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Spin and orbital angular momentum of light plays a central role in quantum nanophotonics as
well as topological electrodynamics. Here, we show that the thermal radiation from finite-sized
bodies comprising of nonreciprocal magneto-optical materials can exert a spin torque even in global
thermal equilibrium. Moving beyond the paradigm of near-field heat transfer, we calculate near-
field radiative angular momentum transfer between finite-sized nonreciprocal objects by combining
Rytov’s fluctuational electrodynamics with the theory of optical angular momentum. We prove
that a single magneto-optical cubic particle in non-equilibrium with its surroundings experiences a
torque in the presence of an applied magnetic field (T-symmetry breaking). Furthermore, even in
global thermal equilibrium, two particles with misaligned gyrotropy axes experience equal magnitude
torques with opposite signs which tend to align their gyrotropy axes parallel to each other. Our
results are universally applicable to semiconductors like InSb (magneto-plasmas) as well as Weyl
semi-metals which exhibit the anomalous Hall effect (gyrotropic) at infrared frequencies. Our work
paves the way towards near-field angular momentum transfer mediated by thermal fluctuations for
nanoscale devices.

I. INTRODUCTION

Nanoscale radiative transfer plays an important role in
a wide range of scientific and engineering disciplines. It
has a variety of promising applications including energy
conversion [1, 2], thermal rectification [3, 4], near-field
spectroscopy [5, 6] and near-field super-Planckian emis-
sion [7–10] etc. Over the past few years, most of the
investigations in this field focused on the near-field heat
transfer i.e. energy transferred between various bodies in
thermal non-equilibrium. It should be emphasized that
in global equilibrium there is no net flow of energy in
these systems [11–13]. Our goal in this paper is to ex-
plore concepts beyond energy i.e. angular momentum
which can be exchanged/transferred between bodies even
in global thermal equilibrium. Thus our result is sim-
ilar to the Casimir torque [14] obtained using birefrin-
gent crystals but using a different underlying mechanism
based on nonreciprocal materials.

Thermal spin photonics is an emerging research area
that combines the thermal radiation and the spin angu-
lar momentum (SAM) of light [15–18]. Non-reciprocal
materials such as semiconductors in external magnetic
fields [19–21] and Weyl semimetals [22] are of great in-
terest in the context of thermal spin photonics as they
break the time reversal symmetry and lead to many in-
teresting effects [23–28]. Recent work showed that the
thermal radiation of a non-reciprocal medium carries an-
gular momentum (AM) [15, 29, 30]. There also exist
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new spin-resolved thermal radiation laws applicable for
nonreciprocal bianisotropic media, which extend known
Kirchhoff’s laws otherwise valid only for reciprocal media
[31]. However, these investigations are limited to planar
geometries and dipolar particles. More complex struc-
tured surfaces or finite-size bodies have remained unex-
plored because of computational difficulty. Recently, sig-
nificant progress has been made on numerical approaches
in the context of near-field heat transfer with nontrivial
geometries. Those computational tools include scatter-
ing matrix [32, 33], boundary-element methods [34, 35],
volume-integral-equation methods [36], and the thermal
discrete dipole approximation method (TDDA) [37–39],
etc. However, so far none of them has been used for
analyzing radiative angular momentum transfer in non-
reciprocal bodies. Here, we primarily aim to explore
thermal AM radiation in the near-field and far-field of
finite-size nonreciprocal objects.

We explore the AM-resolved thermal radiation features
in a system comprising of magneto-optical bodies in ex-
ternal magnetic fields (as shown in Figure 1). Magneto-
optical (MO) media, such as doped Indium Antimonide
(InSb), become gyroelectric objects in the presence of
magnetic fields and hence exhibit stable non-reciprocity
that can be controlled by changing the magnitudes and
the directions of the magnetic fields [25, 27]. We find
that the thermal radiation from a single gyroelectric body
carries a net AM flux directed along its gyrotropy axis
(or direction of externally applied magnetic field) when
the system is out of equilibrium with vacuum. Conse-
quently, the particle experiences a net torque along the
opposite direction based on angular momentum conserva-
tion. More interestingly, we also find that for a two-body
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Figure 1. (Color online) Schematic of the radiative AM transfer in a two-body MO system in the presence of external magnetic
fields. Two cubes are separated by a distance d (center to center distance) and they have the same size L. T1, T2 and T0 denote
the temperatures of the top cube, bottom cube and environment, respectively.

system with misaligned gyrotropy axes, AM transfer be-
tween two bodies can occur regardless of the global ther-
mal equilibrium. The AM transfer results in a torque
with the same magnitude but opposite signs on two bod-
ies trying to align the gyrotropy axes parallel to each
other. Moreover, the total torque on the combined sys-
tem is zero, which indicates that there is no net AM flux
transferred to the far field, satisfying the detailed bal-
ance of AM flux between the combined system and the
environment at thermal equilibrium.

In this work, we utilize fluctuational electrodynamics
(FE) that combines the Maxwell electromagnetic the-
ory of angular momentum and the fluctuation-dissipation
theorem (FDT) [40]. In particular, our numerical ap-
proach is generalized from the TDDA method by a re-
cent work studying the thermal emission in MO systems
[39]. In that work, the authors proved the validity of the
TDDA method for optically anisotropic systems that can
be described by an arbitrary electric permittivity ten-
sor (with µ = 1). We extend the TDDA approach to
describe the thermal AM flux in the near-field and far-
field of finite nonreciprocal bodies. Moreover, we apply
our TDDA approach for exploring the near-field and far-
field transfer of angular momentum in MO systems. We
elucidate the origin of the thermal-fluctuations-induced
torque by computing the angular momentum flux across
different planes.

We also demonstrate the nontrivial role of non-
reciprocity in causing an equilibrium torque in a system

which is at global thermal equilibrium. Such equilibrium
torque is non-intuitive but important since it opens a
degree of freedom for directional radiative AM transfer.
Experimental demonstration of such an effect requires
misaligned magnetic fields which can be generated using
spatial gradients of 2D magnetic fields on nanoscale ob-
jects. Our work provides a way to explore many interest-
ing effects in the context of thermal AM in nonreciprocal
systems. As the dimensions of our system under con-
sideration are smaller than the wavelengths of thermal
radiation, the contribution of angular momentum is dom-
inated by spin as opposed to orbital angular momentum.
This observation is consistent with recent experiments
in ion traps where orbital angular momentum has been
shown to couple only to quadrupolar optical transitions,
not dipolar optical transitions [41, 42]. To emphasize
the analogy with spin transfer torque in nanoelectronics
[43, 44], we term our phenomenon as thermal photonic
spin transfer torque. We also note that our work is appli-
cable not only to magnetized-plasmas like InSb but also
to Weyl semi-metal particles which show the anomalous
Hall effect (non-reciprocity) without an applied magnetic
field [45–47].

The rest of the paper will be organized as follows. In
Sec. II, we show our theoretical formalism of the TDDA
method to describe the radiative AM transfer in the near-
field and far-field of MO objects. In Sec. III, we discuss
our numerical results obtained by our TDDA approach.
We separate our discussion into the single-cube case and
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two-cube case. For each case, we consider both the ther-
mal equilibrium and non-equilibrium conditions. In Sec.
IV, we summarize our observations in Sec. III and con-
clude the paper with some additional remarks.

II. ANGULAR MOMENTUM IN
FLUCTUATIONAL ELECTRODYNAMICS

A. Radiative Angular Momentum Flux

We consider a single- or two-cube system made of non-
reciprocal materials shown in Figure 1. We focus on the
AM-resolved thermal radiation on the vacuum side of the
systems. For this purpose, momentum and AM will be
studied in the context of the thermal radiation. These
quantities are important because they are conserved and
thus follow the conservation laws. First, the radiative
momentum at the observation point can be quantified by
Poynting flux P and the momentum flux density Σ [48]:

〈P〉 = 〈E×H〉 , (1)

〈Σ〉 =− ε0 〈E⊗E〉 − µ0 〈H⊗H〉

+
1

2
ε0 Tr {〈E⊗E〉} I +

1

2
µ0 Tr {〈H⊗H〉} I

(2)

where ⊗ denotes the outer product of two vectors, and
〈...〉 denotes the thermodynamic ensemble average. All
the quantities in Eq. 1 and Eq. 2 are dependent on the
position r and time t. The radiation momentum transfer
leads to a force F on the objects that can be obtained by
the conservation law of momentum:∫

S

〈Σij(r, t)〉dSj = − ∂

∂t

(∫
V

〈P(r, t)〉dV
)
i

= −〈Fi〉 .

(3)
Similarly, the radiation AM can be quantified by AM

density J and AM flux density M [48]:

〈J(r, t)〉 = r× 〈E(r, t)×H(r, t)〉 (4)

〈M(r, t)〉 = r× 〈Σ(r, t)〉 (5)

which is given by the cross product of the position with
the Maxwell stress tenor. They also satisfy the continuity
equation

∂

∂t
Ji +

∂

∂xl
Mli = 0. (6)

A nonreciprocal medium can lead to a nonzero radia-
tion AM flux and thus results in a torque τ on objects.
This torque can be obtained by the conservation law of
AM, which is the integral form of the continuity equation
in Eq. 6:∫

S

〈Mij(r, t)〉dSj = − ∂

∂t

(∫
V

〈J(r, t)〉dV
)
i

= −〈τi〉 .

(7)

All the quantities throughout the manuscript are de-
scribed in SI units. Next, we express the physical quan-
tities in terms of their Fourier transforms, such as

E(t) =

∫ ∞
−∞

dω

2π
E(ω)e−iωt, (8)

H(t) =

∫ ∞
−∞

dω

2π
H(ω)e−iωt. (9)

for electromagnetic field and similarly for other quan-
tities. Then above quantities Q = {Σ,M,F, τ} are
to be integrated over frequency to obtain the total
flux/force/torque as Q =

∫∞
−∞

dω
2πQ(ω)e−iωt. The elec-

tromagnetic field correlations required for calculating
densities and flux rates above are obtained from the
fluctuation-dissipation theorem (FDT). We can separate
the contributions into two parts: the first one accounts
for the fluctuations of particle dipole moments that will
further induce electromagnetic field; the second part in-
volves environmental field fluctuations. The FDT in our
case gives [49]

〈
pf,i(ω)p∗f,j (ω′)

〉
=2π~ε0δ (ω − ω′)
× Im {αij(ω)} (1 + 2np(ω))

(10)

for the electric dipole fluctuations and

〈
Ef,i(r, ω)E∗f,j (r′, ω′)

〉
=2π

~k20
ε0

δ (ω − ω′)

× Im {GEE,ij (r, r′)} (1 + 2n0(ω))
(11)

for the environmental electric-field fluctuations, where
k0 = ω/c is the magnitude of the vacuum wave vector.
Here α̂ is the polarizability of the objects and GEE(r, r′)
is the free space electric-electric dyadic Green’s tensor
[49]. The temperature of the particle Tp and the vacuum
T0 enter these expressions through the Bose-Einstein dis-
tribution nl(ω) = 1/(e~ω/kBTl − 1).

B. Numerical Approach: Thermal Discrete Dipole
Approximation

To numerically compute the physical quantities intro-
duced in Eq. 5 and Eq. 7, we extend the TDDA approach
for MO objects based on Ref. [39]. Here we summarize
the important equations we have developed. More details
can be found in Appendix A.

Considering a two-body system interacting with a ther-
mal bath, we use a collection Np (for object p) electric
point dipoles to describe the system. Each dipole is char-
acterized by a volume Vi,p and a polarizability tensor α̂i,p,
where p=1,2 denotes the body that the dipole belongs
to and i=1,2,...,Np indicates the i-th subvolume in that
object. We group the electric dipoles and electric fields
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inside bodies in a compact form:

P =

(
P1

P2

)
; P1 =

 p1,1

...
pN1,1

 ,P2 =

 p1,2

...
pN2,2


E =

(
E1

E2

)
; E1 =

 E1,1

...
EN1,1

 ,E2 =

 E1,2

...
EN2,2


.

(12)
The notation C̄ (C = {p,E, ...}) indicates that the
dipoles or the field is inside bodies and in the following
discussion, we denote C without the overhead bar label
as the quantities in vacuum.

To obtain the total radiative AM flux in the near field
or far field (obsevation point), we need to compute the
statistical average of the AM flux density introduced in
Eq. (5). Making use of the Fourier transforms, the aver-
age of the AM flux density can be expressed as

〈M(r)〉 =− 2

∫ ∞
0

dω

2π

∫ ∞
−∞

dω′

2π
r×

Re[ε0 〈E(r, ω)⊗E∗(r, ω′)〉 e−i(ω−ω
′)t

+ µ0 〈H(r, ω)⊗H∗(r, ω′)〉 e−i(ω−ω
′)t

− 1

2
ε0 Tr

{
〈E(r, ω)⊗E∗(r, ω′)〉 e−i(ω−ω

′)t
}
I

− 1

2
µ0 Tr

{
〈H(r, ω)⊗H∗(r, ω′)〉 e−i(ω−ω

′)t
}
I].

(13)
Using FDT from Eq. 10 and Eq. 11, the above expression
can be reduced to the integration of the terms contain-
ing 〈E(r, ω)⊗E∗(r, ω)〉 and 〈H(r, ω)⊗H∗(r, ω)〉. As we
discussed in the last section, Eq. 10 and Eq. 11 intro-
duce two different sources that contribute to the total
field correlations. The first one is the fluctuating particle
dipoles determined by the temperatures of bodies. In the
TDDA approach, it can be written as:〈

P̄f(ω)P̄†f (ω′)
〉

= 2π~ε0δ (ω − ω′) [I + 2n̂B (ω, T1, T2)] χ̂,

(14)
where T1 and T2 are the temperatures of the two objects,
and n̂B (ω, T1, T2) is a diagonal tensor with 3N elements
given by the Bose-Einstein distribution. χ̂ is a tensor
combining the imaginary part of the polarization tensor
and the radiative correction [49, 50]. Using the general
TDDA equations and some algebraic manipulations, we
obtain the following expressions for the correlations of
electric and magnetic fields at the observation point out-
side bodies:

〈E(r, ω)⊗E∗(r, ω)〉 =
k40
ε20

GEET̄−1
〈
P̄fP̄

†
f

〉
T̄−1†G†EE ,

(15)

〈H(r, ω)⊗H∗(r, ω)〉 =
k40
ε20

GHET̄−1
〈
P̄fP̄

†
f

〉
T̄−1†G†HE

(16)

where Tij = δijI− (1− δij) k20ᾱiḠEE,ij and GHE is the
magnetic-electric field Green’s tensor (Eq. A15). More
details about the derivation are shown in Appendix A 1.

The second source is the environmental field fluctua-
tion. The fluctuational electric fields in the vacuum can
induce electric dipoles on the objects and then generate
electromagnetic fields at the observation point. In this
case, the field-field correlations at the observation point
outside bodies are given by (Appendix A 2):

〈E(r, ω)⊗E∗(r, ω)〉 =k40GEET̄−1ᾱ
〈
ĒfĒ

†
f

〉
ᾱ†T̄−1†G†EE

+ k20GEET̄−1ᾱ
〈
ĒfE

†
f

〉
+ k20

〈
EfĒ

†
f

〉
ᾱ†T̄−1†G†EE ,

(17)

〈H(r, ω)⊗H∗(r, ω)〉 =k40GHET̄−1ᾱ
〈
ĒfĒ

†
f

〉
ᾱ†T̄−1†G†HE

+ k20GHET̄−1ᾱ
〈
ĒfH

†
f

〉
+ k20

〈
HfĒ

†
f

〉
ᾱ†T̄−1†G†HE .

(18)
where〈

Ēf(ω)Ē†f (ω′)
〉

= 2π~ε0δ (ω − ω′) (1 + 2n0 (ω)) Im ḠEE ,
(19)〈

Ēf(ω)E†f (ω′)
〉

= 2π~ε0δ (ω − ω′) (1 + 2n0 (ω)) Im GEE ,

(20)〈
Hf(ω)Ē†f (ω′)

〉
= 2π~ε0δ (ω − ω′) (1 + 2n0 (ω)) Im GHE .

(21)
are the vacuum electric-electric field correlation inside
bodies, the vacuum electric-electric field correlation be-
tween the object position and observation point, and the
vacuum electric-magnetic field correlation between the
object position and observation point, respectively. Gen-
erally, these two sources have opposite contributions to
the total far field radiations and at global thermal equilib-
rium, they should cancel each other to satisfy the detailed
balance of the radiative AM flux.

III. NUMERICAL RESULTS

In this section, we present the numerical results related
to the radiative AM transfer and the induced torques
discussed in the previous sections. In order to explore
the role played by nonreciprocity, we consider the near-
field and far-field radiation from single- and two-cube sys-
tems that are made of nonreciprocal materials. Here we
choose doped InSb as an example. InSb is a MO mate-
rial whose permittivity model has been well-characterized
experimentally [51–54]. Subjected to an external mag-
netic field, it shows gyroelectric properties with gy-
rotropy axis along the magnetic field. The permittiv-
ity tensor in an arbitrary magnetic field takes the form
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of ε̄ = ε∞
[
1 +

(
ω2
L − ω2

T

)
/
(
ω2
T − ω2 − iΓω

)]
I3×3 +

ε∞ω
2
p [L3 × 3(ω)]

−1
[29], where

L3×3(ω) =

 −ω2 − iγω −iωωcz iωωcy
iωωcz −ω2 − iγω −iωωcx
−iωωcy iωωcx −ω2 − iγω

 .
Here, ε∞ is the high-frequency dielectric constant, ωL
is the longitudinal optical-phonon frequency, ωT is the
transverse optical-phonon frequency, ωp is the plasma fre-
quency of the free carriers of density n. Γ is the phonon
damping constant, and γ is the free-carrier damping con-
stant. And ωci (i=x,y,z) is the cyclotron frequency given
by ωci = qBj/mf . All the parameters are taken from
[52, 53], where doping density n = 1017 cm−3, ε∞ =
15.7, ωL = 3.62 × 1013 rad s−1, ωT = 3.39 × 1013 rad
s−1, ωp = 3.14 × 1013 rad s−1, Γ = 5.65 × 1011 rad s−1,
γ = 3.39 × 1012 rad s−1, mf = 0.022me where me =
9.1094 × 10−31 kg is electron mass.
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Figure 2. (Color online) (a) Schematic: Thermal radiation of
the AM from a single InSb cube at thermal equilibrium (T1 =
T2 = 300K). A 1 T external magnetic field along x direction
is applied on the cube. A surface (virtual cube shown in
the blue dash line) that encloses the cube (real physical cube
shown in red) is chosen to compute the total AM flux (green
arrows) radiated to the far field. (b) The spectrum of the
total radiative AM flux at thermal equilibrium. The total
flux (Φtot) is separated into two parts: one comes from the
particle dipole fluctuations (denoted as Φp) and the other one
originates from the environmental field fluctuations (denoted
as ΦE). At thermal equilibrium, Φp and ΦE have the same
magnitude but opposite signs, resulting in a zero total flux in
the far field.

A. Thermal AM radiation from a single cube

As shown in figure 2(a) and 3(a), a single cube made
of InSb is in the presence of an uniform magnetic field
of 1 T along the x direction. The first issue we want
to address now is the description of the thermal AM
radiation from the single cube using the formalism de-
tailed in Section II. Instead of using the SAM den-
sity S(r) = ε0

2ω Im 〈E∗(r)×E(r)〉+ µ0

2ω Im 〈H∗(r)×H(r)〉
that has been utilized to quantify the spin component of
the thermal radiation in our former work [29], here we de-
fine a tensor of angular-momentum flux density M (Eq.

5) in analogy to the well-known Maxwell stress tensor. It
allows us to compute the total flux Φtot of the radiative
AM in the near-field and far-field, making a better con-
nection between the thermal radiation and the induced
torques. This definition includes the spin and orbital
parts of the electromagnetic field. It reveals the whole
story of the AM in the radiation and won’t contradict
the debate about the angular-momentum separation for
electromagnetic fields [55–57].

Thermal equilibrium: We first consider a single
cube in equilibrium with vacuum (T1 = T0 = 300 K)
and show the balance of the total AM flux Φtot in the far
field (Fig. 2). To clarify the origin of the balance, we sep-
arate the total flux Φtot into two parts: Φtot = Φp + ΦE .
Φp is induced by the fluctuational particle dipoles of the
cube that is determined by the body temperature T1 (Ap-
pendix A 1), while ΦE comes from the environmental field
fluctuations which is dependent on the environment tem-
perature T0 (Appendix A 2). Then we compute each AM
flux Φi (for i= x,y,z) across the plane we defined. For
this purpose, the AM flux is written as

Φi =

∫
A

〈Mji〉dAj , (22)

which describes the integrated flux across a differential
section dA perpendicular to the radial vector R. Here
we choose a surface that encloses the cube to compute
the total AM flux radiated to the far field. As shown
in Figure 2(b), the spectra of the thermal AM flux Φx,p
and Φx,E have the same magnitude but opposite signs at
each frequency. It is noted that the background thermal
radiation in vacuum has no net flux. The non-zero Φx,E
originates from the scattering of the incident background
thermal radiation by the particle. The total flux Φx,tot is
zero as Φx,p and Φx,E perfectly cancel each other. The
vanishing of Φx,tot satisfies the detailed balance of the
AM flux and it indicates that there is no radiative torque
applied on the cube at thermal equilibrium.

For Φy and Φz perpendicular to the gyrotropy axis,
both of them are zero regardless of the temperatures and
hence result in a zero total flux Φi,tot (for i = y, z). Since
Φp and ΦE have no contribution to the perpendicular
component of the AM flux, the torques along y and z
directions in this case will always remain zero no matter
it is at thermal equilibrium or not. Thus, in our following
discussions on the non-equilibrium case of a single cube,
we only focus on the AM flux along the magnetic field
(gyrotropy axis).

Thermal non-equilibrium: Here we show that ther-
mal non-equilibrium can lead to a net radiative AM flux
along the gyrotropy axis. As shown in Fig. 3 (a), We
assume that the environment is at 0 K while the cube is
kept at the room temperature T1 = 300 K. Since the tem-
perature of the cube is higher than the environment, Φp
has a larger magnitude than ΦE at each frequency and
thus the summation of them gives a net AM flux along
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(d) Angular momentum flux through x = 0.5𝜇m yz-plane (e) Angular momentum flux through x = -0.5 𝜇m yz-plane
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Figure 3. (Color online) Thermal radiation of the AM from a single InSb cube at thermal non-equilibrium. (a) Schematic: A
cube is in presence of the magnetic field of 1 T along x direction. The cube is at 300 K while the environment is at 0 K. A
surface that encloses the cube is chosen for computing the AM flux radiated to the far field. (b) Spectrum of Φx. At thermal
non-equilibrium, Φp and ΦE have unequal magnitudes and hence the total AM flux Φtot has a non-zero value. (c) Thermal
non-equilibrium torque due to the AM radiation as a function of the cube size. The blue line with dot markers is computed by
TDDA-1 (approximating the entire cube by a single dipole) and red line with square markers is obtained by using TDDA-125
(dividing each cube into 125 subvolumes and regarding each subvolume as a single dipole). (d) and (e) the spatial distribution
of the AM flux through yz-planes at x = 0.5 µm and x = -0.5 µm, respectively. Spatial distributions are plotted at the energy
0.2475 eV in thermal non-equilibrium case. The cube is assumed to be placed at origin.

the magnetic field (Fig. 3(b)). In addition, due to zero-
point fluctuation, the background radiation still exists at
0 K and thus the AM flux ΦE (originating from the en-
vironment) in this case has a considerable value. Figure
3(d) and (e) depict the spatial distributions of the AM
flux across yz-planes on the two sides of the cube. AM
flux at 24.75 meV is shown here as a typical example.
The AM loss through the two planes (in front of and be-
hind the cube) have an equal contribution to the total
AM flux, giving a non-zero value of Φx. The other com-
ponents that are perpendicular to the gyrotropy axis (Φy
and Φz) still remain zero at thermal non-equilibrium. In
total, a torque along the external magnetic fields is in-
duced by the AM loss due to the thermal non-equilibrium
between the cube and environment.

In Figure 3(c), we compute the thermal AM torque as a
function of the cube size, and compare our numerical cal-
culations to the dipole approximation. In TDDA-125, we
divide each cube into 125 subvolumes, while for TDDA-
1, we use a single point dipole to represent the object.

At small sizes, the results from TDDA-1 and TDDA-125
show a good agreement. When the size of the cube in-
creases, TDDA-125 gives a different magnitude as it takes
the shape effect into consideration, which should be more
precise than TDDA-1 for larger-size objects. Therefore,
for following examples we will show next, we only focus
on the numerical results obtained by TDDA-125.

B. Thermal AM transfer in a two-cube system

In the previous section, we have shown that, for a single
cube, there is no net AM flux going to the far field at ther-
mal equilibrium. The non-vanishing AM flux along the
gyroelectric axis only exists when the cube and the en-
vironment have different temperatures. However, things
can be different for a two-body MO system. In a two-
cube system, we find that a net AM flux can also exist in
the near field between two cubes when the magnetic fields
on each cube are misaligned. Such AM transfer induces
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(a) (b) Spectrum ofΦ𝑧 of the top cubeParallelmagne�c fields at thermal equilibrium

𝑧
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z

𝑴 ⋅ 𝑛𝒓

(d) Spectrum ofΦ𝑥 of the top cube(c) (e) Spectrum ofΦ𝑧 of the top cubeMisalignedMagne�c fields
at thermal equilibrium

𝐵1
𝛽

𝐵2

𝑥

d
𝑇0 = 300 𝐾

𝑇1 = 300 𝐾

𝑇2 = 300 𝐾

𝑧

𝑦𝑥

Zero torque

Zero torque

Non-zero torque

Figure 4. (Color online) Radiative AM transfer in a two-cube system at global thermal equilibrium (T1=T2=T0=300 K). (a)
Schematic: The parallel magnetic fields with the same magnitude B1=B2=1 T are applied on both cubes. The size of cubes is
L=500 nm and they are separated by d=1 µm (center to center distance). (b) The spectrum of the total AM flux Φz emitted
out from the top cube. In parallel/anti-parallel magnetic fields, Φz is always zero at global thermal equilibrium. (c) Schematic:
The magnetic fields applied on the two cubes have the same magnitude B1=B2=1 T but with an angle β between each other.
The size of cubes is L=500 nm and they are separated by d=1 µm (center distance). (d) and (e) Spectra of the total AM flux
Φi (for i = x, z, respectively) radiated from the top cube. The spectra are plotted with different magnetic field directions β.
In the misaligned magnetic fields, Φz has a non-zero value while Φx still remains zero.

an equilibrium torque between the cubes, which can be
tuned by changing the angle between the magnetic fields.

Thermal equilibrium: In Fig. 4, the two-cube sys-
tem is at global thermal equilibrium where T1 = T2 =
T0 = 300 K. T1, T2 and T0 denote the temperatures of
the top cube, bottom cube and vacuum, respectively. To
compute the total AM flux radiated from the top cube,
we choose a box enclosing the top cube and calculate the
flux across the surface, M · n̂r. If the magnetic fields on
two cubes are parallel (Fig. 4 (a)-(b)), there is no AM
flux going out from each cube, which is similar to the
single cube case. However, once the magnetic fields are
misaligned, the gyrotropy axes of the cubes are along dif-
ferent directions (Fig 4 (c)-(e)). And then surprisingly,
there is a net AM flux along z direction (perpendicular

to the plane formed by the two gyrotropy axes) which is
being exchanged between two cubes. Meanwhile, Φx and
Φy still remain zero regardless of the angle β.

Such AM transfer of Φz is interesting but non-intuitive
since it can occur despite the global thermal equilibrium.
It is also important to point out that the presence of
the non-zero radiative AM transfer at the global thermal
equilibrium does not lead to any thermodynamic contra-
dictions. To demonstrate this argument, we separately
compute the AM flux Φz across different xy-planes to re-
veal the origins of the AM transfer (Fig. 5). Here, we
typically choose three planes to show the flux Φz: (b) The
mid plane between two cubes; (c) the top plane above
the top cube; (d) the bottom plane below the bottom
cube. The mid xy-plane shows the near field AM trans-
fer between the cubes, while the top and bottom planes
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show the AM flux going to the far field from each cube,
respectively. Here we do not show the AM flux leaking
through the other surfaces since their contributions to Φz
are negligible compared to xy-planes we showed above.
From Fig. 5, it is easy to find that the AM flux Φz
mainly transfers through the mid xy-plane, with almost
two-order larger magnitude than the top and bottom
planes. Moreover, the fluxes Φz across the top and bot-
tom planes have the same magnitude but different signs
(directions) at each frequency. Therefore,considering the
total flux radiated to the environment from the combined
two-cube system, (c) and (d) cancel each other and give
a zero net flux of Φz. This means that such AM transfer
is a localized phenomenon and won’t cause any net flux
that transfers between the system and the surrounding
environment, conserving AM globally.

With a net AM flux exchanged between the cubes, an
equilibrium torque is induced on each cube. Such equilib-
rium torque can be tuned by changing the angle between
the magnetic fields and vanishes when the magnetic fields
are parallel. Fig. 6 plots magnetic field dependence of the
equilibrium torque. Here we assume that the magnetic

(c) (d)Angular momentum flux
through z = 1 𝜇m plane

Angular momentum flux
through z = -1 𝜇m plane

(a) (b) Angular momentum flux
through z = 0 𝜇m plane

Flux density across different planes

𝑛𝑟

(c) 𝑧 = 0.5 𝜇𝑚

x

z

𝑴𝒛𝒛 ⋅ 𝑛𝒓

(b) 𝑧 = 0 𝜇𝑚

(d) 𝑧 = −0.5 𝜇𝑚

Figure 5. (Color online) Near-field AM flux in a two-cube
system at global thermal equilibrium (T1=T2=T0=300 K).
The size of cubes is L=500 nm and they are separated by
d=1 µm. The magnitudes of the external magnetic fields are
B1=B2=1 T. (a) Schematic. (b)-(d) The spectra of AM flux
Φz across three different xy-planes as shown in (a). Here β
is assumed to be π/2. Figures (c) and (d) show the radiation
flux to the environment, and they contribute oppositely to the
total flux Φz of the combined two-cube system. At thermal
equilibrium, (c) and (d) perfectly cancel each other, giving no
net torque on the combined system.

field on the bottom cube is fixed while we change the
angle β of the B field on the top cube. Similar to what
we did in the last subsection, we separate the torques
into two parts originating from the particle dipole fluctu-
ations (Mp) and the environment field fluctuations (ME),
respectively.

First we only consider the torques within the xy-plane
where the magnetic fields are applied. In this case, Mp

and ME have the same magnitude but different signs
and hence result in a zero net torque within the xy-plane
on each cube. The vanishing of the torque in xy-planes
is independent of β and is always true at global thermal
equilibrium. Unlike the single-body system where the Mp

and ME should be exactly along its gyrotropy axis (mag-
netic field), here they can be slightly misaligned with
their own gyrotropy axis. Such misalignment originates
from the interaction between the cubes since Mp (ME)
of the bottom cube in a fixed magnetic field varies when
we tune the direction of the B field on the top cube (the
left two plots in Fig. 6 (b)). The torque that is perpen-
dicular to the external magnetic field has a much smaller
magnitude than the parallel component, indicating that
the interaction is weak at global thermal equilibrium.

Along the z direction perpendicular to the plane
formed by the magnetic fields, a torque is induced by
the AM transfer between two cubes despite global ther-
mal equilibrium (the right plots in Fig. 6). When the
magnetic fields on two cubes are parallel or anti-parallel,
there is no torque applied because the AM transfer is
prohibited. Otherwise, each cube feels a torque along
z direction trying to align their gyrotropy axes paral-
lel to each other. Such torques have the same magni-
tude but opposite signs and, therefore, there is no net
torque on the combined system, conserving the global
AM at thermal equilibrium. Here we want to note that
the ”thermal equilibrium” discussed in this work only
refers to the global equality of temperature. Due to the
nonzero torque induced by the near-field AM transfer,
the condition of mechanical equilibrium is broken. The
full mechanical dynamics of the particles accounting for
all forces including the attractive Casimir force between
them is beyond the scope of this work, and will be con-
sidered in a separate future work.

At thermal equilibrium, there are two distinct zero-
torque configurations: parallel gyrotropy axes (β = 0)
and anti-parallel gyrotropy axes (β = π). If the system
starts from the anti-parallel configuration (β = π), two
cubes have a tendency to relax back to the parallel config-
uration. It means that β = π is an unstable equilibrium
point. On the other hand, if two cubes are left in the
parallel configuration (β = 0), they will remain in it and
tend to go back after a small disturbance.

Finally, we plot the temperature dependence and dis-
tance dependence of the torque τz in Figure 7. Tem-
perature affects the AM flux through the mean thermal
energy Θ(ω, T ) = ~ω/2 + ~ω/ [exp (~ω/kBT )− 1]. Since
the mean thermal energy is approximately constant over
the frequency range of interest, the magnitude of τz in-
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(b) Torques on the bo�om cube

(a) Torques on the top cube

𝑧
𝑦𝑥

𝐵1𝛽

𝐵2

𝑥
d

Figure 6. (Color online) Torques induced by radiative AM transfer at global thermal equilibrium (T1 = T2 = T0 = 300 K) as
functions of magnetic field angle β. The total torque on each cube are separated into two parts according to their origins: Mp

is induced by fluctuational dipoles and ME comes from field fluctuations. Mtot is the total torque on each cube that combines
Mp and ME . Other parameters are L=500 nm, B1=B2=1 T, d=1 µm. (a) Torques on the top cube in a varied magnetic field.
(b) Torques on the bottom cube in a fixed magnetic field along x axis.

creases proportionately with the temperature. The left
figure in Fig. 7(b) demonstrates the spectrum for Φz as
a function of distance between two cubes. At each fre-
quency, the sign (the direction of the radiative AM flux)
stays the same while the magnitude decays as a func-
tion of distance. The right figure in Fig. 7(b) shows
the torque along z direction after doing integral of Φz
over frequency. Similarly, the magnitude of the torque
τz decreases as a function of distance while its direc-
tion remains unchanged. It confirms that the radiative
AM transfer for Φz at global thermal equilibrium origi-
nates from the near-field interaction between the cubes,
as the interaction strength decays with increasing sepa-
ration between them.

Thermal non-equilibrium: Above we have shown
that, for a two-cube system at global thermal equilibrium
(T1 = T2 = T0), AM transfer can only happen along
z direction. And we have also pointed out that there
is no torque within xy-plane at global thermal equilib-

rium due to the balance between Mp and ME , which are
slightly misaligned with their gyrotropy axes. Here we
are going to show that non-equilibrium (T1 6= T2) helps
amplify the interaction between the cubes, making the
AM transfer between two cubes much stronger than the
equilibrium case.

Figure 8 depicts magnetic field dependence of the ra-
diative AM torques at thermal non-equilibrium. As
shown in Figure 8 (a), we assume that the top cube is
heated up to T1 = 500 K, while the bottom cube remains
at equilibrium with the environment (T2 = T0 = 300 K).
Similarly, we tune the direction of the magnetic field on
the top cube and compute the non-equilibrium torque as
a function of β. In this case, the torques on each cube are
strongly modified due to the near-field AM transfer (Fig-
ure 8 (b)-(d)). First, the torques within the xy-plane no
longer follow the direction of the external magnetic fields.
On the contrary, the torques in the xy-pane have a big
departure from the gyrotropy axes. Second, the torque
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(b) Distance dependence

(a) Temperature dependence

Figure 7. (Color online) (a) Temperature dependence of the
near-field AM flux Φz across the mid xy-plane between two
cubes. The system remains at global thermal equilibrium
T1 = T2 = T0 while tuning the temperature. Here we assume
that β = π/2, d = 1 µm and L = 500 nm. (Left figure) Spec-
tra of Φ with different temperatures. (Right figure) Induced
torque as a function of temperature. (b) Distance dependence
of the near-field AM flux Φz that goes through the mid xy-
plane between two cubes. The red dash line is plotted by
multiplying the torque at d=2 µm and (2/d)6, which is the
ratio to the power of 6 between the torques at two distances.
Parameters are T1 = T2 = T0 = 300 K, β=π/2, d = 1 µm
and L = 500 nm. (Left figure) Spectra of Φz at different dis-
tances. (Right figure) The equilibrium torque τz as a function
of distance.

in xy-plane on bottom cube (in a fixed magnetic field)
also shows a strong dependence of the magnetic field B1

applied on the top cube. At each angle β, the torques
on two cubes have comparable magnitudes and opposite
signs. Their summation gives a smaller total torque on
the combined system, which is one order smaller than
the torque on each cube. Third, the torques along z di-
rection are amplified by two orders than the equilibrium
case, directly indicating that the radiative AM transfer is
strongly amplified because of the unequal temperatures
of two cubes.

IV. ADDITIONAL REMARKS AND
CONCLUSIONS

We demonstrated radiative AM transfer different from
typically considered heat (energy) transfer in nonrecip-
rocal systems. We have developed the TDDA approach

(d)

(a) (b)

(c)

𝑧

𝑦𝑥

𝐵1𝛽

𝐵2

𝑥

𝑇1 = 500𝐾

𝑇2 = 300𝐾 d

Figure 8. (Color online) Thermal non-equilibrium torques
when the top cube is heated up to T1=500 K and the bot-
tom cube still remains thermal equilibrium with surroundings,
T2 = T0 = 300 K. The size of cubes is L = 500 nm and they
are separated by d = 1 µm. (a) Schematic of the thermal
non-equilibrium case. (b)-(d) Torques as functions of direc-
tion of the magnetic field. The magnetic field on the bottom
cube is fixed, while the direction of the magnetic field on the
top cube is varied from 0 to 2π.

based on fluctuational electrodynamics for analyzing the
thermal AM flux density in the near-field and far-field of
finite non-reciprocal bodies. Our work reveals that the
AM loss due to far-field radiation plays a fundamental
role in generating a thermal AM torque along the gyro-
electric axis of a single non-reciprocal body at thermal
non-equilibrium. The connection between the thermal
radiation of nonreciprocal bodies and the induced torques
is important for exploring new ways of directional ther-
mal AM transfer.

We also found that in a nonreciprocal system, the near-
field thermal AM between two objects can be nonzero
despite the zero heat (energy) transfer. This is a lo-
calized phenomenon that happens because of near-field
interaction between the two bodies and decays with the
increasing distance between the bodies. Also, such near-
field interaction won’t contribute to any net radiative AM
flux at far field for the combined system. Moreover, the
near-field AM flux across the plane between two bod-
ies is not necessary to be always along their gyrotropy
axes. With misaligned gyroelectric axes, an AM perpen-
dicular to the plane formed by two gyrotropy axes can
transfer between two bodies despite global thermal equi-
librium. It induces torques on both cubes trying to align
two gyrotropy axes parallel to each other. At global ther-
mal equilibrium, the torques on two cubes have the same
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magnitude but opposite signs, and the net torque on the
combined system is zero, satisfying the detailed balance
of AM exchange between the combined system and the
environment at equilibrium.

Some recent works predicted that the torques can be
induced by vacuum friction of a rotating object made of
reciprocal isotropic media [58–61]. These predictions are
of good interest in the context of nanophotonics [16, 62–
67] and Casimir physics [14, 68, 69], as they fundamen-
tally originate from quantum and thermal fluctuations.
However, such rotational vacuum frictions still remain at
the theoretical level and, so far, no experimental obser-
vation has been done due to the extremely small magni-
tudes of the torques which are far below the sensitivity
that can be achieved by the torque sensor [70]. Many
theoretical works tried to enhance the vacuum friction
to make it more measurable than a single rotating par-
ticle [58], such as using surface plasmon resonance [59]
and surface photon tunneling [61]. Recently, an experi-
mental demonstration of the most sensitive torque mea-
surement has been done with levitated nanoparticle, im-
proving the torque sensitivity by a few orders [64] and
showing the feasibility for detecting the rotational vac-
uum friction near a surface. And as we have shown in
this work, the thermal AM torque in a MO system in
the presence of external magnetic fields has a compara-
ble magnitude with the sensitivity that can be achieved
by the levitated torque sensor [64] and it is tunable by
changing the external magnetic fields. Therefore, the
thermal AM torques in the MO system are possible to
be experimentally detected in the near future.

Finally, the TDDA approach we have developed in this
work can be applied to describe the radiative AM trans-
fer of finite objects with arbitrary size and shape. This
formalism allows us to compute the radiative AM flux in
the near-field as well as far-field of the MO bodies with
arbitrary permittivity tensors. We have used this TDDA
approach to explore how the nonreciprocity affects the ra-
diation of AM in single-cube and two-cube systems. Our
work provides a way for describing AM-resolved thermal
radiation involving finite MO bodies of arbitrary shape.
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Appendix A: TDDA Approach to Radiative AM
Flux

In this section, we develop a TDDA method for calcu-
lating the AM flux density based on the former works [37–
39]. Here we separate the discussion into two parts: par-
ticle dipole fluctuations and environmental field fluctua-
tions. These two contributions correspond to the emis-

sion of objects and the absorption from surrounding en-
vironment, respectively. And they will be balanced when
the system is in equilibrium with the environment.

In particular, here we consider the case of two finite
objects assumed to be at fixed temperatures T1 and T2
and they both interact with a thermal bath at tempera-
ture T0. We assume that these two objects are described
by a collection of Np (for object p) electric point dipoles.
Each dipole is characterized by a volume Vi,p and a polar-
izability tensor ˆαi,p, where p=1,2 denotes the body that
the dipole belongs to and i=1,2,...,Np indicates the i-th
subvolume in that object. We group the electric dipoles
and electric fields in a compact form

P =

(
P1

P2

)
; P1 =

 p1,1

...
pN1,1

 ,P2 =

 p1,2

...
pN2,2


E =

(
E1

E2

)
; E1 =

 E1,1

...
EN1,1

 ,E2 =

 E1,2

...
EN2,2


(A1)

Then we can define the polarizability tensor as ᾱ =(
ᾱ1 0
0 ᾱ2

)
and ᾱp = diag(α̂1,p, . . . , α̂Np,p), (p = 1,2). And

each element α̂i,p is given by [39]

α̂i,p =

(
1

Vp

(
L̂p + [ε̂p − I]−1

)
− i k

3
0

6π
I
)−1

(A2)

where ε̂p is the dielectric permittivity tensor, Vp is the

volume of each discrete dipole, and L̂p is the depolariza-

tion tensor which is L̂p = (1/3)I for cubic volume mesh
element [39, 71, 72].

To compute the total radiative momentum and AM
flux that are described in terms of the surface integral
of the flux densities as Eq. (3) and Eq. (7), we need
to compute the statistical average of the momentum and
AM flux density by Eq. (2) and Eq. (5). For ease of
analysis, the average is expressed in terms of the Fourier
transforms

〈Σ(r)〉 =− 2

∫ ∞
0

dω

2π

∫ ∞
−∞

dω′

2π

Re[ε0 〈E(r, ω)⊗E∗(r, ω′)〉 e−i(ω−ω
′)t

+ µ0 〈H(r, ω)⊗H∗(r, ω′)〉 e−i(ω−ω
′)t

− 1

2
ε0 Tr

{
〈E(r, ω)⊗E∗(r, ω′)〉 e−i(ω−ω

′)t
}
I

− 1

2
µ0 Tr

{
〈H(r, ω)⊗H∗(r, ω′)〉 e−i(ω−ω

′)t
}
I]

(A3)
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for momentum flux density and

〈M(r)〉 =− 2

∫ ∞
0

dω

2π

∫ ∞
−∞

dω′

2π
r×

Re[ε0 〈E(r, ω)⊗E∗(r, ω′)〉 e−i(ω−ω
′)t

+ µ0 〈H(r, ω)⊗H∗(r, ω′)〉 e−i(ω−ω
′)t

− 1

2
ε0 Tr

{
〈E(r, ω)⊗E∗(r, ω′)〉 e−i(ω−ω

′)t
}
I

− 1

2
µ0 Tr

{
〈H(r, ω)⊗H∗(r, ω′)〉 e−i(ω−ω

′)t
}
I]

(A4)
for AM flux density. Here we have used the properties
that E(r,−ω) = E(r, ω)∗ and H(r,−ω) = H(r, ω)∗. Us-
ing FDT from Eq. 10 and Eq. 11, the above expression
can be reduced to the integration of the terms containing
〈E(r, ω)⊗E∗(r, ω)〉 and 〈H(r, ω)⊗H∗(r, ω)〉. In most
cases of the remaining discussions, we drop the argument
ω to alleviate the notation. In the next two subsections,
we will separately formalize the TDDA approach for com-
puting the AM flux due to the electric dipole fluctuations
and the electromagnetic field fluctuations.

1. Electric Dipole Fluctuation

We start by decomposing the local field E(r) outside
the objects into the source field E0(r) and the induced
part Eind(r):

E(r) = E0(r) + Eind(r). (A5)

The source field E0(r) originates from the fluctuating
dipole inside the objects and is given by

E0(r) =
k20
ε0

GEEP̄f , (A6)

where GEE =
(
ĜEE (r, r1) , . . . , ĜEE (r, rN )

)
is the row

vector of the free-space Green tensors:

ĜEE (r, r′) =
eik0R

4πR

[(
1 +

ik0R− 1

k20R
2

)
1̂

+

(
3− 3ik0R− k20R2

k20R
2

)
R⊗R

R2

(A7)

where R = r− r′ and R = |r− r′|. ⊗ denotes the outer
product of two vectors. The dyadic Green’s tensor con-
nects the fluctuating dipoles to the observation point out-
side the objects. P̄f is the fluctuating dipoles inside the
objects and can be obtained by FDT〈

P̄f(ω)P̄†f (ω′)
〉

= 2π~ε0δ (ω − ω′) [I + 2n̂B (ω, T1, T2)] χ̂

(A8)
where n̂B (ω, T1, T2) is a diagonal tensor with 3N ele-
ments given by the Bose-Einstein distribution

n̂B (ω, T1, T2) =

(
n1(ω)I3N1×3N1 0̂

0̂ n2(ω)I3N2×3N2

)
.

(A9)

and we have also introduced

χ̂ =
1

2i

(
α̂− α̂†

)
− k30

6π
α̂†α̂. (A10)

as the radiative correction [49, 50].
The second term in Eq. (A5) originates from the in-

duced dipoles: Eind(r) =
k20
ε0

GEEP̄ind. And the induced

dipole P̄ind comes from the electric field inside the bod-
ies as P̄ind = ε0ᾱĒ, while Ē can be obtained by solving
TDDA equation

Ē = Ē0 + k20dḠEEᾱĒ. (A11)

where dḠEE = ḠEE−diag{ḠEE} and ḠEE is the matrix
of the dynadic Green’s tensors inside bodies that is also
defined by Eq. (A7). Here the overhead bar notation
” ¯ ” indicates that the quantities are evaluated inside
the bodies and it will be the same for other quantities in
the following discussion. Solving Eq. (A11), we get the
induced electric field

Eind(r) =
k20
ε0

GEET̄−1P̄f (A12)

where

Tij = δijI− (1− δij) k20ᾱiḠEE,ij (A13)

Now, making use of Eq. (A13), we can compute the
electric field correlation 〈E(r, ω)⊗E∗(r, ω)〉 which is re-
quired for obtaining AM flux:

〈E(r, ω)⊗E∗(r, ω)〉 =
k40
ε20

GEET̄−1
〈
P̄fP̄

†
f

〉
T̄−1†G†EE

(A14)
Similarly, the magnetic field correlation
〈H(r, ω)⊗H∗(r, ω)〉 can be obtained by replacing
the electric-electric dyadic Green’s tensor by the
magnetic-electric Green’s tensor:

ĜHE (r, r′) =
eik0R

4πR

(
1 +

i

k0r

)√
ε0
µ0

 0 −r̂z r̂y
r̂z 0 −r̂x
−r̂y r̂x 0


(A15)

where r̂ = R/R, (i = x,y,z). Then we have

〈H(r, ω)⊗H∗(r, ω)〉 =
k40
ε20

GHET̄−1
〈
P̄fP̄

†
f

〉
T̄−1†G†HE

(A16)

2. Electromagnetic Field Fluctuation

Considering the interaction with the thermal bath,
the fluctuating electromagnetic field will lead to the AM
transfer and, to some extent, balances the contribution
from the electric dipole fluctuation. The fluctuating elec-
tromagnetic field also fulfills the FDT which gives:〈

Ēf(ω)Ē†f (ω′)
〉

= 2π~ε0δ (ω − ω′) (1 + 2n0 (ω)) Im ḠEE
(A17)
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Ēf(ω)E†f (ω′)

〉
= 2π~ε0δ (ω − ω′) (1 + 2n0 (ω)) Im GEE

(A18)

〈
Hf(ω)Ē†f (ω′)

〉
= 2π~ε0δ (ω − ω′) (1 + 2n0 (ω)) Im GHE

(A19)
It is noted that here we also considered the correlation
between fluctuating fields inside bodies and at observa-
tion point outside bodies by Eq. (A18) and Eq. (A19).
That is because the induced electric dipoles generate elec-
tric/magnetic field at the observation point that corre-
lates to the local fluctuating field. However, we have ig-
nored the correlation between fluctuating magnetic fields
due to the unit permeability (µ = 1) of the media we are
studying.

As usual, we decompose the local electric field at ob-
servation point into the source field and the induced field

E(r) = E0(r) + Eind(r). (A20)

And the source field E0 in this case is the bosonic field
of the thermal bath so that E0 = Ef . And the second
term is the induced electric field from the induced dipoles

Eind(r) =
k20
ε0

GEEP̄ind. The induced dipole P̄ind in this
case can be obtained by solving the TDDA equation for
electric dipole

P̄ind = P̄0 + k20ᾱdḠEEP̄ind (A21)

where P̄0 = ε0ᾱĒf is directly induced by the local fluc-
tuating field. Then we write the total electric field E(r)
as

E = Ef + k20ᾱGEET
−1ᾱĒf . (A22)

The first term Ef on the left hand side (LHS) denotes
the local fluctuating field at the observation point. Ēf

in the second term of LHS is the fluctuating field inside
bodies. The correlation of electric field at observation
point is obtained with the help of Eq. (A22):

〈E(r, ω)⊗E∗(r, ω)〉 =k40GEET̄−1ᾱ
〈
ĒfĒ

†
f

〉
ᾱ†T̄−1†G†EE

+ k20GEET̄−1ᾱ
〈
ĒfE

†
f

〉
+ k20

〈
EfĒ

†
f

〉
ᾱ†T̄−1†G†EE

(A23)
Similarly, replacing GEE with GHE , we can get the

correlation of magnetic field

〈H(r, ω)⊗H∗(r, ω)〉 =k40GHET̄−1ᾱ
〈
ĒfĒ

†
f

〉
ᾱ†T̄−1†G†HE

+ k20GHET̄−1ᾱ
〈
ĒfH

†
f

〉
+ k20

〈
HfĒ

†
f

〉
ᾱ†T̄−1†G†HE

(A24)
Now, combining Eq. (A4), (A14), (A16), (A23) and

(A24), we can compute the total AM flux through arbi-
trary observation planes.
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