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Abstract 

     A theory of electrically-controlled THz-frequency auto-oscillator, based on a tri-layer hetero-structure 

comprised of a piezoelectric (PZ) ceramics, an NiO-based antiferromagnet (AFM), and a heavy metal 

(HM), is developed in the framework of the well-established AFM sigma-model. It is assumed that the 

magnetostrictive AFM is monocrystalline and monodomain, and has mixed biaxial and cubic anisotropy.  

The frequency of the antiferromagnetic resonance (AFMR) of the hetero-structure in a passive subcritical 

regime is calculated as a function of the following parameters: the choice of the ceramic PZ material and of 

its poling direction, modulus and orientation of the static electric field applied to the PZ layer, and the 

magnitude of the driving electric current injected into the HM layer. It is shown that the AFMR frequency 

of the hetero-structure, and the threshold value of the driving current for THz-frequency generation, depend 

on the total AFM anisotropy, which can be substantially reduced by the bias electric field in the case when 

this field is collinear to the PZ poling direction. It is also shown that the variation of the PZ poling direction 

in respect to the bias electric field provides an additional degree of freedom that can be used to optimize 

the performance of AFM-based generators and detectors of THz-frequency signals. 

 

1. Introduction 

    Recently, antiferromagnetic (AFM) materials have attracted a lot of attention of researchers due to the 

possibility of development of AFM-based magnetic-bias-free THz-frequency signal processing devices [1]. 

AFM do not produce stray dipolar magnetic fields, and, therefore, are not sensitive to the perturbation 

created by the external magnetic fields. They demonstrate ultrafast spin dynamics at THz frequencies [2] 

due to the presence in AFM of very strong internal magnetic fields of the exchange nature, that keep the 

AFM sub-lattices antiparallel to each other. These properties of AFMs make them appealing for 
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applications in magnetic memory devices [3], electrically tunable oscillators [4, 5] and detectors [6-8]. 

However, for applications, it is necessary to find effective means of external control of magnetization states 

of AFMs, since magnetic fields used to control ferromagnets are not effective with AFMs.  

Previously [9], it was shown theoretically that in a heterostructure comprising piezoelectric, dielectric 

antiferromagnetic crystal, and heavy metal (PZ/AFM/HM), it is possible to control the biaxial anisotropy of 

the AFM layer by applying a dc voltage across the PZ layer. It was shown that the variation of the dc 

voltage across the PZ layer and/or the variation of the dc electric current in the HM layer allows one to 

control the antiferromagnetic resonance (AFMR) frequency of the AFM in a passive (subcritical) regime, 

and, also, to reduce the threshold driving current of the current-induced terahertz-frequency oscillations. 

The voltage-induced reduction of the oscillation threshold leads to the proportional reduction of the 

amplitude of the terahertz-frequency signal generated in the active (supercritical) regime. These results 

were obtained under the simplifying assumption that the studied AFM is NiO-like, and has a simple bi-

axial anisotropy, and that the poling direction of the PZ material and the externally applied bias electric 

field are parallel to each other. 

In our current work, we present a generalized theory of the electric-field control of the AFM 

properties, taking into account both biaxial and cubic anisotropy of the AFM and varying dc voltage across 

the PZ layer and the dc electric current in the HM. We focus on the characterization of the AFMR 

frequency excited in the passive subcritical regime as a function of different features, specifically: choice 

of the ceramic PZ material and of its poling direction Π, modulus and orientation of the electric field E 

induced by a dc voltage applied to the PZ, that is employed to generate and transfer strains on the AFM 

layer, influence of the electric current injected into the HM, crystal symmetry of the AFM layer and 

magnetoelastic field, arising from the mechanical coupling between AFM and PZ. The account for the 

mixed biaxial and cubic anisotropy is an attempt to reproduce more closely the complex crystal symmetry 

of AFM materials like NiO. At the same time, the possibility to vary the PZ poling direction provides an 

additional degree of freedom that is here used to optimize the performance of AFM-based generators 

or/and detectors of THz-frequency signals. 

The paper is organized as follows. In Sec.1, an introduction to voltage- (or electric-field-) controlled 

AFM spintronics is presented. In Sec.2, we consider a mathematical model of the PZ/AFM/Pt 

heterostructure with a longitudinal electric field applied to it.  We derive a general linear tensorial relation 

between the vector of the applied electric field and the electric-field-induced change in the AFM anisotropy 

tensor with both biaxial and cubic anisotropies. In Sec. 2.1, we solve the static equation of the “sigma-

model” [10,11] to determine the ground state of the Neel vector. In Sec.2.2, we consider the small 
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perturbations near the equilibrium state by solving the dynamic equation, and find the eigenfrequencies of 

the system as functions of the external electric field applied to PZ and density of the dc electric current in 

HM. In Sec.3 we present the results of numerical study based on the theoretical results obtained earlier. We 

consider two cases, where dielectric polarization is parallel and perpendicular to the electric field. 

Discussion and conclusions of the obtained results are presented in Sec. 4. 

 

2. Electric-field-controlled auto-oscillation dynamics in a trilayer 

piezoelectric/antiferromagnet/heavy-metal heterostructure 

 

Let us consider a trilayer piezoelectric (PZ)/antiferromagnet (AFM)/heavy-metal (HM) 

heterostructure presented in Fig.1. The very thin HM layer is traversed by an electric current J that, due to 

spin-Hall effect, becomes spin-polarized, and creates a perpendicular spin-current p that, in turn, exerts a 

spin-transfer-torque on the AFM sublattice magnetizations, m(1) and m(2). At the same time, the AFM layer 

is also tightly coupled to a layer of a piezoelectric material which experiences a mechanical deformation 

upon the application of a bias voltage via lateral electrodes. The thick PZ layer transfers the voltage-

induced mechanical strain to the thin AFM through a common interface. Therefore, the AFM is 

simultaneously subject to the effects arising from the current-induced spin-transfer torque and voltage-

induced mechanical strain. 

 
Figure 1. Schematics of the tri-layer PZ/AFM/HM structure  

(the directions of the vector quantities, and of the position of the lateral electrodes, are shown here as an example, and can be varied). 

 

Magnetization dynamics in the AFM is ruled by a pair of Landau-Lifshitz-Gilbert-Slonczewski (LLGS) 

equations written for AFM sublattice magnetizations: 
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( )
( ) ( )( ) ( )

( )
( ) ( )( )( ) ( 1,2)EFF G

d d
dt dt

ξ ξ
ξ ξ ξ ξ ξγ α τ ξ

⎛ ⎞
= × + × + × × =⎜ ⎟⎜ ⎟

⎝ ⎠

m mh m m m m p    (1)  

where ( ) ( ) / SMξ ξ=m M  represents the normalized magnetization of the ξ-th sublattice, where MS is the 

saturation magnetization, γ is the gyromagnetic ratio, αG is the Gilbert damping, τ=σJ is the spin-transfer-

torque strength proportional to the current density J (MS , αG and σ are assumed to be the same for both 

sublattices), ( )
EFF
ξh  is the normalized effective magnetic field acting on the ξ-th sublattice, the “over dot” 

notation stands for partial time derivative, and the symbol “×” denotes the vector product.  

In the absence of external bias magnetic fields, we assume that the effective magnetic field in AFM is 

the sum of the fields produced by the exchange interaction, magnetocrystalline anisotropy and 

magnetoelastic interaction: 
( ) ( ) ( ) ( ) ( 1, 2)EFF EXC ANI MEL
ξ ξ ξ ξ ξ= + + =h h h h       (2) 

Expressing all the quantities in SI units, we get the following expression for the exchange fields: 

    ( ) ( )

2
exc

EXC
S

H
M

ξ ξ= − Ξh m ,    
0 1
1 0
⎡ ⎤

Ξ = ⎢ ⎥
⎣ ⎦

                    (3) 

Here the minus sign reflects the fact that the exchange field acting on the first (second) sublattice directs its 

magnetization oppositely to the second (first) one, thus enforcing the antiferromagnetic order. It is also 

worth mentioning, that the exchange field Hexc is much larger than any other field acting in the AFM. 

In contrast with [4,9], we consider here a more general expression for the magnetocrystalline 

anisotropy field to describe realistic AFM materials exhibiting rather complex anisotropy patterns with 

competing cubic and uniaxial (or biaxial) anisotropies [10-17]. This is, for instance, the case for such 

commonly used antiferromagnetic material, as the NiO, which is a cubic crystal, which also exhibits an 

easy-plane anisotropy with the easy-axial anisotropy in the easy plane. 

We take into account all these anisotropy contributions as follows: 
( ) ( ) ( ) ( 1, 2)ANI BIAX CUB
ξ ξ ξ ξ= + =h h h ,     (4a) 

( ) ( )( ) ( )( )2 2
0 0

2 2H E
BIAX

S S

K K
M M

ξ ξ ξ

μ μ
= − ⋅ + ⋅z z y yh e m e e m e ,    (4b)

( ) ( ) ( ) ( )( )2 2 2( ) ( ) ( ) ( ) ( ) ( )
2

0

2 1 1 1C
CUB x x y y z z

S

K m m m m m m
M

ξ ξ ξ ξ ξ ξ ξ

μ
= − − + − + −x y zh e e e  ,   (4c) 

where ze  and ye  denote the hard and the easy axis, respectively. Note, that thanks to the normalization 

constraint 
2 2 2( ) ( ) ( ) 1x y zm m mξ ξ ξ+ + = , the easy-axis contribution along xe  may be enclosed into the previous 
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ones. In the equations (4b, c) μ0 is the vacuum permeability, whereas KH, KE and KC are the hard, uniaxial 

and cubic anisotropy constants, respectively. 

The magnetoelastic field can be expressed as a partial derivative of the magnetoelastic energy WMEL 

with respect to the magnetization [18-23]: 

( )
( )

( )2
0

1 ( 1,2)MEL
MEL

S

W
M

ξ
ξ

ξ ξ
μ

∂= − =
∂

h
m

      (5a) 

and, for a cubic material, WMEL has the form: 

( ) ( ) ( )2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 22 . .MEL xx x yy y zz z xy x y xz x z yz y zW B m m m B m m m m m m c cξ ξ ξ ξ ξ ξ ξ ξ ξ ξε ε ε ε ε ε= + + + + + +   (5b) 

where “c.c.” stands for the “terms independent of magnetization”, while the magnetoelastic coefficients, B1 

and B2, combine the two magnetostrictive coefficients (λ100 and λ111), and the three elastic constants (c11, 

c12 and c44) as follows:  

( )1 100 11 12

2 111 44

3
2

3

B c c

B c

λ

λ

= − −

= −
      (6) 

Let us also remember, that for materials belonging to the cubic crystal classes 43 ,432 and 3m m m , that, 

typically, undergo isochoric magnetostrictive deformations, the fourth-order elasticity tensor  is 

expressed as (in Voigt notation): 

[ ]

[ ]

11 12 12

12 11 12

12 12 11

44

44

44

0 0
0 0
0 0

c c c
c c c
c c c

c
c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0

 .    (7) 

Note that, for isotropic materials, the number of the above introduced independent constants is reduced, 

because in that case 100 111 Sλ λ λ= =  and ( )44 11 12 / 2c c c= − , so that B1≡B2. These latter assumptions were 

used in some previous works dealing with NiO [9, 24].  

In (5b), the quantities , ,xx yy zzε ε ε  measure the mechanical strains along the principal axes of the AFM 

whereas , ,xy xz yzε ε ε  denote the shear strains. All these strains originate from the application of a fixed bias 

electric voltage V to the PZ via two lateral electrodes. Such electrodes generate, in turn, an electric field E 

that induces an elongation (contraction) of the PZ width along the direction of the electric field, together 

with a contraction (elongation) in the two orthogonal directions. In our analysis, we don’t fix a priori the 
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relative orientation of the PZ polarization Π and applied electric field E, since it constitutes a degree of 

freedom which we shall use to optimize the key parameters associated with the auto-oscillations of the 

studied structure. 

Let us assume that, since the AFM layer is substantially thinner than the PZ layer, the strain 

variations along the AFM film thickness (x axis) can be disregarded. Moreover, the total strains acting on 

each sublattice of the AFM layer are assumed to be constant in time and uniform in space. Therefore, to 

identify the above mentioned strain components, we shall apply mechanical boundary conditions at both 

the top and bottom yz surfaces of the AFM layer.  

In such an identification procedure, let us consider that, in the layered structures similar to the one 

shown in Fig.1, typically, a thin layer of an AFM crystal is grown on a relatively thick piezoelectric 

substrate and, then, a very thin layer of a HM is sputtered on top of the AFM layer. In such a case, it is 

reasonable to assume that the thin layers of the AFM and HM will not affect the mechanical properties of 

the piezoelectric, while the ultra-thin HM layer will not strongly influence the mechanical properties of the 

AFM. 

Therefore, at the bottom yz surface, we assume that an ideal acoustic contact between PZ and AFM is 

realized, so that the planar strains , ,yy yz zzε ε ε  are imposed by the PZ layer and fully transferred to the AFM 

[9,23,25]: 
PZ IF
yy yy yy

PZ IF PZ IF
ik kl lj ik kl lj ij yz yz yz

PZ IF
zz zz zz

P P P P

ε ε ε

ε ε ε ε ε ε

ε ε ε

⎧ = =
⎪⎪= = ⇒ = =⎨
⎪ = =⎪⎩

      (8) 

where ij ij i jP I n n= −  is the projector on the AFM/PZ interface, Iij is the identity matrix and ni the unit 

vector orthogonal to the AFM/PZ interface, and the Einstein summation convention is here used. 

Let d be the third-order strain-piezoelectric tensor that allows to relate the electric field E=(Ex, Ey, Ez) 

generated by the application of a dc bias voltage V across the lateral electrodes to the strains PZ
klε generated 

in the PZ layer as: 

 PZ
kl ijk kd Eε =          (9) 

The structure of the tensor d depends on the direction of the dielectric polarization, as well as on the crystal 

symmetry of the PZ material. For simplicity, let us restrict our analysis to a PZ layer made from a polarized 

ceramics that is known to be transversely isotropic. In this case, the tensor d is expressed in terms of three 

independent coefficients (d1, d2, d4). Moreover, let Π, a constant unit vector, represent the direction of the 
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axis of rotational symmetry (or the poling direction) of the PZ ceramics. Assuming the vector Π to be 

directed along one of the reference axes, the tensor d takes the following forms (in Voigt notation) [26]: 

 

( ) ( ) ( )

1 2 2

2 1 2

2 2 1

4 4

4 4

4 4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

; ;
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

d d d
d d d
d d d

d d
d d

d d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

≡ = ≡ = ≡ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

x y zd Π e d Π e d Π e      (10) 

 

At the top yz surface the AFM layer, by assuming that the very thin heavy metal layer takes a negligible 

role in the mechanical response of the AFM, this interface is treated as if it were free. The application of 

traction boundary conditions at this surface results in vanishing of the normal components of the Cauchy 

stress tensor σij  [9, 25]: 

( )
, with

0
xx yy zz

ij j ijkl kl j
xy xz

n n
ε η ε ε

σ ε
ε ε

⎧ = − +⎪= = = ⇒ ⎨
= =⎪⎩

x0 n e     (11) 

where 12 11c cη = . In (11) we assumed a linear constitutive relation between the stress and strain, and, also, 

neglected the magnetostriction strain tensor.  

Combining (7) - (11), we get the expressions for the strain tensor acting on the AFM for three 

different poling directions of the PZ Π as a function of the components of the electric field E: 

( ) 2

2 0 0
0 1 0
0 0 1

xd E
η

ε
−⎡ ⎤
⎢ ⎥≡ = ⎢ ⎥
⎢ ⎥⎣ ⎦

xΠ e        (12a) 

( )
( )1 2

1 4

4 2

0 0
0
0

y

y z

z y

d d E
d E d E
d E d E

η
ε

⎡ ⎤− +
⎢ ⎥≡ = ⎢ ⎥
⎢ ⎥⎣ ⎦

yΠ e          (12b) 

( )
( )1 2

2 4

4 1

0 0
0
0

z

z y

y z

d d E
d E d E
d E d E

η
ε

⎡ ⎤− +
⎢ ⎥≡ = ⎢ ⎥
⎢ ⎥⎣ ⎦

zΠ e            (12c) 

In (5b) and (11), we disregarded the contribution arising from the magnetostriction. The reason is that the 

magnetostriction energy  
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( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 2 2 2 2 2

1,2MS MS x y x z y zW K m m m m m mξ ξ ξ ξ ξ ξ ξ ξ= + + =              (13a) 

( )2 2
100 11 12 44 111

9 2
4MSK c c cλ λ⎡ ⎤= − − −⎣ ⎦     (13b) 

goes as ( )4
MSW O m  while ( )2

MELW O m , so that magnetostriction generally yields only a minor 

correction to the overall Hamiltonian [27]. For consistency, in the following, we shall neglect also the 

cubic terms appearing in the expression of magnetocrystalline anisotropy field (4c), since they are of the 

same order of magnitude as the magnetostriction terms. In fact, it is known that in cubic materials the 

energies of the magnetostriction and cubic anisotropy share the same functional dependence (the constant 

KMS  may be, indeed, incorporated into KC). Therefore, in (4c) we will retain only the linear terms.  

From now on, for simplicity, we shall assume that the electric field E has only one non-zero component 

with modulus E. This assumption, simply, means that there exists only one pair of lateral electrodes 

through which the bias voltage V is applied to the PZ layer (as it is schematically shown in Fig.1).  

Considering all the above formulated definitions and assumptions, we can define the effective fields (2) as: 

 
( )

( ) ( )

(1) (2) (1) (1) (1) (1) (1)

(1) (1) (1) (1) (1)
1 2

2
exc

EFF H z E y C x y z

M xx x yy y zz z M yz y z

m m m m m

m m m m m

ωγ ω ω ω

ω ε ε ε ω ε

= − − + − + + +

− + + − +

z y x y z

x y z y z

h m e e e e e

e e e e e
   (14a) 

( )
( ) ( )

(2) (1) (2) (2) (2) (2) (2)

(2) (2) (2) (2) (2)
1 2

2
exc

EFF H z E y C x y z

M xx x yy y zz z M yz y z

m m m m m

m m m m m

ωγ ω ω ω

ω ε ε ε ω ε

= − − + − + + +

− + + − +

z y x y z

x y z y z

h m e e e e e

e e e e e
 , (14b) 

where  

/exc exc SH Mω γ= ,    ( )2
02 /H H SK Mω γ μ= ,     ( )2

02 /E E SK Mω γ μ= ,    ( )2
02 /C C SK Mω γ μ=                 (14c) 

( )2
1 1 02 /M SB Mω γ μ= ,     ( )2

2 2 02 /M SB Mω γ μ= . 

 

      Notice, that in contrast with [9], where the cubic anisotropy was ignored, in our current calculation the 

cubic crystal symmetry is responsible for the appearance  of an additional anisotropy term with the 

coefficient Cω ,  and two magnetoelastic terms with the coefficients 1Mω  and 2Mω  arising due to the 

principal and shear strains, respectively. 

We can now rewrite the LLGS equations for sublattice magnetizations in terms of the Neel vector 

( )(1) (2) / 2= −l m m , describing the antiferromagnetic order parameter, and of the slave variable 

( )(1) (2) / 2= +m m m   [4, 11, 28]. Manipulating (1), (14a), (14b), under the assumptions 2 1=l  and 
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m l  (the latter one is valid when the exchange field is much larger than any other magnetic field in the 

AFM), we get: 

 
excω

•
×l lm  ,      (15) 

which allows us to derive the so-called  “sigma model” equation for the Neel vector [11] : 

( )1
G

exc

α τ
ω

•• •⎛ ⎞
× + + ⋅ + × =⎜ ⎟
⎝ ⎠

l l l Ω l l p 0       (16) 

where, according to (12), the AFM anisotropy matrix Ω, in frequency units, can be expressed as: 

( )
( ) ( )( )

( ) ( )
( ) ( )

1

1 2

2 1

0 0

0
0

M yy zz C

M yy E C M yz

M yz M zz H C

ηω ε ε ω

ω ε ω ω ω ε
ω ε ω ε ω ω

⎡ ⎤− + +
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥+ +⎢ ⎥⎣ ⎦

E E

Ω E E E
E E

         (17) 

In the anisotropy matrix (17), we have highlighted the dependence of the magnetoelastic terms on the 

electric field E generated through the PZ layer. Equation (17) also shows that the presence of the shear 

strains terms yzε  makes the anisotropy matrix non-diagonal.            

Let us now investigate the magnetic ground state of the AFM layer admitted by the model (16), (17), 

and address the small-amplitude dynamics of the AFM magnetization around such a ground state.  

To this aim, let us consider the Neel vector as a sum of a static part l0, describing the ground state, 

and a dynamic part, describing the auto-oscillation s with the frequency ω: 
i te ω−= +0l l s        (18) 

that satisfy the orthogonality constraint 0⋅ =0l s . In the following subsections, we will treat the static and 

dynamic solutions separately.  

 

2.1    Static solution of the AFM “sigma model” equation 

The static solution of (16), using (17), (18), is given by: 

 ( )( )τ× ⋅ + × =0 0 0l Ω l l p 0 .      (19) 

Assuming that the spin-polarization vector p is directed along ez, and applying the vector product by l0  

from the left to equation (19), we obtain:  

( )( )τ× × ⋅ + × ⋅ − =0 0 0 0 0 z 0 zl l Ω l l l e l e 0       (20) 

and, after simplification, we get: 
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( ) ( )h τ− ⋅ = ×0 z 0Ω I l e l         (21) 

where ( )h = ⋅ ⋅0 0l Ω l  is the effective staggered field and I is the identity matrix. 

Let us express the ground state l0 using spherical coordinates as: 

( )sin sin ,cos sin ,cosφ θ φ θ θ=0l ,     (22) 

and reformulate the effective staggered field in the φ,θ -coordinates as: 

( )2 2 2 2sin cos sin cos sin 2 cosh A B C Dφ φ θ φ θ θ= + + +    (23) 

where: 

( ) ( )( )
( )
( )
( )

1

1

2

1

M yy zz C

M yy E C

M yz

M zz H C

A

B

C

D

ηω ε ε ω

ω ε ω ω

ω ε

ω ε ω ω

= − + +

= − +

=

= + +

E E

E

E

E

      (24) 

The vector quantity (21) in this case admits the following form of the mutually coupled equations:  

( )
( )

( )

sin cos sin 0

cos sin sin cos 0

cos sin cos 0

A h

B h C

C D h

φ τ φ θ

φ τ φ θ θ

φ θ θ

⎧⎡ ⎤− + =⎣ ⎦⎪
⎪⎡ ⎤− − + =⎨⎣ ⎦⎪
⎪ + − =
⎩

    (25) 

When the dielectric polarization and electric field are parallel to each other Π E , the shear strains will 

vanish 0yzε = , and all the above defined quantities can be determined explicitly. In this case, the parameter 

0C = , so that expression (23) and the solution of (25) are given by: 

( ) ( ) ( )( )
( ) ( ) ( )

1

2 2
1 1

/ 2
1 2arcsin
2 1

cos sin

M zz yy E

C M yy E M yy zzh

θ π
τφ

ω ηε η ε ω

ω ω ε ω φ ηω ε ε φ

⎧
=⎪

⎪⎪ =⎨
+ + −⎪

⎪
⎡ ⎤ ⎡ ⎤= + − − +⎪ ⎣ ⎦ ⎣ ⎦⎩

E E

E E E

  ,   (26) 

confirming that the absence of shear strains favors the ground state to lie in the xy plane.  

         Moreover, we can make the dependence on the electric field even more explicit by assuming that the 

electric field E has only one non-zero component, and that the PZ polarization Π and the electric field E 

are collinear. Under these assumptions, and using (12a), (12b), (12c) we get the following expression for   

azimuthal angle of the Neel vector:  
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( )
1 2

arcsin
2 1E E

τφ
ω β

−
=

−
     (27) 

where the parameter ( )1M yy xx Eω ε εβ ω−=  measures the strain-induced anisotropy dependence on the 

electric field [9], while the quantity  

                                                                                           ( )1Eeff Eω ω β−=                                                            (27a) 

represents the characteristic frequency of the effective easy-plane anisotropy that is modulated by the 

electric field applied to the PZ layer through the magnetoelastic effect. In the Table I we present the 

expressions for the staggered field h and the parameter β, as functions of the relative orientations of the 

poling vector Π and the electric field E.   

From Eq. (27) we can explicitly determine the “ignition” threshold current density Jth , corresponding 

to the excitation of the dynamical THz-frequency oscillations in the AFM:  

( )1
2

E
th

E
J

ω β
σ
−

=        (28) 

which formally coincides with the threshold current found in [9].  

It is interesting to note that, independently of the existence of the shear strains, the staggered field h 

is affected by the easy-plane (ωE) and cubic (ωC) anisotropies and, also, by the mechanical strains induced 

by the electric field E applied to the PZ layer [9]. 

  

Poling and Electric 
field direction Staggered field Parameter β 

xΠ E e  [ ] 2 2
1 2 1 2cos 2 sinC M E Mh d E d Eω ω ω φ ηω φ= + − −  

( )1 21 2M

E

dω η
ω
+  

yΠ E e  [ ] ( )2 2
1 1 1 1 2cos sinC M E Mh d E d d Eω ω ω φ ηω φ= + − − +  

( )[ ]1 1 21M

E

d dω η η
ω

+ +
 

zΠ E e  [ ] ( )2 2
1 2 1 1 2cos sinC M E Mh d E d d Eω ω ω φ ηω φ= + − − +  

( )[ ]1 1 21M

E

d dω η η
ω
+ +

 

Table I. Staggered field h and parameter β as functions of the common direction of the electric field and the dielectric 
polarization in the case when the shear strains are absent. 

 

2.2     Dynamic solution of the AFM “sigma model” equation 

Taking into account Eqs. (17) and (18), Eq.(16) can be represented as: 



- 12 - 
 

( ) ( )( )
2

0
exc

hω τ
ω
⎛ ⎞

+ + × × + ⋅ × =⎜ ⎟
⎝ ⎠

0 0 0 z 0s l l Ωs l e l s ,    (29) 

which can be rewritten as a homogeneous linear system Ys=0 with the matrix Y having the form: 

( ) ( ) ( )

( ) ( )

( ) ( )

2
2 2
0 0 0 0 0 0 0 0 0 0

2
2 2 2

0 0 0 0 0 0 0 0 0 0 0

2
2 2

0 0 0 0 0 0 0 0 0 0 0 0

1

1 1

1 1

x x y z z x y z y z

x y z y y z y z y x z

x z y z y z z x z z y z

exc

exc

exc

h A l l Bl Cl l l Cl Dl l l

Al l l h B l Cl l Dl l C l l l

Al l l l Bl l C l l l h D l Cl l

ω τ τ
ω

ωτ τ
ω

ωτ τ
ω

⎡ ⎤
+ + − + − + +⎢ ⎥

⎢ ⎥
⎢ ⎥

= + + + − + + − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + − + + + − +
⎢ ⎥⎣ ⎦

Y ,   (30) 

where the components of the static vector ( )0 0 0, ,
x y z

l l l=0l  are given in (22).  

Let us, first, investigate the solutions of the equation Ys=0  in the presence of shear strains ( 0C ≠ ). 

By imposing the condition detY=0, we end up with the following bicubic equation for the eigenfrequency 

ω: 

                                                                    
6 4 2

4 2 03 2 0
exc exc exc

ω ω ωκ κ κ
ω ω ω

+ + + =  ,                                        (31a) 

where      

( ) ( ) ( )2 2 2
4 0 0 0 0 03 1 1 1 2

x y z y z
h A l B l D l Cl lκ = + − + − + − +      (31b) 

( ) ( ) ( )
( ) ( )

2 2 2 2
2 0 0 0 0 0

2 2 2 2 2 2
0 0 0 0 0 0

3 2 1 2 1 2 1 4

2

x y z y z

x z y y z z

h A l B l D l Cl l h

BD C l A Bl Dl Cl l l

κ

τ

⎡ ⎤= + − + − + − + +⎣ ⎦

+ − + + − +
    (31c) 

( )
( )( ) ( ) ( )( )

22 2 2 2 2
0 0 0 0 0 0

2 2 2 2 2
0 0 0 0 0

2

1 1 1 2

x y z y z

x y z y z

Al Bl Dl Cl l h A BD C D

BD C l AD l AB l ACl l h

κ τ

τ

⎡ ⎤= + + + + − + +⎣ ⎦

⎡ ⎤+ − − + − + + − −⎢ ⎥⎣ ⎦

   (31d) 

The explicit analytical solution of (31a) is rather cumbersome, so the information about the 

frequency of the excited eigenmode will be obtained numerically in the following section of the paper. 

However, it is known that, in the passive subcritical regime, the sigma model admits two real and positive 

roots only. This clearly suggests that the third root of (31a), being real and negative, is unphysical and has 

to be ignored. 
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Om the other hand, if the dielectric polarization vector Π and the electric field E are parallel to each 

other, no shear strains are generated ( 0C = ),  and the ground state 0l  lies in the xy plane and is orthogonal 

to the spin-polarization .≡ zp e  In  such a  case, the dynamic equation (29)  can be simplified  to: 

( )
2

exc

h ω
ω

⎛ ⎞
− − =⎜ ⎟

⎝ ⎠
0l

P Ω I I s 0 ,      (32) 

where = − ⊗
0l 0 0P I l l . In such a configuration it is possible to obtain the expressions of the two AFM  

eigenmode frequencies explicitly. The frequency of the lowest AFM eigenmode is formally given by: 

                                    ( )1 1 cos 2exc E Eω ω ω β φ= −⎡ ⎤⎣ ⎦  ,                           (33) 

where the coefficient β varies with the variation of the polarization vector Π and the electric field E 

directions as it is presented in Table I.  The expressions for the frequency ω2   of the high-frequency AFM 

eigenmode  are presented  in Table II.  

We can conclude that, in the absence of shear strains, the expression for the frequency of the lowest 

AFM eigenmode is formally the same as the one found in the case when the cubic anisotropy is neglected.  

So, the frequency of the lowest AFM eigenmode is unaffected by the cubic anisotropy (the azimuthal angle 

φ, appearing in (33) and in Table II, is independent of ωC).  

In contrast, the expression for the frequency of the high-frequency AFM eigenmode varies with the 

variation of the poling and electric field directions, and, in the presence of shear strains, the cubic 

anisotropy brings a non-zero contribution to the frequency of the higher frequency AFM eigenmode (the 

frequency of the higher eigenmode obtained from the solution of (31a), indeed, depends on h, θ  and φ, 

which, in turn, vary with the variation of ωC according to Eq. (25)).  

 
Poling and 

Electric field 
direction 

High-frequency mode 

xΠ E e  ( ) 2 2
2 1 2 1 2 1 22cos sinexc H M E M Md E d E d Eφ η φω ω ω ω ω ω ω+⎡ ⎤= + + −⎣ ⎦  

yΠ E e  ( ) ( )2 2
2 1 2 1 1 1 1 2cos sinexc H M E M Md E d E d d Eφ η φω ω ω ω ω ω ω+⎡ ⎤= + + − +⎣ ⎦  

zΠ E e  ( ) ( )2 2
2 1 1 1 2 1 1 2cos sinexc H M E M Md E d E d d Eφ η φω ω ω ω ω ω ω+⎡ ⎤= + + − +⎣ ⎦  

Table II. The frequency of the higher AFM eigenmode as a function of the poling and electric field directions, in the absence of 
shear strains. 
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3. Numerical results  

          The analysis carried out so far has revealed that the anisotropy matrix Ω given by Eq. (17) is affected 

by the magnetoelastic contribution arising from the coupling between the PZ layer and the AFM layer [9]. 

Variation of the AFM anisotropy, due to the application of the bias electric field E, affects the AFM ground 

state (h,θ,φ), the ignition threshold current Jth, and both eigenmode frequencies ω1 and ω2 (albeit to a 

different extent).  

         The goal of this section is to evaluate numerically the influence of the applied electric field on the 

physical quantities studied analytically in the previous section, and to find the optimum setup which 

guarantees the maximum control of the AFM anisotropy by the applied electric field. To determine the 

“optimum setup”, our analysis  assumes that two key degrees of freedom will  be used for the AFM 

anisotropy control: the choice of the ceramic PZ material (which affects the coefficients d1, d2 and d4) and 

the relative orientation of the dielectric polarization vector Π and the applied electric field E (which affects 

the structure of the strain tensor ijε  and, consequently, modifies the analytical expression for the involved 

physical quantities).  In carrying out this investigation, we also evaluate how the cubic anisotropy of the 

AFM material influences the results, in comparison with the case when this anisotropy was ignored.  

For simplicity, in Tables III we presented the numerical values of parameters applicable to the case 

when the AFM layer is made of a monocrystalline NiO and in Table IV those of derived parameters. To 

perform a quantitative comparative analysis, we took into account the most common ceramic PZ materials, 

PZT4, PZT5A, PZT5H, PZT6B, PZT7A, PZT8 and BaTiO3, and for each of them computed the dielectric 

coefficients d1, d2 and d4 (see Table V). Let us now analyse the obtained results paying attention to the 

relative orientation of the dielectric polarization and the electric field. 

 

3.1  Dielectric polarization parallel to the electric field (Π || E) 

          Let us, first, consider the case when the dielectric polarization Π and the applied electric field E are 

parallel to each other, and are directed along one of the reference axes. In this configuration, no shear 

strains act on the AFM layer. We can, then, evaluate numerically the parameter β that measures the strain-

induced anisotropy dependence on the modulus of the electric field E that needs to be optimized [9]. The 

results presented in the Table V show that, independently of the poling direction, the PZ material exhibiting 

the largest (absolute) value of β is PZT5H. The results also indicate that, in the best setup, the PZ layer 

should be polarized along the y axis (i.e. along the easy axis of the AFM layer) with lateral electrodes 
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placed on the xz faces, in order to generate the electric field parallel to the vector of dielectric polarization 

Π.  

      According to our estimation, such a setup would allow one to achieve the largest β value              

β =18.18×10-7 m/V. For comparison, the results obtained in the previous work [9], based on the 

assumptions that the AFM material has no cubic anisotropy, the magnetoelastic energy takes the form 

associated to isotropic materials and that  Π || E || ex, reported the  β  value of 1.64×10-7 m/V, i.e. more than 

one order of magnitude smaller.  

In order to better appreciate the improvement achieved by varying the common orientation of the 

dielectric polarization and electric field, let us now evaluate numerically the most relevant quantities 

obtained in the previous section. In Fig.2 we demonstrate behaviour of the main characteristics of the auto-

oscillations in a PZ/AFM/HM structure obtained by varying the common direction of the dielectric 

polarization Π and the electric field E along the reference axes. In particular, in Figs.2(a-c) we show the 

dependence of the effective easy-plane anisotropy frequency ωeff (14c), the ignition threshold current Jth 

(28), and the lowest AFM eigenfrequency ω1 (33) as a function of the modulus of the electric field E, 

whereas in Fig.2(d) we present ω1 as a function of the subcritical current density J flowing in the HM layer. 

These results clearly demonstrate that it is possible to effectively control the main characteristics of the 

auto-oscillations of the AFM layer by varying the common direction of the dielectric polarization and the 

electric field relative to the reference axes of the layered PZ/AFM/HM structure.  

Let us discuss in more detail the results related to the optimum setup, Π || E || ey (red curves in Fig.2), 

which also corresponds to the only orientation of the electric field E giving a positive coefficient β (see 

Table V). In such a case, the effective frequency ωeff is decreased by more than 3 GHz when the electric 

field is swept from -5 to +5×105 V/m (Fig.2a).  

Note that variation of the electric field from -5 to +5×105 V/m can lead to a substantial reduction of   

ignition threshold current for the excitation of auto-oscillations in the AFM layer, which completely 

vanishes at E=1/β ≈5.5×105 V/m (see Fig.2b). This reduction of the threshold current induced by the 

electric field applied to the PZ layer could be of a critical importance for the practical realization of the 

sub-THz frequency excitations in the PZ/AFM/HM layered structures. 

        In the absence of the electric current in the HM layer, the same range of the electric field variation 

leads to the tuning of the frequency of the lowest AFM eigenmode (i.e. the lowest frequency of the 

antiferromagnetic resonance (AFMR)) from 0.3 THz to 0 (see dashed red line in Fig.2c). When an electric 

current of J=J0=2×1012 A/m2 is injected into the HM layer, the same tuning range of the lowest AFMR 

frequency can be achieved in a twice smaller range of variation of the bias electric field (see solid red line 
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in Fig.2c). In general, Fig. 2d demonstrates that combination of the current and electric field controls 

allowed one to tune the AFMR frequency of the AFM layer in a wide range in a subcritical regime (no 

generation of auto-oscillations) when the PZ/AFM/HM layered structure can be used as a tunable 

resonance receiver of the sub-THz electromagnetic signals [8]. 

 

Parameter Value References 

MS 351 kA/m [29] 

αG 3.5×10-3 [29, 30, 31] 

Hexc 780×106 A/m [29, 32] 

KH 280   kJ/m3 [33] 

KE 10.9   kJ/m3 [33] 

KC 30.0   kJ/m3 [34, 35] 

c11 225 GPa [36, 37] 

c12 95 GPa [36, 37] 

c44 110 GPa [36, 37] 

λ100 -140×10-6 [38, 39] 

λ111 -79×10-6 [38, 39] 

Table III. Main parameters of AFM layer (monocrystalline NiO). 

 

Derived Parameters Value 

σ 2π×4.32×10-4  Hz m2/A   Hz⋅m2/A 

η 0.42 

B1 27.30×106  J/m3 

B2 26.07×106  J/m3 

ωexc 2π × 27.45   THz 

ωH 2π × 44.69   GHz 

ωE 2π × 1.74    GHz 

ωC 2π × 4.79    GHz 

ωM1 2π × 4.36    THz 

ωM2 2π × 4.16    THz 

Table IV. Derived parameters for the PZ/AFM/HM layered structure. 
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Material 
d1 

(×10-10) 

d2 

(×10-10) 

d4 

(×10-10) 

β (Π||Ε||ex) 

(×10-7) 

β (Π||Ε||ey) 

(×10-7) 

β (Π||Ε||ez) 

(×10-7) 

PZT4 +2.89 -1.23 +4.96 -5.67 +9.00 -1.31 

PZT5A +3.74 -1.71 +5.83 -7.89 +11.53 -2.12 

PZT5H +5.92 -2.74 +7.39 -12.65 +18.18 -3.49 

PZT6B +0.72 -0.27 +1.29 -1.27 +2.27 -0.22 

PZT7A +1.53 -0.65 +3.64 -3.00 +4.77 -0.69 

PZT8 +2.15 -0.93 +3.32 -4.31 +6.67 -1.05 

BaTiO3 +1.91 -0.79 +2.59 -3.64 +5.98 -0.78 

Table V. Dielectric coefficients for the most commonly used ceramic PZ materials (taken from [26]), and the corresponding values of the coefficient β  (taken 
from Table I) as  functions of the common direction of the dielectric poling Π and electric field E. All the quantities are expressed in m/V. The marked cell 
represents the best result. 

 
Fig.2. Main characteristics of the auto-oscillations in a PZ/AFM/HM structure obtained by varying the common direction of the dielectric polarization Π and the 

electric field E along the reference axes: (a) Effective frequency ωeff (see (14c)) ; (b) Ignition threshold current Jth (see (28)) in the HM layer corresponding to the 

excitation of the lowest AFM eigenmode;  (c) Frequency of the  lowest AFM eigenmode  ω1  (see (33) ) as  functions of the modulus of the electric field E.  In 

(c) the frequency is shown for two different values of the current density in the HM layer: J=0 A/m2 (dashed lines) and J=J0=2×1012 A/m2 (solid lines); (d) 

Frequency of the lowest AFM eigenmode ω1 as a function of the subcritical current density J, for zero electric field E=0 (solid green curve) and E=3×105 V/m 

directed along one of the reference axes (non-solid curves). In all the figures, the blue, red and black curves correspond to the cased when the electric field is E 

directed along the axes x, y and z, respectively. 
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3.2  Dielectric polarization orthogonal to the electric field (Π ⊥ E) 

In this section, we summarize the results obtained when the dielectric polarization Π is orthogonal to 

the electric field E, in particular for ≡ yΠ e  and zE e  or ≡ zΠ e  and yE e . As it was explained above, in 

such a configuration the AFM layer is subject to non-zero shear strains. 

First of all, we need to establish which PZ material provides the best tunability of the AFMR 

frequency by electric field. To this aim, in Fig.3(a-d) we present the frequency ω1 of the lowest AFM 

eigenmode (lowest AFMR frequency) as a function of the electric field E, obtained by solving numerically 

Eqs. (25) and (31) for different ceramic PZ materials and for different values of the bias electric current J  

((a) J=0 A/m2, (b) J=2×1012 A/m2, (c) J=2.25×1012 A/m2, (d) J=2.5×1012 A/m2). 

 
Fig.3. Frequency of the lowest AFM eigenmode (lowest AFMR frequency) as a function of the electric field applied to the PZ layer in the case of dielectric 

polarization Π orthogonal to the electric field E. The different curves correspond to the response of different ceramics PZ materials (as shown in the inset in 

Fig.3a). The four panels  a-d  demonstrate  the lowest eigenmode frequency for different (subcritical) electric currents injected in the HM layer: (a) J=0 A/m2, (b) 

J=2×1012 A/m2, (c) J=2.25×1012 A/m2, (d) J=2.5×1012 A/m2.  

 

The analysis of data presented in Fig.3 allows us to make the following conclusions. First, the PZ 

material that exhibits the best frequency tuning turns out to be, again, the PZT5H. Indeed, independently of 

the value of the injected electric current J, this material allows one to achieve the largest frequency tuning 
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for a fixed value of electric field E or, equivalently, it requires the smallest variation of the electric field 

magnitude to achieve a given change of the AFMR frequency.  

Numerical results presented in Fig.3 also reveal that, in contrast to the case ||Π E , the AFMR 

frequency obtained in the presence of only the shear strains increases with the increase of the electric field 

magnitude, and this dependence is symmetric, and does not change when the electric field (and, therefore, 

the voltage V) changes its sign from positive to negative. It is also clear from Fig.3, that the lowest AFMR 

frequency ω1 changes its functional dependence on the modulus of the electric field E when the magnitude 

of the injected current J is varied.  Indeed, ω1 is an increasing function of E, and it is quadratic for J=0 

(Fig.3a), almost linear for J=2×1012 A/m2 (Fig.3b), and becomes similar to a square root for larger current 

densities (Figs.3c,d). This feature of the frequency dependence on the electric field makes it impossible to 

determine the  “equivalent-β ” coefficient for the configuration Π ⊥ E.   

Moreover, the AFM effective anisotropy, and, therefore, the lowest AFMR frequency, rapidly 

decreases with current, and vanishes for sufficiently large driving currents. Thus, in the current-driven 

PZ/AFM/HM structure where the electric field is perpendicular to the dielectric polarization the AFMR 

frequency is non-zero only in a range of rather high magnitudes of the electric field E (see Fig.3 c,d). 

The fact that the AFM effective anisotropy and, therefore, the lowest AFMR frequency, in the 

perpendicular configuration Π ⊥ E, increase with the increase of E, basically, means that the threshold 

current for the excitation of auto-oscillations in AFM will only increase with the increase of the electric 

field modulus, so this geometry can be used for the design of passive resonance detectors of sub-THz 

frequencies, but not the active generators in this frequency range.  

         Indeed, the dependence of the injection threshold current on the voltage-induced electric field E 

demonstrates the quadratic increase (Fig.4a), while the AFMR frequency in the subcritical regime (J < Jth)  

decreases with the increase of the driving current in the HM layer electric current (Fig.4b) similar to the 

case of parallel geometry ||Π E  (see  Fig.2d and Fig. 4 in [9]). For simplicity, in Fig.4 we presented only 

the case of the PZ material exhibiting the best performances (PZT5H). 
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Fig.4. (a) Ignition threshold current as a function of electric field. (b) Lowest eigenfrequency as a function of current density J, for different values of the 

modulus of electric field E. Results correspond to the case of dielectric polarization Π of the PZT5H piezoelectric material orthogonal to the electric field E.  
 

4.  Conclusions 

Our above presented theoretical results demonstrate that the AFMR frequency of the PZ/AFM/HM 

layered structure in a passive subcritical regime for both the parallel ||Π E   and perpendicular Π ⊥ E 

geometries can be controlled by the external electric field applied to the PZ layer, and by the driving 

electric current flowing in the HM layer.  In the parallel geometry for a proper direction of the applied 

electric field it is possible not only to reduce the AFMR frequency, but also to reduce the threshold needed 

for generation of auto-oscillations in the AFM layer (see Fig.2 b, c).  Thus, the application of a properly 

directed electric field in parallel geometry may lead to the experimental observation of the auto-oscillation 

generation in PZ/AFM/HM layered structures at the experimentally reachable current densities in the HM 

layer, if the optimum combination of the PZ and AFM materials has been chosen (e.g. if PZT5H is used 

with NiO). If the electric field direction is reversed, both the generation threshold and the AFMR frequency 

are increased with the electric field magnitude, and the layered structure can be used as a passive 

electrically-tunable resonance detector of sub-THz electromagnetic signals.  Our calculations in which the 

cubic anisotropy has been taken into account also demonstrated that the optimization of the material 

composition in the PZ/AFM/HM layered structure makes possible to achieve the increase in the electric 

field tenability coefficient β  by more than one order of magnitude, compared  to the previous calculation 

[9], where the influence of the AFM cubic anisotropy was ignored and the magnetoelastic contribution was 

ascribable to that of isotropic materials.   

In the case of a perpendicular geometry Π ⊥ E  both the ignition threshold and the AFMR frequency 

are increasing with the increase of the electric field modulus, and, therefore, the PZ/AFM/HM layered 

structure  in this geometry can be used only as a passive tunable resonance detector.  

 



- 22 - 
 

 

Independently of the geometric configuration of Π and E, the combination of the PZT5H PZ material 

with the NiO AFM material demonstrated the best tunability of the eigenmode properties of the studied 

layered structure using the variation of the electric field applied to the PZ ceramic layer.  We firmly believe 

that the theoretical optimization and the following fabrication of PZ/AFM/HM layered structures, where 

AFM layer is both monocrystalline and mono-domain, will eventually lead to the development of practical 

current-driven   THz-frequency oscillators [4] and tunable resonance detectors [8] controlled by an applied  

bias electric field.  
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