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A circularly polarized a.c. pump field illuminated near resonance on two-dimensional transi-
tion metal dichalcogenides (TMDs) produces an anomalous Hall effect in response to a d.c. bias
field. In this work, we develop a theory for this photo-induced anomalous Hall effect in undoped
TMDs irradiated by a strong coherent laser field. The strong field renormalizes the equilibrium
bands and opens up a dynamical energy gap where single-photon resonance occurs. The resulting
photon dressed states, or Floquet states, are treated within the rotating wave approximation. A
quantum kinetic equation approach is developed to study the non-equilibrium density matrix and
time-averaged transport currents under the simultaneous influence of the strong a.c. pump field
and the weak d.c. probe field. Dissipative effects are taken into account in the kinetic equation
that captures relaxation and dephasing. The photo-induced longitudinal and Hall conductivities
display notable resonant signatures when the pump field frequency reaches the spin-split interband
transition energies. Rather than valley polarization, we find that the anomalous Hall current is
mainly driven by the intraband response of photon-dressed electron populations near the dynamical
gap at both valleys, accompanied by a smaller contribution due to the interband response. These
findings highlight the importance of photon-dressed bands and non-equilibrium distribution func-
tions in achieving a proper understanding of photo-induced anomalous Hall effect in a strong pump
field.

I. INTRODUCTION

Since the discovery of graphene [1], van der Waals ma-
terials have emerged as a broad family of two-dimensional
(2D) layered materials with diverse physical proper-
ties ranging from semimetals, semiconductors, insula-
tors to 2D ferromagnets and superconductors [2]. Two-
dimensional transition metal dichalcogenides (TMDs)
(e.g. MoS2, WS2, MoSe2, WSe2) are van der Waals
semiconductors with a band gap within the visible spec-
trum. In monolayers, TMDs exhibit broken spatial inver-
sion symmetry combined with strong spin-orbit interac-
tion, resulting in a large valence band splitting appear-
ing across the direct gaps at the valleys K and K’ [3]
with inherently coupled spin and valley degrees of free-
dom [4]. Through the valley selection rule, carriers near
the valence band edge at each of the valleys couple pref-
erentially to light with a definite circular polarization,
allowing them to be selectively excited to the conduction
band. For frequencies above the band gap, the optical ex-
citation creates a carrier population imbalance between
the two valleys, i.e. a valley polarization [5].

If the system is additionally driven by a d.c. electric
field, valley-resolved photovoltaic transport occurs. In
particular, an anomalous Hall effect will result from the
net transverse charge current due to unbalanced popu-
lation of photoexcited K and K’ carriers [6, 7]. A sim-
ilar Hall effect, caused by photo-induced spin polariza-
tion, has also been predicted [8] in semiconductor sys-
tems due to spin-orbit coupling and observed [9–12] in
III-V semiconductor structures, Bi2Se3 topological insu-
lator thin film [13] and few-layer WTe2 Weyl semimetal
[14]. In TMDs, this photo-induced anomalous Hall effect
(AHE) has been recently observed in illuminated sam-

ples of monolayer MoS2 as well as bilayer MoS2 placed
under an out-of-plane electric field [15, 16]. It has also
been recently observed in illuminated samples of exfoli-
ated graphene [17, 18], in which the Hall effect is purely
due to optically-induced Berry curvature.

Early theoretical treatments on the photo-induced Hall
effect in TMDs have been largely focused on the role of
valley selection rules and Berry curvatures obtained from
the equilibrium bands, with the tacit assumption that
the optical excitation is sufficiently weak that the elec-
tronic band structure remains unaltered under irradia-
tion. Hall transport in the regime of strong optical exci-
tations, which can reveal rich quantum dynamics through
photon dressing effects and are readily realizable in ex-
periments, has received increasing theoretical attention
[19–24]. In a recent experiment [25], dynamic Stark shift
of the bands has been observed in WS2 under a strong op-
tical pump field with subgap frequency. When the pump
frequency is above the band gap, hybridization between
the photon-dressed valence and conduction bands gen-
erates a dynamical gap [26, 27]. The hybridized states,
which are also known as Floquet states, have not yet
been observed in TMDs but has been directly observed
in topological insulator surface states [28, 29]. The re-
alization of Floquet states provides a means to realize
many interesting non-equilibrium phenomena [30], such
as Floquet topological phases [31, 32], Floquet control
of exchange interaction [33, 34] and tunneling [35], and
Floquet time crystals [36].

Under strong optical excitation by the pump field, the
valley-resolved Hall effect is influenced by the photon
renormalization of the electronic bands as well as non-
equilibrium carrier kinetics [37]. In this work, we provide
a density matrix formulation for photo-induced valley
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Hall transport that allows us to treat the photon-dressed
bands and carrier kinetics in a single framework. Our
theory is developed using the rotating wave approxima-
tion, which provides better analytic insights compared
to full numerical solutions, in the regime of near reso-
nance and weak coupling where multiphoton effects are
unimportant [24]. Band populations and interband co-
herences are obtained in a transparent manner from the
solution of the kinetic equation of the density matrix.
These are then used to compute the photo-induced valley
polarization and longitudinal and Hall photoconductivi-
ties. Our findings reveal that the physical picture behind
the photo-induced anomalous Hall effect is much more
nuanced in a strong laser field than the commonly as-
sumed picture of valley population imbalance, due to the
formation of different photon-dressed bands at the two
valleys.

Our paper is organized as follows. Sec. II lays out the
model of our system and discusses the photon-induced
renormalization of the equilibrium band structure. We
then introduce the density matrix formalism and the
kinetic equation governing its dynamics in Sec. III. In
Secs. IV-V, we solve the kinetic equation and obtain the
density matrix of the pumped system, first in the absence
and then in the presence of the d.c. electric field. Sec. VI
then presents the derivation of the photovoltaic longitu-
dinal and Hall currents and our numerical results of the
photoconductivities, followed by conclusion in Sec. VII.

II. MODEL OF TMD COUPLED TO OPTICAL
PUMP FIELD

The low-energy Hamiltonian of 2D TMD is given by[4]

H0 = v(τkxσx + kyσy) + (∆̂− λτ

2
sz)σz +

λτ

2
sz, (1)

where σ denotes the vector of Pauli matrices in the pseu-
dospin basis capturing the d-orbital states of the transi-
tion metal element, 2∆̂ is the band gap energy, v is the
band velocity, 2λ is the spin-orbit splitting of the valence
bands, τ = ±1 is the valley index for K and K’ respec-
tively and sz = ±1 the spin index for up and down. In
the vicinity of each valley, the low-energy physics is de-
scribed by two copies of spin-resolved Dirac Hamiltonian
with band gap 2∆1,2 = 2∆̂ ∓ λ. In this paper, we take
MoS2 as the prototypical example of TMDs and use the
corresponding values [4] of band gap 2∆̂ = 1.66 eV, spin-
orbit splitting 2λ = 0.15 eV, band velocity v = 5.35×105

ms−1 for our numerical calculations.
We can develop our theory for one spin s and one valley

τ and obtain the total photovoltaic current at the end
by summing the contributions from both spins and both
valleys. Dropping the inessential energy shift from the
last term, Eq.(1) takes the typical form of a massive Dirac
Hamiltonian

H0 = v(τkxσx + kyσy) + ∆σz, (2)

here ∆ = ∆̂ − τszλ/2, which takes the two values
∆1,2 corresponding to τsz = ±1. Diagonalizing Eq.(2)
gives the conduction (+) and valence (−) band energy

±αk = ±
√

(vk)2 + ∆2, and the corresponding spinor
wavefunctions,

χk+ =

[
cos(θk/2)

sin(θk/2)eiτφ

]
, χk− =

[
− sin(θk/2)

cos(θk/2)eiτφ

]
, (3)

where we have defined cos θk = ∆/αk, sin θk = τvk/αk,

tanφ = ky/kx, and k =
√
k2
x + k2

y.

The pump field laser is described by an a.c. electric
field E = E0(cosωtx̂ + µ sinωtŷ), in which µ = ±1 de-
notes the left and right circular polarization. The light-
matter interaction Hamiltonian follows from the mini-
mal coupling k → k + eA (where e > 0 is the elec-
tronic charge) with the vector potential A = −

∫
Edt =

−(E0/ω)(sinωtx̂ − µ cosωtŷ). The total Hamiltonian
then becomes H = H0 − (Λ/2)(τ sinωtσx − µ cosωtσy),
where Λ = 2eE0v/ω. The pump field couples to the
orbital degrees of freedom only and optical transitions
preserve spins.

It will be convenient to define [38–40] a set of mutu-

ally perpendicular pseudospin unit vectors {α̂k, β̂k, γ̂k}
and corresponding basis matrices (σα, σβ , σγ) = σ ·
(α̂k, β̂k, γ̂k) to rewrite the Hamiltonian. With the defi-
nition κ̂τ ≡ cosφx̂+ τ sinφŷ, we define the unit vectors
as

α̂k = sin θkκ̂τ + cos θkẑ, (4)

β̂k = τ ẑ × κ̂τ , (5)

γ̂k = −τ cos θkκ̂τ + τ sin θkẑ. (6)

{α̂k, β̂k, γ̂k} forms a right-handed triad defined locally at
each k point. Note that they are dependent on the valley
index τ . {σα, σβ , σγ} are the corresponding pseudospin
projections

σα =

[
cos θk sin θke

−iτφ

sin θke
iτφ − cos θk

]
, (7)

σβ = iτ

[
0 −e−iτφ
eiτφ 0

]
, (8)

σγ = τ

[
sin θk − cos θke

−iτφ

− cos θke
iτφ − sin θk

]
, (9)

It is also useful to note that σα,β,γ is related to the usual
Pauli matrices σx,y,z through the pseudospin-to-band

unitary transformation Uk ≡ [χk+ χk−] by σα = UkσzU†k ,

σβ = Uk(τσy)U†k , σγ = Uk(−τσx)U†k . We can then repre-
sent the total Hamiltonian as follows,

H =

[
αk +

Λ

2
µτ sin θk sin(φ− µωt)

]
σα (10)

+
Λ

2
µτ cos(φ− µωt)σβ −

Λ

2
µ cos θk sin(φ− µωt)σγ .

The total Hamiltonian above, now expressed in the new
pseudospin representation, can be further transformed
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into the rotating frame using the unitary transformation
U = e−iωtσα/2 as H̃ = U†HU−iU†∂tU . Hereafter, quan-
tities in the rotating frame (RF) will be denoted with an
overhead tilde. In the RF-transformed pseudospin ba-
sis, σα is unchanged since it commutes with U , while the
other two basis matrices become,

U†σβU = cos(ωt)σβ − sin(ωt)σγ , (11)

U†σγU = cos(ωt)σγ + sin(ωt)σβ . (12)

Following the rotating wave approximation (RWA), we
retain only time-independent terms and obtain the
rotating-frame Hamiltonian as

H̃ =
(
αk −

ω

2

)
σα +

Λ

4
Mk (cosφσβ − µ sinφσγ) ,(13)

where Mk ≡ µτ+cos θk captures the valley selection rule
at k = 0 with Mk = 2 when µ = τ , and zero other-
wise. Diagonalizing the Hamilonian H̃ gives the photon-
dressed conduction and valence band dispersions in the
rotating frame,

Ẽk = ±

√(
αk −

ω

2

)2

+

(
Λ

4
Mk

)2

. (14)

Fig. 1 shows the photon-dressed bands of the spin-up
electrons at valley K and the spin-down electrons at val-
ley K’ for the cases when the light frequency is below and
above the band gap. For circularly polarized light, the
dispersion Ẽk is isotropic in the k-space since Mk is inde-
pendent of φ. For the case of subgap frequency ω < 2∆
in Fig. 1(a), the band gap is enhanced from the equilib-
rium value due to dynamical Stark effect [41], becoming√
δ2
d + Λ2 in the rotating frame where δd = 2∆−ω is the

detuning. One notices that the difference between the
photon-dressed bands at the two valleys is quite small
even at large fields. A more dramatic difference can
be seen when the frequency exceeds the band gap in
Fig. 1(b). At both valleys, a dynamical gap is opened
at a finite k value. The gap is sizeable ∼ 77.2 meV at
valley K but is minuscule ∼ 3.7 meV at valley K’, which
can be barely resolved at the scale of the plot.

The drastic difference between the two photon-dressed
bands is a result of the valley-selective coupling of elec-
trons with circularly polarized light through the matrix
element Mk. From Eq. (14), the magnitude of the gap
can be found as ΛMk=kr/2, where kr is the momentum
at which resonance transition occurs when 2αkr = ω.
For frequency values near the TMD band gap such as
ω = 1.7 eV, to generate a dynamical gap of 10−100 meV
at valley K, the range of a.c. field amplitude required is
25−250 MV/m, which is attainable in state-of-the-art ul-
trafast optical experiments [25, 42, 43]. In free-standing
graphene, a strong circularly polarized light similarly
opens up a dynamical gap at the Dirac points, and in
recent experiments the induced Dirac gap is estimated
to be ∼ 70 meV [17].

The photon-dressed states Eq. (14), which are obtained
within RWA, capture similar physics as the Floquet

states in the 2× 2 truncated Floquet space in the neigh-
borhood of a dynamical gap [44–46], with ± in Eq. (14)
corresponding to the Floquet quasienergies of the 0th con-
duction and 1st valence sidebands. For near-resonance
frequencies ω ≈ 2∆1 in TMDs, the dimensionless light-
matter coupling parameter λ = eE0v/(~ω2) . 10−2 � 1
for E0 up to 250 MV/m, therefore the system is well
within the weak coupling (also known as weak drive)
regime in which RWA is expected to provide an excel-
lent approximation.

(a)

k

E
k

(b)
E
k

FIG. 1. (Color online). Photon-dressed bands ±Ẽk for spin-
up electrons at valley K (solid) and spin-down electrons at
valley K’ (dashed) under a circularly polarized pump field
with strength E0 = 200 MV/m and helicity µ = 1. The
equilibrium band gap value is taken as 2∆ = 2∆1 = 1.585 eV.
(a) corresponds to sub-gap pump field frequency ω = 1.4 eV
and (b) to above-gap frequency ω = 1.74 eV. Energy values
are scaled by ∆1 and momentum kx, ky by k∆1 = ∆1/v.

III. KINETIC EQUATION

In order to calculate the photocurrent response, we
first obtain the density matrix ρk in the presence of the
pump and probe fields. The Hamiltonian H including
the pump field vector potential is treated as the non-
perturbative part of the problem. The perturbative part
is due to the weak d.c. probe field E, which is included
in the Hamiltonian in the form of a slowly-varying scalar
potential Φ(r) such that eE = ∇Φ(r). We follow the
standard procedure to derive the equation of motion for
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the one-time density matrix using the non-equilibrium
Green’s function formalism [47, 48]. After obtaining the
quantum kinetic equation of the two-time lesser Green’s
function G<, performing the Wigner transformation and
gradient expansion, the equation of motion for the den-
sity matrix can be obtained from the kinetic equation
of G< in the equal-time limit, which in frequency space
translates to the following relation

ρk(t) = −i
∫ ∞
−∞

dω

2π
G<k,ω(t). (15)

Performing the above steps we then find the kinetic equa-
tion for ρk:

∂ρk
∂t
− eE · ∂ρk

∂k
+ i [H, ρk] = Is[ρk], (16)

where H is the total Hamiltonian including the optical
pump field in Sec. II, and Is[ρk] respresents the scattering
integral that describes damping effects of relaxation and
dephasing. Here intraband drift motion due to the d.c.
field is included via the second term on the left hand side
of the kinetic equation. Since ρk is a 2×2 density matrix
in the pseudospin space, it can be decomposed using the
basis {I, σα, σβ , σγ} as

ρk = nkI +
1

2
Sk · σ. (17)

nk and Sk have the meanings of a charge and a pseu-
dospin distribution function, respectively. In this work,
we confine ourselves to considering carrier scattering pro-
cesses that are spin-conserving and valley-conserving.
This assumption is valid when no magnetic impurity is
present and atomic-scaled defects that give rise to inter-
valley scattering are negligible. Our approach here can
be easily extended to include scattering that flips spins
and valleys [49]. Then, in the relaxation time approx-
imation [41], the scattering integral takes the following
form with phenomenological longitudinal relaxation rate
Γ and transverse relaxation rate Γ⊥,

Is[ρk] = −
[
Γ(nk − n(eq)

k )I +
Γ

2
(Sk,α − S(eq)

k,α )σα

+
Γ⊥
2
Sk,βσβ +

Γ⊥
2
Sk,γσγ

]
, (18)

where Sk,α, Sk,β , Sk,γ denote the components of Sk along

{α̂k, β̂k, γ̂k}, respectively. Sk,α describes the population
difference Sk,α = ρk,cc − ρk,bb between the conduction
band (c) and the valence band (b) and is also known as
interband population inversion (with Sk,α = 1 for full in-
version), whereas Sk,β , Sk,γ describe interband coherence
that leads to optical polarization. Γ and Γ⊥ phenomeno-
logically capture the effects of the decay of interband
population inversion and optical polarization as well as
intraband momentum relaxation. We note that inclusion
of dissipative effects are essential for the irradiated sys-
tem to attain the non-equilibrium steady state. Before

light is turned on, the system is assumed to be in equilib-
rium and the Fermi level is inside the band gap, with a
completely filled valence band and an empty conduction

band so that n
(eq)
k = 1/2, S

(eq)
k,α = −1, S

(eq)
k,β = S

(eq)
k,γ = 0.

IV. EFFECTS OF PUMP FIELD:
ZEROTH-ORDER DENSITY MATRIX

To obtain the photoconductivity, we solve Eq. (16) up
to first order in E by linearizing the density matrix as

ρk = ρ
(0)
k + ρ

(1)
k . The density matrix ρ

(0)
k is the zeroth-

order solution to Eq. (16) under a zero d.c. probe field

E = 0 and ρ
(1)
k is the the first-order correction due to

a finite E. Eq. (16) then reduces to the following two

equations satisfied by ρ
(0)
k and ρ

(1)
k :

∂ρ
(0)
k

∂t
+ i
[
H, ρ

(0)
k

]
= Is[ρ

(0)
k ], (19)

∂ρ
(1)
k

∂t
− eE ·

∂ρ
(0)
k

∂k
+ i
[
H, ρ

(1)
k

]
= Is[ρ

(1)
k ]. (20)

Since we are interested in the steady-state regime, the
above equations can be conveniently solved by trans-
forming them into the rotating frame, in which the den-
sity matrix ρ̃k becomes time-independent within RWA:

∂ρ̃k/∂t = 0. The resulting equations satisfied by ρ̃
(0)
k

and ρ̃
(1)
k then take the same form as Eqs. (19)-(20) with

∂/∂t = 0.
Our strategy for solving the 2 × 2 kinetic equation

Eq. (19) in the pseudospin space is to project it onto
the basis {I, σα, σβ , σγ}, which produces four linearly in-
dependent equations that can be solved simultaneously.

The zeroth and first order density matrices ρ̃
(0)
k , ρ̃

(1)
k are

then respectively expanded as

ρ̃
(0,1)
k = n

(0,1)
k I +

1

2

(
S̃

(0,1)
k,α σα + S̃

(0,1)
k,β σβ + S̃

(0,1)
k,γ σγ

)
.

(21)

The rotating frame Hamiltonian H̃, written in the new
pseudospin basis, has been derived in Eq. (13). Since
the set of basis matrices satisfy the usual commutation
relation [σi, σj ] = 2iεijkσk with i, j, k ∈ {α, β, γ}, one
can easily find

[H̃, ρ̃
(0)
k ] =

(
αk −

ω

2

)
(S̃

(0)
β iσγ − S̃(0)

γ iσβ) (22)

−Λ

4
Mk cosφ(S̃(0)

α iσγ − S̃(0)
γ iσα)

−Λ

4
Mkµ sinφ(S̃(0)

α iσβ − S̃(0)
β iσα).

Note that the charge density distribution function nk is
decoupled from the kinetic equation for S̃k since the con-
tribution from nk vanishes in Eq. (22) upon commutation
operation. Substituting Eqs. (21)-(22) into the kinetic
equation and solving, we find the steady-state solution
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(a) (b) (c) (d)

ω < 2Δ ω <2Δ

K K’ K’ 

S̃ k,α
(0)

K

FIG. 2. (Color online). Population difference S̃
(0)
k,α = Sk,0 between the conduction and valence bands at valley K and K’ under

a circularly polarized pump field with helicity µ = 1 and strength E0 = 100 MV/m for (a)-(b) ω = 1.4 eV and (c)-(d) ω = 1.74
eV. The labels for the K and K’ valleys are indicated above the plots. Relaxation and dephasing parameters are taken as
Γ = Γ⊥ = 1 meV and the equilibrium band gap 2∆ is the same as in Fig. 1. Note the difference in scales in the plots (a) and
(b).

for ρ̃
(0)
k :

ρ̃
(0)
k = n

(eq)
k I +

1

2
Sk,0σα +

1

2
(Sk,1 cosφ+ Sk,2 sinφ)σβ

+
1

2
µ(Sk,2 cosφ− Sk,1 sinφ)σγ , (23)

where Sk,0Sk,1
Sk,2

 =
−1

(2αk − ω)
2

+ Γ2
⊥ + (ΛMk/2)

2
Γ⊥/Γ

×

 (2αk − ω)
2

+ Γ2
⊥

(ΛMk/2)(2αk − ω)
−(ΛMk/2)µΓ⊥

 . (24)

Figs. 2(a)-(d) show the interband population difference

S̃
(0)
k,α = Sk,0 at valleys K and K’ under a circularly po-

larized pump field with helicity µ = 1 for the cases when
the frequency is below and above the band gap. When
ω < 2∆ [Figs. 2(a)-(b)], a small population of electrons
is excited into the conduction band localized around the
band edge k = 0. Most of the electron population re-

mains in the valence band, with S̃
(0)
k,α ≈ −1. For ω > 2∆

[Figs. 2(c)-(d)], electrons of both valleys are excited pre-
dominantly to those states that are peripheral to the ring
of resonant states ω = 2αk where the dynamical gap
opens [Fig. 1(b)]. Near those states around the circu-

lar “opening” in Figs. 2(c) for valley K, S̃
(0)
k,α reaches a

maximum of ∼ −10−4 indicating that the valence band
electrons there are strongly excited to the conduction
band. In comparison, less electrons are photoexcited at
valley K’ as shown in Figs. 2(d), where the maximum

S̃
(0)
k,α reaches about −0.3. Because the dynamical gap is

much smaller at K’ than at K [Fig. 1(b)], the excited
populations at K’ are localized closely at the resonant

states resulting in a much sharper distribution of S̃
(0)
k,α in

the momentum space.

V. EFFECTS OF D.C. BIAS:

FIRST-ORDER DENSITY MATRIX

Having obtained the steady-state solution to Eq.(19),
we proceed to solve Eq.(20) in the rotating frame using

the decomposition Eq. (21) for ρ̃
(1)
k . The d.c. electric field

is taken as E = Ex̂ directed along x̂. The E-dependent

driving term in Eq. (20) is completely determined by ρ̃
(0)
k

and can be resolved as

eE ·
∂ρ̃

(0)
k

∂k
= eE

(
DII +Dk,ασα +Dk,βσβ +Dk,γσγ

)
,

(25)

with functions DI,Dk,α,Dk,β ,Dk,γ as coeffcients. From
Eqs. (23)-(24) it is obvious that DI = 0, and we can
obtain explicit expressions of Dk,α,Dk,β ,Dk,γ as provided

in Appendix A. The commutator [H̃, ρ̃
(1)
k ] is the same as

in Eq.(22) with the superscript (0) replaced by (1). It

follows that n
(1)
k = 0 and S̃

(1)
k,α, S̃

(1)
k,β , S̃

(1)
k,γ are determined

by  Γ −Λ
2Mkµ sinφ −Λ

2Mk cosφ
Λ
2Mkµ sinφ Γ⊥ (2αk − ω)
Λ
2Mk cosφ − (2αk − ω) Γ⊥


S̃

(1)
k,α

S̃
(1)
k,β

S̃
(1)
k,γ


= 2eE

Dk,αDk,β
Dk,γ

 . (26)

The above equation gives explicit analytic expressions

for S̃
(1)
k,α, S̃

(1)
k,β , S̃

(1)
k,γ , which are relegated in Appendix B.

In Figs. 3(a)-(d), we show the correction to the popula-

tion difference S̃
(1)
k,α due to the d.c. electric field at both

valleys for the ω below and above the band gap. Since

S̃
(1)
k,α is proportional to E, we plot S̃

(1)
k,α/E. In contrast to

S̃
(0)
k,α, S̃

(1)
k,α is asymmetric in k-space due to the d.c. field

breaking in-plane rotational symmetry. Below the band

gap [Fig. 3(a)-(b)], S̃
(1)
k,α is generally very small. For a
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(a) (b) (c) (d)

ω < 2Δ ω <2Δ

K K’ K’ K 

×10-8 ×10-11 ×10-6 ×10-5

S k,α
(1) /E˜

FIG. 3. (Color online). First-order correction to the population difference S̃
(1)
k,α/E scaled by the d.c. bias field E between the

conduction and valence bands at valley K and K’ for (a)-(b) ω = 1.4 eV and (c)-(d) ω = 1.74 eV. The labels for the K and K’
valleys are indicated above the plots. The pump field has the same helicity and strength, and the values of Γ,Γ⊥,∆ are the
same as in Fig. 2.

d.c. field E = 10 kV/m for instance, S̃
(1)
k,α ∼ 10−4 at val-

ley K and S̃
(1)
k,α ∼ 10−7 at valley K’. When the frequency

is increased to above the band gap, S̃
(1)
k,α is dramatically

enhanced near the resonant states by two and six orders
of magnitude respectively as seen in Fig. 3(c)-(d). This
shows that a resonant pump field excitation induces a
much stronger effect on the photoexcited population dis-
tribution perturbed by the d.c. bias.

The degree of asymmetry can be analyzed by resolving

S̃
(1)
k,α into even and odd harmonics of φ. While Figs. 3(a)-

(d) seem to show only an asymmetry along the kx direc-
tion, there is also a small degree of asymmetry along
the ky direction that is not apparent at the scale of the
plots. In Appendix B we show the explicit expressions of

the first odd (sinφ) and even (cosφ) harmonics of S̃
(1)
k,α,

which corresponds to asymmetries along the ky and kx
directions respectively. As we will explain in Sec. VI, the
asymmetry of this distribution function along the trans-
verse direction to the d.c. bias, along with smaller effects

from the interband responses S̃
(1)
k,β and S̃

(1)
k,γ , leads to the

photo-induced anomalous Hall effect.

The preferential coupling between the left (right) cir-
cularly polarized light and the K (K’) valley results in a
population imbalance of photoexcited connduction band
electrons between the two valleys. Using the pseudospin-
to-band unitary transformation Uk, the conduction band
density matrix can be found as ρk,cc = nk+ S̃k,α/2. ρk,cc
is predominantly given by the zeroth order contribution

n
(eq)
k + Sk,0/2 as the correction S̃

(1)
k,α/2 induced by the

d.c. bias is comparatively small. Because n
(eq)
k = 1/2 is

independent of the valley degrees of freedom, the conduc-
tion band population difference between the two valleys

is ∆nv =
∑
k(ρKk,cc−ρK

′

k,cc) =
∑
k[(Sk,0 +S̃

(1)
k,α)K−(Sk,0 +

S̃
(1)
k,α)K

′
]/2. Then the total population imbalance can be

found by summing over the spin degrees of freedom in
the original TMD Hamiltonian Eq. 1, which correspond
to the two values of the gap 2∆1 and 2∆2. They give the
interband transition energies at k = 0 for the two spins.

E o=10 MV/m

E o=20 MV/m

E o=30 MV/m

E o=40 MV/m

1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

ω (eV)

Δ
n v

(×
10

12
cm

-
2 )

FIG. 4. (Color online). Conduction band population differ-
ence between the two valleys to the zeroth order, as a function
of ω for different values of E0 with µ = 1. Relaxation and
dephasing parameters are taken as Γ = Γ⊥ = 1 meV.

Fig. 4 shows the resulting total ∆nv as a function of the
frequency for different values of the pump field. Although
RWA is valid for frequencies near the band edges, for dis-
play purposes we show an extended range of ω in Figs.
4-5. Near the band edges, ∆nv exhibits a shoulder-like
feature when the frequency reaches 2∆1 and then peaks
at the second gap 2∆2. Away from the band edges, ∆nv
gradually tails off towards higher frequencies, while it ap-
proaches zero towards lower frequencies inside the band
gap. We note that the latter two trends could in princi-
ple receive a small non-RWA correction not captured in
our theory as the frequency is tuned further away from
the band edges. At this point, it may be tempting to
obtain the anomalous Hall conductivity from this valley
population imbalance as in the d.c. case. However, be-
cause of the formation of photon-dressed bands in the
presence of a pump field, the photo-induced Hall current
is no longer simply given by this valley population imbal-
ance and the Berry curvatures of the equilibrium bands.
We can estimate the Hall conductivity obtained in this
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way [15] using Fig. 4 and find that it is an order of mag-
nitude too small compared to our exact results presented
in Fig. 5. Instead, the photo-induced transport currents

are determined by the distribution function S̃
(1)
k of the

photon-dressed bands as described below.

VI. LONGITUDINAL AND ANOMALOUS HALL
PHOTOCONDUCTIVITIES

To calculate the photovoltaic current, the density ma-
trix needs to be transformed back into the stationary

frame ρ
(1)
k = Uρ̃

(1)
k U†,

ρ
(1)
k = n

(1)
k I +

1

2
S̃

(1)
k,ασα +

1

2

(
S̃

(1)
k,β cosωt− S̃(1)

k,γ sinωt
)
σβ

+
1

2

(
S̃

(1)
k,β sinωt+ S̃

(1)
k,γ cosωt

)
σγ . (27)

The expectation value of the current density is then cal-

culated from J = ΣkTr{jk(t)ρ
(1)
k (t)}, where ‘Tr’ denotes

trace over degrees of freedom other than the momentum,
and jk(t) is the single-electron current operator,

jk(t) = −e∂HR(t)

∂k
= −e

(
∂HR

∂k
k̂ +

1

k

∂HR

∂φ
φ̂

)
. (28)

HR(t) above is the stationary-frame Hamiltonian within

the RWA, and can be obtained by transforming H̃ in Sec.
II back to the stationary frame HR(t) = UH̃U†−iU∂tU†,

HR(t) = αkσα +
Λ

4
Mk (cosφ cosωt+ µ sinφ sinωt)σβ

+
Λ

4
Mk (cosφ sinωt− µ sinφ cosωt)σγ . (29)

The matrix trace calculation can be facilitated by de-
composing the longitudinal (x-direction) and transverse
(y-direction) single-electron current operators into com-

ponents of {σα, σβ , σγ}, such that ji(t) = î · jk(t) =
ji,α(t)σα + ji,β(t)σβ + ji,γ(t)σγ with i ∈ {x, y}. Ex-
plicit expressions of ji,α(t), ji,β(t), ji,γ(t) are relegated to
Appendix A. It is easy to verify that the basis matri-
ces satisfy the trace relation Tr {σµσν} = 2δµν , where
µ, ν ∈ {α, β, γ}. Using this property with Eq. (27), the
photovoltaic longitudinal and Hall currents can be calcu-

lated from ρ
(1)
k as

Ji =
∑
k

[
S̃

(1)
k,αji,α +

(
S̃

(1)
k,β cosωt− S̃(1)

k,γ sinωt
)
ji,β

+
(
S̃

(1)
k,β sinωt+ S̃

(1)
k,γ cosωt

)
ji,γ

]
. (30)

Before proceeding to calculate the photoconductivities,
it is useful to first check that our formulation recovers
the correct dark conductivity. The scenario of vanishing
pump field corresponds to taking the limit Λ, ω → 0 such
that Λ/ω → 0. The rotating frame reduces to the station-
ary frame and the Hamiltonian in Eq. (13) becomes the

original Hamiltonian without light H = αkσα. Damping
terms Γ,Γ⊥ can be taken as zero because the Fermi en-
ergy lies within the band gap. Solutions to Eq. (26) then
reduce to

S̃
(1)
k,α = 0, (31)

S̃
(1)
k,β = − τeE

2kαk
sin θk cos θk cosφ, (32)

S̃
(1)
k,γ =

eE

2kαk
sin θk sinφ. (33)

From Eq. (27), the first-order density matrix then be-
comes

ρ
(1)
k = n

(1)
k I− τeE

4kαk
sin θk (cos θk cosφσβ − τ sinφσγ) .

(34)

The y-component of the single-electron current operator
in Eq. (28) reduces to −evσy, which when written in
pseudospin basis is

jy = −eαk sin θk
k

(sin θk sinφσα + cosφσβ

−τ cos θk sinφσγ) . (35)

Calculating the transverse current Jy = ΣkTr{jyρ(1)
k },

we recover the well-known dark valley-resolved Hall con-
ductivity στyx = Jy/E = τe2/4π~ where the superscript τ
distinguishes the contribution from each valley. Similarly,
we find a vanishing longitudinal conductivity στxx = 0 for
a vanishing pump field, as expected for undoped TMDs.

We now return to Eq. (30). Subtracting off the dark
current contribution and integrating over one time pe-
riod, we obtain the following expressions for the time-
averaged photo-induced longitudinal and Hall currents
for spin s and valley τ :

Jx =
∑
k

sin2 θk
k

{
S̃

(1)
k,ααk cosφ+

µΛ

8
S̃

(1)
k,γMk,+ sin 2φ

+
Λ

8
S̃

(1)
k,β [Mk,− −Mk,+ cos 2φ]

}
, (36)

Jy =
∑
k

sin2 θk
k

{
S̃

(1)
k,ααk sinφ− Λ

8
S̃

(1)
k,βMk,+ sin 2φ

−µΛ

8
S̃

(1)
k,γ [Mk,− +Mk,+ cos 2φ]

}
, (37)

where Mk,± = µτ ± cos θ. In Eqs. (36)-(37) above, the

first term dependent on S̃
(1)
k,α corresponds to a Drude-like

intraband response to the d.c. bias from the photon-
dressed conduction and valance bands, whereas the sec-

ond and third terms dependent on S̃
(1)
k,β , S̃

(1)
k,γ arise from

interband response to the d.c. bias. Because of the mo-
mentum integration, it is clear that only the first odd

(even) harmonic of S̃
(1)
k,α contributes to the intraband re-

sponse of Jy (Jx), while only the zeroth, second odd
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FIG. 5. (Color online). Longitudinal σxx and Hall σyx conductivities in units of G0 = e2/~ as a function of ω under different
strengths of pump field E0 with helicity µ = 1. Panels (a) and (d) show the contributions due to the K valley (τ = 1) while
(b) and (e) show the K’ valley (τ = −1), and panels (c) and (f) show the sum of the two valleys’ contributions. Relaxation
and dephasing rates are the same as in Fig. 4.

and even harmonics of S̃
(1)
k,β , S̃

(1)
k,γ enter into the inter-

band responses of Jy and Jx. The total longitudinal
and Hall photoconductivities are finally obtained by sum-
ming Eqs. (36)-(37) over the spin and valley degrees of
freedom and dividing over the d.c. probe field E. In the
d.c. anomalous Hall effect, interband coherences give rise
to the intrinsic geometric contribution in ferromagnetic
metals and in particular to quantized topological contri-
bution in magnetic insulators [50, 51].

Fig. 5 shows our numerical results for the valley-
specific and total photoconductivities under left circu-
larly polarized light (µ = 1) calculated from Eqs. (36)-
(37). One first notices that the K valley contribution is
larger than that of the K’ valley for both the longitu-
dinal [Figs. 5(a)-(b)] and Hall conductivities [Figs. 5(d)-
(e)]. Similar to ∆nv, the shoulder and peak features at
ω = 2∆1 and 2∆2 are clearly visible for σxx and σyx
at valley K, while they are less prominent for the con-
ductivities at valley K’. Interestingly, we find that the
photo-induced σyx at the two valleys carry the same sign,
in contrast to the unpumped case where different valley
contributions to the dark Hall conductivity have opposite
signs. The underlying reason can be seen as follows.

In Eq. (37) for the Hall conductivity, the contributions

from interband responses S̃
(1)
k,β , S̃

(1)
k,γ are typically small

compared to the contribution due to population inver-

sion S̃
(1)
k,α, as shown in Appendix C. Moreover, these in-

terband response terms are dominated by their K valley
contributions, which are larger than the corresponding
K’ contributions by two orders of magnitude. Therefore,
the valley dependence of σyx is principally due to the

intraband response term from S̃
(1)
k,α. Figs. 6(a)-(b) show

an intensity plot of the first odd harmonic component

of S̃
(1)
k,α that contributes to the Hall conductivity through

Eq. 37. One can see that S̃
(1)
k,α at valleys K and K’ [panels

(a) and (b)] share the same sign as indicated by the same
color at every k-point, and thus contribute to the photo-
induced Hall current with the same sign. In the case of
the longitudinal conductivity in Eq. (36), we find that the
intraband contribution dominates over the contributions
from interband responses so σxx is largely contributed

by the cosφ harmonic component of S̃
(1)
k,α. As shown in

Fig. 6(c)-(d), the first even harmonic also shares the same
sign between the two valleys but is generally much larger
than the first odd harmonic.

The origin of the first odd harmonic in S̃
(1)
k,α arises from

terms with a (E × k)z dependence in the driving term
of the kinetic equation Eq.(25) [which results in terms
∝ Sk1,2Mk,−/k in Eqs. (39)-(40)]. These terms originate
from interband coherences Sk,1 and Sk,2 in the photon-
dressed bands [Eqs.(23)-(24)] and vanish when the pump
field goes to zero, therefore they are purely induced by the
dressing photon field. Thus, we can distinguish two types
of interband coherence effects: that primarily induced by
the d.c. bias and that primarily induced by the pump
field. When there is no irradiation, the dark Hall conduc-
tivity is only due to the interband coherence originated

from the off-diagonal elements of S̃
(1)
k , the interband re-

sponse to the d.c. bias. Under irradiation however, the
photon-dressed conduction and valence bands are coher-
ent mixtures of the equilibrium conduction and valence
bands hybridized by the one-photon excitation process.
This photon-induced interband coherence therefore also
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(a) (b)

(c) (d)

K K’

FIG. 6. (Color online). First harmonic components of S̃
(1)
k,α/E

at E0 = 100 MV/m, ω = 1.74 eV and helicity µ = 1. The sinφ
component is shown in (a) for valley K and (b) for valley K’,
while the the cosφ component is shown in (c) for valley K and
(d) for valley K’. Relaxation and dephasing rates are taken as
Γ = Γ⊥ = 7 meV.

enters into the intraband response S̃
(1)
k under a d.c. bias,

and plays a more dominant role than the interband re-

sponses S̃
(1)
k,β , S̃

(1)
k,γ .

Returning to Fig. 5, panels (c) and (f) show the total
conductivities obtained from summing the two valleys’
contributions. The magnitude of σxx is about three or-
ders of magnitude larger than that of σyx. If the circular
polarization state is changed from µ = 1 to µ = −1, our
numerical results show that both the magnitude and sign
of the longitudinal conductivity remain unchanged, while
the valley-specific contributions of the Hall conductivity
are changed according to στ=∓1,µ=−1

yx = −στ=±1,µ=1
yx , re-

sulting in an overall sign change of the total Hall conduc-
tivity σyx as expected on grounds of time-reversal.

To summarize, we find that both the photo-induced
anomalous Hall and longitudinal conductivities are
chiefly due to the intraband response of photon-dressed
electrons arising from their asymmetric momentum-space
distribution functions, which can be attributed to inter-
band coherences directly induced by the pump field. This
is accompanied by generally smaller contributions due to
interband coherence effects induced by the d.c. bias. The
latter, which correspond to the off-diagonal elements of
the density matrix in the band representation, are the ori-
gin of geometric effects and give rise to Berry curvatures

[52–54]. Hence our findings imply that the intrinsic geo-
metric response to the d.c. field only plays a secondary
role in photo-induced anomalous Hall effect, in contrast
to the case of d.c. valley Hall effect [4, 6]. Our findings
here are consistent with Ref. [18] that have reached a
similar conclusion in photoexcited graphene.

In this work we have provided a non-interacting theory
for the photo-induced anomalous Hall effect, neglecting
the effects of excitons and trions. This is justified for the
reason that excitons under a d.c. bias are rapidly dis-
sociated into free electrons and holes [55, 56] that con-
tribute to steady-state transport. Trion effects, on the
other hand, do not contribute in undoped samples we
are considering where the equilibrium Fermi level lies
deep within the band gap. Excitonic effects, however,
could contribute in a more subtle way. In systems whose
low-energy Hamiltonian breaks Galilean invariance, ex-
citonic effects couple the intraband and interband dy-
namics resulting in interaction-induced correction in dy-
namic transport properties such as the Drude weight
[57, 58]. This effect is strongest in gapless systems such
as graphene and is generally suppressed with increasing
band gap [59]. Although TMDs have a large band gap,
their electron-electron interaction effect is also stronger
than in graphene or gapped bilayer graphene, and fur-
ther study could shed light on whether the competition
between these two effects would lead to considerable in-
teraction correction to the anomalous Hall conductivity.
In this paper we have considered only the intrinsic band
structure contribution to the photo-induced anomalous
Hall effect. A further extension of our theory could in-
clude the extrinsic effect due to spin-orbit scattering with
impurities [50], which will be a subject of future inves-
tigation. Finally, we emphasize that while we are mo-
tivated by TMDs in this work, the theoretical method
we developed for the massive Dirac model and its mass-
less limit can be applied more generally to other mate-
rials with gapped or gapless Dirac quasiparticles [60–62]
driven by a strong pump field.

VII. CONCLUSION

To close, we have presented a theory for the photo-
induced valley Hall transport for undoped 2D transition-
metal dichalcogenides under a strong optical pump field.
Our theory is developed using the density matrix formal-
ism that enables treatment of the photon-dressed bands
and carrier kinetics on an equal footing. The conceptual
simplicity of our method allows to obtain useful theoret-
ical insights on the population distribution of the photon
dressed bands. Under circularly polarized pump field,
we find considerable differences in the photon-dressed
bands and the non-equilibrium carrier distributions at
the two valleys due to the valley-dependent optical se-
lection rule. In each valley, electrons are predominantly
excited to photon-dressed states around the dynamical
gap. Both the valley polarization and the photo-induced
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anomalous Hall conductivity are found to increase with
the pump field and display notable signatures at the spin-
resolved interband (i.e. ‘A’ and ‘B’) transition energies.
Despite this similarity, we show that valley polarization
plays a less important role in causing photo-induced Hall
effect than was commonly assumed, and the Hall effect is
mainly driven by an asymmetric momentum-space distri-
bution of photon-dressed electrons in the transverse di-
rection. The theory and findings presented in this work
highlight the important role of photon-dressed bands
in understanding photo-induced transport, and demon-
strate the viability of optical control of spins and valleys

through the photon dressing effects of electronic bands.
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VIII. APPENDIX

A. Driving term D and single-particle current operators jx and jy

In this appendix we provide explicit analytic expressions for the quantities too lengthy to be included in the main
text. By decomposing the driving term in the kinetic equation as in Eq. (25) into the identity and transformed Pauli
matrices, we have

Dk,α =
1

2

{
cosφ

[
∂Sk0

∂k
+ µτ

∂θk
∂k

(Sk2 cosφ− Sk1 sinφ)

]
+

1

k
sinφ sin θ(Sk1 cosφ+ Sk2 sinφ)

}
, (38)

Dk,β =
1

2

{
cosφ

(
∂Sk1

∂k
cosφ+

∂Sk2

∂k
sinφ

)
− 1

k
sinφ [sin θSk0 − µτ(Sk1 sinφ− Sk2 cosφ)Mk,−]

}
, (39)

Dk,γ =
1

2

{
cosφ

[
µ

(
∂Sk2

∂k
cosφ− ∂Sk1

∂k
sinφ

)
− Sk0τ

∂θk
∂k

]
+

1

k
τ sinφ (Sk1 cosφ+ Sk2 sinφ)Mk,−

}
. (40)

The single-particle current operator is calculated in the stationary frame from the Hamiltonian in Eq. (29) obtained
within the RWA,

jx,α = −e
[
∂αk
∂k

cosφ+
Λ

8
(Mk,+)2 1

k
τ sin θ sinωt+

Λ

8

1

k
τ sin3 θ(− sinωt cos 2φ+ µ sin 2φ cosωt)

]
, (41)

jx,β = −e
[
−αk sin θ

1

k
sinφ+

Λ

8

1

k
sin2 θMk,− cosωt− Λ

8

1

k
sin2 θMk,+(cosωt cos 2φ+ µ sin 2φ sinωt)

]
, (42)

jx,γ = −e
[
−ταk sin θ cos θ

1

k
cosφ+

Λ

8

1

k
sin2 θMk,− sinωt+

Λ

8

1

k
sin2 θMk,+(µ cosωt sin 2φ− cos 2φ sinωt)

]
. (43)

jy,α = −e
[
∂αk
∂k

sinφ− Λ

8
(Mk,+)2 1

k
µτ sin θ cosωt− Λ

8

1

k
τ sin3 θ(sinωt sin 2φ+ µ cos 2φ cosωt)

]
, (44)

jy,β = −e
[
αk sin θ

1

k
cosφ+

Λ

8

1

k
µ sin2 θMk,− sinωt+

Λ

8

1

k
sin2 θMk,+(− cosωt sin 2φ+ µ cos 2φ sinωt)

]
, (45)

jy,γ = −e
[
−ταk sin θ cos θ

1

k
sinφ− Λ

8
µ

1

k
sin2 θMk,− cosωt− Λ

8

1

k
sin2 θMk,+(µ cosωt cos 2φ+ sin 2φ sinωt)

]
.(46)

B. First-order density matrix

The solutions obtained by solving equation (26) are presented as follows. First, in the current expressions Eqs. (36)-

(37), we observe the following φ-dependence: S̃
(1)
k,α is multiplied by a cosφ or sinφ, while S̃

(1)
k,β and S̃

(1)
k,γ are multipled by

1, cos 2φ or sin 2φ. Therefore, we only need to keep terms dependent on cosφ, sinφ in S̃
(1)
k,α and terms on 1, cos 2φ, sin 2φ

in S̃
(1)
k,β and S̃

(1)
k,γ ; other terms will vanish upon integration over φ. Hence we show only the relevant terms that will

give non-vanishing contribution to the time-averaged longitudinal and Hall currents:
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S̃
(1)
k,α =

1

8k

eE

D

{
4µτΛ sin2 θkIm

{
STk B

L
k

}
sinφ+

[
4kΛMk,+Re

{
∂STk
∂k

BLk

}
+ 8k

∂Sk,0
∂k
|BLk |2

]
cosφ

}
· · · , (47)

S̃
(1)
k,β =

1

8k

eE

D

{[
4τΓMk,−Im

{
STk B

L
k

}
+ 4µkΓIm

{
∂STk
∂k

BLk

}
+ 2k(2αk − ω)Mk,+Λ

∂Sk,0
∂k

+ kM2
k,+Λ2 ∂Sk,1

∂k

]
+
[
− 4τΓMk,−Re

{
STk B

L
k

}
+ 4µΓkRe

{
∂STk
∂k

BLk

}
− 2µkMk,+Γ⊥Λ

∂Sk,0
∂k

− µτ sin2 θkMk,+Λ2Sk,2

]
sin 2φ

+
[
− 4τΓMk,−Im

{
STk B

L
k

}
+ 4µkΓIm

{
∂STk
∂k

BLk

}
+ 2k(2αk − ω)Mk,+Λ

∂Sk,0
∂k

+ kM2
k,+Λ2 ∂Sk,1

∂k

]
cos 2φ

}
· · · ,

(48)

S̃
(1)
k,γ =

1

8k

eE

D

{[
4µτΓMk,−Re

{
STk B

L
k

}
+ 4kΓIm

{
∂STk
∂k

BLk

}
− 2kMk,+Γ⊥Λ

∂Sk,0
∂k

+ τ sin2 θkMk,+Λ2Sk,2

]
+
[
− 4µτΓMk,−Re

{
STk B

L
k

}
+ 4ΓkRe

{
∂STk
∂k

BLk

}
− 2kMk,+Γ⊥Λ

∂Sk,0
∂k

− τ sin2 θkMk,+Λ2Sk,2

]
cos 2φ

+
[
4µτΓMk,−Im

{
STk B

L
k

}
− 4kΓIm

{
∂STk
∂k

BLk

}
− 2µk(2αk − ω)Mk,+Λ

∂Sk,0
∂k

− µkM2
k,+Λ2 ∂Sk,1

∂k

]
sin 2φ

}
· · · ,

(49)

where Sk,0, Sk,1, Sk,2 are given in Eqs. (24), Mk,± is defined under Eq. (37), and

STk = Sk,1 − iSk,2 = −Λ

2
Mk,+

(2αk − ω) + iµΓ⊥

(2αk − ω)2 + Γ2
⊥ + (ΛMk,+/2)

2
(Γ⊥/Γ)

, (50)

BLk = (2αk − ω) + iµΓ⊥, (51)

and D is the determinant of the 3× 3 matrix in Eq. (26),

D = Γ

[
Γ2
⊥ + (2αk − ω)2 +

Γ⊥
Γ

(
Λ

2

)2

M2
k,+

]
. (52)

C. S̃
(1)
k,α, S̃

(1)
k,β , S̃

(1)
k,γ contributions in the longitudinal and Hall conductivities

In the following plots, we display the contributions due to S̃
(1)
k,α, S̃

(1)
k,β , S̃

(1)
k,γ in the longitudinal [Eq. (36)] and Hall

conductivities [Eq. (37)], which supplement our discussions on our results in Fig. 5.
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FIG. 7. (Color online). Valley-specific conductivities (a) σxx and (b) σyx in units of G0 = e2/~ as a function of the field
strength E0 for a pump field with frequency ω = 1.62 eV and helicity µ = 1. For each of σxx and σyx, the the contribution

from S̃
(1)
k,α is shown in the first row, S̃

(1)
k,β in the second row and S̃

(1)
k,γ in the third row, whereas the two columns show the cases

for valleys K and K’. Relaxation and dephasing rates are taken as Γ = Γ⊥ = 1 meV.
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