon the
arrival of the shock front of the second-sound pulse. A
gradual temperature overshot is then observed, which is
due to the spreading of the thermal layer as we shall dis-
cuss in details in Sec. IV. All these observations are well
reproduced in our simulations.

In the cylindrical heater case, the measured and the
simulated temperature variations at distances r− rh = 1
mm, 2 mm, and 3 mm from the heater surface are shown
in Fig. 2(b). In this case, heat pulses with a duration
∆t = 1 ms and a surface heat flux qh = 6 W/cm2

were applied at 2 Hz repetition rate. Due to the non-
homogeneous geometry, a radial dependence of the ini-
tial line density L0(r) = Lh(rh/r)

2 as recommended by
Kondaurova et al. [21] was adopted in our calculation,
where the line density at the heater surface Lh was set to
8×106 cm−2 due to the increased repetition rate. Again,
all the key features of the observed temperature curves
are reproduced. The agreement between the experimen-
tal measurements and our simulation results has thereby
validated the fidelity of our model calculation.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we first present the simulation results
to compare the key features of the transient heat transfer
in different heater geometries. We then examine the time
evolution of the thermal layer in the cylindrical and the
spherical heater cases under various heating conditions.
Since our focus is the heat transfer following a single heat
pulse, a small initial vortex-line density L0 = 102 cm−2

is assumed in the calculations. This L0 is comparable to
the typical density of remnant vortices pinned to He II
container walls [55]. Indeed, it has been shown that in
relatively high-flux counterflow, the simulated tempera-
ture profile in He II is nearly independent of L0 when L0

is smaller than about 105 cm−2 due to the source term in
Eq. 7 [23]. To avoid the complication of possible boiling
in He II near the heater surface, we have also assumed
that the heater is placed at a 1-meter depth below the
He II free surface in all the cases. We will discuss in
the last subsection how this hydrostatic head pressure
ensures the helium to be always in the He II state during
the transient heat transfer. This discussion also provides
a foundation for our future study of the peak heat flux
for the onset of boiling in He II.



5

FIG. 3. Profiles of (1) temperature increment ∆T , (2) vortex-line density L, and (3) thermal energy density W compensated by
the ratio of the cross section area A(r) to the heater surface area Ah in (a) planar, (b) cylindrical, and (c) spherical geometries
at 1.78 K. In all cases, qh=23 W/cm2, ∆t=0.5 ms and rh=2 mm.

A. Transient heat transfer characteristics in

different heater geometries

To compare the heat transfer characteristics in differ-
ent heater geometries, we show the simulated spatial pro-
files of the temperature increment ∆T = T − T∞, the
vortex-line density L, and the thermal energy density
W = ρCp∆T at various time t in Fig. 3. In this calcu-
lation, we set the He II bath temperature to T∞ = 1.78
K. A heat pulse with a surface flux qh = 23 W/cm2 and
a fixed duration ∆t = 0.5 ms is applied to the heater at
t = 0 in all three cases. The radii of both the cylindri-
cal and the spherical heaters are set to rh = 2 mm. We
also set the planar heater surface to be at r = rh = 2
mm. In what follows, we discuss the main features of the
transient heat transfer.

1) Second-sound pulse: As shown in Fig. 3(1a-1c),
a second-sound pulse with positive ∆T emerges when
the heater turns on, which carries the heat energy and
propagates away from the heater surface at the known
second-sound speed (i.e., c2 = 19.6 m/s at 1.78 K [43])
in all three cases. Inside the pulse profile, a counter-
flow establishes where the normal-fluid velocity is deter-
mined by the thermal energy flux as vn = c2W/ρsT =

(c2Cp/s)·∆T/T . This counterflow leads to a rapid gener-
ation of the quantized vortices. In the planar heater case,
the second-sound pulse gradually evolves from a rectan-
gular profile near the heater to a front-shock profile due
to the combined effects of the vortex attenuation and the
positive ε(T ). In the cylindrical and the spherical heater
cases, as the second-sound pulse propagates outward, the
wave-front area per unit length A(r) in the cylindrical
geometry increases as 2π(rh + c2t) and in the spherical
geometry A(r) = 4π(rh + c2t)

2. In regions where the
vortex-line density is low and hence the mutual friction
is negligible, the total flux of kinetic energy of each fluid
through the cylindrical or the spherical surface area is
nearly constant. For the normal fluid, this means that
vn in the second-sound pulse must drop as 1/

√
r in the

cylindrical geometry and as 1/r in the spherical geome-
try. Since ∆T is proportional to vn, it also drops in a
similar fashion as the pulse propagates, which is clearly
seen in Fig. 3(1b-1c).

2) Quantized vortices: The vortices are created as a
consequence of the counterflow in the second-sound pulse.
In the planar heater case, the thermal energy flux W in
the pulse remains high as the pulse propagates. There-
fore, a dense tangle of vortices is created in the entire
space traversed by the second-sound pulse; these vortices
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FIG. 4. Profiles of the temperature increment ∆T near the heater surface in (a) planar, (b) cylindrical, and (c) spherical
geometries at 1.78 K. In all cases, qh = 23 W/cm2, ∆t = 0.5 ms and rh = 2 mm.

continuously distort the pulse profile (see Fig. 3(1a)). In
the cylindrical and the spherical heater cases, since the
thermal energy flux drops with r due to the diverging ge-
ometries, the line density L is high (i.e., greater than 105

cm−2) only in a thin layer of He II near the heater surface
(see Fig. 3(1b-1c)). Outside this region, the second-sound
pulse experiences negligible attenuation.

3) Rarefaction tail: A peculiar feature of the tem-
perature profile in the cylindrical and the spherical ge-
ometries, as compared to the planar case, is the appear-
ance of a tail region with negative ∆T following the pos-
itive second-sound pulse (see Fig. 3(1b-1c)). This nega-
tive ∆T tail, which emerges after the heater is switched
off, is known as the rarefaction wave [56–58]. The un-
derlying physics can be understood as follows. The total
thermal energy carried by the second-sound pulse can be
evaluated as Qs =

∫

∆R
W (r)A(r)dr, where ∆R ≃ c2∆t

is the thickness of the pulse. Since W (r)A(r) is expected
to increase as

√
r in the cylindrical geometry and as r in

spherical geometry (confirmed in our simulation, i.e., see
Fig. 3(3b-3c)), Qs increases as the pulse propagates. To
supply this ever-growing thermal energy carried by the
second-sound pulse, there must be a flow of the inter-
nal energy from the tail region towards the pulse front,
which thereby leads to the formation of the negative ∆T
rarefaction tail. If we integrate Qs over both the posi-
tive pulse and the rarefaction tail, the total thermal en-
ergy carried by them always equals the input heat energy,
which fulfills the energy-conservation law.

4) Thermal layer: Near the heater surface where
the vortex-line density L is high, the interaction be-
tween the vortices and the second-sound pulse effectively
converts the thermal energy carried by the pulse to lo-
cally deposited heat, resulting in a heated layer of He
II, i.e., the thermal layer. To see this layer clearly, we
plot the ∆T profile near the heater in all three cases in
Fig. 4. As the heat pulse ends, ∆T on the heater sur-
face reaches the highest value. In the planar heater case,
∆T (rh) = 170 mK on the heater surface, which is about
7 times the ∆T in the second-sound pulse. The heat con-
tent in this thermal layer diffusely spreads out [3]. On
the contrary, in the cylindrical and the spherical heater

��	 ��
 ��� ���
������

�


�

���

�
�

��
��

��
���

�
�

��� ������
����������
���������

���

���

���

���

��	

�
��
��

���

������
����������
���������

FIG. 5. Evolution of (a) the fraction of the heat energy Qth/Q
deposited in the thermal layer; and (b) the temperature in-
crement ∆T (rh) at the heater surface at 1.78 K. In all three
cases, qh = 23 W/cm2, ∆t = 0.5 ms, and rh = 2 mm.

cases, the temperature buildup in the thermal layer is
much weaker. Indeed, both the layer thickness and the
maximum ∆T in the spherical geometry are insignificant.
Another important feature of the thermal-layer dynamics
in the two non-homogeneous geometries is that this layer
dies out rapidly before it has time to undergo diffusive
spreading. This prompt suppression is due to the same
mechanism for the formation of the rarefaction tail: the
internal energy in these non-homogeneous geometries is
actively transferred towards the second-sound pulse front
in order to supply the ever-growing thermal energy car-
ried by the pulse. The depletion of the deposited heat in
the thermal layer occurs simultaneously with the forma-
tion of the rarefaction tail.
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5) Heat energy partition: The partition of the heat
energy between the thermal layer and the second-sound
pulse as well as how this partition varies with time are
topics of fundamental interest. To examine this partition,
we calculate the heat energy in the thermal layer Qth by
integratingW from the heater surface rh to the boundary
rb of the thermal layer as Qth =

∫ rb
rh

W (r)A(r)dr. This

boundary rb in the planar heater case is set to be the
minimum temperature location between the heater sur-
face and the second-sound pulse. For the cylindrical and
the spherical heater cases, rb is set to the location where
∆T drops to zero. In Fig. 5, we show the calculated time
evolution of the ratio of Qth to the input heat Q = qhAht
(where qh = 23 W/cm2 at 0 ≤ t ≤ ∆t) as well as the
∆T (rh) on the heater surface for all three cases. The frac-
tion Qth/Q in the planar heater case increases to about
35% by the end of the heat pulse, and it slowly increases
even after the heater is turned off since the second-sound
pulse keeps producing vortices and experiencing attenua-
tion. Following the heat pulse, the thermal layer spreads
out and therefore ∆T (rh) decreases. In the cylindrical
and the spherical heater cases, Qth/Q only reaches 5%
and 0.4%, respectively, with ∆T (rh) = 100 mK and 26
mK by the end of the heat pulse. Furthermore, Qth

quickly drops to zero due to the aforementioned mech-
anism that occurs in non-homogeneous geometries. In
the end, the input heat energy is all carried away by the
second-sound pulse and the rarefaction tail.

B. Effects of heating conditions and bath

temperature on the thermal-layer dynamics

In this subsection, we present more detailed studies on
the thermal-layer dynamics in the two non-homogeneous
geometries under various heating conditions and bath
temperatures.
1) Effects of heating conditions: First, we vary the

heater radius rh in the range of 1 mm to 5 mm while keep-
ing the same surface heat flux qh = 24 W/cm2, pulse du-
ration ∆t = 0.5 ms, and bath temperature T∞ = 1.78 K.
The results are shown in Fig. 6. It is clear that both the
deposited heat energy Qth and the surface temperature
increment ∆T (rh) increase with the heater size. This is
not surprising, since the heater surface appears flatter to
the adjacent He II at larger rh. Therefore, the thermal-
layer dynamics is expected to evolve towards that in the
planar geometry as rh increases. Fig. 7 shows the results
with a varying surface heat flux qh in the range of 20 to
28 W/cm2 at fixed pulse duration ∆t = 0.5 ms, heater ra-
dius rh = 2 mm, and bath temperature T∞ = 1.78 K. As
the surface heat flux qh increases, the thermal layer starts
to grow earlier and can reach a higher ∆T (rh) with more
deposited energy Qth. Interestingly, we see that when qh
is lower than a threshold q

(c)
h , i.e., about 20 W/cm2 in the

cylindrical geometry and about 22 W/cm2 in the spher-
ical geometry, the thermal layer does not grow at all. In

the planar case, q
(c)
h is significantly lower, i.e., about 15
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FIG. 6. Effect of the heater radius rh on the evolution of
(a) Qth/Q and (b) ∆T (rh) in (1) the cylindrical and (2) the
spherical heater geometries. In both cases, T∞ = 1.78 K,
qh = 24 W/cm2, and ∆t = 0.5 ms.
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FIG. 7. Effect of the surface heat flux qh on the evolution
of (a) Qth/Q and (b) ∆T (rh) in (1) the cylindrical and (2)
the spherical heater geometries. In both cases, T∞ = 1.78 K,
∆t = 0.5 ms, and rh = 2 mm.

W/cm2 in our simulation, in agreement with the reported

values [3, 17]. Although the exact value of q
(c)
h depends

on other heating parameters and the bath temperature,
it is always higher in non-homogeneous geometries un-
der given heating conditions. Finally, we show the effect
of the pulse duration ∆t in Fig. 8, where ∆t is varied
from 0.5 ms to 1.0 ms at fixed qh = 22 W/cm2, rh = 2
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FIG. 8. Effect of the pulse duration ∆t on the evolution of
(a) Qth/Q and (b) ∆T (rh) in (1) the cylindrical and (2) the
spherical heater geometries. In both cases, T∞ = 1.78 K,
qh = 22 W/cm2, and rh = 2 mm.

mm, and T∞ = 1.78 K. The deposited heat energy Qth

increases almost linearly with ∆t in both geometries.

2) Effect of bath temperature: The effect of the
bath temperature T∞ on the thermal-layer dynamics is
more complicated, since nearly all the parameters in the
governing equations are temperature dependent but their
variations with T∞ can be quite different. Fig. 9 shows
our calculation results when T∞ is varied from 1.46 K to
1.96 K while all other heating conditions remain fixed,
i.e., rh = 2 mm, ∆t = 0.5 ms, and qh = 20 W/cm2 in the
cylindrical geometry and qh = 22 W/cm2 in the spherical
geometry. As T∞ increases from 1.46 K, the maximum
heat energy deposited in the thermal layer first decreases
and becomes negligible when T∞ is in a range of roughly
1.6 K to 1.8 K. Then, as T∞ further increases, the de-
posited energy starts to rise. This non-monotonic be-
havior can be qualitatively understood as caused by the
temperature dependence of αV |vns| in the vortex gener-
ation term in Eq. (7). In Fig. 10, we plot αV |vns| as
a function of temperature, where vns=q/ρssT is evalu-
ated at the surface heat flux qh = 22 W/cm2. It is clear
that αV |vns| exhibits a non-monotonic temperature de-
pendence and reaches a minimum value at around 1.75
K. Since the generation term in Eq. (7) largely controls
the rate of vortex production, for a fixed pulse duration
∆t, the vortex-line density in the thermal layer is low
at small αV |vns|. Consequently, the attenuation to the
second-sound pulse is weak, which limits the heat energy
deposited in the thermal layer. The αV |vns| curve rises
sharply near the lambda point, which implies that the
vortex generation and hence the thermal-layer effect can
become quite pronounced in this regime. Indeed, Gold-
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FIG. 9. Effect of the bath temperature T∞ on the evolution
of (a) Qth/Q and (b) ∆T (rh) in (1) the cylindrical heater
geometry with qh = 20 W/cm2 and (2) the spherical heater
geometry with qh = 22 W/cm2. In both cases, ∆t = 0.5 ms
and rh = 2 mm.
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FIG. 10. The temperature dependence of the coefficient
αV |vns| and the He II heat capacity Cp. The crosses mark
the temperatures examined in Fig. 9.

ner et al. studied nonlinear second-sound waves near
the lambda point and concluded that the coupling to the
first sound and the self-interaction effect could become
important [59], which warrants further investigation.

We also note that at the lowest temperature that we
have examined, i.e., T∞ = 1.46 K, the highest ∆T (rh)
on the heater surface is achieved despite the fact that
only up to 5% of the heat energy is deposited. This pro-
nounced temperature change is essentially caused by the
small heat capacity of He II at low temperatures. As
shown in Fig. 10, the heat capacity drops rapidly with
decreasing the temperature. At low T∞, even a small en-
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Saturation

line

t=0.5 ms

t=0 ms

FIG. 11. The evolution of the He II state near the heater
surface with a 1-m hydrostatic head pressure. In all the cases,
T=1.78 K, qh=22 W/cm2, ∆t=0.5 ms, rh=2 mm. The circle
and the crosses mark the start and the end time of the heat
pulse, respectively.

ergy deposition in the thermal layer can therefore result
in a large temperature increment.

C. Boiling in He II during transient heat transfer

An important parameter in He II heat transfer applica-
tions is the so-called peak heat flux qc [3]. This qc denotes
the heat flux from the heater surface above which boiling
occurs in the helium. There have been extensive stud-
ies of qc in the planar geometry, and existing correlations
can reasonably predict the values of qc at various temper-
atures and heating conditions [3]. However, the studies
on qc in non-homogeneous geometries are very limited.
Here, we discuss how our model will allow us to system-
atically evaluate qc for He II transient heat transfer in
different geometries.

Note that in all the cases we have studied, the highest
temperature in He II is always achieved near the heater
surface. Therefore, we just need to monitor the state of
the He II adjacent to the heater during a transient heat
transfer. If at any instance, the state in the P -T phase
diagram traverses the saturation line to the vapor phase
(or the lambda-line to the He I phase), boiling is deemed
to occur. Fig. 11 shows representative P -T curves of the
He II near the heater surface at T∞ = 1.78 K, qh = 22
W/cm2, ∆t = 0.5 ms, and rh = 2 mm in three heater ge-
ometries. As the heater turns on, a sudden drop in the lo-
cal pressure is seen in all three cases. Then, in the planar
heater case the state curve moves horizontally towards
the saturation line, while in the two non-homogeneous
geometries the pressure rises a bit before the state curve
moves horizontally. Under the specified heating condi-
tions, the horizontal move in the spherical geometry is
negligible. After the heat pulse ends, the pressure spikes
up in all the cases and the P -T curves then evolve back

to the starting point. The complex evolution paths in
the non-homogeneous geometries are intimately related
to the rarefaction physics. From this example calcula-
tion, one can see clearly that the He II state approaches
the saturation line furthermost in the planar heater case.
If we increases the surface heat flux qh, the state curve in
the planar geometry will touch the saturation line first,
which allows us to determine the qc in this geometry.
The qc in the other two geometries can be determined
in a similar fashion as we further increase qh. It is clear
that under the same heating conditions, qc is the lowest
in the planar geometry and is the highest in the spherical
geometry. We may then vary parameters such as the hy-
drostatic head pressure, the pulse duration ∆t, and the
heater radius rh to study their effects on qc. The relevant
details will be presented in a future publication.

V. CONCLUSION

We have conducted numerical simulations of transient
heat transfer in He II by solving the He II two-fluid
equations of motion coupled with the Vinen’s equation
for the evolution of quantized vortices. The character-
istics of transient heat transfer from planar, cylindrical,
and spherical heaters are systematically examined. Com-
pared to the planar heater case, the heat transfer in the
non-homogeneous geometries exhibits some distinct key
features. These include: 1) a rapid drop of the vortex-line
density away from the heater surface; 2) the formation
of a thin thermal layer near the heater beyond which the
second-sound pulse experiences negligible attenuation; 3)
the emergence of a rarefaction tail with a negative tem-
perature increment following the second-sound pulse; and
4) a prompt suppression of the thermal layer upon the
completion of the heat pulse such that all the input heat
can be completely carried away by the outgoing second-
sound pulse and the rarefaction tail. We have also ex-
amined the effects of various heating parameters and the
He II bath temperature on the evolution of the thermal
layer. Our result shows that the thermal layer diminishes
more quickly with a smaller heater size, a lower surface
heat flux, or a shorter pulse duration. When the heat-
ing conditions are fixed, the buildup of the thermal layer
exhibits a non-monotonic dependence on the bath tem-
perature. To invoke the next topic of our series of studies,
we have also illustrated how our model will allow us to
systematically examine the peak heat flux for the onset
of boiling in He II during a transient heat transfer. These
studies should provide us a solid foundation towards the
development of a comprehensive understanding of He II
transient heat transfer in different geometries.
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