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We theoretically investigate the properties of holes in a SixGe1−x/Ge/ SixGe1−x quantum well in a
perpendicular magnetic field that make them advantageous as qubits, including a large (>100 meV)
intrinsic splitting between the light and heavy hole bands, a very light (∼0.05m0) in-plane effective
mass, consistent with higher mobilities and tunnel rates, and larger dot sizes that could ameliorate
constraints on device fabrication. Compared to electrons in quantum dots, hole qubits do not
suffer from the presence of nearby quantum levels (e.g., valley states) that can compete with spins
as qubits. The strong spin-orbit coupling in Ge quantum wells may be harnessed to implement
electric-dipole spin resonance, leading to gate times of several nanoseconds for single-qubit rotations.
The microscopic mechanism of this spin-orbit coupling is discussed, along with its implications for
quantum gates based on electric-dipole spin resonance, stressing the importance of coupling terms
that arise from the underlying cubic crystal field. Our results provide a theoretical foundation for
recent experimental advances in Ge hole-spin qubits.

I. INTRODUCTION10

Hole spin qubits in strained germanium possess favor-11

able properties for quantum computing, including (1) the12

absence of valley degeneracy, which would otherwise com-13

pete with the spin degree of freedom for qubits formed in14

the conduction band of Si or Ge [1], (2) the high natural15

abundance of spin-0 nuclear isotopes in Ge, which may16

be further purified, (3) the formation of hole states in17

p-type atomic orbitals whose wave function nodes occur18

at nuclear sites, suppressing unwanted hyperfine inter-19

actions [2, 3], and (4) the very light in-plane effective20

mass [4–7], allowing for larger dots and relaxing con-21

straints on device fabrication. The light mass also im-22

proves carrier mobilities, which can exceed 106 cm2/V s23

for 2D Ge hole gases [4]. Leveraging these strengths,24

rapid progress has been made in implementing high-25

fidelity one and two-qubit gate operations [5, 8–17].26

Several of the most important advantages for qubits,27

such as the lifting of level degeneracy at the valence-28

band edge, the light effective mass, and access to Rashba29

spin-orbit coupling (SOC), which enables fast gate oper-30

ations, are not available in the bulk. Rather, they emerge31

in SiGe/Ge/SiGe quantum wells due to confinement or32

strain.33

While the main qualitative features of the electronic34

band structure of uniaxially strained germanium can be35

understood from simple k · p theory, the approxima-36

tion becomes less accurate with increasing strain and37

nanoscale confinement. A more quantitatively accurate38

approach requires treating the strain non-perturbatively,39

for example, by using ab initio methods. Both ap-40

proaches have advantages and are complementary. For41

example, k · p theory allows us to exploit crystalline42

symmetries to simplify the calculations of the quan-43

tum dot wave functions, and it provides an accessible44

scheme for studying non-equilibrium dynamical evolution45

during qubit gate operations, such as operations based46

on electric-dipole spin resonance (EDSR). Moreover, in47

many cases, the results of ab initio methods can be incor-48

porated directly into k·p theory to obtain more reliable49

results.50

In this work, we provide a theoretical foundation for51

the emergent physics of Ge quantum wells, and explana-52

tions for recent experimental observations, through de-53

tailed ab initio band-structure calculations. We gain54

further insight into the origins of qubit-friendly mate-55

rials properties by performing k · p calculations. We56

place special emphasis on understanding the Rashba cou-57

pling, and the matrix elements connecting different or-58

bital states. Taken together, these ingredients enable59

electrically driven spin flips via EDSR, with fast, single-60

qubit gate frequencies of order 0.2 GHz. In contrast with61

other recent work [15], we propose here to exploit the62

large out-of-plane value of the Landé g-factor, so that63

relatively small external magnetic fields are needed for64

gate operation, making the qubit more compatible with65

superconducting gate structures, such as microwave res-66

onators. A large g-factor also helps to define the qubit67

with respect to thermal broadening.68

The paper is organized as follows. In Sec. II, we de-69

scribe the model system, including the heterostructure70

and top gates (Fig. 1). In Sec. III, we provide techni-71

cal details of the theoretical methods used in this work.72

We summarize the ab initio simulations of the quantum-73

well portion of the device and our k·p Hamiltonian. We74

describe our theoretical approach for modeling EDSR in75

two steps. We first outline a model for hole confinement76

in the vertical direction (perpendicular to the plane of the77

quantum well) and the lateral confinement of a quantum78
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FIG. 1. Cartoon depiction of a typical heterostructure and
gate stack of a strained-Ge quantum well used to form hole-
spin qubits in quantum dots. Here, a 20 nm strained-Ge quan-
tum well is grown epitaxially on a strain-relaxed Si0.25Ge0.75
alloy, as consistent with typical experiments [16]. For this ar-
rangement, the strain in the Ge layer is ε ≈ −1%, as defined
in Eq. (1). In addition to metal depletion gates (blue) and in-
terspersed oxide layers (yellow), we assume a global top gate
(transparent gray) that can accumulate a 2D hole gas in the
quantum well in the absence of doping. Here, z is defined as
the growth direction.

dot, and use this to obtain the effective Rashba spin-79

orbit Hamiltonian for our geometry. We then use this to80

determine the EDSR Rabi frequency when applying an81

in-plane ac electric field. In Sec. IV, we describe the main82

results of our calculations, including the band-structure83

details obtained by ab initio methods (Fig. 2), the cor-84

responding in-plane and out-of-plane effective masses as85

a function of Ge concentration and strain (Fig. 3), and86

the energy splittings between the valence bands (Fig. 4).87

We then apply k ·p methods to help clarify the origins88

of energy-level splitting, and the lifting of degeneracy,89

by artificially separating the effects of strain and SOC90

(Fig. 5). Finally, we use our EDSR analysis to estimate91

the expected Rabi frequency for a realistic range of de-92

vice parameters (Figs. 6 and 7). In Sec. V, we discuss93

our results and conclude by reviewing the predominant94

decoherence mechanisms for Ge hole qubits.95

96

II. DEVICE STRUCTURE97

We consider a typical, electrically gated double-dot de-98

vice such as the one schematically depicted in Fig. 1. The99

essential features include a SiGe/Ge/SiGe heterostruc-100

ture, an optional capping layer, and a set of patterned,101

nanometer-scale metal gates that are isolated from the102

heterostructure by oxide layer(s). When sandwiched be-103

tween strain-relaxed, Ge-rich SiGe alloys, the compres-104

sively strained Ge forms a type-I quantum well that can105

trap either electrons or holes [18], although we focus ex-106

clusively on holes here. Note that the details of the gate107

and oxide layers are unimportant for the following dis-108

cussion.109

For the heterostructure, we specifically consider110

FIG. 2. Electronic band structures for (a) relaxed vs. (b)
uniaxially-strained Ge, obtained using DFT. To the left of
each plot we show the corresponding real and reciprocal space
crystal structures (lower and upper diagrams, respectively),
with lattice constants (a and c) and symmetry points (Γ, X,
Z, and L), as indicated. [Note that the tetragonal deforma-
tion is exaggerated in (c), for clarity.] (c),(d) Blown-up band
structures corresponding to (a) and (b). Here, we focus on
the [100] (x) and [001] (z) axes because of their relevance for
quantum dot formation, and we note that [100] and [010] are
equivalent. In (a) and (c), cubic symmetry also makes the X
and Z points equivalent and enforces a degeneracy between
the top two hole bands at the Γ point. The lowest or “split-
off” band is completely detached from the others. Away from
the singular Γ point, the hole bands are all doubly-degenerate.
In (b) and (d), the x-z degeneracy is lifted and only the x-y
degeneracy remains. The resulting band structure is highly
anisotropic.

an accumulation-mode gating scheme [19–21] with no111

dopants. The bottom SiGe barrier is grown with112

the same composition as the underlying SiGe virtual113

substrate, which is assumed to be strain-relaxed and114

dislocation-free. Next, a pure Ge quantum well is grown,115

epitaxially, atop the SiGe barriers, followed by another116

SiGe barrier layer, with the same composition as the bot-117

tom barrier. The resulting quantum well is engineered118

to be compressively strained, with sharp Ge/SiGe inter-119

faces on both sides [4, 5, 22]. The Si concentration in the120

SiGe barriers should be high enough to form a quantum121

well. For example, a strain-relaxed Si0.25Ge0.75 barrier122

yields a valence-band offset of ∼170 meV [18], which is123

ample for trapping holes. The width of the well should124

be less than the critical thickness for forming additional125
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dislocations; however, this is not typically a problem for126

Ge-rich alloys. For example, the critical Ge thickness of127

a Si0.25Ge0.75 barrier is ∼30 nm [23]. Finally, we note128

that Ge forms unstable oxides [24] (similar problems also129

occur for SiGe alloys [25]); it may therefore be beneficial130

to include a silicon capping layer, with a carefully chosen131

thickness [26].132

III. METHODS133

We investigate the electronic band structure of a134

strained Ge quantum well by considering two comple-135

mentary theoretical approaches. We first compute the136

bulk properties of strained Ge using density functional137

theory (DFT). From these band structure calculations,138

we extract the relevant parameters for the k·p approxi-139

mation, which is also used to construct a Luttinger-Kohn-140

Bur-Pikus Hamiltonian (LKBP). The LKBP Hamilto-141

nian incorporates the symmetries of the Bloch states and142

is used to characterize the spin-orbit structure of the hole143

bands. We also use it to characterize EDSR, which en-144

ables rotations of the spin qubits.145

A. Density Functional Theory146

Realistic, quantitative predictions for the band struc-147

ture of strained Ge are key for assessing the viability of148

hole-spin qubits. In this work, we compute the band149

structure using self-consistent, ab initio density func-150

tional theory (DFT), including spin-orbit interactions.151

The calculations assume periodic boundary conditions,152

and therefore provide information about the bulk prop-153

erties of strained Ge. We may then take into account ef-154

fects associated with the quantum well and electrostatic155

confinement of the dot using simpler, semi-empirical ap-156

proaches, such as effective mass theory.157

The calculations are performed using the full-potential158

linearized augmented plane wave method (FP-LAPW),159

as implemented in the Wien2k package [27]. Using the160

augmented plane wave plus local orbital (APW+lo) basis161

set [28–30], the wave functions are expanded in spherical162

harmonics inside non-overlapping atomic spheres, with163

“muffin-tin” radii RMT, and in plane waves for the rest164

of the unit cell (the interstitial region). In the present165

calculations we adopt RMT=0.95 Å for Ge, and use 405166

k points in the irreducible wedge of the Brillouin zone.167

For the spherical-harmonic expansion, the maximum or-168

bital angular momentum is taken to be lmax=10, while169

the plane-wave expansion in the interstitial region is ex-170

tended to kmax=9.0/RMT=9.47 Å−1, and the charge den-171

sity is Fourier expanded up to Gmax=12 Ry. (These sim-172

ulation parameters were all checked and found to yield173

numerical convergence.) Electron-electron interactions174

are described using the modified Becke-Johnson exchange175

potential + local density approximation (LDA) correla-176

tions [31, 32], which is known to yield accurate calcula-177

tions of band gaps in semiconductors.178

The primitive Bravais lattice used in our simulations
is body-centered tetragonal with a two-atom basis con-
sistent with the diamond structure. Details of the real
and reciprocal lattice structure are depicted in the insets
of Figs. 2(a) and 2(b). For unstrained Ge, the tetrago-
nal lattice parameters are given by a=b=4.0008Å in the
plane of the quantum well, and c=

√
2a=5.6580Å in the

growth direction. For a SixGe1−x alloy with concentra-
tion x, the lattice constant a(x) is modified, and if the
quantum well is grown pseudomorphically, the same lat-
tice constant is also imposed upon the strained Ge. We
define the compressive strain as

ε(x) = [a(x)− a(0)]/a(0) < 0 . (1)

For the SiGe alloy, Vegard’s law then gives ε(x) =179

−0.04x, while Poisson’s ratio for germanium gives ν =180

0.27 = −[c(x)− c(0)]/[a(x)−a(0)] [33]. Combining these181

formulas yields an analytical expression for c(x).182

The main results of our DFT calculations are reported183

in Sec. IV A. To simplify the calculations, we do not184

explicitly consider a quantum-well geometry. Instead,185

we adopt a range of strain parameters consistent with a186

strained Ge quantum well sandwiched between strain-187

relaxed SixGe1−x for the range x ∈ [0, 0.25]. From188

the previous discussion, this corresponds to compressive189

strains in the range ε ∈ [−1, 0] percent.190

B. k·p Theory for Strained Germanium191

Since quantum dots are large in comparison to the lat-192

tice parameter and are typically operated at low densi-193

ties (ideally at the single-hole level), their localized wave194

functions can be expressed as superpositions of Bloch195

states centered near the Γ point, k = 0. In this regime,196

it is common, and beneficial, to complement the DFT197

analysis with k ·p theory, a semi-empirical approxima-198

tion that describes the band structure near the high-199

symmetry Γ point. This approach provides physical in-200

tuition about the symmetries of the hole states and al-201

lows us to perform analytic calculations of the hole wave202

functions and dynamics. Of particular interest for our203

work, it gives insights into energy-splitting mechanisms204

associated with SOC and strain for the upper valence205

bands. On the other hand, k ·p theory requires inputs206

from either first principles DFT calculations or experi-207

mental measurements. We now describe the details of208

our k·p band-structure calculations. The main results of209

these calculations are presented in Sec. IV B.210

A 6×6 k ·p Hamiltonian describing the valence band211

states of a bulk, diamond-structure semiconductor was212

derived in Ref. [34] by expanding a periodic electronic213

Hamiltonian in powers of the wave-vector components,214

k = (kx, ky, kz), near the Γ point. The allowable terms215

in this expansion are constrained by the symmetries of216

the crystal, which greatly simplifies the resulting Hamil-217

tonian.218
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Similar symmetry arguments can also be used to de-219

termine the dependence of the Hamiltonian on the strain220

tensor elements, {εij}. The framework we use for these221

calculations was developed by Bir and Pikus [35], who222

made use of the fact that the deformation potentials de-223

pend (approximately) linearly on the strain [36]. We224

refer to the full model as the Luttinger-Kohn-Bir-Pikus225

(LKBP) Hamiltonian, which can be expressed in the no-226

tation of Ref. [37], with the phase convention of Ref. [38],227

in the basis of total angular momentum eigenstates,228

|j,mj〉 ∈ {| 32 ,
3
2 〉, |

3
2 ,

1
2 〉, |

3
2 ,−

1
2 〉, |

3
2 ,−

3
2 〉, |

1
2 ,

1
2 〉, |

1
2 ,−

1
2 〉},229

as230

HLKBP =



P +Q −S R 0 −S/
√

2
√

2R

−S∗ P −Q 0 R −
√

2Q
√

3/2S

R∗ 0 P −Q S
√

3/2S∗ √
2Q

0 R∗ S∗ P +Q −
√

2R∗ −S∗/
√

2

−S∗/
√

2 −
√

2Q∗
√

3/2S −
√

2R P + ∆ 0√
2R∗

√
3/2S∗ √

2Q∗ −S/
√

2 0 P + ∆

 , (2)

where

P = Pk + Pε, Q = Qk +Qε,

R = Rk +Rε, S = Sk + Sε.
(3)

Here, the k subscripts refer to Luttinger-Kohn Hamiltonian matrix elements, which reflect the bulk diamond structure
and its symmetries, defined as [39]

Pk =
~2

2m0
γ1(k2

x + k2
y + k2

z), Qk = − ~2

2m0
γ2(2k2

z − k2
x − k2

y),

Rk =
√

3
~2

2m0
[−γ2(k2

x − k2
y) + 2iγ3kxky], Sk =

√
3
~2

m0
γ3(kx − iky)kz.

(4)

When strain is introduced into the Luttinger-Kohn model, the unperturbed valence bands strongly hybridize. The ε
subscripts in Eq. (3) refer to Bir-Pikus strain-matrix elements, defined as [35]

Pε = −av(εxx + εyy + εzz), Qε = −bv
2

(εxx + εyy − 2εzz),

Rε =

√
3

2
bv(εxx − εyy)− idεxy, Sε = −dv(εxz − iεyz).

(5)

These strain elements also reflect the underlying lattice231

symmetries, as seen in the form of the strain-tensor el-232

ements, εij , which mirror the kikj terms appearing in233

the Luttinger-Kohn parameters, Eq. (4). The Pikus-Bir234

expressions in Eq. (5), are generic, and we note that235

the parameter εxx(=εyy) is equivalent to ε(x), defined236

in Eq. (1). In this work, we focus on the special case237

of uniaxial strain, for which εzz=−2(C12/C11)εxx and238

εxy=εyz=εzx=0, leading to Rε=Sε=0.239

We note that results similar to those reported here240

can be obtained from alternative starting points, such241

as Kane’s model, which includes the lowest conduction242

band, in addition to the upper valence bands [38]. How-243

ever, the LKBP model is commonly adopted when the244

conduction band is not of direct interest. The result-245

ing band curvatures, non-parabolicities, and energy split-246

tings from the LKBP model closely mirror those obtained247

from Kane’s model.248

The key ingredients for describing physics of quantum249

dots are all contained in Eq. (2). For example, ∆ is the250

energy splitting between the topmost valence bands and251

the split-off band at k = 0, in the absence of strain. The252

strain is captured by the parameters {εij} in the Bir-253

Pikus expressions, and the quantum confinement due to254

gate-induced electric fields, as well as the quantum-well255

band offsets, is captured by the wave vectors, {ki}.256

The essential physical parameters in Eqs. (2)-(5) in-257

clude the bare electron mass, m0, the Luttinger pa-258

rameters [39], γ1=13.38, γ2=4.24, and γ3=5.69, the259

deformation potentials [40], av=2.0 eV, bv=−2.16 eV,260

and dv=−6.06 eV, and the elastic stiffness constants261

for the strain-stress tensor [33], C11=129.2 GPa and262

C12=47.9 GP. In this work, we adopt the experimentally263

measured energy splitting of the split-off band, for bulk,264

relaxed Ge [18], ∆=0.296 eV.265

C. Calculating the Rashba Spin-Orbit Coupling266

We now consider the practical consequences of the267
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strained band structure for qubit implementations, which268

will be used in the following section to estimate EDSR269

driving speeds. We envision a single-hole spin qubit in270

an electrostatically defined quantum dot, formed in a Ge271

quantum well. Due to the inversion asymmetry inherent272

in the approximately triangular well we consider, Rashba273

SOC is expected to be exceptionally strong. We note274

that the Rashba effect is purely two-dimensional (2D),275

and although it depends on the energy splitting of the276

split-off band, ∆, its physical origins are distinct. Since277

Ge has near-inversion symmetry, the Dresselhaus inter-278

action is known to be absent in the bulk. In quantum279

wells, Dresselhaus-like terms may arise due to the pres-280

ence of interfaces [41]. However, these depend on the281

coupling to the conduction and split-off bands and we282

expect them to be quite weak in a quantum well, because283

the hole wave functions barely enter into the barrier re-284

gions [42]. Moreover, when Rashba terms are present in285

hole systems they tend to overwhelm all other spin-orbit286

interactions [42]. With these observations in mind, we287

focus only on the Rashba SOC for the remainder of this288

work, and discuss the ways it can be used to implement289

electric-dipole spin resonance for qubit rotations and spin290

dipole-dipole entanglement.291

There are two prerequisites for observing Rashba SOC
in a quantum well: a broken structural symmetry and an
intrinsic SOC. The broken symmetry is provided here by
an asymmetric confinement potential of the form

Vz(z) =

{
eFzz (|z| < d/2)
∞ (otherwise)

, (6)

where Fz is the average electric field across the quantum
well, and the well width, d=20 nm, is held fixed for all
our calculations. (Note that d is not an important pa-
rameter in this calculation, since the electric field draws
the hole wave function to the top of the quantum well, so
that it does not interact strongly with the bottom of the
well.) The total Hamiltonian for the vertical confinement
of holes is then given by

Hz = HLKPB(k2, k̂z) + Vz(z), (7)

where k̂z = −i ∂∂z and k2 = k2
x + k2

y.292

The strength of the Rashba SOC depends on the de-
tails of the wave function confinement and on the local
electrostatics. It is mainly determined by the hybridiza-
tion of the top two valence bands, since the split-off band
is far away in energy. However, the split-off band indi-
rectly enters the calculation because it affects other pa-
rameters, such as the effective masses and the intrinsic
splitting of the top bands. To estimate the confinement
along the ẑ direction, we therefore consider the full three-
band model (not counting spin), as described by HLKPB,
which includes both strain and SOC effects. We intro-
duce variational, effective-mass wave functions for each

of the bands, given by [43]:

ϕi(z) =


sin[πd (z+ d

2 )] exp[−bi( zd+ 1
2 )]

π

√
d

exp(−bi) sinh(bi)

2π2bi+2b3
i

(|z| < d/2)

0 (otherwise)

. (8)

Here, i is the band index and {bi} are the dimension-
less variational parameters. Physically, the ratios d/bi
represent the effective widths of the wave functions. A
separate variational parameter is required for each of the
bands because of their distinct effective masses. We de-
termine their values by minimizing the eigenvalues of
Hz in the limit of k = 0, in which case the Hamilto-
nian is already diagonal and the bands decouple. The
effective Rashba coupling within the topmost band is de-
termined by applying a Schrieffer-Wolff transformation
to Eq. (7), using the states shown in Eq. (8), to elim-
inate the coupling to the other two bands [42]. In this
way, we obtain the effective Hamiltonian H0 +HR, where
H0 = ~2(k2

x + k2
y)/2mx is the kinetic energy in the effec-

tive mass approximation. For electrons, the Rashba in-
teraction couples states with ∆mj = ±1. In contrast,
the topmost valence band is doubly degenerate, with
|mj | = 3/2. Transitions within this band therefore re-
quire that ∆mj = ±3, consistent with Hamiltonian op-
erators that are predominantly cubic in k [42, 44], and
may be expressed as

HR = iαR2(k3
+σ− − k3

−σ+)

+ iαR3 (k+k−k+σ+ − k−k+k−σ−), (9)

where σ±=σx ± iσy are Pauli spin matrices and k± =293

kx±iky. The coupling constants αR2 and αR3 are derived294

in Ref. [42]. Here, αR2 arises from the spherically sym-295

metric component of the Luttinger-Kohn Hamiltonian,296

while αR3 arises from the cubic-symmetric component.297

D. Calculating the EDSR Rabi Frequency298

An external magnetic field is used to define the quan-299

tization axis of the spin qubit. This field also generates300

rotations about the qubit’s ẑ axis. However, a univer-301

sal gate set also requires being able to perform rotations302

about the x̂ axis, using a technique such as spin reso-303

nance. To implement electric-dipole spin resonance, mi-304

crowave voltage signals are brought to the qubit through305

the top-gate electrodes used to confine the hole later-306

ally and form the quantum dot. This time-varying drive307

causes the hole to oscillate in the plane of the quantum308

well. SOC then provides a mechanism for converting the309

orbital motion into spin oscillations [45, 46]. When the310

drive frequency is resonant with the spin precession fre-311

quency, the desired x rotations occur. We now estimate312

the resulting gate speed.313

We assume the presence of Rashba SOC, as described
in the previous section. Contrary to other proposals that
we have seen, we assume the quantizing B-field is ori-
ented perpendicular to the plane of the quantum well,
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to take advantage of the large out-of-plane g-factor [44],
gz, which reduces the constraints on the field magnitude.
The qubit Hamiltonian for EDSR is then given by

Hq = H0(k→ −i∇− eA/~) +HR(k→ −i∇− eA/~)

+ Vd(x, y) + (gz/2)µBBzσz + eEacx cos(ωt)σx, (10)

where A = (Bz/2)(−y, x, 0) and gz ≈ 8 is the Landé g
factor for Ge, in the direction perpendicular to the quan-
tum well [16]. For a circular, parabolic dot, we assume
an electrostatically defined confinement potential of the
form

Vd(x, y) =
1

2
mxω

2
0(x2 + y2), (11)

where ~ω0 is the energy splitting between the orbital lev-
els when Bz = 0. If we now assume that Bz > 0, but set
Eac = 0, the eigenstates ofHq are defined as Fock-Darwin
orbitals [47, 48], for which the ground state (n = 0) is
given by

φ0(x, y) =
1

a0
√
π

exp
[
−(x2 + y2)/2a2

0

]
, (12)

and the first excited states (n = 1) are given by

φ±1(x, y) =
2

a2
0

√
π

(x± iy) exp
[
−(x2 + y2)/2a2

0

]
. (13)

For an out-of-plane magnetic field, we note that the dot314

is confined both electrostatically and magnetically, with315

an effective radius of a0 =
√
~/|eBz|/(1/4 + ω2

0/ω
2
c )1/4,316

where ωc = |eBz|/mx is the cyclotron frequency.317

For hole-spin qubits, the logical (spin) states are318

formed exclusively within the ground-state orbital, φ0.319

However, the EDSR spin-flip mechanism involves vir-320

tual transitions to φ±1 via a second-order process that321

combines ac driving and SOC. The driving term in322

Eq. (10), eEacx cos(ωt), is applied through one of the323

nearby top gates [49], generating an orbital transition324

with ∆n = ±1. Initial proposals for hole-based EDSR [2]325

therefore required Dresselhaus SOC, which can generate326

such ∆n = ±1 transitions. For group-IV materials, how-327

ever, the Dresselhaus mechanism is normally absent, as328

pointed out above. Moreover, the dominant αR2 term of329

the Rashba coupling, Eq. (9), is cubic in k, as consistent330

with ∆n = ±3, and therefore does not support EDSR.331

An important conclusion of the present work is that the332

αR3 term, which is not typically considered in such calcu-333

lations, provides the required ∆n = ±1 transitions that334

support EDSR. In what follows, we focus exclusively on335

this term.336

To calculate the EDSR Rabi frequency fR, we evalu-
ate the full Hamiltonian, Eq. (10), using the Fock-Darwin
basis states, and perform a Schrieffer-Wolff transforma-
tion to eliminate the coupling to the excited states. For
resonant driving, with ω =

√
ω2

0 + ω2
c/4, we obtain

hfR = − eEacαR3

2a20

[(
1

∆1
+ 1

∆2

)
−
(

1
∆3

+ 1
∆4

)]
− e

2EacαR3Bz
4~

[(
1

∆1
+ 1

∆2

)
+
(

1
∆3

+ 1
∆4

)]
,

(14)
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FIG. 3. Effective masses for the top three valence bands, in
units of the free-electron rest mass m0, obtained using DFT.
Here we consider a thin Ge well grown epitaxially on a relaxed
SiGe alloy. The resulting strain is uniaxial and compressive,
and can be as large as 1% along the growth axis. For a [001]
growth axis, the effective masses m∗

z and m∗
x are inequivalent.

While m∗
z is found to vary smoothly with substrate composi-

tion, m∗
x changes abruptly near x ≈ 0, indicating an inversion

of the band character: the top band becomes lighter than
the second band, as consistent with Fig. 2(d), due to band
hybridization. Such behavior can be explained by k ·p the-
ory [35]. Since the top two bands are no longer strictly light
or heavy, we refer to them here as “top” (or first) band and
“second” band.

where

∆1 ≡ −~ω − 1
2~ωc,

∆2 ≡ −~ω − 1
2~ωc − gzµBBz,

∆3 ≡ −~ω + 1
2~ωc + gzµBBz,

∆4 ≡ −~ω + 1
2~ωc. (15)

This result is explicitly proportional to EacαR3. More-
over, fR is found to be linear in Bz, as readily verified by
expanding Eq. (14) in powers of (small) Bz:

|fR| =
eEacαR3gzµBBzm

2
xa

2
0

2π~5
. (16)

We note in Eq. (16) that the Rabi frequency scales as337

a2
0. The explanation for this interesting behavior is that338

the EDSR strength is determined by the Rashba cou-339

pling between the ground and excited states of the dot.340

Since larger quantum dots have smaller confinement en-341

ergies, the excitation energies are also small, yielding342

faster EDSR. In Sec. IV D, below, we provide numeri-343

cal estimates for fR, based on results of our DFT and344

k·p calculations.345

IV. RESULTS346

We now describe the numerical results of our DFT and347

k ·p calculations. We also discuss the shifts in energy348

caused by confinement and provide numerical estimates349
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for Rabi frequencies that can be obtained from EDSR.350

The main products of the DFT and k·p calculations are351

the Ge band structures, as a function of strain. The cal-352

culations also allow us to characterize the different bands,353

with regards to effective mass, spin, and band hybridiza-354

tion. The results are summarized as follows. In the limit355

of zero strain (ε = 0), the topmost band is considered to356

be “heavy,” with a large transverse effective mass, mx.357

Away from k = 0, this heavy band is doubly degenerate,358

with total spin quantum numbers mj = ±3/2, which359

are well defined. For nonzero strain, the top two bands360

become increasingly hybridized, with nonparabolic band361

structures. Focusing mainly on the topmost band where362

the qubit is formed, mx abruptly jumps from being heavy363

to light. This is the mass experienced by large dots (with364

small k), due to weak lateral confinement. However small365

dots (with large k) may experience an effective mass that366

is heavy due to the band nonparabolicity. Similarly, for367

large dots, the mj quantum number may have values near368

±3/2. However, for all k2 = k2
x + k2

y > 0, the top two369

bands hybridize significantly, causing the mj quantum370

numbers to mix, such that mj is no longer a good quan-371

tum number. Similar considerations also apply to the372

second valence band, although it does not house qubits.373

For the reasons described above, we therefore adopt the374

labels “top” (or “first”), “second,” and “split-off” for the375

three valence bands. Since they do not house qubits, the376

second and split-off bands are considered to be “leakage”377

bands.378

A. DFT Estimates379

DFT results are plotted in the main panels of Figs. 2(a)380

and 2(b), where we compare Ge band structures for the381

cases of x = 0 (unstrained Ge) and x=0.25 (strained Ge).382

In the first case, the cubic symmetry ensures that the383

energy dispersion is identical for wavevectors in the plane384

of the quantum well (kx, ky) and the growth direction385

(kz). (Here, the subscript x refers to the [100] axis, rather386

than the alloy composition.) In the second case, the X387

and Z points are inequivalent, as apparent in the figure.388

Focusing on holes, Figs. 2(c) and 2(d) show blown-up389

views of the top of the valence band. Since the quantum390

dot wave functions are constructed mainly from Bloch391

states at the very top of the band, the essential physics392

is captured in the band curvature at the Γ point, which393

is proportional to the inverse effective mass. In the case394

of strain, we observe anisotropic behavior in the x (in-395

plane) and z (out-of-plane) directions. Figures 2(c) and396

2(d) also highlight the large energy splittings between the397

different bands under strain, which is key for defining the398

qubit states.399

Figure 3 provides a more detailed picture of the in-400

plane (m∗
x) and out-of-plane (m∗

z) effective masses, ob-401

tained for strains in the range ε ∈ [−1, 0] percent. The402

corresponding values of x in the SixGe1−x barrier alloy403

are also shown. We note that the in-plane mass of the404

top two bands changes abruptly near x=0. Remarkably,405

m∗
x becomes lightest for the top band, over the experi-406

mental regime of interest (x & 0), despite the usual label407

of “heavy-hole” band. As noted above, we therefore re-408

frain from referring to heavy or light holes in this work,409

adopting instead the terminology “first” (or “top”), and410

“second” bands. For m∗
z, the top band remains heaviest411

for all x considered here, and is a smooth function of the412

strain. These results are in reasonable agreement with413

several recent experiments [4–6], and they agree very well414

with Ref. [7], in which band nonparabolicity is explicitly415

accounted for.416

Figure 4 shows the corresponding results for the energy417

dispersion of the valence-band edges. In the limit x→ 0,418

the top two bands become degenerate, and the split-off419

band is lower in energy by an amount ∆ = 0.29 eV,420

which compares well with the experimentally measured421

value of 0.296 eV [18]. For x > 0, the band degener-422

acy is lifted by a significant amount, of order 100 meV423

for typical quantum-well heterostructures. In contrast424

with the effective mass, no abrupt change occurs for the425

valence-band edges near x=0.426

To summarize the present results, DFT predicts a sud-427

den change in the in-plane mass of the top band as the428

strain decreases from zero, with mx becoming very light.429

Moreover, the degeneracy of the top two bands is lifted,430

and the energy splitting between all the bands is en-431

hanced. These results are all consistent with recent ex-432

periments.433

B. k·p Analysis434

The k·p approach allows us to explore the mechanisms435

that cause the changes in the band structure and clarify436

their separate roles. In Fig. 5, we plot the edges of the437

top three valence bands, as a function of either strain438

or SOC. The symmetries of each band are indicated for439

the Γ point. By following the progression from a single440

sixfold-degenerate band (center panel) to three twofold-441
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FIG. 5. Energy levels calculated at the Γ point, using the k·p method, at zero magnetic field, which allows us to artificially
decouple the effects of SOC (represented by the split-off band gap ∆ of bulk Ge) and strain (ε). The five panels show results
when these two parameters are independently varied between zero and their final values, corresponding to a strained quantum
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symmetry groups and corresponding irreducible representations for the hole states are indicated in each case. The center panel
represents the case with no SOC and no strain, in which the px, py, and pz orbitals and both spin states are degenerate. Moving
to the right, the strain is increased without including SOC, yielding a fourfold degenerate band spanned by px and py, and a
twofold degenerate pz band. Including SOC, the p orbitals hybridize, creating states with different combinations of orbitals
(represented now as tori) and spins, resulting in three doublets. Moving from the center panel to the left, including SOC but
no strain yields a split-off, doubly-degenerate j=1/2 band and a fourfold degenerate j=3/2 band, as consistent with bulk,
relaxed Ge at the Γ point. We represent these states in a classical picture as having orbital angular momenta and spins either
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by the colors of the orbital (darker tones for lower mj) and by the inclination of the green vectors in relation to the vertical
direction. Including strain, the bands hybridize slightly such that j and mj are no longer a good quantum number. Here, the
fully strained spectrum is identical to the far right-hand side of the figure.

degenerate bands (outer panels), we infer that the split-442

ting of the top two bands requires both strain and SOC.443

The resulting top valence band is two-fold degenerate,444

in accordance with time-reversal symmetry, and can be445

split by an external magnetic field to define the qubit446

states, |0〉 and |1〉, and their quantization axis. The cal-447

culations also show that the hybridization of the topmost448

bands occurs at second order, via strain-induced coupling449

to the split-off band. Since this effect is weak, the total450

angular momentum in the top band, which defines the451

qubit, is still given by j ≈ 3/2 and mj ≈ ±3/2 to a rea-452

sonable approximation, as indicated in the figure. Spin453

flips with ∆ms = ±1 are allowed by EDSR, however, via454

the Rashba coupling mechanism described above.455

In the k·p calculations, we note that strain has been456

introduced perturbatively. Hence, although the energy457

splitting of the lowest valence band is accurate when ε =458

0, since it is taken as an input parameter, the calculated459

energies become increasingly inaccurate for higher strain460

values. For example, when ε = −1%, the more accurate461

DFT result of ∆=0.53 eV is >50% larger than the k·p462

estimate. Likewise, the k·p energy splitting of 0.06 eV463

between the top two valence bands is approximately half464

the DFT estimate of 0.13 eV.465

To summarize, the k·p theory reproduces the general466

features of the band structure that was obtained more467

rigorously using DFT. Although k·p methods are less468

accurate than DFT, they allow us to clarify that both469

strain and SOC are required to fully lift the band degen-470

eracy at k = 0.471

C. Quantum Well Corrections to the Energy472

The energies plotted in Fig. 4 were obtained without473

including the quantum-well subband confinement ener-474

gies, which differ for different bands, and can be sizeable.475

Here we show that the subband contribution to the hole476

energy does not compromise the energy splitting between477

the top two valence bands or change the effective ordering478

between them.479

The subband energies differ for the top two valence480

bands due to their different effective masses. We can481

estimate these effects by assuming a triangular, verti-482

cal confinement potential, as in Eq. (6). Here, we as-483

sume an electric field value of Fz ≈ ep/ε, which is the484

field required to accumulate a 2D hole gas with density485

p = 4 × 1011 cm−2, and we linearly interpolate the di-486

electric constant in the SixGe1−x barrier layer, obtain-487

ing the relation ε(x)=(16.2 − 4.5x)ε0, where ε0 is the488

vacuum permittivity. We further assume that the ver-489

tical extent of the wave function is less than the quan-490

tum well width, allowing us to ignore the bottom edge491

of the well. The triangular potential has known solu-492

tions [51], yielding a confinement energy of 2.34 E0 for493

the first subband and 4.09 E0 for the second subband,494

where E0=(~2e4p2/2m∗
zε

2)1/3 is a characteristic energy495

scale and m∗
z depends on both the alloy composition and496

the particular valence band. (Note that we do not con-497

sider band-nonparabolicity effects here, although they498

can be significant due to the large energies involved.) In499

this way, when x=0.25, we obtain a total energy splitting500
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(including both band and subband energies) of 140 meV501

for the lowest-energy confined holes in the first and sec-502

ond valence bands, with the first band still having the503

lowest energy. In comparison, the energy splitting be-504

tween the first and second subbands within the top va-505

lence band, is 27.7 meV, which therefore represents the506

predominant leakage channel for the qubit. We conclude507

that band and subband excitations of the qubit level are508

much larger than other relevant energy scales in this sys-509

tem, including the thermal energy of the hole reservoirs510

(5-15 µeV), the inter-dot tunnel couplings (∼200 µeV),511

and exchange interactions (∼200 µeV).512

D. Rabi Frequency Estimates513

In Sec. III D, particularly in Eq. (14), we obtained gen-514

eral results for the EDSR Rabi frequency fR as a function515

of system parameters. In Fig. 6, we now plot the depen-516

dence of the Rabi frequency on the dot radius a0 and the517

vertical electric field Fz. In Fig. 7, we further show a518

line-cut through this data, and a corresponding plot of519

τR = 1/fR, representing the gate time for an X2π gate520

operation. Generally, we find that larger dots yield faster521

gate operations due to their smaller orbital energies. (We522

note that, for sufficiently large a0, the perturbative meth-523

ods used here become inaccurate.) To take an example,524

for a vertical field of Fz = 4.8 MV/m, which is typical for525

some experiments but can be as large as 10 MV/m [52],526

and effective dot radii in the range of 30-60 nm [5, 16, 53],527

Rabi frequencies can be of order 0.2 GHz, corresponding528

to a 5 ns gate time for an Xπ gate. Such fast gates are529

very promising for high-fidelity quantum gate operations.530

1.0
0.8
0.6
0.4
0.2
0.0

f R
 (G

H
z)

100806040200
a0 (nm)

40

30

20

10

0

R
 (n

s)
(n

s)
<latexit sha1_base64="3eHGpr04OHiMJyBhiWf7ZH7IBbs="></latexit> ⌧
R

(G
H

z)
<latexit sha1_base64="4YoiTEuXpZj67npzAqqbTgXCbsw="></latexit> f R

dot radius, a0 (nm)

a.

b.

FIG. 7. Calculated values of (a) the EDSR Rabi frequency,
fR, and (b) the corresponding X2π gate time, τR=1/fR, as a
function of the effective dot radius a0. Here, the simulation
parameters are the same as in Fig. 6, with Fz = 4.5 MV/m.

V. DISCUSSION AND CONCLUSIONS531

Recent experimental work has already demonstrated532

that holes in germanium are promising as qubits. In this533

work, we have explored how confinement and strain are534

critical for achieving such strong performance, particu-535

larly in the context of EDSR-based gate operations. We536

have also demonstrated that operating the qubits in an537

out-of-plane magnetic field may be advantageous because538

of the highly anisotropic g-factor.539

To conclude, we comment on the expected decoher-540

ence mechanisms affecting Ge hole spins. As mentioned541

in the introduction, hyperfine interactions are suppressed542

for hole spins due to the p-orbital character of the va-543

lence band [2, 3], and the low natural abundance (<8%)544

of Ge isotopes with nonzero nuclear spin, which can be545

further reduced by isotopic purification [54]. However,546

charge noise is ubiquitous in semiconductor devices [55],547

including Ge quantum dots, particularly in the vicinity of548

the gate oxides. Although the poor quality of Ge oxides549

could exacerbate this problem, the simple inclusion of550

a Si capping layer should bring Ge/SiGe on par with re-551

lated systems, such as Si-based qubits. Similarly, phonon552

noise should be similar in Ge and Si-based devices; in553

both cases, phonon effects are much weaker than in GaAs554

charge [56] or spin qubits [57, 58], due to the absence of555

piezoelectric phonons. Hence, hole spins in Ge quantum556

wells should be relatively well protected from their en-557

vironment, making them particularly strong candidates558

for quantum dot qubits.559
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