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Lattice Monte Carlo calculations of interacting systems on non-bipartite lattices exhibit an os-
cillatory imaginary phase known as the phase or sign problem, even at zero chemical potential.
One method to alleviate the sign problem is to analytically continue the integration region of the
state variables into the complex plane via holomorphic flow equations. For asymptotically large
flow times the state variables approach manifolds of constant imaginary phase known as Lefschetz
thimbles. However, flowing such variables and calculating the ensuing Jacobian is a computationally
demanding procedure. In this paper we demonstrate that neural networks can be trained to param-
eterize suitable manifolds for this class of sign problem and drastically reduce the computational
cost for different severely afflicted small volume systems. In particular, we apply our method to the
Hubbard model on the triangle and tetrahedron, both of which are non-bipartite. At strong inter-
action strengths and modest temperatures the tetrahedron suffers from a severe sign problem that
cannot be overcome with standard reweighting techniques, while it quickly yields to our method.
We benchmark our results with exact calculations and comment on future directions of this work.

I. INTRODUCTION

Lattice field theories allow for a first-principles construction of non-perturbative interacting quantum field theories.
Beyond being a mathematical footing, they provide a computational strategy for solving such systems numerically,
typically via Markov-chain Monte Carlo (MCMC). However, for this numerical approach to succeed, a Euclidean field
theory requires a real-valued action, providing a positive-definite integration measure. When the action is complex,
additional steps must be taken, because the integrand can oscillate wildly. Hence, intricate cancellations are required
for numerical estimates to yield accurate results, thereby rendering otherwise successful lattice methods powerless.

This oscillating complex phase problem (“sign problem”) is prevalent in many areas of computational physics that
rely on lattice stochastic methods to tackle non-perturbative phenomena. Lattice quantum chromodynamics (LQCD)
calculations at finite baryon chemical potential [1, 2], for example, suffer from a sign problem, which precludes any
numerical investigation of quark matter in dense astrophysical objects such as neutron stars and supernovae [3–
5]. Furthermore, including the strong-θ term [6] in the QCD action induces a sign problem as well. Without the
development of methods to alleviate the sign problem, one is forced to assume the affected terms are (perturbatively)
small [1, 7, 8].

In nuclear lattice effective field theory (NLEFT) [9–11], where nucleons are degrees of freedom as opposed to quarks,
the sign problem prevents lattice MCMC studies of very neutron-rich nuclei. These nuclei, near the neutron drip line,
play an important role in today’s nuclear reactors and in the industrial and astrophysical synthesis of heavy elements.

A wide variety of condensed-matter systems, including the doped fermionic Hubbard model, exhibit a rich multi-
quasi-particle spectrum (see, for example, Refs. [12–15]) and comprise tantalizing theoretical systems with commercial
relevance. Unfortunately, many of these systems exhibit a sign problem as well. Indeed, the sign problem poses a
major stumbling block for MCMC studies in all computational subdisciplines of physics.

Finding a general solution to the phase problem with polynomial scaling in the severity of the problem is NP-
hard [16]. However, techniques that take advantage of a particular model’s structure may still be achievable. Therefore,
various strategies for alleviating the sign problem have been developed.

The most obvious and widespread of these is reweighting, which we describe in more detail Section IIC. Reweighting
can be applied when the sign problem is mild, but can fail spectacularly when the problem is severe, much as
perturbation theory fails when the interactions become strong.

Another commonly used strategy is analytic continuation. For example, in QCD one may simulate with purely
imaginary baryon chemical potential, removing the complex phase completely (see, for example, Refs. [17–19]). Here,
the uncertainty lies in the functional form chosen to analytically continue results back to the real axis, which is not
known a priori and thus relies on model assumptions. Moreover, analytically continuing Monte Carlo data with
uncertainties is no easy task.

Alternatively, Complex Langevin methods do away completely with MCMC and have had various degrees of success
(see, for example, Refs. [20–23], and more recently, [24]). Unfortunately, there currently seems to be no consensus on
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which systems have Langevin methods that are guaranteed to be correct and which do not, though progress has been
made in quantifying certain conditions for success [25].

Recently, tensor networks [26–28] have shown promise in tackling many-body systems in both one and two dimen-
sions. Their formalism is agnostic to the presence of a chemical potential. First results are available for fermionic
systems [29], such as spinless fermions on the honeycomb lattice [30] and the Hubbard model on a square lattice [31].
It remains to be seen, however, whether such calculations are preferable in terms of precision, scalability, and compu-
tational complexity, which also applies to methods that involve direct integration over the group manifold providing
polynomial exactness [32].

The method we leverage here is related to integration on Lefschetz thimbles. By analytically continuing the
integration variables into the complex plane [33], one can locate higher-dimensional steepest-descent analogues called
Lefschetz thimbles for each critical point1. On a thimble the phase is not oscillatory, but constant, up to the residual
phase of the Jacobian (which can reintroduce wild oscillations if the thimble is strongly curved [34]). Each thimble
has its own constant phase; lattice Monte Carlo on a given thimble can be performed because the phase is global
and can be factored out of the integral. A combination of all thimbles which can be reached by holomorphic flow
yields the original integral over the real variables, but finding those thimbles (or equivalently, identifying their critical
points) is usually difficult.

Early investigations with this method looked at bosonic gauge systems in low dimensions [35–37]. The Thirring
model — non-relativistic fermions with a chemical potential in one dimension — was studied using only one “main”
thimble [38–40] before yielding to a flow-based method [41–43] that approaches a thimble in the limit of long flow
times. Moreover, Lefschetz thimbles have found use in higher dimensions, including the 1+1-dimensional Thirring
model [44] and small examples of the doped 2+1-dimensional Hubbard model [45]. Gauge symmetry complicates the
story but the efficacy of Lefschetz Thimbles in gauge theories is a field of active research [46–49]. Beyond Lefschetz
thimbles one may find sign-optimized manifolds where even the residual Jacobian phase is handled cleanly [50–52].

The most difficult aspect of attempting a Lefschetz decomposition is that the thimbles’ locations and shapes are not
generally known a priori, and that their determination is a complicated and numerically intensive endeavor, especially
as systems get larger in higher dimensions. Even when locating critical points is straightforward, deciding whether
their thimbles must be included to reproduce the integral of interest is not.

Numerical difficulties abound, as well. For example, the calculation of the Jacobian associated with the transfor-
mation from the real plane to these complex manifolds and its determinant can be numerically prohibitive as the
system size becomes larger. These issues make an exact Lefschetz Thimble decomposition potentially as difficult as
the original sign problem.

Instead one can approximate the thimbles by use of holomorphic flow equations. Rather than completely solving
the sign problem, this strategy is to merely alleviate it [41, 53]. Moreover, numerical techniques to estimate the
determinant of the Jacobian in an efficient manner fix scaling problems [54]. Still, the determination of these approx-
imate manifolds is less computationally intensive than determining the exact manifolds, especially since they live in
high-dimensional spaces.

We use neural networks to define a complex manifold, or learnifold, instead. This can be done by approximating
holomorphic flow [55] which is possible (at least for large networks and training data) because of the universal
approximation theorem [56, 57] and because the flowed manifolds are continuous and smooth. Evaluating a neural
network is typically very fast, making them ideal candidates for modeling holomorphic flow in Monte Carlo.

In this paper we study the Hubbard model on small non-bipartite lattices which suffer from a severe phase problem
by incorporating a learnifold into HMC. These small systems afford exact numerical solutions with which we can
benchmark our method. Even though standard reweighting techniques are completely ineffective for some of these
problems, we find that the learnifold-HMC allows us to extract correlation functions well, reproducing exact results.
Unfortunately the computational demands of evaluating the determinant of the induced Jacobian presently precludes
us from simulating larger systems. Thus, strictly speaking, our method only demonstrates that the sign problem can
be alleviated sufficiently for these systems so as to obtain statistically correct observables. However, it is enouraging
that our method produces correct results even in cases where the sign problem is too severe for standard reweighting
techniques; the severity of the sign problem scales more favorably as we take the zero-temperature limit with our
method than with standard reweighting. Indeed, in the future we plan to leverage this technique to study larger
fullerene systems, such as buckyballs. We anticipate a straightforward applicability of our method to doped systems
as well.

Our paper is organized as follows. In Section II we describe our formalism in detail. In Section III we then
describe our algorithm, giving details about how we incorporate machine learning into HMC without compromising the
algorithm’s exactness. In Section IV we leverage our method, and show that it reproduces exact results for a number

1 In this context, a critical point is defined as a point in field space where the derivative of the action w.r.t. the (complex) field vanishes,
see (22).
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of different observables on some simple systems that may be solved exactly, even when standard reweighting might
fail. We point out that there is generally a trade-off between ergodicity and the sign problem, and we demonstrate that
the exponential decay of the statistical power is much less steep with our method. Finally, we give some conclusions
in Section V.

II. FORMALISM

In this section we introduce the Hamiltonian used in our studies and discuss the consequences of having a non-
bipartite lattice. We then explain reweighting—an exact method for handling complex actions. Finally, we discuss
correlation functions and mention the operators we use to construct them.

A. The Hamiltonian

We use the Hubbard model in the particle/hole basis [58–62] to perform simulations. The Hubbard model consists
of a tight-binding Hamiltonian,

H0 = −
∑
x,y

(
a†x,↑hxyay,↑ + a†x,↓hxyay,↓

)
, (1)

where hxy is nonzero if x and y are nearest neighbors, coupled with an onsite interaction of the form

H = H0 −
U

2

∑
x

(nx,↑ − nx,↓)2
, (2)

where the number operator nx,s ≡ a†x,sax,s counts electrons of spin s at position x. We now change to the hole basis
for the spin-↓ electrons,

b†x,↓ ≡ ax,↓, bx,↓ ≡ a†x,↓ , (3)

which gives, up to an irrelevant constant,

H = −
∑
x,y

(
a†xhxyay − b†xhxyby

)
+
U

2

∑
x

ρ2
x , (4)

ρx = nax − nbx (5)

where nax = a†xax counts the number of (spin-↑) particles nbx = b†xbx counts the number of spin-↓ holes at site x; we
use the convention of positively-charged particles.

B. Non-bipartite lattices

Bipartite graphs are those that admit a two-coloring, such that no vertex has a neighbor of the same color. Examples
include the standard square lattice (consisting of two underlying square lattices), the honeycomb lattice (consisting
of two underlying triangular lattices), or simply two connected sites. A non-bipartite graph, in contrast, cannot be
so colored.

Graphs with odd-length cycles are not bipartite. Examples include fullerene refinements of a 2-sphere, such as
the buckyball (C60) or the dodecahedron (C20). In this case the presence of 12 pentagonal faces (required to make
the geometry closed) destroys the bipartiteness. The simplest, non-trivial non-bipartite graph is a single triangle,
which is small enough for exact diagonalization. The tetrahedron, topologically the complete graph on four vertices,
is similarly tractable but not bipartite. The Hubbard model has been studied on non-bipartite quasi-one-dimensional
chains [63–65] and has been exactly solved on small clusters [66] because solutions on such chains and clusters may be
taken as input data for many-body methods. The discovery of unusual heavy-fermion behavior of LiV2O4 triggered
direct studies of the Hubbard model on the pyrochlore lattice with tetrahedral unit cells [67] and other extended
non-bipartite structures (for example, see [68–70]).

As discussed in Ref. [62], when the Hubbard model is formulated on a bipartite graph, its formulation as a lattice
field theory exhibits special features. Discretizing the Euclidean time β into Nt timeslices yields a temporal lattice
spacing

δ =
β

Nt
(6)
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and we denote quantities made dimensionless with factors of δ with a tilde, so that Ũ = Uδ. The partition function
can be cast into the form of a path integral [58–61] yielding

Z =

∫ [∏
x,t

dφxt

]
e−βH[φ] =

∫ [∏
x,t

dφxt

]
W [φ] (7)

W [φ] = det
(
M [φ, h]M†[φ,−h]

)
exp

(
− 1

2Ũ

∑
x,t

φ2
xt

)
, (8)

where we assume Ũ > 0 and the fermion matrix is in the exponential discretization (see Ref. [62] for a comparison
with other discretizations),

M [φ, h]x′t′,xt = δx′,xδt′,t − [eh̃]x′,xe
iφxtBt′δt′,t+1, (9)

where h̃ is the dimensionless hopping matrix and Bt = +1 for 0 < t < Nt and B0 = −1 explicitly encodes anti-periodic
temporal boundary conditions.

In the case of bipartite lattices, the particle-hole transformation (3) can be modified to include an additional sign

b†x,↓ ≡ Pxax,↓ bx,↓ ≡ Pxa†x,↓ , (10)

where Px is the parity of the sublattice, so that we perform a site-dependent sign flip—Px = +1 if x is on one
sub-lattice, −1 if on the other—for holes. This flips the sign of the hopping term in the hole matrix such that the
weight becomes

W [φ] = det
(
M [φ, h]M†[φ, h]

)
exp

(
− 1

2Ũ

∑
x,t

φ2
xt

)
(11)

as shown in, for example, Refs. [58–61]. Since MM† is positive-semidefinite, W is real and positive-semi-definite as
well2. Such systems are thus easily amenable to standard Monte-Carlo simulations.

On non-bipartite lattices the signed particle-hole transformation (10) does not exist, as the bipartitioning fails, so
we cannot apply it and the weight (8) is of indefinite sign. The next section describes how Monte-Carlo techniques
can nonetheless be applied in this case and discusses the problems such calculations typically face.

We restrict our attention to cases where the hopping matrix h is always just a constant times the graph’s adjacency
matrix,

hxy = κ δ〈x,y〉 (12)

though this assumption could be relaxed to model realistic molecules where bond lengths and corresponding hopping
strengths vary. In general, the symmetry of the underlying lattice should be considered when determining the
Hamiltonian. For example, the regular dodecahedron is vertex- and edge- transitive, so it is natural to assign uniform
interaction strengths to every site and uniform hopping strengths along every edge. In contrast, while the truncated
icosahedron (C60 buckyball) is vertex-transitive and thus every site should have the same interaction strength, it
is not edge-transitive: some edges separate two hexagons, while others separate a hexagon from a pentagon and
these two different kinds of edges could have different hopping strengths (which physically reflects the fact that the
bond lengths differ). In larger fullerenes with Ih symmetry there are a wider variety of bond lengths, even between
hexagonal faces, because some hexagons are closer to or farther from pentagons; in fullerenes with smaller symmetry
groups (such as C70, which enjoys a D5h symmetry) we can naturally incorporate its structure by adjusting hopping
strengths in h and adjusting U from site to site in a way that respects its symmetry. Since we here are interested in
proof-of-principle work we ignore all effects of this kind.

C. Reweighting

The expectation value of an observable Ô is given by

〈Ô〉 =
1

Z

∫
Dφ Ô[φ] e−S[φ] (13)

2 In the case of non-zero chemical potential, W is complex-valued even for bipartite lattices. This has been investigated recently for small
bipartite systems in the context of holomorphic flow [45, 71]
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where S is the action, φ the fields, and Z the integral without the operator. For the purpose of this discussion we
include the fermionic determinants in the action S by taking the log and casting them up into the exponential.

When the action is real-valued we can construct a Monte Carlo method, sampling configurations of the field φ
according to their probability given by the Boltzmann weight exp(−S)/Z (“importance sampling”). Generated in
such a way, we can estimate the expectation value in (13) by computing the mean of the observable measured
separately on each configuration.

When the action is complex-valued the Boltzmann weight is complex as well, and does not directly provide a
probability distribution. Reweighting is an exact, straightforward procedure by which we can overcome this difficulty,
given sufficient computational resources. Rather than sampling according to the action, one samples according to the
real part of the action SR and incorporates the phase associated with the imaginary part of the action SI into each
observable, estimating

〈Ô〉 =
〈Ôe−iSI 〉R
〈e−iSI 〉R

≈
∑
j Ô [φj ] e

−iSI [φj ]∑
j e
−iSI [φj ]

(14)

where j runs over the ensemble and the R-subscripted angle brackets indicate an expectation value with respect to
the real part of the action only3.

If the phase given by the imaginary part of the action is constant or narrowly distributed, this procedure can
successfully estimate observables. However, if the phase is widely distributed or, in the worst case, evenly covers the
unit circle, the expectation value in the denominator nears zero and reweighting becomes computationally intractable.
We call the absolute value of the denominator the statistical power

Σ =
∣∣〈eiθ〉R∣∣ , θ ≡ argW . (15)

When all configurations have the same imaginary action, Σ = 1 and each configuration is valuable. When θ[φ] varies
strongly for different field configurations φ, Σ is near zero and the configurations tend to cancel; each additional con-
figuration contributes only marginally to the expectation value. Quenching the phase, that is, estimating expectation
values by the uncontrolled approximation 〈Ô〉 ' 〈Ô〉R, can lead to a dramatic distortion of observables.

D. Correlation Functions

Two-point correlation functions between two operators Ôx and Ô†y at different times and sites x, y

Cxy(τ) =
1

Z
tr

[
e−βH

1

Nt

∑
t

Ôx(t+ τ)Ô†y(t)

]
=

1

Nt

∑
t

〈
Ôx(t+ τ)Ô†y(t)

〉
(16)

can be computed as a function of temporal separation by solving for propagators on each configuration and tying
them together in the required Wick contractions. They admit spectral decompositions

Cxy(τ) =
1

Z
tr

[
e−βH

1

Nt

∑
t

Ôx(t+ τ)Ô†y(t)

]
=

1

Nt

∑
t

1

Z
tr
[
e−βH e+H(t+τ)Ôxe

−H(t+τ) e+HtÔ†ye
−Ht

]
=

1

Z
tr
[
e−(β−τ)H Ôx e

+H(t+τ) e−HtÔ†y

]
=

1∑
a e
−Eaβ

∑
bc

e−Ebβe−(Ec−Eb)τzaxbzby†a (17)

where we moved to the Heisenberg picture and inserted resolutions of the identity in the energy eigenbasis and defined
the overlap factors

zaxb =
〈
a
∣∣∣Ôx∣∣∣b〉 zby†a =

〈
b
∣∣∣Ô†y∣∣∣a〉 = z∗ayb (18)

where a and b label energy eigenstates. In the low temperature limit β →∞ the sum is dominated by the lowest energy
state; otherwise thermal artifacts may be seen. In the low temperature and late-(euclidean-)time limit τ → ∞, the
correlator’s τ dependence gives the energy gap between the ground and the first excited state (with the observable’s
quantum numbers), as all the heavier states decay more quickly.

3 Unless otherwise mentioned, uncertainties presented here via reweighting come from a correlated bootstrap procedure, where, on each
bootstrap resampling, the numerator and denominator are both measured and divided.
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Hence, we can extract the single-particle/single-hole spectrum by e.g. setting Ô†x = a†x. Cxy(τ) is quadratic in the
volume. However, after diagonalization one obtains only O(V ) single-particle eigenfunctions. For the small lattices
we study here, it suffices to project x and y to the same irreducible representation of the lattice symmetry in order
to diagonalize C.

We can also calculate correlation functions between composite operators at additional computational expense. The
composite operators we consider are the number operators nax and nbx, their sum the total number operator nx, their
difference the charge operator ρx, spin raising and lowering operators S±x , and the spin operators Six (where i runs
over all 3 spatial directions); we also consider the two doubly-charged local bilinears. In Appendix A we detail the
operators, the correlation functions we measure and how to construct conserved quantities from them.

III. ALGORITHM

We gave an extensive overview of our application of Hybrid Monte Carlo (HMC) to the Hubbard model in Ref. [62].
In all our reweighting-only examples we run HMC in a standard way, performing the Metropolis accept-reject step
according to the real part of the action. In the rest of this section we detail how we incorporate learnifolds into HMC.

In Section IIIA we provide a summary of why integrating over a manifold given by holomorphic flow is advantageous
for reducing the sign problem. Then in Section III B we show how we use machine learning to quickly compute the
learnifold, over which we will integrate. Afterwards we explain how to incorporate the learnifold into HMC and,
finally, comment on our update scheme’s ergodicity in Section III C.

A. Holomorphic Flow

Holomorphic flow is a generalization of the steepest descent method to multi-dimensional complex space. Given a
holomorphic functional, in our case the action S, of the N -dimensional complex φ, the flow equations are

dφ
dτf

= ±
(
∂S[φ]

∂φ

)∗
, (19)

where τf is the flow time. A minus sign indicates downward flow, while a plus sign upward flow. Splitting the
components φi = φRi + iφIi and the action S[φ] = SR[φ] + iSI [φ] into their real and imaginary parts, yields

dφR

dτf
= ±∂S

R

∂φRi
= ±∂S

I

∂φIi
(20)

dφI

dτf
= ±∂S

R

∂φIi
= ∓ ∂S

I

∂φRi
, (21)

which are the Cauchy-Riemann equations. The equations containing SR essentially implement the gradient flow,
whereas the other equations are Hamilton’s equations for the imaginary part of the action. That is, SI remains a
constant of motion during the flow. It is easily seen that downward holomorphic flow is the generalization of gradient
flow, or steepest descent, for real fields.

The critical points φ̂cr of S[φ] are vectors of complex numbers and satisfy

∂S[φ]

∂φ

∣∣∣∣
φ̂cr

= 0 . (22)

The φ̂cr are saddle points; the associated Lefschetz thimble is the manifold in CN which flows to the given critical
point under downward flow, while the dual thimble flows to the critical point under upward flow. Models with many
variables have many critical points and associated thimbles that must be integrated over to produce the same result
as the integral on the real manifold.

Flowing the integration region of φ ∈ RN to the manifold(s) φ̂ eliminates the sign problem since SI is constant on
each manifold. Because there are no poles in the integration kernel, Cauchy’s integral formula guarantees that the
integral over the thimbles φ̂ ∈ CN will be exactly equal to the original integral over φ ∈ RN ,∫

Dφ e−S[φ] =
∑
σ

e−iS
I [φ̂cr,σ ]

∫
Dφ̂σ e−S

R[φ̂σ] , (23)

where σ runs over included thimbles and φ̂cr,σ is the critical point associated with this thimble. The number of
thimbles, their critical points, and their relative weights depend on the lattice action and the original integration
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region (typically RN ). Not all the thimbles in CN are included in the sum; only those that are required to preserve
the integral’s homology class.

Thimbles do not cross each other, but are connected at places where the action diverges so that the integration
kernel vanishes. The gaussian part of the action diverges when |φ̂| → ∞; the fermionic part of the action diverges
when det(M [φ̂]M [−φ̂]) = 0. We call these zero-weight places in the complex space neverland, as they never appear
in an importance-sampling scheme.

Because the locations of the needed critical points and their associated thimbles are not known a priori, their
determination requires extensive numerical resources; an analytic determination would amount to a solution of the
lattice model. Instead we follow Alexandru, Basar, and Bedaque [42] and use the fact that the thimbles are fixed
points of the flow to our advantage: we flow only a modest amount to get an integration manifold that approaches
the set of relevant thimbles, not solving the sign problem entirely but alleviating it to the point where standard
reweighting techniques are sufficient to address any remaining sign problem.

To ensure our method remains exact, it is important that our ultimate integration manifold is in the same homology
class as the original. Because the holomorphic flow preserves the homology class, the manifold resulting from any
finite flow time is in the right class. Moreover, because the flow’s fixed points are thimbles, a finite-flow manifold
approaches those thimbles that contribute to the integral [42]; we need not analytically decide which thimbles to
include—the flow discovers this automatically.

One point on the original manifold flows to a thimble’s critical point, and only a vanishing neighborhood around that
point flows to the rest of the thimble—most of the original manifold flows to neverland—the place where thimbles
meet and vanish in the integration kernel, typically due to zeros of the fermion determinant. These zeros act as
attractors, and most configurations flow to these zeros after a finite amount of flow time [40, 42, 72]. Because the
thimbles must meet at these zeros, attempting an update method like HMC on the thimbles themselves in a naive
way will be obstructed by these zeros, causing an ergodicity problem. However, by restricting ourselves to modest
flow times, we can ensure that the manifold will not touch these zeros. We provide some visual evidence of ergodicity
in Section IVA1 and reproduce a wide range of exactly-known correlation functions. So, deciding how much to flow
is a balancing act—one hopes to flow enough that the sign problem is alleviated but not so much that an ergodicity
problem emerges.

Any transformation of integration variables, including the one provided by the flow, comes with an associated
Jacobian, and this Jacobian must be included in the Monte Carlo weight (or incorporated by reweighting) for a
correct method. There are flow equations for the Jacobian as well [41],

dJ
dτf

(t) = [H[φ(t)]J(t)]
∗
, (24)

where H is the Hessian,

Hij [φ] ≡ ∂2S

∂φi∂φj

∣∣∣∣
φ

=
(
tr
[
M−1(∂iM)M−1(∂jM)

]
− tr

[
M−1∂i∂jM

])∣∣
+κ,+φ

+ (κ, φ→ −κ,−φ) +
δij

Ũ
. (25)

Flowing the Jacobian is the most time-consuming aspect of this calculation and thus the reason for considering neural
networks, as we discuss in the following section.

To perform the numerical integration of the flow equations (19), and when necessary of the Jacobian (24), we use
a 4th order adaptive Runge-Kutta method. Because the flow preserves the imaginary part of the action, we monitor
the latter during the numerical integration and adjust the integration stepsize to keep deviations within a prescribed
tolerance.

B. Networks

1. Architecture

Here, we only briefly describe the networks that we used. Interested readers can find a wealth of literature on
neural networks online, see for instance [73] for an excellent introduction. We use feed-forward neural networks of
dense layers to tackle the sign-problem. Like Refs. [52, 55] these networks produce the imaginary part of a field
configuration from the real part and keep the latter fixed. The transformation into complex space is thus

φ̃ = φ+ i NN(φ), (26)

where NN is the neural network. In addition to the ability of the network to avoid dealing with complex numbers
directly, Ref. [55] points out two advantages this formulation enjoys over φ̃ = NN(φ): it might ameliorate the ergodicity
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problem that flowing can induce (for an enlightening discussion and illustration see their Figure 2); and it tends to
yield a more stable Jacobian (Figure 3 of Ref. [55]).

We encode φ as a spacetime vector and use neural networks with a single hidden layer, consisting of twice the
number of neurons than the input and output layers. The hidden layer has a Softplus activation function

Softplus(x) = log(1 + exp(x)), (27)

and the output layer has none. We found this to be sufficient for all cases we tested. Wider or deeper networks as
well as convolutional layers or different activation functions did not yield significantly better results. It remains to be
seen whether this setup scales to larger spatial lattices.

Neural networks of the chosen architecture can be evaluated very efficiently, which is, unfortunately, only half of
the story. We also need to compute the Jacobian determinant for the change of variables, which will appear in the
transformed integral (35). Given (26), it is

det J [φ] = det

(
1+ i

∂NNi(φ)

∂φj

)
. (28)

This operation is O
(
(NsNt)

3) (cubic in the spacetime volume), because both the determinant and matrix multiplica-
tions in the derivative need to be performed with a general algorithm for dense matrices. No speedup seems possible
for vanilla dense networks as the weight matrices are unconstrained. We still find our network-based transformation
to significantly outperform flow-based transformations in terms of run time, however. But this approach does not
scale to larger lattices. It is possible to improve on the scaling by estimating the Jacobian as in Ref. [55] which uses a
different network that produces only one component of φ̃I at a time. Alternatively, one can use coupling layers which
were designed to have simple Jacobians. This requires complex valued networks in our case, however, as described in
Appendix B.

We implemented the neural networks and training procedures using PyTorch [74] and used Isle [75] to implement
Monte-Carlo for the Hubbard model. Section III C describes the HMC scheme we used to accommodate neural
networks.

2. Training procedure

We train our models using a supervised approach. To that end, we generate random real configurations φ and flow
them upward according to Eq. (19) for a fixed flow time to φ̂. It is non-trivial how to generate useful data and we
provide explicit details on our approach in Section III B 3. Once the data is generated, we use Re φ̂ as inputs and
Im φ̂ as target outputs to train the networks. We do so by using the Adam algorithm [76] to minimise a smooth L1
loss

loss(x, y) =
1

n

n∑
i

{
(xi − yi)2

/2, for |xi − yi| < 1

|xi − yi| − 1/2, otherwise
(29)

as defined in PyTorch [74].
We know our action has exact symmetries (see Ref. [62] for a listing), comprising transforms T that change field

configurations but leave the action invariant, S[Tφ] = S[φ]. A uniformly-flowed manifold exhibits many of those
symmetries, the most obvious being the temporal and spatial translation symmetries. Naturally it is desirable that
our neural networks preserve as many of these symmetries as possible.

Ref. [55] accomplishes this by training a network that takes a whole spacetime vector and produces only the flowed
configuration at the spacetime origin and using translational invariance to construct the other vector elements. This
technique suffers a number of constraints, most notably, it requires full translational invariance of the lattice. This
is not the case for many interesting non-bipartite lattices, however, as they are not necessarily vertex-transitive. In
such a case a network with a single output is not enough because spatial symmetries cannot take every element to
every other.4

As described above, our neural networks produce a full spacetime vector as output and we encode symmetries by
augmenting the training data. One symmetry that all lattices have is temporal translational invariance. We thus train
our networks not only on the configurations generated according to Section III B 3 but also on all possible temporal

4 It may still be possible for the network to produce a much smaller vector — for example, the size of a unit cell, or just a single timeslice.



9

shifts of the input and target output configurations. This effectively increases the size of the data set by a factor of
Nt. The lattices considered in this work, triangle and tetrahedron, are vertex-transitive and we tried augmenting the
training data by all possible spatial permutations but did not find an improvement. Adding temporal translations
proves very useful for increasing model quality, however.

Every model was trained on minibatches of size 16 drawn from 1000 random configurations plus temporal transla-
tions. The only exception is the tetrahedron with Nt = 32 whose model was trained with 4000 configurations. We
found this larger number necessary to train the network well. For larger Nt, 1000 configurations were enough for
the tetrahedron which might be due to the higher number of added configurations from augmentation by temporal
translations.

3. Training: Data

Several different methods have been used to generate training data. Ref. [52] uses HMC with a partially trained
model to generate data for the next iteration of training. This is expensive as new configurations have to be generated
every time model hyperparameters are changed. Because it is self-reinforcing, it is possible that such an approach
can find and remain in a local minimum or overfit a part of the phase space.

Ref. [55] uses HMC without a neural network to generate training data before fitting a model. In order to achieve
large phase space coverage, several MC ensembles with different temperatures were generated. This approach needs
to generate data only once per parameter set and therefore allows for faster tuning of hyperparameters. It is still
susceptible to autocorrelations, though, meaning that a large number of configurations might be needed for sufficient
phase space coverage.

One of the goals of this work is to simplify the generation of training data in order to develop a more scalable
approach.

One thimble of the Hubbard model on non-bipartite lattices is easy to find — the image of Re φ ≡ 0 under the flow.
It connects to a critical point φ̂cr ≡ ic for some U , β, and Nt dependent value c < 0. In concordance with literature,
we call this the “main” thimble. There is an ongoing discussion whether a single thimble Ref. [33] or multiple thimbles
are require to solve the integral [40–43]. To be on the safe side, we, therefore, identified additional thimbles, all with
spacetime-constant φ̂cr = z ∈ C, but close to the main thimble. Figure 1 shows the critical points for a sample system.

We produced training data by first generating random field configurations close to the critical points that we found
and then flowing them for a short, fixed flow time. In order to reduce the required flow time, we sampled the initial
configurations on the plane tangent to the main thimble in the critical point (φ = φR + ic); this is referred to as the
“tangent plane” from now on. Models trained on these configurations for a triangle lattice can sometimes reduce the
sign problem but are prone to producing learnifolds with a wrong homology class. This problem becomes worse the
larger Nt is and we did not obtain any successful models for the tetrahedron. The reason is the following.

Empirically, we found that the dependence of the typical set of the probability distribution W on the vector norm
|Reφ| is almost the same as that of a normal distribution. In high dimensions, the typical set of a gaussian, that
is the region of phase space that contains most of the probability, is a thin hyperspherical shell around the origin.
Importance sampling, by definition, generates fields that lie in the typical set. We can thus use HMC to visualize the
set, an example is shown in orange in Figure 1. The critical points of all thimbles that we used are shown as crosses
in the figure. It can be seen that those points are close to the origin and far away from the typical set. Therefore, it
should not be surprising that neural networks trained on fields near the critical points do not generalize well to the
typical set and yield poor performance of HMC.

The approach used in this work is motivated by the dominance of the gaussian part of the action. We draw Re φ
randomly from a gaussian and set Im φ to be on the tangent plane of the main critical point. These φ are then flowed
upwards. This method has two numerical parameters that need to be tuned. One is the width of the gaussian σ, the
other is the flow time. Plots like Figure 1 provide good estimates for the quality of training data. The better the
overlap between training data and HMC in these projections the better the neural network performs. Fortunately,
the distributions explored by HMC with and without neural networks are largely identical in these projections for
well trained models. It is thus sufficient to sample configurations on the real plane in order to estimate the HMC
distribution — even though the figure shows an ensemble generated with a network. The overlap shown in the figure,
while not perfect, is enough and the figure shows data from a successful run with reduced sign problem shown in
more detail below.

Samples drawn from a normal distribution of fixed width σ =
√
Ũ have poor overlap in figures like Figure 1. To

remedy this, we draw the width of every sample randomly from a uniform distribution U

σ ∼ U
(√

Ũ/x,
√
Ũ
)

(30)
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Figure 1. Distributions of configurations used for training data (blue-shaded region) and an ensemble produced via HMC with
a neural network (orange-shaded region) trained on this data. The system is a triangle with Nt = 32, κβ = 6, and U/κ = 3.
The distributions were estimated from 105 training and 106 HMC configurations. The black crosses mark critical points of
spacetime-constant φ.

and then draw φ from a normal distribution N with that width: Re φ ∼ N (0, σ). The factor x is chosen such that
the overlap of HMC ensemble and training data is maximized.

Similarly, the other parameter, the flow time τf , needs to be chosen such that plots like Figure 1 show good overlap.
Additionally, one needs to strike a balance between reducing the sign problem and avoiding ergodicity problems as
described in Section IIIA. It is easy to show that for spacetime-constant φ the gradient of the action is invariant
under simultaneous Nt → αNt and φ→ φ/α. The starting position for flow, which is on the main tangent plane, has,
therefore, the same Nt dependence. We use this scaling for the flow time as well and choose it to be

τmax
f = 0.1× 16/Nt (31)

in all cases. As with σ, this scaling was found purely based on numerical experiments.
We found significant improvements in both the time required to make training data and the performance of the final

neural networks by not requiring a fixed flow time. When using holomorphic flow directly within MC, it is necessary
to fix the flow time in order for all configurations to be on the same manifold. In our case, the neural network ensures
this regardless of how the training data was created. Many configurations generated from a gaussian quickly flow into
neverland and flowing becomes numerically unstable. It is thus impossible to reach the targeted flow time. Instead
of discarding these configurations, we monitor the integrator for stability, abort early in such a case, and add the
last configuration that could be reached in a stable way to the set of training data. However, it does not make sense
to use configurations that could only be flowed for very short times as those provide little information to the neural
network. We thus require a minimum flow time of

τmin
f = 0.04× 16/Nt (32)

for all training configurations.

C. HMC

Rather than implementing HMC on the curved manifold of Lefschetz thimbles defined through holomorphic flow [77,
78] or learnifolds, we pull back to the real plane before performing molecular dynamics, as will now be explained.

Given a transformation into complex space as implemented by holomorphic flow or neural networks, we need to
incorporate that transformation into Hybrid Monte-Carlo. Let

f : RN → CN , φ 7→ φ̃ and Jij [φ] ≡ ∂fi(φ)

∂φj
, (33)
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withM≡ f(RN ) the image of f . We want to calculate observables by integrating over the manifoldM because with
suitably chosen f the sign problem is alleviated on that manifold. SinceM is in the same homology class as RN and
the integrand is regular in φ, by Cauchy’s theorem the expectation value of an observable Ô is

〈Ô〉 =
1

ZRN

∫
RN
Dφ Ô[φ]e−S[φ] =

1

ZM

∫
M
Dφ̃ Ô[φ̃]e−S[φ̃] . (34)

We do not know M, however, and can thus not evaluate the integral on the right hand side directly. Instead, we
parameterize it using f . That is, we perform a transformation of integration variables:

1

ZM

∫
M
Dφ̃ Ô[φ̃]e−S[φ̃] =

1

ZRN

∫
RN
Dφ Ô[φ̃(φ)]e−S[φ̃(φ)] det J [φ] . (35)

Now define the effective action as

Seff[φ̃(φ)] ≡ S[φ̃(φ)]− log detJ [φ] . (36)

We can estimate the integral stochastically by generating an ensemble {φ ∼ exp(−ReSeff[φ̃(φ)])}, where we use
the real part of Seff as per the reweighting procedure described in Sec. II C. This effectively produces an ensemble
{φ̃ = f(φ) ∼ exp(−ReS[φ̃])} on which the observables Ô can be measured.

We use HMC to generate the ensembles. To this end, we augment the integral by multiplying with a one in the
form of an integral over the artificial conjugate momentum p such that

〈Ô〉 =
1

Z

∫
DφDp Ô[φ̃(φ)]e−iImSeff[φ̃(φ)]e−H[p,φ̃(φ)], H[p, φ̃(φ)] ≡ p2

2
+ ReSeff[φ̃(φ)] . (37)

All integrals are to be understood as integrating over RN from now on. We can encapsulate all dependencies on f
in a modified HMC algorithm such that it produces configurations onM suitable for measurements. The following
summarizes the algorithm:

complexified HMC in: φ̃ out: φ̃′

φ← f−1(φ̃) # transform to RN
p← N0,1 # draw random momentum
ψ′, p′ ← molecular_dynamics(φ, p) # generate candidate on RN

ψ̃′ ← f(ψ′) # transform toM
φ̃′ ← accept_reject(H[p′, ψ̃′], H[p, φ̃]) # pick new field

A new configuration is obtained from an old one by first transforming the old complex field φ̃ to the real plane5 where
it is then updated using molecular dynamics (MD), or any other suitable updating scheme, such as the large jumps
explained in Ref. [62]. The new candidate field ψ is then transformed toM where it is accepted or rejected using a
Metropolis-Hastings step.

It remains to prove that this algorithm produces a Markov Chain. For this, we adopt the picture that we are
producing real fields {φ ∼ exp(−ReSeff[φ̃(φ)])}. Such a proof is equivalent to showing that {φ̃} is a Markov Chain
sampled from exp(−ReS[φ̃]). We do so by first proving detailed balance

P(φ)P(φ′|φ) = P(φ′)P(φ|φ′) (38)

with (ignoring normalization factors)

P(φ) = e−ReSeff[φ̃(φ)] (39)

P(φ′|φ) =

∫
Dp′Dp e−p

2/2PMD(p′, φ′|p, φ)Pa/r(p
′, φ̃(φ′)|p, φ̃(φ)) . (40)

PMD and e−p
2/2 are the same molecular dynamics and gaussian probabilities as in standard HMC. The prior P(φ)

and accept/reject

Pa/r(p
′, φ̃(φ′)|p, φ̃(φ)) = min

1,
exp

(
−p

′2

2 − ReSeff[φ̃(φ′)]
)

exp
(
−p22 − ReSeff[φ̃(φ)]

)
 (41)

5 The inverse transformation f−1 can be unstable and/or expensive to evaluate. But there is no need to perform this calculation if we
just keep track of φ as well as φ̃.
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Figure 2. The entire spectrum of the Hubbard model on a triangle as a function of U/κ, changing from 0 to 5 in 20 equal steps,
with colors corresponding to different U/κ, corresponding to the vertical direction in the colorbar at right. One translucent point
is plotted per state; more opaque circles correspond to more highly degenerate states, corresponding to the horizontal direction
in the colorbar. Energy eigenfunctions carry Q, S, Sz and Lz quantum numbers; each panel projects the five-dimensional
space onto one quantum number and the energy. Each U/κ is slightly offset, so that each point in the spectrum for U/κ = 0
is to the left of that point’s quantum numbers, while U/κ = 5 is to the right. The ground-state manifold qualitatively changes
at U4/κ = 3.61775 . . ., shown in a deep blue. We draw a thin horizontal line at the corresponding degenerate ground-state
energy E40 = −1.36845 . . . to make the quantum numbers of the states apparent, and thin vertical lines for each value of each
quantum number at U = U4.

probabilities use the effective action which encapsulates φ̃. Thus the proof of detailed balance (38) proceeds as usual
for HMC. The only ingredient missing to fully prove correctness of our algorithm is a proof of ergodicity. Such a proof
is generally not available even for standard HMC. We thus rely on a posteriori analyses to verify ergodicity. Certainly
with a long flow time we expect many configurations to flow to neverland, creating large zero-probability regions
that separate important islands of configurations. However, if we only flow a little, few if any configurations flow to
neverland and the manifold of integration is not partitioned. Our ability to reproduce exact results in Section IV
suggests that our method successfully explores fields whose images are near different thimbles. A well trained network
inherits these properties from the flowed manifold of its training data.

IV. RESULTS

To demonstrate the efficacy of the neural network methods we will explore small lattices, leaving larger lattices for
future work. In particular, we here consider the triangle and tetrahedron, both maximally connected and therefore,
where we expect the worst sign problem. Finally, we demonstrate that our method yields improved scaling of the
statistical power in time, allevating the sign problem. Focusing on the small examples we study, see the greatest
improvement for the most difficult: the tetrahedron. We leave the question of how much our method improves scaling
in space for future study.

A. The Triangle

Three spatial sites is the smallest nontrivial non-bipartite graph we might study—the two-site problem is bipartite
and the one-site problem has no hopping at all. We studied those problems extensively using the lattice methods
applied here in Ref. [62].
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The hopping matrix is given by

h = κ

 0 1 1
1 0 1
1 1 0

 , (42)

and the Hamiltonian has D3 dihedral symmetry. When diagonalized, the hopping matrix reveals one spatially uniform
(trivial) irrep with eigenvalue 2κ and a dimension-two irrep with eigenvalue −κ.

The unitary site permutation operator P

P ax P
† = ax+1 P bx P

† = bx+1

P a†x P
† = a†x+1 P b†x P

† = b†x+1 (43)

rotates the sites into one another (the indices on the ladder operators are understood mod 3). P trivially commutes
with the potential and nontrivially with the hopping (1).

The three irreducible single-particle destruction operators are

Ôk =
1√
3

2∑
j=0

e2πijk/3aj (44)

which are labeled by k = ±1, 0, which corresponds to their transformation properties,

PÔkP
† = e2πik/3Ôk, (45)

a spherical-tensor-like relation, and the hopping Hamiltonian can be decomposed

H0 = κ
[(
Ô†−1Ô−1 + Ô†+1Ô+1 − 2Ô†0Ô0

)
− (a→ b)

]
, (46)

corresponding to the irreps described above. We label the spatial permutation quantum number by Lz = k, since it
corresponds to an angular momentum around the center of the triangle.

The spectrum for this system, which can be obtained from direct diagonalization of the Hamiltonian, consists of
43 = 64 states in the entire Fock space. When U = 0, a single state with Q = −1, S = 0, Sz = 0 Lz = 0 has the
lowest energy, and a partner with Q = +1, S = 0, Sz = 0, Lz = 0 has the highest energy. Explicitly, the spectrum is
not symmetric in Q, though of course the spectrum is symmetric in Sz and Lz. When U becomes large, the lowest
energy is shared by a degenerate quadruplet of states with Q = 0, S = 1/2, Sz = ± 1

2 and Lz = ±1. At approximately
U4/κ = 3.61775 the low-U/κ ground state and high-U/κ four-plet are degenerate. When U/κ is very large the
spectrum nearly exhibits symmetry in Q.

Spectra, like those shown in Figure 2 and operator overlap factors (18), can be used to directly calculate the single-
particle correlator via the spectral decomposition (17). Using the single-particle operators (44) we can also use Monte
Carlo to compute the single-particle correlators numerically.

1. Ergodicity and the Sign Problem

In the language of Refs. [62, 79] we use the exponential α = 1 discretization. As detailed in Ref. [62] there is a formal
ergodicity problem on bipartite lattices. When the lattice is not bipartite the codimension-1 manifolds of exceptional
configurations are reduced in dimension and there is no formal ergodicity problem. First, we give a small toy problem
confirming this claim and then reproduce the exact results obtained through direct diagonalization. Then, we examine
the statistical power for HMC alone as a function of U/κ and κβ and find that, for a given temperature, the sign
problem is worst when U/κ = U4/κ ≈ 3.61775, the value where the vacuum changes character, as shown in Figure 2.

To visually appreciate that the codimension-1 manifolds that prevent HMC alone from being formally ergodic in
the bipartite case are reduced in dimension, consider a problem with Nt = 1 and let φx live on spatial site x. Then,
the product of the fermion determinants is

detMpMh =
4

9

3 cos

(
1

2
Φ

)
+

3∑
j=1

(
2 cosh

(
κ+

i

2
(Φ− 2φj)

)
+ cosh

(
2κ− i

2
(Φ− 2φj)

))2

(47)

where Φ =
∑
x φx. Figure 3 shows the absolute value (left panel) and complex argument (right panel) of this

determinant at Φ = 0 and two orthogonal combinations of the field variables. The only zeros are where the lines
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of different phase meet—in the two-dimensional projection of the phase in Figure 3, points around which the phase
winds. As Φ changes, those points move but they never become extended. So, even with an exponential discretization,
the codimension-1 zeros are reduced when the lattice is not bipartite; the fermion determinant allows free exploration
the complex plane, rather than constraining it by the reality condition that arises in the bipartite case, as explained
in Ref. [62].

Figure 3. The absolute value and phase of (47) for κ = 1 and Φ = 0, shown as a function of two directions in field space
orthogonal to the Φ direction. In the left panel, yellow indicates large absolute values and purple small ones. In the right
panel the color scheme is periodic; the exact zeros occur at the six points on each dark circle where the phase wraps around
the point.

The gaussian part of the weight encourages the fields to stay in the central mode. When the gaussian becomes
wider, more than one mode in Figure 3 might become important. There is no formal ergodicity problem, even in the
exponential case, and HMC can take us from mode to mode. However, at the mode boundaries, the phase changes
rapidly, causing a sign problem. In this small example, if the gaussian is wide enough, HMC can sample trajectories
that near this rapid change we would expect to encounter a sign problem, but if the width were very narrow we would
not. In examples with more lattice sites and timeslices, the huge growth of phase space of configurations further from
φ = 0 can counterbalance a narrow gaussian (the width is controlled by Uβ/Nt), so it is a priori unclear whether
increasing Nt will help or hurt; since the action is extensive, one expects a sign problem exponentially bad with β.
However, increasing Nt also increases the number of variables and the odds that some are near the mode boundaries.

In Figure 4 we show the phase histogram (left panels) and the statistical power (right panels) of ensembles generated
with HMC with real valued fields for two values of U/κ as functions of βκ. We generated 100,000 trajectories with
one molecular dynamics time unit and the number of steps in the leapfrog integrator to give better than 75%
acceptance. The histograms are actually results for multiple Nts superimposed, to show the very mild sensitivity to
the discretization scale. We also generated additional ensembles at U/κ from one to nine in integer steps and U4/κ,
and found that the sign problem modestly improved, for fixed κβ, for couplings further from U4/κ. By analogy, we
expect worse sign problems for critical points, where the system must tunnel between qualitatively different ground
states.

2. Results

Since we can exactly calculate the spectrum and overlap factors for this small problem, we can generate the exact,
continuum-limit correlation functions according to the spectral decomposition (17). This provides us a means to
directly check the accuracy of our NN method.

We ran HMC in three different ways — on the real plane, on the tangent plane of the main thimble, and on the
learnifold. The left panel of Figure 5 shows running averages of the statistical power as a function of Monte Carlo
time for U/κ = 3 and κβ = 8. After many configurations, Σ on real and tangent planes converges to the same small
but non-vanishing value, while the neural network produces a markedly greater statistical power. Remember, an
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Figure 4. The histograms (left) of the phase for two different values of U/κ as a function of β and the corresponding statistical
power (right) with bootstrap errors. In the right panel different Nt are shown from left to right: 16, 32, 48, and 64. The
histograms (left) and statistical powers (right) are colored from red, a hot temperature, to blue, a cold temperature.

improved statistical power indicates an exponential reduction of the sign problem. So, while the sign problem is not
solved, per se, we provide evidence here that it is significantly alleviated on the lattices we are considering.

This chosen set of parameters shows the worst statistical power on real and tangent plane out of the sets we tested.
See the right panel of Figure 5 for a summary for different parameters. The large variations in Σ for neural network
based calculations stem from different qualities of the trained models. It should be possible to tune the networks better
and thus increase statistical power. These networks perform well enough, however. Generally, we found that the sign
problem is not a complete impediment on the triangle and a plain calculation on the real plane with reweighting can
suffice.

In Figure 6 we show how the different methods’ measurements of diagonalized6 single-particle correlation functions
converge as a function of the number of configurations. With many configurations all three methods reproduce the
exact correlators (shown in black). However, the network reproduces the exact results (up to the expected 1/

√
N

relative scale from statistical noise) with fewer configurations.
Focusing on learnifold-enhanced HMC calculations, Figure 7 shows single particle correlators for several different

parameters and discretization scales measured on ensembles of 105 configurations. The figure also shows deviations

6 All correlators shown in this work are projected to irreducible representations of the lattice, as in (44). We found this method suitable
to produce diagonal all-to-all correlation matrices on triangle and tetrahedron lattices. There are two degenerate correlators on the
triangle and three on the tetrahedron. Thus all correlator plots show only two distinct lines.
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Figure 6. Single particle correlators 〈aa†(τ)〉 on a triangle lattice with Nt = 64, U/κ = 3, κβ = 8. Each column shows
correlators obtained from ensembles of the given number of configurations, while each row shows a different implementation
of HMC. Colored points and areas show averages and error bands from HMC and black lines show exact results. The two
unique correlators on a triangle are shown in blue and orange respectively—the former, low-energy correlator is the average of
the doublet of two-point correlators of O±1 while the latter, high-energy correlator is a two-point correlator of the singlet O0.
Sample sizes list the total number of Monte Carlo configurations but correlators were measured only on every 10th configuration.
The dotted lines are placed at max(C)/

√
Sample size and indicate the scale at which even a sign-problem-free method would

show sizeable statistical fluctuations.

from the exact results as

E = CMC/Cexact − 1 . (48)

In addition, we compute and diagonalize a variety of correlation functions between bilinear operators, as mentioned in
Section IID and detailed in Appendix A 1. In Figure 8 we show two — the diagonalized charge-charge and spin-spin
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Figure 7. Single particle correlators 〈aa†(τ)〉 on a triangle lattice for a sample size of 105. The low energy correlators are
averages of two degenerate results. The top panels show the correlators for different Nt from HMC with a neural network and
the results from exact diagonalization of the Hamiltonian. The lower panels show the relative error (48). Errors for the low
and high energy correlators are labeled E− and E+, respectively.

correlators. Additional correlators can be found in Figure 16.
We can use the constant correlators to extract

〈
Q2
〉
and

〈
S2
〉
, as explained in Appendix A 2. In Figure 9 we show

results for different couplings, temperatures, and discretizations. The learnifold approach yields reduced errors and
results consistent with the exact results of Q2 for U/κ = 3. The (U/κ, κβ) = (4, 6) case seems to have a systematic
deviation. It is unsurprising that these parameters yield the worst result as they are closest to U4/κ. The errors of
S2 are also reduced by the machine learning approach but a significant systematic deviation from the exact result
remains in all cases.
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Figure 8. Correlation functions between two charge operators ρ or two S3 spin operators separated by euclidean time κτ on
a triangle for different discretization scales given by Nt and the exact result (in black). The bottom panels show the relative
error (48) for the constant correlator (0) and the average of two heavy correlators (+) which have k = 0 and ±1, respectively.

B. The Tetrahedron

Many arrangements of four sites are not bipartite. Of these the “most non-bipartite”, and therefore the one where
we expect the worst sign problem, is the tetrahedron, where the connectivity matrix is proportional to the adjacency
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Figure 9. The order parameters Q2 (left) and S2 (right) calculated with the triangle system with various couplings U and
inverse temperatures β. Shown is a comparison between results calculated with the neural network and on the standard real
plane. The dashed lines show results from exact diagonalization.

matrix of the complete graph on 4 sites,

h = κ

 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 (49)

so that each subset of 3 sites forms a frustrated triangle; we label the sites 0-3. The Hamiltonian commutes with the
permutation operator P that acts on any triangular face (43) and leaves the other site alone. We conventionally pick
the symmetry axis through the fourth site to be the axis of symmetry around which we have a rotational quantum
number.

The four irreducible single-particle destruction operators are

Ô0
0 =

1

2

3∑
j=0

aj Ô0
1 =

1

2
√

3

3a3 −
2∑
j=0

aj

 Ô±1
1 =

1√
3

2∑
j=0

e±
2πi
3 jaj (50)

where the lower index indicates an L2-like quantum number ` and the upper index an Lz-like quantum number m.
The free Hamiltonian may be written in terms of these operators,

H0 = κ

[(
−3Ô0†

0 Ô
0
0 +

1∑
m=−1

Ôm†1 Ôm1

)
− (a→ b)

]
(51)

and the translationally-invariant interaction term transforms as an ` = 0, m = 0 “spherical tensor”. Therefore, these
are good quantum numbers and correlation functions put into this basis are diagonal.

1. Results

We expect the sign problem to be worse than on a triangle because the tetrahedron is substantially more frustrated
since it has four triangular faces. This is an opportunity to test our method in a system where calculations on the real
plane are, as far as we can tell, just not possible. Indeed, HMC on both the real and tangent planes has essentially 0
statistical power as shown in the left panel of Figure 10, an extremely difficult sign problem. In contrast, the neural
network method converges to a finite statistical power. Even though this value is small, it is sufficient as shown below.
The right panel of Figure 10 shows this improvement in statistical power holds for all the ensembles we consider.

Figure 11 shows the drastic improvement obtained when simulating with the neural network. By studying the
single-particle correlators, it is apparent that while the network method converges to the exact answer, the real and
tangent plane methods are completely ineffective — their uncertainties remain large and their match to the exact
results poor.
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Figure 10. Left panel shows the statistical power as a function of sample size on a tetrahedron lattice with Nt = 64, U/κ = 3,
κβ = 6. Right panel shows statistical power for different parameters on a triangle lattice. Each point was estimated using 106

configurations. The dashed line is at Σ = 0.
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Figure 11. Single particle correlators 〈aa†(τ)〉 on a tetrahedron lattice with Nt = 64, U/κ = 3, κβ = 6. Each column shows
correlators obtained from ensembles of the given number of configurations, while each row shows a different implementation of
HMC. Colored points and areas show averages and error bands from HMC and black lines show exact results. The two unique
correlators on a tetrahedron are shown in blue and orange respectively—the former, low-energy correlator is the average of the
three degenerate two-point correlators of the triplet of O1 while the latter, high-energy correlator is a two-point correlator of the
O0 singlet. Correlators are computed only on every 10th configuration. The dotted lines are placed at max(C)/

√
Sample size

and indicate the scale at which even a sign-problem-free method would show sizeable statistical fluctuations.

In Figure 12 we show network-method results for different discretizations, and their relative errors E (48). Those
correlators were computed on an ensemble of 106 configurations, measuring on only every 10th configuration to reduce
autocorrelations. The light correlator is an average of the ` = 1 triplet of correlation functions. The error of the heavy
correlator grows for intermediate euclidean time, but this is expected given the concrete sample size, see Figure 11.

In addition, we computed bilinear correlation functions as described in Section IID and Section A1. Figure 13
shows the continuum-limit convergence of the charge-charge and S3-S3 correlators projected to the singlet and triplet
(as in (50)) towards the exact result. Additional examples can be found in Figure 17.

In Figure 14 we show
〈
Q2
〉
and

〈
S2
〉
, see Appendix A 2 for their derivation. Calculations on the real plane show
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Figure 12. Single particle correlators 〈aa†〉 on a tetrahedron lattice. The low energy correlators are averages of three degenerate
results. The top panels show the correlators for different Nt from HMC with neural network and the results from exact
diagonalization of the Hamiltonian. The lower panels show the relative error (48). Errors for the low and high energy
correlators are labeled E− and E+, respectively.

significant systematic deviations from the exact result. Calculations on learnifolds, however, have improved Q2 for
all U/κ and S2 for U/κ = 3 to the point where they agree with the exact result. Curiously, S2 for (U/κ, κβ) = (4, 6)
is worse on the learnifold. Note, however, that while the real plane results are consistent with the exact value of S2,
they are also consistent with zero.
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Figure 13. Correlation functions between two charge operators ρ or two S3 spin operators on a tetrahedron. The bottom
panels show the relative error (48) for the constant correlator E0 and the average of three heavy correlators E+, respectively.
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Figure 14. The order parameters Q2 (left) and S2 (right) calculated with the tetrahedron system with different couplings U
and inverse temperature β. Shown is a comparison between results calculated with the neural network and on the standard
real plane. The dashed lines show results from exact diagonalization.
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Figure 15. The statistical power Σ for the triangle, diamond, and tetrahedron, with and without a neural-network-enhanced
HMC, with U/κ = 3 and Nt = 64, as a function of inverse temperature κβ. The histograms (left) and statistical powers (right)
are colored from red, a hot temperature, to blue, a cold temperature.

C. Scaling

It is widely expected that the statistical power decays with spacetime volume. This follows from the observation
that the power is the ratio of two partition functions—that of the full theory divided by that of the phase-quenched
theory—and therefore is exponential in a difference of free energies, which is extensive in the spacetime volume [80].

However, because the particular sign problem treated in this work is generated by non-bipartiteness rather than
a chemical potential, the extensiveness in space may depend on the space’s structure. For example, in a triangular
lattice every face is frustrated and the ‘amount of non-bipartiteness’ scales with the lattice volume, so a natural
guess is that the severity of the sign problem scales with space, like a local chemical potential. In contrast, on a
topologically-spherical fullerene, Euler’s theorem guarantees that no matter how large the fullerene becomes there
will always be 12 pentagons—the frustrated faces that are the only defects in the otherwise-bipartite fullerenes; their
number does not scale with the fullerene’s size.

However the spatial part scales with the number of sites, the scaling with Euclidean time continues to hold. For
example, in Figure 4 we showed the statistical power Σ of HMC for the triangle as a function of κβ, which exhibits a
clear exponential decay once κβ & 3. In Figure 15 we show the results of a scaling study on the triangle, a diamond
made of two equilateral triangles with a common edge (or, equivalently, a tetrahedron with one edge deleted), and
tetrahedron comparing straight HMC and our neural-network-enhanced HMC, trained as described above, all with
a discretization of molecular dynamics time targeting a 75% acceptance rate at least. For the HMC-only ensembles
we produced ensembles of 105 configurations, except for the tetrahedron with temperatures above 3.75, where the
statistical power could not be reliably resolved without 106 configurations, and measured the imaginary part of the
action on every 4th configuration, computing the statistical power Σ (15) with uncertainties determined by bootstrap.
For each machine-learning-enhanced ensemble we trained on 1000 flowed configurations as described above, and
produced 60000 configurations, measuring the imaginary part of the action on every other.
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It is apparent that with HMC the tetrahedron has a much worse sign problem than the triangle which, as we
have already seen, has a relatively mild sign problem. This jibes with our intuition that additional frustrated faces
should present a worse problem. Surprisingly, the triangle and diamond have almost the same scaling, counter to our
intuition that the sign problem scales with the number of frustrated faces.

Also clear is that the statistical power of HMC+NN scales much more favorably. For example, the tetrahedron with
neural-network-enhanced HMC scales slightly better than the triangle without. It is also clear that the statistical
power can gain from a well-trained network or suffer because of a poorly trained network. For example, the tetrahedron
κβ = 5 point is slightly lower than the rest of the linear trend, while the κβ = 6.5 point is above the trend. We
emphasize that the uncertainties in Figure 15 are only statistical error bars—they do not account for systematics
that depend on the training of the neural network, which explains why the trend is not as smooth. Nevertheless, the
clear takeaway is that the method provides a dramatically easier sign problem, improving the exponential decay of
the statistical power markedly.

V. CONCLUSIONS

In this work we adapted the learnifold method proposed by Alexandru, Bedaque, Lamm, and Lawrence [55] to
alleviate the sign problem in small, frustrated Hubbard model examples. As shown in Figs. 5 and 10, our method
definitively improves the statistical power, thus providing an exponential improvement in the sign problem. With the
NN, it reproduces results obtained from exact diagonalization on a variety of correlation functions, c.f. Figures 7, 8,
16, 12, 13, 17. The agreement with exact results provides a posteriori evidence that we have an accurate, ergodic
method.

By approximating the holomorphic flow with a neural network, we have developed an HMC method well-suited
for tackling sign problems in the Hubbard model. As opposed to most previous work involving Lefschetz thimbles,
our method does not rely on obtaining the precise location of the main thimble nor on the locations of less critical
thimbles. In fact, our neural networks perform better when not using prior knowledge of thimble locations. The
reason is two-fold. First, during HMC evolution, the gaussian part of our action drives configurations to regions that
are not dominated by a single thimble, but rather multiple thimbles. If we instead only trained on the main thimble,
HMC would quickly force configurations into regions outside the trained network and we immediately encounter a
numerical runaway problem — the imaginary part of the fields become arbitrarily large in an attempt to minimize
the action. Second, our goal is to alleviate the sign problem to a point where standard reweighting techniques can be
applied to obtain sufficiently accurate observables. Thus our maximum flow time was relatively small, yet sufficient
to obtain accurate results. The modest flow times also prevented us from coming too close to points where the
integration kernel vanishes, which in turn kept any ergodicity issues at bay. Though integrating directly on the
thimbles eliminates the sign problem altogether, we believe that determining the exact location of these manifolds
and the subsequent manifold integration is a daunting task (perhaps as difficult as the original sign problem), and
becomes only more difficult if one considers gauge theories in higher dimensions.

A drawback of our method is still the need to calculate the determinant of a Jacobian induced by the complexified
fields. Though our network was able to calculate the Jacobian much more quickly than a direct numerical flowing
of the Jacobian as needed by holomorphic flow, the calculation still scales with the cubic power of the spacetime
volume. Thus calculations for systems with a larger spatial extent or additional timeslices with our network method
will ultimately run into this scaling barrier. Indeed, this was the driving reason for concentrating only on small
system sizes in this study, and, therefore, our claim of a mitigated sign problem can only be made for such systems.
However, the improved scaling, especially of the tetrahedron, towards the zero-temperature limit shown in Figure 15
is heartening. We are actively investigating methods to improve the computational scaling, the goal being to test our
method on larger systems. Already, we see some promise in networks that work directly with complex variables, see
Appendix B.

The sign problem we addressed was due to the non-bipartite spatial lattices, thus providing a basis for extensions
to quasi-zero-dimensional systems like C20 and the buckyball C60

7. Our framework is nonetheless easily adapted to
other sign problems. In future work, we anticipate simulating systems away from half filling and extended models
with sufficiently strong non-local couplings [81], both of which suffer a sign problem not only extensive in euclidean
time but also in space.

7 We do not anticipate the calculation of the determinant of the Jacobian to be too onerous for these systems.
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Appendix A: Correlation Functions of Bilinear Operators

Spin-spin correlation functions are correlation functions between local spin operators Six where x is a lattice site
and i runs over the indices of the Pauli matrices,

Six =
1

2

∑
ss′

cxsσ
i
ss′c
†
xs′ (A1)

and where c is a doublet of operators,

cxs =

(
ax

(−σκ)xb†x

)
(A2)

where σκ is +1 on bipartite lattices and must be −1 on non-bipartite lattices, following the convention of Isle (bipartite
graphs can also have σκ = −1). In Ref. [83] the authors also define, just after (1), the electric charge operator

ρx = c†x,↑cx,↑ + c†x,↓cx,↓ − 1 (A3)

which can be rewritten as ρx = 1− 2S0
x, where the 0th Pauli matrix is the 2× 2 identity matrix. The S operators are

Hermitian. Rewriting those operators into the Isle basis,

S0
x =

1

2

[
axa
†
x − bxb†x + 1

]
S1
x =

1

2
(−σκ)x

[
b†xa
†
x + axbx

]
ρx = nax − nbx = 1− 2S0

x = bxb
†
x − axa†x S2

x =
i

2
(−σκ)x

[
b†xa
†
x − axbx

]
(A4)

nx = nax + nbx = 1− 2S3
x = a†xax + b†xbx S3

x =
1

2

[
axa
†
x + bxb

†
x − 1

]
where the σκ squares away when two b operators are multiplied and no sum is implied on the right-hand sides. The
other two spin bilinears have absolute charge 2,

(S+
+)
x

= a†xbx (S−−)
x

= b†xax. (A5)

There are, of course, other doubly-charged operators but none that live on a single site, by Pauli exclusion.
The three spin operators obey the commutation relation[

Six, S
j
y

]
= iδxyε

ijkSkx (A6)

which may be checked explicitly by writing out the operators and using the anticommutation properties of a and b.
By a similar exercise one may show [

S0
x, S

j
y

]
= 0. (A7)

Single-particle and single-hole operators O with a definite third component of spin s3 obey the operator eigenvalue
equation

[S3
x,Oy] = s3Oyδxy. (A8)

This equation is satisfied when (O, s3) = (a,+ 1
2 ), (a†,− 1

2 ), (b,+ 1
2 ), and (b†,− 1

2 ). Single-particle and single-hole
operators O with a definite electric charge q obeys the operator eigenvalue equation

[ρx,Oy] = qOyδxy. (A9)

This equation is satisfied when (O, q) = (a,−1), (a†,+1), (b,+1), and (b†,−1). Note that the signs differ from the
S3 case.
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One may also construct spin raising and lowering operators in the standard way,

S+
x = S1

x + iS2
x = (−σκ)xaxbx S−x = S1

x − iS2
x = (−σκ)xb†xa

†
x (A10)

which obey the eigenvalue relations

[S3
x, S

±
y ] = ±S±y δxy, (A11)

which can be shown using the single-particle and single-hole eigenvalue equations and the Leibniz rule.
The construction of the number operators proceeds in a similar fashion,

δxx − nax = S0
x + S3

x = axa
†
x = δxx − a†xax (A12)

nbx = S0
x − S3

x = −bxb†x + δxx = −δxx + b†xbx + δxx = b†xbx. (A13)

We can of course drop the constant term in the first definition. The number operators obey the equations

[nax, ay] = −ayδxy
[
nax, a

†] = +a†yδxy (A14)

and similarly for holes. It is easy to see using the eigenoperator equations (A8) and (A9) and the Leibniz rule that
these operators commute with the local electric charge and spin, so that they have vacuum quantum numbers, while
the doubly-charged operators satisfy

[ρx, (S
+
+)
y
] = +2(S+

+)
y
δxy [ρx, (S

−
−)

y
] = −2(S−−)

y
δxy (A15)

and are spin-0 because they commute with the spin operators. The one-point functions may be computed by Wick
contraction

1

Nt

∑
t

〈nax〉 =

〈
1− 1

Nt

∑
t

Pxtxt

〉
1

Nt

∑
t

〈nbx〉 =

〈
1− 1

Nt

∑
t

Hxtxt

〉
(A16)

where we denoted the Wick contraction of ax,tf a
†
y,ti = (Mp)−1

xtfyti
≡ Pxtfyti , defining the particle propagator P , and

similarly for holes bx,tf b
†
y,ti = (Mh)−1

xtfyti
≡ Hxtfyti the hole propagator. These may be combined according to (A4)

to get one-point expectation values for nx, ρx, and S3
x. Bilinears not having vacuum quantum numbers have vanishing

one-point expectation values.

1. Correlation Functions

Now we can write two-point correlation functions

Cuvxy (τ) =
1

Nt

∑
t

〈
Sux,t+τS

v
y,t

〉
(A17)

and we do not need to track time separately, until we start analyzing how to actually analyze these correlation
functions via their spectral decompositions, though we always put the y position at the initial time i = t and the
x position at the final time f = t + τ , so one can read x and y as superindices. When calculating numerically we
sum over all initial timeslices t to ensure the only time dependence is on the time difference τ . In these correlator
expressions x and y are unsummed.

The simplest correlation function is between S+ and S−,

C+−
xy =

〈
S+
x S
−
y

〉
= (−σκ)x+y

〈
axbxb

†
ya
†
y

〉
= (−σκ)x+y 〈PxyHxy〉 (A18)

C−+
xy =

〈
S−x S

+
y

〉
= (−σκ)x+y

〈
b†xa
†
xayby

〉
= (−σκ)x+y

〈
(δyx − byb†x)(δyx − aya†x)

〉
= (−σκ)x+y 〈(δyx −Hyx)(δyx − Pyx)〉 (A19)

where we have taken advantage of the anticommutator rules and that the Wick contractions yield the particle and
hole propagators P and H (suppressing the time dependence for clarity). At half filling on a bipartite lattice, the
cost to create or destroy a spin from the vacuum should be equal and the correlators should match, in the limit of
large statistics. At equal time τ = 0, these correlation functions provide access to the spin-flip information [84].
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Correlations between the number operator np and itself or nh are also simple to write,

Cphxy =
〈
npxn

h
y

〉
=
〈
(δxx − axa†x)(δyy − byb†y)

〉
= 〈(δxx − Pxx)(δyy −Hyy)〉 (A20)

Cppxy =
〈
npxn

p
y

〉
=
〈
(δxx − axa†x)(δyy − aya†y)

〉
=
〈
δxxδyy − axa†xδyy − δxxaya†y + axa

†
xaya

†
y

〉
=
〈
δxxδyy − axa†xδyy − δxxaya†y + ax(δxy − aya†x)a†y

〉
= 〈δxxδyy − Pxxδyy − δxxPyy + Pxyδxy + PxxPyy − PxyPyx〉 (A21)

and we can interchange the p/h species superscripts by exchanging the P and H propagators.While these correlators
are between operators as simple as S+ and S−, computationally these Wick contractions are tougher to compute
because they are “quark-line disconnected”.

We can also build correlators between the spin operators Si. For example C11 is given by

C11
xy =

〈
S1
xS

1
y

〉
=

1

4
(−σκ)x+y

〈[
b†xa
†
x + axbx

] [
b†ya
†
y + ayby

]〉
=

1

4
(−σκ)x+y

〈
axa
†
ybxb

†
y + (δyx − aya†x)(δyx − byb†x)

〉
=

1

4
(−σκ)x+y 〈PxyHxy + (δyx − Pyx)(δyx −Hyx)〉 (A22)

where we have used the fact that we will only get a non-zero result if we have the same number of as as a†s (and
likewise for b) to drop the four-dagger and no-dagger terms. Computing C22

xy requires〈
S2
xS

2
y

〉
=

1

4
(−σκ)x+y

〈[
b†xa
†
x − axbx

] [
ayby − b†ya†y

]〉
(A23)

though when written out in their complete glory, only the non-vanishing operator content in
〈
S1
xS

1
y

〉
remains, so

C22
xy = C11

xy configuration-by-configuration (the vanishing operators have the opposite sign). In fact, using the definition
of the spin raising and lowering operators (A10) one concludes

C11
xy + C22

xy =
1

2

(
C+−
xy + C−+

xy

)
C12
xy − C21

xy =
i

2

(
C+−
xy − C−+

xy

)
(A24)

and we have explicitly checked the first identity by computing the Wick contractions (A18), (A19), and (A22), and
the fact that C22

xy = C11
xy. It is easy to show that once the all-dagger or no-dagger operators are dropped,〈

S1
xS

2
y

〉
= −

〈
S2
xS

1
y

〉
so that C12

xy =
i

4

(
C+−
xy − C−+

xy

)
(A25)

which may be checked explicitly, and is true configuration-by-configuration.
The other two spins S0 and S3 do not enjoy such simplifications, because unlike the raising and lowering operators

the number operators (A13) have vacuum quantum numbers, so there are no zero- or four-dagger terms which may
be dropped from the Wick contractions. We are stuck computing four correlators,

C00
xy =

1

4

(
Cppxy + Chhxy − Cphxy − Chpxy +

〈
1− nax − nay + nbx + nby

〉)
C03
xy =

1

4

(
Cppxy − Chhxy + Cphxy − Chpxy +

〈
1− nax − nay + nbx − nby

〉)
C30
xy =

1

4

(
Cppxy − Chhxy − Cphxy + Chpxy +

〈
1− nax − nay − nbx + nby

〉)
C33
xy =

1

4

(
Cppxy + Chhxy + Cphxy + Chpxy +

〈
1− nax − nay − nbx − nby

〉)
and we define Cρρxy = Cppxy + Chhxy − Cphxy − Chpxy (A26)

Cρnxy = Cppxy − Chhxy + Cphxy − Chpxy (A27)

Cnρxy = Cppxy − Chhxy − Cphxy + Chpxy (A28)

Cnnxy = Cppxy + Chhxy + Cphxy + Chpxy (A29)

so that a ρ superscript indicates the charge operator (A4) and an n superscript the total number operator. The Wick
contractions may be explicitly computed or built by rewriting the definition of the number operators (A13) as

S0
x =

1

2

(
1 + nbx − nax

)
S3
x =

1

2

(
1− nbx − nax

)
(A30)
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and using the particle-hole (A20) and particle-particle (A21) correlators and the one-point functions (A16). Note
that S1,2 cannot be correlated with S0,3 because each term would not have the right constituent operator content to
contract completely, so those correlators automatically vanish.

The doubly charged operators have simple Wick contractions. Note that (S+
+)
†

= (S−−) so that

(C+
+
−
−)

xy
=
〈
a†xbxb

†
yay
〉

=
〈
a†xaybxb

†
y

〉
=
〈
(δyx − aya†x)bxb

†
y

〉
= 〈(δyx − Pyx)Hxy〉 (A31)

C−−
+
+ =

[
C+

+
−
− with P ↔ H

]
. (A32)

Based on the exact results, a Lepage-style argument [85] suggests these doubly-charged correlators should suffer from
a signal-to-noise problem.

2. Conserved Quantities

When the Hamiltonian takes a Hubbard-Coulomb-like form,

H = −
∑
xy

(
a†xhxyay + σκb

†
xhxyby

)
+

1

2

∑
xy

ρxVxyρy (A33)

some of the bilinears may correspond to conserved quantities. For example, we can calculate the commutator with a
local charge density operator,

[H, ρz] =

[∑
xy

a†xhxyay + σκb
†
xhxyby, ρz

]
(A34)

=
∑
x

−a†xhxzaz +
∑
y

a†zhzyay − σκ(a↔ b) (A35)

where we immediately dropped the interaction term since the charge operator commutes with itself. If we sum z over
all space the two terms cancel, so that the total charge

Q =
∑
z

ρz (A36)

is conserved. One similarly finds the total spins in each direction conserved,[
H,Si

]
= 0 Si =

∑
z

Siz (A37)

for i ∈ {1, 2, 3} and in fact the total spin also commutes with the Hamiltonian

[H,S2] = 0 S2 =
∑
i

(Si)2. (A38)

When the operators are conserved, their two-point correlation functions are constant,

CQQ(τ) =
1

Z
tr
[
Q(τ)Q(0)e−βH

]
=

1

Z
tr
[
e+HτQ(0)e−HτQ(0)e−βH

]
=

1

Z
tr
[
Q(0)e−HτQ(0)e−(β−τ)H

]
=

1

Z
tr
[
Q(0)Q(0)e−βH

]
(A39)

where we wrote the Heisenberg-picture Q(τ) in terms of the zero-time operator and the Hamiltonian and repeatedly
used the fact that Q commutes with the Hamiltonian. We can turn this relation on its head and get an estimate for
the equal-time correlator

〈
Q2
〉
by averaging over the temporal separation,〈

Q2
〉

=
1

Nt

∑
τ

CQQ(τ) =
1

Nt

∑
τ

Cρρ++(τ), (A40)

where a + subscript indicates that the spatial index is summed over—in this case, implementing (A36). This same
observation holds for the total spin operators Si (and therefore also for S±), with the Hamiltonian shown above. We
can measure the mean-squared magnetization

〈
S2
〉
by

〈
S2
〉

=

3∑
i=1

1

Nt

∑
τ

Cii++(τ) (A41)
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On small test examples one observes numerically that the correlators are flat with the exponential discretization
and seem linear with time in the diagonal discretization; averaging properly still yields good values—for an explicit
example see the last appendix of Ref. [62].

3. Numerical Results

This section shows results for additional correlators that are not covered in the main text. Correlators in Figures 16
and 17 are computed on the same ensembles (“network”) as those in Sections IVA2 and IVB1, respectively.
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Figure 16. Numerical results for some correlation functions on a triangle lattice with U/κ = 3, κβ = 8 and 105 configurations.

Appendix B: Coupling Layers

As described above, the networks used here have a significant disadvantage, their Jacobians are expensive to
compute. Using coupling layers with a suitable coupling rule as introduced in Ref. [86] instead of dense layers, can
effectively reduce that cost to zero in most applications.

For x, y ∈ RΛ, let {A,B} be a partition of the integer interval J1,ΛK. Λ is the lattice spacetime volume NxNt and
we restrict ourselves to even Λ and |A| = |B| = Λ/2. A coupling layer is defined as

f(x) =

{
yA = xA
yB = g(xA, xB)

(B1)

Here, we focus on affine coupling layers which have a coupling rule of 8

g(xA, xB) = xB � s(xA) + t(xA) , (B2)

where � denotes element wise multiplication and s and t are arbitrary functions which can be parameterized through
neural networks. The Jacobian determinant of a network made out of layers, meaning NN(x) = fn(fn−1(· · · f1(x))),

8 The multiplicative part is typically written as es(xA) in the literature in order to simplify inversion. Since we do not need to invert the
network here, we do not need the exponential.
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Figure 17. Numerical results for some correlation functions on a tetrahedron lattice with U/κ = 3, κβ = 8 and 105 configura-
tions.

factorizes into separate determinants for each layer:

det J = det
∂NN
∂x

= det

(
∂fn(x)

∂x

)
det

(
∂fn−1(x)

∂x

)
· · · det

(
∂f1(x)

∂x

)
(B3)

In the case of affine coupling layers, the rows and columns of the layer Jacobians can be permuted under the de-
terminants such that for each layer A = J1,Λ/2K, B = JΛ/2 + 1,ΛK thus making the matrices triangular and the
determinant fast to compute:

det

(
∂f

∂x

)
= det

(
1Λ/2 0
∂yB
∂xA

s(xA)

)
=

Λ/2∏
i=1

s(xA)i , (B4)

where s(xA) is to be understood as a diagonal matrix in the second expression.
This procedure can not be applied with the approach taken in this work as the transformation Eq. (26) has Jacobian

(see Eq. (28))

det J [φ] = det

(
1+ i

∂NN(φ)

∂φ

)
. (B5)

This determinant does not factorize and we can not bring the derivative of each layer into triangular shape. A and B
can also not be chosen such that the product of layers ∂NN(φ)/∂φ itself is triangular because that would mean that
not all components of φ could influence all components of φ̃ which would limit the expressive power of the network.

The root cause for the problem is the different treatment of real and imaginary parts in Eq. (26) because it leads
to the “1+” in the determinant. A potential solution would be changing the transformation to φ̃ = NN(φ). However,
this requires networks which deal with complex numbers and forgoes the potential benefits of Eq. (26) described in
the main text. It is not trivial to formulate complex valued neural networks. One difficulty comes from the loss
functions which are typically non-analytic. This problem can be avoided by using Wirtinger calculus to construct an
optimization procedure [87, 88]. Another difficulty is finding complex activation functions [89]. Here, the problem is
complicated further because the chain rule of Wirtinger derivatives contains a sum:

z = f(y), y = g(x) ⇒ ∂z

∂x
=
∂f

∂y

∂g

∂x
+

∂f

∂y∗
∂g∗

∂x
(B6)
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This would ultimately produce a sum in the determinant of the Jacobian, preventing factorization. The efficient
Jacobian of Eq. (B4) can thus only be realized with holomorphic neural networks, which implies holomorphic activation
functions. For this first stage of our work we relied on professionally-optimized, third-party machine learning libraries
but support for complex-valued networks is currently incomplete. We plan to develop an implementation with support
for complex-valued coupling layers and pursue the approach described here.
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