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Recent experiments on the twisted transition metal dichalcogenide (TMD) material, WSe2/WS2,
have observed insulating states at fractional occupancy of the moiré bands. Such states were con-
ceived as generalized Wigner crystals (GWCs). In this article, we investigate the problem of Wigner
crystallization in the presence of an underlying (moiré) lattice. Based on the best estimates of the
system parameters, we find a variety of homobilayer and heterobilayer TMDs to be excellent candi-
dates for realizing GWCs. In particular, our analysis based on rs indicates that MoSe2 (among the
homobilayers) and MoSe2/WSe2 or MoS2/WS2 (among the heterobilayers) are the best candidates
for realizing GWCs. We also establish that due to larger effective mass of the valence bands, in
general, hole-crystals are easier to realize that electron-crystals as seen experimentally. For com-

pleteness, we show that satisfying the Mott criterion n
1/2
Motta∗ = 1 requires densities nearly three

orders of magnitude larger than the maximal density for GWC formation. This indicates that for
the typical density of operation, bilayer moiré systems are far from the Mott insulating regime.
These crystals realized on a moiré lattice, unlike the conventional Wigner crystals, are incompress-
ible due the gap arising from pinning with the lattice. Finally, we capture this many-body gap by
variationally renormalizing the dispersion of the vibration modes. We show these low-energy modes,
arising from coupling of the WC with the moiré lattice, can be effectively modeled as a Sine-Gordon
theory of fluctuations.

I. INTRODUCTION

A strongly interacting dilute gas of electrons mini-
mizes its energy by spontaneously breaking translation
invariance to form a Wigner crystal (WC) [1]. Though
this physics is a simple and intuitive manifestation of a
strongly interacting many-body phase, experimental re-
alizations of quantum Wigner crystals have been far and
few between. Thus far, they have been seen in a two
dimensional electron gas (2DEG) realized in semicon-
ducting heterostructures [2] and liquid helium [3]. Re-
cently, moiré materials, synthetic materials constituted
from stacked monolayers with a mismatch in lattice size
or orientation, have emerged as a highly tunable and ex-
perimentally accessible platform to study the physics of
strong electronic correlations as well as topology [4–19].

In particular, homobilayer moiré (HoM) materials or
heterobilayer moiré (HeM) materials based on transition
metal dichalcogenides (TMD), see Fig. 1, have emerged
as prime candidates for realizing WCs [13–15, 20, 21].
This can be largely attributed to the fact that the low
energy moiré electrons in TMDs often reside in extremely
narrow (quasi-flat) bands [18, 19, 22, 23] or have very
large effective masses, even compared to the traditional
2DEG systems [3]. This makes them highly suscepti-
ble to charge localization. Such factors, coupled with
the high controllability of TMDs for studying corre-
lated phenomena [17–19], make them great candidates
for studying Wigner crystallization. Given the plethora
of TMDs, a primary goal in this article is to explore ma-
terial characteristics–lattice constant (a), dielectric con-
stant (ε), effective mass (m∗)–to characterize the ideal
candidates for hosting a WC.

Typically, a pure WC formed in a 2DEG slides when

(a) (b)

FIG. 1. Schematic of AA stacked TMD bilayer: (a) the
side-view shows the MX2 layer, with trigonal prismatic (H)
coordination, stacked on top of the M ′X ′2 layer. The large
(yellow or brown) balls represent the metal ions, M orM ′, and
the small (blue or green) balls represent the chalcogens, X or
X ′. The distance between the metal ions and the chalcogens
are, respectively, denoted by dM and dX . (b) The top-view is
a honeycomb lattice of lattice of lattice constant a.

subjected to a nonzero electric field due to the lack of
a momentum relaxation mechanism. A key signature of
such a WC is its negative compressibility [24–28]. Disor-
der, however, pins the WC and renders it incompressible
as a result of the activation or pinning gap. A WC real-
ized in moiré materials [29, 30] is however, ineluctably in-
fluenced by the underlying moiré lattice, which provides
a uniform periodic background potential as illustrated in
Fig. 2. This provides a pinning mechanism distinct from
that induced by disorder which will strongly influence its
properties. Such a crystal is often referred to as a ‘gener-
alized Wigner crystal’ (GWC) [31], see Fig. 2. Although
disorder-pinned-WCs have been studied widely [2, 3, 32–
36], an in-depth study of GWCs is still lacking.
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FIG. 2. A cartoon rendition of a WC and the relevant
length scales: A Wigner lattice is realized on a moiré super-
lattice (gray background) at filling fraction 2/3. The distance
between two nearest dark (or bright) spots is the moiré peri-
odicity, λm. The distance between the two nearest localized
particles (red dots) is the Wigner lattice periodicity, λw. The
bell-shaped curve, representing the wavefunction of a local-
ized particle, has a width of 2ξ. Our discussion in this paper
is confined to a crystal where the moiré electrons are highly
localized, ξ � λw.

In light of the recent experiments in TMD platforms
exploring the physics of strong correlations [13–16, 37],
a study of the properties of the GWC is timely as it
helps distinguish the GWC from other density ordered
gapped states that a lattice system may host along-
side a GWC [15, 37–40]. Insulating states observed in
WSe2/WS2 are at fractional fillings, ν = 1/3, 2/3, [13]
and those in the twisted bilayer of graphene (TBLG) are
at integer fillings [4–12]. Simple observables like com-
pressibility (or capacitance) are often misguiding and in-
sufficient [41–44] to discern between a pinned WC and
a Mott state as these exhibit similar capacitive signa-
tures [43, 44]. However, in the presence of the moiré lat-
tice, Mott states must preserve the underlying (moiré)
lattice symmetry, and can only be observed at fillings
for which a placement of the electrons preserves the un-
derlying symmetry of the moiré lattice. While this is
difficult for integer fillings exceeding unity [29, 30], it is
impossible at fractional filling observed in WSe2/WS2.
Consequently, the nature of the insulating states at in-
teger fillings remains ambiguous. In TBLG, our earlier
works [29, 30], based on the Mott criterion, precluded the
interpretation of the observed insulating states at integer
fillings as Mott states. Wigner crystallization [29, 30] was
envisaged to be more favorable than Mott insulation at
low charge densities in TBLG.

In this paper, we explore from a materials perspective
the viability of both homo- and hetero-bilayer TMDs for
realizing WCs . Additionally, we study the impact of the
moiré lattice on collective excitations [2, 3, 32] of GWCs
and present estimates for the gap in the deep crystalline
limit which can be directly accessed in transport experi-
ments. Our results are directly of relevance to a slew of

recent experiments in these systems exploring the physics
of the GWC [13, 16]. We organize this article as follows.
In Sec. II, we analyze the material parameters of vari-
ous HoM and HeM systems and assess their candidacy
for crystal formation using several criteria. We identify
a wide range of TMD materials that can support GWC
phases and establish, broadly speaking, HeM to be better
candidates than HoM for this purpose. In Sec. III, in the
elastic limit [28, 45, 46], we obtain an effective Hamil-
tonian that describes harmonic fluctuations in a GWC
pinned to a moiré lattice. We then move to obtaining
the self-consistent equations for the pinning gaps cor-
responding to a GWC in Sec. IV. Finally, we conclude
by connecting our results to the recent experiments in
Sec. V. Technical details are relegated to various appen-
dices.

II. TMD CANDIDACY FOR WIGNER
CRYSTALLIZATION

In this section, we discuss the key criteria for assessing
the candidacy of various TMD bilayers, both HoM and
HeM for Wigner crystallization. Generally, a material
with low carrier density and a high degree of correlation
can be susceptible to forming a WC. A natural way to
measure correlation is to compare the strength of elec-
tronic interaction (U) with the kinetic energy (W ) of the
relevant charge carriers. Denoting the mean separation
between the moiré particles by re, we set the scale of
the Coulomb repulsion to U = e2/εre, where, e is elec-
tronic charge and ε is the dielectric constant. In princi-
ple, one can also use a more realistic interaction potential
for TMDs that can account for the encapsulating envi-
ronment (such as the hBN/SiO2 surroundings) [47–49].
However, at long distances, such a potential distills to
a Coulomb-type potential [50]. Therefore, our assump-
tion remains useful for discussing the low energy physics
of TMDs. Another simplifying assumption we make is to
ignore the full details of the TMD bandstructure [18, 19].
We simply set W = ~2k2/2m∗e with k ∼ 1/re. m∗e
(m∗h) is the effective mass of the electrons (holes) in the
conduction (valence) band. For re of the order of the
moiré lattice constant, λm, one gets, W ∼ O(1 meV) and
U ∼ O(10 meV).

Here, we reiterate that the important (in-plane) length
scales in the problem, as shown in Figs. 1 and 2, are –
the monolayer lattice constant (a), the moiré periodic-
ity (λm), the Wigner lattice periodicity (λw), and the
localization length of the moiré particles (ξ). a is the
smallest scale and can be neglected in a low energy the-
ory. λm is a geometric scale which is fixed for a given
TMD device. Unlike these two lengths, ξ and λw are
dynamically generated. By working in the deep crys-
talline limit where ξ � λm, λw we can drop ξ. Thus,
the most important scale in our problem is λw, and its
interplay with λm. Since λw = 1/

√
πne is a function of

electronic density ne (or hole density nh), it allows us to
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study crystallization as a function of doping levels. Using
this, the kinetic (W ) and potential (U) energies can be
recast as W−1 = 2m/πne and U−1 = ε

√
πne/e

2. The
dimensionless ratio of these two parameters, also known
as rs, provides crucial insight into nature of a correlated
state [51]. Ignoring the effect of the moiré potential on
the energies, we obtain

rs =
g

a0m0

m∗e
ε
λw , λw =

1
√
πne

, (1)

where a0 = ~2/m0e
2 = 0.529 Å is the Bohr radius with

m0 as the bare electron mass. And, g = 2 is a valley de-
generacy factor for TMDs. This valley degree of freedom
can significantly alter the correlation properties and the
threshold for Wigner crystallization. In a 2-valley 2DEG
the crystallization threshold drops to rs = 29.5 [52] from
rs = 37 in a 1-valley system [51, 53]. The further rs ex-
ceeds this threshold value, the easier it is to form a WC.
For further discussion on a more fine-tuned definition of
rs, see [30]. Note however, due to the availability of a set
of potential minima facilitated by the underlying moiré
lattice, the threshold value for GWCs could be lower than
rs = 29.5.

Clearly, Eq. (1) shows that the material parameters
that favor Wigner crystallization (or enhance rs) are a
high effective mass, reduced screening or a small dielec-
tric constant and low carrier density. Firstly, low energy
carriers in TMDs or twisted bilayers of TMDs are par-
ticularly heavy. Secondly, though the dielectric constant
of a material is fixed, it can be altered by introducing a
spacer layer [16], such as a hexagonal boron nitride (hBN)
monolayer. Screening can then be reduced by a judicious
choice of spacer material , thereby favoring Wigner crys-
tallization.

Evidently however, the moiré scale dependence of rs is
not manifest in Eq. (1). This can be naturally restored
by measuring the carrier density through the filling frac-
tion of a moiré unit supercell. This can be understood as
follows. The area of a (hexagonal) moiré unit supercell

is given by As =
√

3λ2
m/2. If the full occupancy of the

relevant low energy band is N0, usually determined by
the discrete symmetries of the system, then the supercell
density is given by ns = N0/As ∼ 1011-12 cm-2. A state
consisting of N electrons in this band is observed at a
filling fraction of N/N0 ≡ ν, or at a density ne = νns.
Inserting this in Eq. (1), we observe that, for a given ma-
terial, there exists a critical density, nmax

e , or a maximal
filling fraction, νmax, above which a GWC cannot exist.
Correspondingly, since rs ∝ λm [replacing λw with λm in
Eq. (1)], there also exists a critical moiré length below
which a material cannot host a GWC. It is worth noting
here that the true advantage of moiré materials in real-
izing WC is this availability of large length scales that
govern most of the physics.

Before proceeding further, we note the above discus-
sions are pertinent for zero temperature WC (or quantum
WC) only. As the temperature increases, one needs to
confront the problem of crystal melting. Although an

accurate estimation of this melting temperature can be
a subtle issue [54–56], for simplicity, we estimate it using
the classical Lindemann criterion, kBTL ' 0.01U . Our
discussions in this paper will be confined to the physics
of a GWC at T � TL. In the subsections below, we will
explicitly evaluate all the above mentioned parameters
for several TMDs.

A. Homobilayers

In a HoM system, the top and the bottom layers con-
sist of the same TMD where each layer projects to a
2D honeycomb lattice (see Fig. 1b). This, therefore, is
geometrically equivalent to a twisted bilayer graphene
system. The moiré periodicity in a HoM is thus given
by [59] λm(θ) = a

2 sin(θ/2) ' a/θ. Here, θ is the twist an-

gle between the two TMD layers. (ε , ε⊥) and (ε
(2)
, ε

(2)
⊥ )

denote the in-plane and out of plane dielectric constants
of a monolayer and a homobilayer TMD respectively.
We identify the geometric mean of these two constants,

ε(2) =

√
ε
(2)
⊥ ε

(2)
, as the dielectric constant of the bilayer

system [60].
Using these parameters, we summarize our results for

crystallization criteria in different candidate HoMs in Ta-
ble I. For a typical twist angle θ = 1◦, we find that,
U/W > 1 for all the homobilayers in Table I, rendering
them strongly interacting systems. The corresponding
rs computed using Eq. (1) shows that all the HoMs in

TABLE I. Wigner crystallization criteria for HoMs at θ = 1◦:
Due to the larger effective masses, the Mo-based compounds
are generally better suited to forming GWCs as compared to
the W-based compounds. In regard to rs, or U/W , we con-
clude a twisted bilayer of MoSe2 to be the best candidate for
Wigner crystallization. The effective masses and dielectric
constants are adapted from Ref. [57], and Ref. [58], respec-
tively. Experimental lattice constant (a) data and the dis-
tance between the TMD layers (dX) are compiled in Ref. [57].
Eq. (1) reduces to rs = 674m∗e/m0ε for ne = 1011cm-2, which
we use as the unit for densities mentioned here.

HoMs MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

m∗e/m0 0.46 0.56 0.62 0.26 0.28 0.26

ε⊥(ε‖) 4.8(3.0) 6.9(3.8) 8(4.4) 4.4(2.9) 4.5(2.9) 5.7(3.3)

ε
(2)
⊥ (ε

(2)

‖ ) 6.9(4.4) 7.9(4.6) 8.6(5.5) 6.1(4.2) 6.3(4.3) 8.4(5.2)

dX [Å] 3.17 3.33 3.60 3.14 3.34 3.60

a [Å] 3.16 3.29 3.52 3.15 3.28 3.50

λm [nm] 18.1 18.8 20.2 18.0 18.8 20.0

U/W 5.0 5.8 6.0 3.1 3.3 2.6

rs|1011cm-2 56.3 62.6 60.8 34.7 36.3 26.5

nmax
e 3.6 4.5 4.2 1.4 1.5 0.8

νmax 1.02 1.38 1.48 0.40 0.46 0.28

TL [K] 1.7 1.5 1.2 1.8 1.7 1.3

nMott10−3 2.5 3.1 2.9 0.9 1.0 0.6
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Table I are susceptible to forming GWCs since they all
have rs fairly above the crystallization threshold. The
critical density for crystallization is found to be nearly
the order of ns. The critical density, or the closest ratio-
nal filling fraction, νmax = nmax

e /ns, below which a HoM
system can host GWC is obtained by setting rs = 29.5
in Eq. (1). Based on the Lindemann criteria, our results
predict that the GWCs should be stable in the range of
1K-3K. Our simple analysis shows that Mo-based HoMs
are more viable than W-based compounds for the real-
ization of GWCs.

Finally, we evaluate the Mott criterion, , n
1/2
e a∗0 ≈

O(1), which a system needs to satisfy in order to host
Mott insulating states [61]. The effective Bohr radius,
a∗0 = ~2/me

∗e
2
∗ and e∗ = e2/ε. Evalutating this for

HoMs, we find that for experimentally relevant densities
(that is near the fractional fillings of a moiré unit super-

cell) the Mott criterion is far from being met, n
1/2
e a∗0 ∼

O(10−2)� 1. Satisfying the Mott criterion, n
1/2
Motta∗ = 1

requires densities nearly three orders of magnitude larger
than the maximal density for GWC formation. This in-
dicates that for the typical density of operation, HoM
systems are far from the Mott insulating regime.

B. Heterobilayers

In HeM materials, the top and bottom layers contain
different TMDs. We now explore the potential for GWCs
in HeMs in the manner done in the preceding section for
homobilayers. Although the planar projection of each
layer is a honeycomb lattice with different periodicities,
a moiré pattern emerges even without introducing any
twist angle (‘near-aligned sample’). Twisting alters the
moiré periodicity; in particular, it reduces with increas-
ing twist angle and often approaches the original lattice
constant at ‘large-twist-angles’. For example, in a HeM
with a small difference in lattice constants [72], the moiré
periodicity is [63, 73]

λm '
a>√

δ2
a + 4 sin2(θ/2)

, δa = 1− a<
a>

. (2)

Here a>(<) is the largest (smallest) lattice constant
among the two layers. We see that λm is strongly in-
fluenced by the twist angle for samples with small δa. As
shown in Table I, this is the case of HeMs with differing
metal ions [MX2/M

′X2 ] which have δa . 0.1%. HeMs
with differing chalcogens [MX2/MX ′2 ] tend to have large
δa, i.e. around 4% and are less sensitive to small angle
twists. Motivated by the experiment of Ref. [13] which
concern θ . 1◦ [63], we confine our discussion to nearly-
aligned heterobilayers.

The effective dielectric constant of the HeM system is
obtained by treating the two layers as two dielectrics (or
capacitors) in series,

d1 + d2

ε
=
d1

ε1
+
d2

ε2
, (3)

where εi and di are the dielectric constants and the thick-
ness of the top and bottom layers, respectively. We as-
sume d1 = d2 and as the two layers are different and
stacked along the direction that is normal to the dielectric
plane, we set εi to be the in-plane monolayer dielectric
constants, ε ,i. For near-aligned samples with θ = 0.5◦,
using Eq. (2) and Eq. (1) we evaluate U/W and rs for
different HeMs. Our results are summarized in Table II
(see also App. A for a similar table on θ = 5◦). We find
generically that hole carriers have larger rs (or correla-
tion) due to their larger effective masses. Almost all the
HeMs considered in Table II can Wigner crystallize for
a hole density of 1012 cm-2or less. However, except for
a few, most of the electronic carriers do not crystallize.
Also note that the Lindemann temperature is the same
for both electron and hole crystals since U , under our
assumptions, simply depends on the geometry and not
on the effective mass.

Since MoSe2/WSe2 and MoS2/WS2 share the same
chalcogens, they are quite sensitive to twist angle. For
θ ∼ 0◦, the moiré length can be as large as a microme-
ter and it gradually reduces to about a deca-nanometer
by 5◦ of twisting. The correlation factor U/W , there-
fore, also reduces by nearly two orders of magnitude. For
the remainder of the HoMs, though the above mentioned
trend is still valid, however, quantitatively, no signifi-
cant change is observed in the correlation factor since
the moiré length scale remains largely insensitive to small
changes in the twist angle. In particular, for WSe2/WS2,
we find that at filling fraction ν = 1/3, rs = 44.0 (26.8)
for holes (electrons), and at ν = 2/3, it is 31.1 (19.0)
for holes (electrons). This thus explains why Regan et
al. [13] observe GWC states on the hole side but not on
the electronic side. This is one of our key results as it
bares directly on the experiments.

Lastly, we evaluate the critical density, or filling frac-
tion, above which the heterostructure will be unable to
host GWCs. In particular, for WSe2/WS2 we observe
that no hole-crystal can exist above a filling fraction of
0.73 (≈ 3/4). States at any filling fraction below this,
even other than those at 1/3 and 2/3 [39], are perfectly
allowed. Similarly, on the electron side, GWC can exist
up to ν = 0.28 (≈ 1/4).

To summarize, based on the best estimates of the sys-
tem parameters, we find a variety of homobilayer and
heterobilayer TMDs to be excellent candidates for realiz-
ing WCs. In particular, our analysis based on rs indicates
that MoSe2 (among the homobilayers) and MoSe2/WSe2

or MoS2/WS2 (among the heterobilayers) are the best
candidates for realizing WCs. We also establish that
due to larger effective masses of the valence bands, hole-
crystals in general, are easier to realize than electron-
crystals, an observation consistent with experiments. In
the remainder of the paper, we focus on the properties of
a GWC.
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TABLE II. Wigner crystallization criteria for a nearly-aligned HeMs at θ = 0.5◦: Among the HeMs listed here, MoSe2/WSe2 and
MoS2/WS2 seem to be the most susceptible to forming an electronic and hole GWC, respectively. At least one experimental
study of the pertinent HeM is referenced here. The effective masses are adapted from Ref. [62]. The unit of density is
ne = 1012cm−2. Asterisked values in the rs row indicate values crossing the crystallization threshold.

HeMs WSe2/WS2 MoSe2/MoS2 MoTe2/MoSe2 MoSe2/WS2 MoSe2/WSe2 MoS2/WS2 MoTe2/WSe2

Refs. [13, 63] [64] [65, 66] [67] [68, 69] [70] [71]

m∗e(h)/m0 0.28 (0.46) 0.42 (0.71) 0.46 (1.37) 0.28 (0.71) 0.54 (0.44) 0.46 (1.70) 0.30 (1.33)

2/(ε−1
1 + ε−1

2 ) 2.9 3.35 4.08 3.29 3.29 2.95 3.5

λm [nm] 8.1 8.1 5.3 7.6 35.6 34.0 5.1

U/W |e(h) 3.0 (4.9) 3.9 (6.6) 2.3 (6.9) 2.5 (6.3) 22.4 (18.2) 20.3 (75.1) 1.7 (7.5)

r
e(h)
s |1012cm-2 20.6 (33.8∗) 26.7 (45.2∗) 24.0 (71.6∗) 18.2 (46.0∗) 35.0∗ (28.5) 33.3∗ (122.9∗) 18.3 (81.1∗)

TL [K] 7.1 6.1 7.6 6.7 1.4 1.7 9.3

nmax
e(h) [1012 cm-2] 0.5 (1.3) 0.8 (2.3) 0.7 (5.9) 0.4 (2.4) 1.4 (0.9) 1.3 (17.4) 0.4 (7.5)

ν
e(h)
max 0.28 (0.73) 0.46 (1.31) 0.17 (1.46) 0.2 (1.19) 15.56 (10.0) 13.0 (174.0) 0.09 (1.7)

III. EFFECTIVE THEORY OF GWC

Understanding the collective excitations of a GWC is
critical in distinguishing them from the other density or-
dered states observed in the lattice system. Here, we will
focus on the vibrational modes of the GWC in absence
of an external magnetic field. For analytical tractabil-
ity we will confine our discussion to the limit when the
GWC is deep in the crystalline regime. We represent the
particle density of the system using a lattice of Gaussian
wave-packets of size 2ξ (see Fig. 2),

ρ(x) =
∑
i

|ψ (x−Ri) |2,

|ψ(x)|2 =
1

2πξ
exp

(
−|x2|/4ξ2

)
.

(4)

where Ri = R0
i + ui(t), describes fluctuations around

the mean lattice sites R0
i . The GWC we consider is far

away from the phase boundary with the liquid phase so
that we can treat the mean fluctuation in the position
of the localized electrons, 〈r2〉 ∼ ξ2, to be much smaller
than the Wigner lattice periodicity, ξ � λw, as in Fig. 2.
Since the field ui(t) measures the fluctuation around the
mean position of a particle, it is naturally O(ξ). For a
GWC at T = 0, ξ (hence, ui) can be tuned by changing
the density alone. A self-consistent solution of ξ as a
function of density is discussed in Ref. [74]. Finally, since
ξ increases with increasing temperature, we will restrict
our discussion to low temperature, T � TL.

In this regime, the above density functional can be
written in terms of harmonics (see App. B for a deriva-
tion)

ρ(x) ' ρ0

[
1−∇ · u(x) +

∑
l 6=0

eiKl·xρl(x)
]
. (5)

Here, ρl(x) = e−iKl·u(x) and ρ0 is the average density
(over the entire sample). The second term accounts for

long range density fluctuations over several λw and cou-
ples to couples to the long-range (or q ∼ 0) component of
the Coulomb interaction. The remaining terms take care
of the density fluctuations at a length scale comparable
to or smaller than λw and hence can be referred to as
un-smeared density. The wave vectors Kl = {±lκn} de-
note the Brillouin zone (BZ) vectors of the undeformed
GWC. Here, l = 1, 2, · · · are simply ‘size multipliers’ of
the BZ. Formally, the l = 0 term is nothing other than ρ0

in Eq. (5). The last term above also contains a summa-
tion over the index n appearing through Kl. We perform
this summation implicitly since it does not play any sig-
nificant role in our analysis.

The long wavelength theory describing the fluctuations
of the crystal is given by an elastic Hamiltonian

Heff =
1

2

∑
ωn

∫
d2q

(2π)2
uα(q, ωn) Φαβ(q, ωn)uβ(−q,−ωn),

(6)

where α, β = x, y are summed over, momenta {q} form
the Fourier basis, and the kernel Φαβ(q, ωn) is the elas-
tic matrix. Henceforth, we will express all the quan-
tities after performing the frequency (ωn) summation.
In case of a classical (ωn = 0) free theory, this ma-
trix is Φαβ = cq2δαβ , with the real space Hamiltonian

Heff = c
2

∫
d2x [∇ · u(x)]

2
. Here c is an elastic modulus.

The presence of the moiré potential and the Coulomb
interaction between the particles generates the following
terms in the hamiltonian

H1 = He–l +He–e, (7)

where electron-moiré lattice interaction and the electron-
electron interaction terms, respectively, are

He–l = −
∫
x

V (x)ρ(x), (8a)

He–e =
1

2

∫
x,x′

U(x− x′)[ρ(x)− ρ0][ρ(x′)− ρ0] . (8b)



6

FIG. 3. Schematic of a MBZ (blue) and a WBZ (red). The
BZ vectors are, |gn| = 4π√

3λm
and |κn| = 4π√

3λw
. In general,

since λw > λm, the WBZ is smaller than the MBZ. For the
particular case drawn above, λw = 3λm. In other words, the
third WBZ is the same as the first MBZ (|κn| = 3|gn|).

We will approximate the (triangular) moiré potential,
V (x), by [19, 75]

V (x) = 2Ṽ

3∑
m=1

cos (x · gm + φ) , (9)

where Ṽ ∼ O(10 meV) sets the depth of the moiré po-
tential and φ determines the shape of the potential.
These two (intrinsic) parameters can be fixed for a given
TMD using methods developed in Ref. [75]. Lastly,
the unit vectors of the moiré Brillouin zone (MBZ) are
given by gm = 4π√

3λm

(
cos 2πm

3 , sin 2πm
3

)
. Similarly, the

unit vectors of the Wigner Brillouin zone (WBZ) are
κn = 4π√

3λw

(
cos 2πn

3 , sin 2πn
3

)
.

A. Interaction with the moiré potential

We now focus on the moiré potential given by the first
term term in Eq. (7). In terms of a reciprocal vector of
the MBZ, Gm = {±mgn}, see Fig. 3, the periodic moiré
potential is [19, 63]

V (x) =
∑
m

Vm e
iGm·x. (10)

As before, m is a size multiplier for the principal MBZ
and a summation over the index n is made implicit. We
assume the potential to be an even function in position
space and set the m = 0 mode to zero. For the potential
in Eq. (9), we obtain V (Gm) = Ṽ eisgn(m)φ. Substituting
Eq. (10) in Eq. (8a), we obtain the following moiré term

He–l = −ρ0

∑
l,m

Vm

∫
dx ei(Kl−Gm)·x ρl(x). (11)

In writing the above expression, we have set the energy
of the moiré lattice, ∼

∫
x
V (x), to zero and neglected

the gradient term in the density as this term represents
an external source term (linear in u) and does not con-
tribute to the physics of the pinning gap. Note that the
integrand here involves both the WBZ and the MBZ vec-
tors. This term plays a critical role in imposing a certain
set of commensuration constraints. In general, a GWC
need not conform to the lattice symmetries of a back-
ground (e.g., moiré) lattice. With changing density, one
often anticipates the GWC to go through a large set of
commensurate-incommensurate transitions, also known
as the devil’s staircase [76, 77], where the incommensu-
rate structures may also have a completely different lat-
tice symmetry [78] and associated stability issues. These
states and the accompanying transitions cannot be de-
scribed by the elastic (linear harmonic) theory developed
here.

In this paper, we focus exclusively on the case where
the GWC and the background lattice share the same lat-
tice symmetry, such as in the experiment of Regan et
al. [13]. As we will show below, this leads to a geomet-
rical condition rG1 = sK1, where (r, s) are co-primes
and the subscript 1 refers to the principal BZ vectors.
Finally, since usually λw ≥ λm, hence |G1| ≥ |K1|. As
a result, r ≤ s. For instance, the WC observed in [13]
at 1/3-filling, or a state at ν = 1/3n in general, simply
has its BZ shrunk (without any rotation) by a factor of
2n. This state of affairs obtains because the GWC at
1/3n-filling has a unit cell that is 2n times larger than
that of the moiré lattice. Therefore, for ν = 1/3n, r = 1
and s = 2n.

B. Electronic interaction

Using the underlying translation invariance, we write
the interaction term in, Eq. (7) as

He–e =
ρ2

0

2

∫
x,x′

U(x− x′) [∇ · u(x)] [∇ · u(x′)] +

ρ2
0

2

∫
x,x′

∑
l

U(x− x′)eiKl·(x−x′)ρl(x− x′). (12)

Note that terms with Kl 6= Km have been discarded as
they are highly oscillatory.

We now switch from the cartesian basis ux, uy to one
described by the longitudinal (u ) and transverse (u⊥)
components with respect to the momentum vectors (q)

uα(q) = u (q)q̂α + u⊥(q)εαβ q̂β , (13)

where α, β = {x, y}, and εαβ is an antisymmetric tensor,
εxy = 1 = −εyx. Note that u and u⊥ are the bulk
compression and shear modes respectively. In this basis,
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the first term, H
(1)
e–e, in Eq. (8b) becomes

H(1)
e–e =

ρ2
0

2

∫
x,x′

U(x− x′) [∇ · u(x)] [∇ · u(x′)]

=
d

2

∑
q

q u (q)u (−q) ,
ρ2

0e
2

ε
≡ d . (14)

We see that the q = |q| term results from the long-
range (in 2D) nature of the interaction, U(q) ∼ 1/q.
Had we considered a shorter-range interaction of the form
U(q) ∼ 1/qγ , the proportionality above would have been
modified to q2−γ . The transverse modes do not change
the local density and remain unaffected by the Coulomb
interaction. Typically, long wavelength electrostatic fluc-
tuations, namely the plasma modes, are always longitu-
dinal in the absence of a magnetic field (since q×E = 0,
where E is an electric field).

In the elastic limit |u(x) − u(x′)| � λw, we Taylor

expand the second term, H
(2)
e–e, in Eq. (12). The first-

order term vanishes because the undeformed GWC has
an energy minimum at u = 0 and the second-order term
gives the correction

H(2)
e–e '

ρ2
0

2

∑
l

∫
x,x′

V (x− x′)eiKl·(x−x′)Kl,αKl,β

× [uα(x)− uα(x′)] [uβ(x)− uβ(x′)] . (15)

Here, Kl,α denote the α = x, y components of Kl.
Henceforth, unless mentioned, we will set ρ0 = 1.

As shown in App. C, this term can be absorbed into
a redefinition of the elastic coefficients [28, 79, 80]. We
note that we have considered these elastic constants to
be q-independent, which is a feature of the local elastic
theory. One can also extend this analysis to non-local
elastic theories where these constants can be considered
to be q-dependent. Generalizing to an interaction of the
form U(x) ∼ 1/|x|γ , we find that the full Hamiltonian
defining the low energy fluctuations of the GWC can be
expressed as

Heff =

∫
q

u (q) Ω u (−q) + u⊥(q) Ω⊥u⊥(−q) +He–l;

Ω (q) = c q2 + d q2−γ , Ω⊥(q) = c⊥q
2. (16)

He–l is given by (11). Ωa are the dispersions of the lon-
gitudinal and the transverse modes. As discussed previ-
ously, it is only the longitudinal mode whose dispersion
is affected by γ, see Fig. 4. Secondly, as discussed in
App. C, these elastic constants follow ca ∝ λγw/ε. No-
tably, the elastic modulus d is a density-independent
constant only in the low density limit far away from WC
melting. Also, as screening (ε) increases, the WC be-
comes loosely bound due to reduced interaction. This
makes a WC less rigid, or ca decreases with increasing ε.

FIG. 4. Dispersion of the longitudinal (solid) and transverse
(dashed) modes of a 2D WC (independent of its coupling to
a moiré potential). Here, we have set ca = 1 = d‖. γ = 1
corresponds to the long-range Coulomb interaction. With in-
creasing γ, the interaction becomes increasingly short-range.
For γ = 2, as can be seen from Eq. (16), a gap of size d‖
appears in the longitudinal mode. With further increase in γ,
this gap diverges.

IV. GAUSSIAN VARIATIONAL
MINIMIZATION

In this section, we treat the effective Hamiltonian ob-
tained in the previous section using the Gaussian vari-
ational method (GVM) developed in Refs. [45, 46, 81].
This allows us to obtain the dispersion of the vibrational
modes of the GWC and the associated pinning gap aris-
ing from the interaction between the Wigner lattice and
the moiré lattice. Motivated by the experiments, we as-
sume the GWCs to be weakly coupled to the moiré lat-
tice. This allows us to treat the vibrations of the local-
ized particles as harmonic fluctuations. This is formal-
ized by the GVM as follows. Consider a Hamiltonian
H = 1

2

∫
q
u(q) Ω(q)u(−q) + H ′, where the kernel Ω(q) is

known a priori and H ′ can contain non-linear or polyno-
mial terms in the field u(q). For a vector field u(q), this
kernel becomes a matrix. The goal is to approximate the
Hamiltonian H by the following quadratic form,

H0 =
1

2

∫
q

u(q)G−1(q)u(−q) . (17)

The optimal function G(q) is then obtained by minimiz-
ing the variational free energy of the theory H, Fvar =
F0 +〈H−H0〉0 where 〈..〉0 is the expectation value evalu-
ated with H0 with respect to G(q). In App. D we provide
a pedagogical discussion on using this GVM method for
the simple case of a Sine-Gordon (SG) interaction as the
hamiltonian in (16) closely resembles the SG problem.
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A. Applying GVM to GWC

We use the GVM to obtain the gap opened by the
moiré lattice. Since the displacement is a two component
field we have both Ω (q) and Ω⊥(q). The variational free
energy becomes

Fvar =
T

2

∫
q

∑
a=‖,⊥

{
Ωa(q)Ga(q)− log[TGa(q)]

}
−

∑
l,m

Vm δ (Kl −Gm) exp

−T
2

∑
b=‖,⊥

K2
l,b

∫
q

Gb(q)

 .
(18)

Note that in the absence of a magnetic field there is no
admixture of the longitudinal and transverse modes.

The Green function that minimizes the free energy in

Eq. (18) can be approximated by G(0)
a (q) ' 1

Ωa(q)+∆a
,

where the gaps ∆a satisfy the following self-consistent
equations (SCE)

∆a =
∑
m∈M

VmG
2
m,a exp

−T
2

∫
q

∑
b=⊥,

G2
m,b

Ωb(q) + ∆b

 .

(19)

Here a is not in the Cartesian basis but in the orthonor-
mal basis discussed in Eq. (13). Though at first glance
Eq. (19) seems independent of Kl (or λw), we note
that the conservation of momentum imposed through the
delta function in Eq. (18), restricts the set ofGm to those
satisfying rG1 = sK1. The set of such restricted (mo-
mentum conserving) values of Gm is denoted byM. For
instance, for the WC at 1/3-filling, since, as explained
previously, r = 1, M is trivially the first MBZ. After
integrating, we find that the gap equations take the form

∆a '
∑
m∈M

VmG
2
m,a

(
∆⊥
c⊥Λ2

)TG2
m,⊥

8πc⊥
(

∆

c Λ2

)TG2
m,

8πc

× exp

[
TG2

m,

8πc
∆̃
(
π + 2 tan−1 ∆̃

)]
. (20)

Here, d /
√

4c ∆ − d2 ≡ ∆̃ and Λ is a UV cutoff for
the momentum space integration. The zero temperature
limit for the gap above is

∑
m∈M VmG

2
m,a ≡ ∆0

a. And, a
low temperature expansion is obtained to be

∆⊥ = A⊥ +B⊥ log ∆⊥;

A⊥ = ∆0
⊥ + T

∑
m∈M

VmG
2
m,⊥

[
Dm −

G2
m,⊥

8πc⊥
log c⊥Λ2

]
,

Dm =
G2
m,

8πc
log

∆

c Λ2
+
G2
m,

8πc
∆̃
(
π + 2 tan−1 ∆̃

)
,

B⊥ = T
∑
m∈M

Vm
G4
m,⊥

8πc⊥
. (21)

Here A⊥ is dependent on ∆ , and B⊥ is a geometric
constant. From this, we obtain a closed-form expression
for ∆⊥ in terms of ∆ . By bringing the above equation
to the form wew = z, we obtain the solution w = Wk(z),
where Wk(z) is the (multivalued) Lambert W function
with its branch indexed by the integer k. In fact, when
w < 0 (for us, w = −∆⊥/B⊥), the solution has two
branches, W0(z) and W−1(z). We will drop the latter
solution since it is not a regular function at ∆⊥ = 0.
Therefore,

∆⊥ = −B⊥W0

(
−e
−A⊥/B⊥

B⊥

)
. (22)

This is the explicit dependence of ∆⊥ on ∆ (through
A⊥ only). Similarly, an SCE for the ∆ component is

∆ = ∆0 + T
∑
m∈M

VmG
2
m,

G2
m,⊥

8πc⊥
log

∆⊥
c⊥Λ2

, (23)

where ∆⊥ is given by Eq. (22). In the next subsection
we discuss the solutions obtained here, especially in con-
junction with the recent experiments.

B. Discussions

Note that the last term in Eq. (20) is an artifact of
the long-range interaction which vanishes if d‖ = 0. This
term, which is the compression term, purely accounts
for the elastic contribution to the gap. For d = 0, the
gap equation is equivalent to the vector SG potential, see
Eq. (D6).

Secondly, since Λ appears in the denominator of
Eq. (20), the gap vanishes for temperatures larger than a

characteristic temperature, min
(

8πc
G2 , 8πc⊥

G2
⊥

)
≡ T∗. This

is a feature of the equivalence of the effective interaction
Hamiltonian to that with the SG potential, see discus-
sions in the App. D. The analysis is valid only if T∗ is
much smaller than the melting temperature (such as TL)
of a GWC. Note that since T∗ ∼ caλ2

w, this temperature
scale can be controlled by means of the twist angle.

The pinning frequency is related to the zero tem-
perature gap as [81] ωap =

√
∆0
a/ρ0. Notably, since

the pinning frequency scales with the size of the WBZ,
ωap ∝ Ga, it becomes increasingly difficult to de-pin a WC
of smaller unit cell. This is since a WC with large unit
cell (or small G) will be loosely bound compared to one
with smaller unit cell (as the particles are more tightly
packed). Therefore, the former can be easily de-pinned
by an external electric field. Similarly, for a deeper moiré
potential the pinning frequency increases (ωap ∝ Ṽ 1/2)
since the particles get tightly bound to the potential min-
ima. Introduction of a spacer layer can further modulate
this frequency. Geometrical factors aside, the pinning
gap thus becomes O(. meV). With increasing tempera-
ture, as seen in Eq. (21), this gap softens as the increasing
thermal fluctuation facilitates de-pinning. The extent to



9

which this gap decreases depends on various coefficients
appearing in Eq. (21). Most notably, via the elastic con-
stants, cα, the logarithm term has a coefficient that is
directly proportional to the dielectric term. Thus, the
larger the screening, the smaller the pinning gap. There-
fore, although the geometrical constants associated with
various HoM or HeM TMDs may not affect the pinning
gap of a GWC, the dielectric constant can however alter
the physics. This gap translates into determining which
state is a stronger insulator.

V. CONCLUSION

We have addressed the feasibility of realizing Wigner
crystals in a host of HoM and HeM systems. Note how-
ever, that our results are based on estimated material
parameters of the TMD moiré materials. Corrections to
these results might arise principally from three sources.
The first is from the full band structure of the TMD het-
erostructures [30]. Second, a material correction arising
from twist-angle inhomogeneity across a sample [82, 83]
which may cause additional pinning or de-pinning of the
WC could also affect the physics. Similar effects may also
arise from atomic relaxations [84, 85]. Third, the pres-
ence or absence of a spacer layer [16], such as a monolayer
hBN, may also affect the correlation energy, thereby af-
fecting Wigner crystallization. A first principles calcu-
lation of the elastic coefficients of the GWC is also im-
portant to obtain good qualitative and quantitative es-
timates for the pinning gap and the phonon spectrum.
All of these aspects merit further studies as this will help
narrow the density and temperature regimes where WC
is feasible.

Due to the presence of a pinning gap, transport mea-
surements to confirm the existence of WC states can be
misleading as there can be many other kinds of insulating
states with similar transport characteristics. Although
observation of such states at fractional occupancy in-
creases their likelihood of being Wigner states, especially
for those observed at incommensurate fillings, however,
the possibility of other density ordered states cannot be
ruled out, particularly for commensurate fractional oc-
cupancies. Devising smoking gun evidence for various
density ordered states may be an interesting task for the-
orists and experimentalists alike.

As was mentioned before, once a system meets the
material constraints to realize a GWC, there exists a
plethora of crystalline states below the filling fraction
νmax. These states constitute a devil’s staircase and have
a rich physics of commensurate-incommensurate transi-
tions [76, 86, 87]. Due to various stability criteria, only
a few such states might display clear experimental sig-
natures. However, with careful analysis or improvements
in experimental conditions, one may gain insight into the
other states as well. In fact, a theoretical framework to
understand these commensurate-incommensurate transi-
tions in presence of an underlying lattice is an interesting

theoretical task and is left for future work.
B.P. and P.W.P. thank the NSF under grant DMR19-

19143 for partial funding of this project.

APPENDIX

Appendix A: HeM at θ = 5◦

In Table A1 we present crystallization parameters for
HeMs for large twist angles. For large twist angles, dop-
ing levels need to be extremely low for obtaining GWCs.

Appendix B: Harmonic Expansion of Density

Following [45], we derive the elastic limit of the den-
sity written in Eq. (5). A continuum limit can be easily
obtained if we treat the equilibrium GWC configuration,
R0
i = Ri − u(R0

i ), as a slowly varying smooth vector
field, ϕ(x), over the position of the particles

ϕ(x) = x− u (ϕ(x)) . (B1)

Clearly a solution of ϕ(x) is given by, ϕ(Ri) =
ϕ
(
R0
i + u(R0

i )
)

= R0
i . Using the above equality we can

rewrite the density in terms of this new field as

ρ(x) =
∑
i

δ(2) [Ri −ϕ(x)− u(ϕ(x))] (B2a)

' det[∂αϕβ(x)]
∑
i

δ(2) (Ri −ϕ(x)) (B2b)

= det[∂αϕβ(x)]

∫
dq

(2π)2
ρ0(q)eiq·ϕ(x) . (B2c)

The first simplification was done using the elastic limit,
∂αuβ � 1. In the last line, we have used the integral
representation of the delta function. In the presence of an
undeformed GWC, we can introduce its reciprocal vec-
tors, eiKl·Ri = 1, to write

ρ0(q) =
∑
i

eiq·Ri = ρ0(2π)2
∑
l

δ(2)(q −Kl) . (B3)

Here ρ0 is the average number density. Introducing the
above simplification in Eq. (B2c) and using Eq. (B1), we
obtain

ρ(x) =ρ0 det[∂αϕβ(x)]
∑
l

eiKl·ϕ(x)

=ρ0 det[1− ∂αuβ (ϕ(x))]
∑
l

eiKl·[x−u(ϕ(x))]

'ρ0 − ρ0∇ · u(x) + ρ0

∑
l

eiKl·[x−u(x)] . (B4)

We again used the elastic limit by first Taylor-expanding
the determinant operator, det, and then substituting
u(ϕ(x)) ≈ u(x) which works for x close to the equi-
librium position and in the elastic limit. This leads us
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TABLE A1. Wigner crystallization criteria for a HeM at θ = 5◦: The material parameters here are the same as those in
Table II. Therefore, the rs values remain the same for ne = 1012 cm−2. Similarly, the nmax

e(h) values remain the same, however,

ν
e(h)
max is different since the supercell density has changed.

HeMs WSe2/WS2 MoSe2/MoS2 MoTe2/MoSe2 MoSe2/WS2 MoSe2/WSe2 MoS2/WS2 MoTe2/WSe2

λm [nm] 3.4 3.4 3.2 3.4 3.8 3.6 3.2

U/W |e(h) 1.3 (2.1) 1.6 (2.8) 1.4 (4.2) 1.1 (2.8) 2.4 (1.9) 2.2 (8.0) 1.0 (4.6)

TL [K] 16.8 14.5 12.6 14.9 13.4 15.6 15.0

ν
e(h)
max 0.05 (0.13) 0.08 (0.24) 0.06 (0.53) 0.04 (0.24) 0.17 (0.11) 0.15 (1.98) 0.04 (0.66)

to Eq. (5). Note there is complete decoupling between
the gradient term and the terms with Kl. This occurs
because u(x) has negligible Fourier components outside
the WBZ.

Appendix C: Elastic Interaction Hamiltonian

In this Appendix, we clarify the derivation of Eq. (15).
First, we Fourier transform the second part of Eq. (12),

H(2)
e–e =

1

2

∑
l

∫
x,x′

U(x− x′)eiKl·(x−x′)Kl,αKl,β ×∫
q,q′

uα(q)uβ(q′)
(
eiq·x − eiq·x

′
)(

eiq
′·x − eiq

′·x′
)
.

(C1)

In order to simplify it further, we introduce the center of
mass coordinate, 2X = x+x′ and the relative coordinate
2δ = x− x′ to obtain

H(2)
e–e =

∑
l

Kl,αKl,β

∫
q

uα(q)uβ(−q)×∫
δ

dδ U(δ) [1− cos(q · δ)] eiKl·δ. (C2)

In coming to this line, we have also integrated out q′,
which introduced a delta function, δ(2)(q+q′). Next, we
perform the last integration for a generic potential of the
form, U(x) = e2/ε|x|γ . One can obtain the long-range
Coulomb potential by setting γ = 1, and with increasing
γ the potential becomes increasingly short-range. For
such a U(δ) we find that

H(2)
e–e =

∑
l

Kl,αKl,β

∫
q

uα(q)uβ(−q)×

e2

ε

(
2

|Kl|γ
− 1

|Kl − q|γ
− 1

|Kl + q|γ

)
. (C3)

For further simplification, we confine our discussion to
the low-energy limit. This allows us to Taylor-expand
the last term in Eq. (C3) for the limit |q| � |Kl|. The
first term in this expansion, which is linear in q, vanishes
because it involves integrating over a cos θl term. Here, θl

are the angles between the q vector and Kl. Therefore,
retaining up to the O(q2) term we obtain,

H(2)
e–e ' γ

e2

ε

∑
l

Kl,αKl,β

|Kl|2+γ

∫
q

q2uα(q)uβ(−q)×[
(2 + γ) cos2 θl − 1

]
. (C4)

Note that unlike the long-distance term, H
(1)
e–e in Eq. (14),

the leading dispersion corresponding to H
(2)
e–e remains

quadratic regardless of the choice of γ.

H(2)
e–e =

∫
q

c q2u (q)u (−q) + c⊥q
2u⊥(q)u⊥(−q). (C5)

Appendix D: GVM for Sine-Gordon Potential

In this Appendix, we demonstrate the GVM method
discussed in the main text for a Sine-Gordon (SG) po-
tential,

H =
1

2
c

∫
dx [∇φ(x)]

2 − g
∫
dx cos[2φ(x)]. (D1)

Here c and g are free parameters. Using the simplifica-
tions discussed in the main text [and using Ω(q) = cq2],
we obtain the variational free energy to be

Fvar = −T
2

∫
q

log[TG(q)] +
T

2

∫
q

cq2G(q)−

g exp

[
T

2

∫
q

G(q)
∂2

∂φ2

] ∫
dx cos(2φ)

∣∣∣∣
φ=0

. (D2)

Further simplifications of the last term leads us to

Fvar =− T

2

∫
q

log[TG(q)] +
T

2

∫
q

cq2G(q)− ge−2
∫
q
TG(q).

(D3)

In these equations, we fixed the sample area to
∫
dx = 1.

The saddle point solution of the above free energy is

G−1 = cq2 + 4ge−2
∫
q
TG(q). (D4)

We now set G−1(q) = cq2 + m and solve m self-
consistently,

m = 4ge
−2T

∫ Λ
q

1
cq2+m ' 4g

( m

cΛ2

)T/2πc
. (D5)
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Here, Λ is a UV cutoff in the momentum-space. A no-
table feature of this solution is that beyond a certain
temperature maximum, T > 2πc, the SG mass must
vanish simply due to the presence of the cutoff in the
denominator above. Such a maximal temperature will
also appear in our discussion in Sec. IV B. Additionally,
from Eq. (D5) one can also deduce the scaling behavior
of the mass, m ∼ g1/(1−τ), where τ = T/2πc.

Pertaining to our discussion of GVM in the context of
GWC, we extend the previous solutions for a SG poten-
tial to an n-component vector SG system. The interac-
tion term here becomes H ′ ∼

∫
dx cos(

∑
n pnφn). The

kernel corresponding to the field φn is cnq
2. As before,

we obtain the variational free energy

Fvar =− T

2

∑
n

∫
q

{
log[TGn(q)]− cnq2Gn(q)

}
− ge−

T
2

∑
n a

2
n

∫
q
G(q). (D6a)

Since, due to the vanishing average of cosine functions,
there are no cross terms such as cosφm cosφn (with m 6=
n), the saddle-point equation (setting n = 1 and an = 2
goes back to the original case)

G−1
n = cnq

2 + ga2
ne
−T2

∑
n a

2
n

∫
q
Gn(q), (D6b)

∴ mn = ga2
n exp

[
−
∑
n

Ta2
n

8πcn
log

(
cnΛ2

mn

)]
. (D6c)

We can solve this SCE exactly and, in this case as
well, there exists a similar temperature window where
gap vanishes, Ta2

n/8πcn ≡ τn > 1. And, like before,
the scaling of mn with the coupling constant becomes,

mn ∝ g(1−
∑
n τn)

−1

. These solutions are not exactly
transferable for our discussions in the main text since
there the kernel has a d q2−γ part. See Sec. IV B for the
case when d = 0, where the above results are perfectly
applicable.
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M. Kroner, and A. Imamoğlu, Nature 580, 472 (2020).

[17] Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak,
K. Watanabe, T. Taniguchi, A. H. MacDonald, J. Shan,
et al., Nature 579, 353 (2020).

[18] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald,
Phys. Rev. Lett. 121, 026402 (2018).

[19] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. Mac-
Donald, Phys. Rev. Lett. 122, 086402 (2019).

[20] Y. Zhou, J. Sung, E. Brutschea, I. Esterlis, Y. Wang,
G. Scuri, R. J. Gelly, H. Heo, T. Taniguchi, K. Watan-
abe, G. Zaránd, M. D. Lukin, P. Kim, E. Demler, and
H. Park, (2020), arXiv:2010.03037 [cond-mat.mes-hall].

[21] X. Huang, T. Wang, S. Miao, C. Wang, Z. Li, Z. Lian,
T. Taniguchi, K. Watanabe, S. Okamoto, D. Xiao, S.-F.
Shi, and Y.-T. Cui, (2020), arXiv:2007.11155 [cond-
mat.mes-hall].

[22] R. Bistritzer and A. H. MacDonald, Proceedings of the
National Academy of Sciences 108, 12233 (2011).

[23] L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes,
C. Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim, and
et al., Nature Materials 19, 861?866 (2020).

[24] J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys.
Rev. Lett. 68, 674 (1992).

[25] L. Li, C. Richter, S. Paetel, T. Kopp, J. Mannhart, and
R. Ashoori, Science 332, 825 (2011).

[26] B. Skinner and B. I. Shklovskii, Phys. Rev. B 82, 155111
(2010).

[27] M. Bello, E. Levin, B. Shklovskii, and A. Efros, Sov.
Phys. JETP, 80, 822 (1981).

[28] R. Chitra, T. Giamarchi, and P. Le Doussal, Phys. Rev.
B 65, 035312 (2001).

http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1103/PhysRevLett.42.795
http://dx.doi.org/10.1103/PhysRevLett.42.795
https://www.nature.com/articles/nature26154
https://www.nature.com/articles/nature26160
https://www.nature.com/articles/nature26160
http://dx.doi.org/ 10.1038/s41586-019-1695-0
http://dx.doi.org/ 10.1038/s41586-019-1695-0
http://dx.doi.org/ 10.1038/s41586-019-1431-9
http://dx.doi.org/ 10.1038/s41567-019-0606-5
http://dx.doi.org/ 10.1038/s41586-020-2339-0
http://dx.doi.org/ 10.1038/s41586-020-2373-y
http://dx.doi.org/ 10.1038/s41586-020-2459-6
http://dx.doi.org/10.1038/s41586-020-2092-4
http://dx.doi.org/10.1038/s41586-020-2868-6
http://dx.doi.org/10.1038/s41586-020-2868-6
https://arxiv.org/abs/2007.12068
http://arxiv.org/abs/2007.12068
http://arxiv.org/abs/2007.12068
http://dx.doi.org/ 10.1038/s41586-020-2191-2
https://www.nature.com/articles/s41586-020-2085-3
http://dx.doi.org/ 10.1103/PhysRevLett.121.026402
http://dx.doi.org/ 10.1103/PhysRevLett.122.086402
http://arxiv.org/abs/2010.03037
http://arxiv.org/abs/2007.11155
http://arxiv.org/abs/2007.11155
http://www.pnas.org/content/108/30/12233
http://www.pnas.org/content/108/30/12233
http://dx.doi.org/ 10.1038/s41563-020-0708-6
http://dx.doi.org/10.1103/PhysRevLett.68.674
http://dx.doi.org/10.1103/PhysRevLett.68.674
http://dx.doi.org/10.1103/PhysRevB.82.155111
http://dx.doi.org/10.1103/PhysRevB.82.155111
http://www.jetp.ac.ru/cgi-bin/e/index/e/53/4/p822?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/53/4/p822?a=list
http://dx.doi.org/10.1103/PhysRevB.65.035312
http://dx.doi.org/10.1103/PhysRevB.65.035312


12

[29] B. Padhi, C. Setty, and P. W. Phillips, Nano Letters 18,
6175 (2018).

[30] B. Padhi and P. W. Phillips, Phys. Rev. B 99, 205141
(2019).

[31] J. Hubbard, Phys. Rev. B 17, 494 (1978).
[32] Y. Chen, R. M. Lewis, L. W. Engel, D. C. Tsui, P. D.

Ye, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 91,
016801 (2003).

[33] J. Jang, B. M. Hunt, L. N. Pfeiffer, K. W. West,
and R. C. Ashoori, Nature Physics 13, 340 (2017),
arXiv:1604.06220 [cond-mat.str-el].

[34] A. Hatke, Y. Liu, L. Engel, M. Shayegan, L. Pfeiffer,
K. West, and K. Baldwin, Nature communications 6, 1
(2015).

[35] P. Monceau, Advances in Physics 61, 325 (2012).
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